i965: Make the userclip flag for the VUE map come from VS prog data.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122 struct brw_instruction;
123 struct brw_vs_prog_key;
124 struct brw_wm_prog_key;
125 struct brw_wm_prog_data;
126
127 enum brw_state_id {
128 BRW_STATE_URB_FENCE,
129 BRW_STATE_FRAGMENT_PROGRAM,
130 BRW_STATE_VERTEX_PROGRAM,
131 BRW_STATE_INPUT_DIMENSIONS,
132 BRW_STATE_CURBE_OFFSETS,
133 BRW_STATE_REDUCED_PRIMITIVE,
134 BRW_STATE_PRIMITIVE,
135 BRW_STATE_CONTEXT,
136 BRW_STATE_WM_INPUT_DIMENSIONS,
137 BRW_STATE_PSP,
138 BRW_STATE_SURFACES,
139 BRW_STATE_VS_BINDING_TABLE,
140 BRW_STATE_GS_BINDING_TABLE,
141 BRW_STATE_PS_BINDING_TABLE,
142 BRW_STATE_INDICES,
143 BRW_STATE_VERTICES,
144 BRW_STATE_BATCH,
145 BRW_STATE_NR_WM_SURFACES,
146 BRW_STATE_NR_VS_SURFACES,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 };
153
154 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
155 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
156 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
157 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
158 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
159 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
160 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
161 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
162 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
163 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
164 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
165 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
166 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
167 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
168 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
169 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
170 /**
171 * Used for any batch entry with a relocated pointer that will be used
172 * by any 3D rendering.
173 */
174 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
175 /** \see brw.state.depth_region */
176 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
177 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
178 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
179 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
180 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
181
182 struct brw_state_flags {
183 /** State update flags signalled by mesa internals */
184 GLuint mesa;
185 /**
186 * State update flags signalled as the result of brw_tracked_state updates
187 */
188 GLuint brw;
189 /** State update flags signalled by brw_state_cache.c searches */
190 GLuint cache;
191 };
192
193 enum state_struct_type {
194 AUB_TRACE_VS_STATE = 1,
195 AUB_TRACE_GS_STATE = 2,
196 AUB_TRACE_CLIP_STATE = 3,
197 AUB_TRACE_SF_STATE = 4,
198 AUB_TRACE_WM_STATE = 5,
199 AUB_TRACE_CC_STATE = 6,
200 AUB_TRACE_CLIP_VP_STATE = 7,
201 AUB_TRACE_SF_VP_STATE = 8,
202 AUB_TRACE_CC_VP_STATE = 0x9,
203 AUB_TRACE_SAMPLER_STATE = 0xa,
204 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
205 AUB_TRACE_SCRATCH_SPACE = 0xc,
206 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
207
208 AUB_TRACE_SCISSOR_STATE = 0x15,
209 AUB_TRACE_BLEND_STATE = 0x16,
210 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
211
212 /* Not written to .aub files the same way the structures above are. */
213 AUB_TRACE_NO_TYPE = 0x100,
214 AUB_TRACE_BINDING_TABLE = 0x101,
215 AUB_TRACE_SURFACE_STATE = 0x102,
216 AUB_TRACE_VS_CONSTANTS = 0x103,
217 AUB_TRACE_WM_CONSTANTS = 0x104,
218 };
219
220 /** Subclass of Mesa vertex program */
221 struct brw_vertex_program {
222 struct gl_vertex_program program;
223 GLuint id;
224 bool use_const_buffer;
225 };
226
227
228 /** Subclass of Mesa fragment program */
229 struct brw_fragment_program {
230 struct gl_fragment_program program;
231 GLuint id; /**< serial no. to identify frag progs, never re-used */
232 };
233
234 struct brw_shader {
235 struct gl_shader base;
236
237 /** Shader IR transformed for native compile, at link time. */
238 struct exec_list *ir;
239 };
240
241 struct brw_shader_program {
242 struct gl_shader_program base;
243 };
244
245 enum param_conversion {
246 PARAM_NO_CONVERT,
247 PARAM_CONVERT_F2I,
248 PARAM_CONVERT_F2U,
249 PARAM_CONVERT_F2B,
250 PARAM_CONVERT_ZERO,
251 };
252
253 /* Data about a particular attempt to compile a program. Note that
254 * there can be many of these, each in a different GL state
255 * corresponding to a different brw_wm_prog_key struct, with different
256 * compiled programs:
257 */
258 struct brw_wm_prog_data {
259 GLuint curb_read_length;
260 GLuint urb_read_length;
261
262 GLuint first_curbe_grf;
263 GLuint first_curbe_grf_16;
264 GLuint reg_blocks;
265 GLuint reg_blocks_16;
266 GLuint total_scratch;
267
268 GLuint nr_params; /**< number of float params/constants */
269 GLuint nr_pull_params;
270 bool error;
271 int dispatch_width;
272 uint32_t prog_offset_16;
273
274 /* Pointer to tracked values (only valid once
275 * _mesa_load_state_parameters has been called at runtime).
276 */
277 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
278 enum param_conversion param_convert[MAX_UNIFORMS * 4];
279 const float *pull_param[MAX_UNIFORMS * 4];
280 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
281 };
282
283 /**
284 * Enum representing the i965-specific vertex results that don't correspond
285 * exactly to any element of gl_vert_result. The values of this enum are
286 * assigned such that they don't conflict with gl_vert_result.
287 */
288 typedef enum
289 {
290 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
291 BRW_VERT_RESULT_HPOS_DUPLICATE,
292 BRW_VERT_RESULT_PAD,
293 BRW_VERT_RESULT_MAX
294 } brw_vert_result;
295
296
297 /**
298 * Data structure recording the relationship between the gl_vert_result enum
299 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
300 * single octaword within the VUE (128 bits).
301 *
302 * Note that each BRW register contains 256 bits (2 octawords), so when
303 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
304 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
305 * in a vertex shader), each register corresponds to a single VUE slot, since
306 * it contains data for two separate vertices.
307 */
308 struct brw_vue_map {
309 /**
310 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
311 * not stored in a slot (because they are not written, or because
312 * additional processing is applied before storing them in the VUE), the
313 * value is -1.
314 */
315 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
316
317 /**
318 * Map from VUE slot to gl_vert_result value. For slots that do not
319 * directly correspond to a gl_vert_result, the value comes from
320 * brw_vert_result.
321 *
322 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
323 * simplifies code that uses the value stored in slot_to_vert_result to
324 * create a bit mask).
325 */
326 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
327
328 /**
329 * Total number of VUE slots in use
330 */
331 int num_slots;
332 };
333
334 /**
335 * Convert a VUE slot number into a byte offset within the VUE.
336 */
337 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
338 {
339 return 16*slot;
340 }
341
342 /**
343 * Convert a vert_result into a byte offset within the VUE.
344 */
345 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
346 GLuint vert_result)
347 {
348 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
349 }
350
351
352 struct brw_sf_prog_data {
353 GLuint urb_read_length;
354 GLuint total_grf;
355
356 /* Each vertex may have upto 12 attributes, 4 components each,
357 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
358 * rows.
359 *
360 * Actually we use 4 for each, so call it 12 rows.
361 */
362 GLuint urb_entry_size;
363 };
364
365 struct brw_clip_prog_data {
366 GLuint curb_read_length; /* user planes? */
367 GLuint clip_mode;
368 GLuint urb_read_length;
369 GLuint total_grf;
370 };
371
372 struct brw_gs_prog_data {
373 GLuint urb_read_length;
374 GLuint total_grf;
375
376 /**
377 * Gen6 transform feedback: Amount by which the streaming vertex buffer
378 * indices should be incremented each time the GS is invoked.
379 */
380 unsigned svbi_postincrement_value;
381 };
382
383 struct brw_vs_prog_data {
384 GLuint curb_read_length;
385 GLuint urb_read_length;
386 GLuint total_grf;
387 GLbitfield64 outputs_written;
388 GLuint nr_params; /**< number of float params/constants */
389 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
390 GLuint total_scratch;
391
392 GLbitfield64 inputs_read;
393
394 /* Used for calculating urb partitions:
395 */
396 GLuint urb_entry_size;
397
398 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
399 const float *pull_param[MAX_UNIFORMS * 4];
400
401 bool uses_new_param_layout;
402 bool uses_vertexid;
403 bool userclip;
404 };
405
406
407 /* Size == 0 if output either not written, or always [0,0,0,1]
408 */
409 struct brw_vs_ouput_sizes {
410 GLubyte output_size[VERT_RESULT_MAX];
411 };
412
413
414 /** Number of texture sampler units */
415 #define BRW_MAX_TEX_UNIT 16
416
417 /** Max number of render targets in a shader */
418 #define BRW_MAX_DRAW_BUFFERS 8
419
420 /**
421 * Max number of binding table entries used for stream output.
422 *
423 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
424 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
425 *
426 * On Gen6, the size of transform feedback data is limited not by the number
427 * of components but by the number of binding table entries we set aside. We
428 * use one binding table entry for a float, one entry for a vector, and one
429 * entry per matrix column. Since the only way we can communicate our
430 * transform feedback capabilities to the client is via
431 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
432 * worst case, in which all the varyings are floats, so we use up one binding
433 * table entry per component. Therefore we need to set aside at least 64
434 * binding table entries for use by transform feedback.
435 *
436 * Note: since we don't currently pack varyings, it is currently impossible
437 * for the client to actually use up all of these binding table entries--if
438 * all of their varyings were floats, they would run out of varying slots and
439 * fail to link. But that's a bug, so it seems prudent to go ahead and
440 * allocate the number of binding table entries we will need once the bug is
441 * fixed.
442 */
443 #define BRW_MAX_SOL_BINDINGS 64
444
445 /** Maximum number of actual buffers used for stream output */
446 #define BRW_MAX_SOL_BUFFERS 4
447
448 /**
449 * Helpers to create Surface Binding Table indexes for draw buffers,
450 * textures, and constant buffers.
451 *
452 * Shader threads access surfaces via numeric handles, rather than directly
453 * using pointers. The binding table maps these numeric handles to the
454 * address of the actual buffer.
455 *
456 * For example, a shader might ask to sample from "surface 7." In this case,
457 * bind[7] would contain a pointer to a texture.
458 *
459 * Although the hardware supports separate binding tables per pipeline stage
460 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
461 * them. This is purely for convenience.
462 *
463 * Currently our binding tables are (arbitrarily) programmed as follows:
464 *
465 * +-------------------------------+
466 * | 0 | Draw buffer 0 | .
467 * | . | . | \
468 * | : | : | > Only relevant to the WM.
469 * | 7 | Draw buffer 7 | /
470 * |-----|-------------------------| `
471 * | 8 | VS Pull Constant Buffer |
472 * | 9 | WM Pull Constant Buffer |
473 * |-----|-------------------------|
474 * | 10 | Texture 0 |
475 * | . | . |
476 * | : | : |
477 * | 25 | Texture 15 |
478 * +-----|-------------------------+
479 * | 26 | SOL Binding 0 |
480 * | . | . |
481 * | : | : |
482 * | 89 | SOL Binding 63 |
483 * +-------------------------------+
484 *
485 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
486 * the identity function or things will break. We do want to keep draw buffers
487 * first so we can use headerless render target writes for RT 0.
488 */
489 #define SURF_INDEX_DRAW(d) (d)
490 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
491 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
492 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
493 #define SURF_INDEX_SOL_BINDING(t) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + (t))
494
495 /** Maximum size of the binding table. */
496 #define BRW_MAX_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
497
498 enum brw_cache_id {
499 BRW_BLEND_STATE,
500 BRW_DEPTH_STENCIL_STATE,
501 BRW_COLOR_CALC_STATE,
502 BRW_CC_VP,
503 BRW_CC_UNIT,
504 BRW_WM_PROG,
505 BRW_SAMPLER,
506 BRW_WM_UNIT,
507 BRW_SF_PROG,
508 BRW_SF_VP,
509 BRW_SF_UNIT, /* scissor state on gen6 */
510 BRW_VS_UNIT,
511 BRW_VS_PROG,
512 BRW_GS_UNIT,
513 BRW_GS_PROG,
514 BRW_CLIP_VP,
515 BRW_CLIP_UNIT,
516 BRW_CLIP_PROG,
517
518 BRW_MAX_CACHE
519 };
520
521 struct brw_cache_item {
522 /**
523 * Effectively part of the key, cache_id identifies what kind of state
524 * buffer is involved, and also which brw->state.dirty.cache flag should
525 * be set when this cache item is chosen.
526 */
527 enum brw_cache_id cache_id;
528 /** 32-bit hash of the key data */
529 GLuint hash;
530 GLuint key_size; /* for variable-sized keys */
531 GLuint aux_size;
532 const void *key;
533
534 uint32_t offset;
535 uint32_t size;
536
537 struct brw_cache_item *next;
538 };
539
540
541
542 struct brw_cache {
543 struct brw_context *brw;
544
545 struct brw_cache_item **items;
546 drm_intel_bo *bo;
547 GLuint size, n_items;
548
549 uint32_t next_offset;
550 bool bo_used_by_gpu;
551 };
552
553
554 /* Considered adding a member to this struct to document which flags
555 * an update might raise so that ordering of the state atoms can be
556 * checked or derived at runtime. Dropped the idea in favor of having
557 * a debug mode where the state is monitored for flags which are
558 * raised that have already been tested against.
559 */
560 struct brw_tracked_state {
561 struct brw_state_flags dirty;
562 void (*emit)( struct brw_context *brw );
563 };
564
565 /* Flags for brw->state.cache.
566 */
567 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
568 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
569 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
570 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
571 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
572 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
573 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
574 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
575 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
576 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
577 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
578 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
579 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
580 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
581 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
582 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
583 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
584 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
585
586 struct brw_cached_batch_item {
587 struct header *header;
588 GLuint sz;
589 struct brw_cached_batch_item *next;
590 };
591
592
593
594 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
595 * be easier if C allowed arrays of packed elements?
596 */
597 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
598
599 struct brw_vertex_buffer {
600 /** Buffer object containing the uploaded vertex data */
601 drm_intel_bo *bo;
602 uint32_t offset;
603 /** Byte stride between elements in the uploaded array */
604 GLuint stride;
605 };
606 struct brw_vertex_element {
607 const struct gl_client_array *glarray;
608
609 int buffer;
610
611 /** The corresponding Mesa vertex attribute */
612 gl_vert_attrib attrib;
613 /** Size of a complete element */
614 GLuint element_size;
615 /** Offset of the first element within the buffer object */
616 unsigned int offset;
617 };
618
619
620
621 struct brw_vertex_info {
622 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
623 };
624
625 struct brw_query_object {
626 struct gl_query_object Base;
627
628 /** Last query BO associated with this query. */
629 drm_intel_bo *bo;
630 /** First index in bo with query data for this object. */
631 int first_index;
632 /** Last index in bo with query data for this object. */
633 int last_index;
634 };
635
636
637 /**
638 * brw_context is derived from intel_context.
639 */
640 struct brw_context
641 {
642 struct intel_context intel; /**< base class, must be first field */
643 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
644
645 bool emit_state_always;
646 bool has_surface_tile_offset;
647 bool has_compr4;
648 bool has_negative_rhw_bug;
649 bool has_aa_line_parameters;
650 bool has_pln;
651 bool precompile;
652
653 struct {
654 struct brw_state_flags dirty;
655 } state;
656
657 struct brw_cache cache;
658 struct brw_cached_batch_item *cached_batch_items;
659
660 struct {
661 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
662 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
663 struct {
664 uint32_t handle;
665 uint32_t offset;
666 uint32_t stride;
667 } current_buffers[VERT_ATTRIB_MAX];
668
669 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
670 GLuint nr_enabled;
671 GLuint nr_buffers, nr_current_buffers;
672
673 /* Summary of size and varying of active arrays, so we can check
674 * for changes to this state:
675 */
676 struct brw_vertex_info info;
677 unsigned int min_index, max_index;
678
679 /* Offset from start of vertex buffer so we can avoid redefining
680 * the same VB packed over and over again.
681 */
682 unsigned int start_vertex_bias;
683 } vb;
684
685 struct {
686 /**
687 * Index buffer for this draw_prims call.
688 *
689 * Updates are signaled by BRW_NEW_INDICES.
690 */
691 const struct _mesa_index_buffer *ib;
692
693 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
694 drm_intel_bo *bo;
695 GLuint type;
696
697 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
698 * avoid re-uploading the IB packet over and over if we're actually
699 * referencing the same index buffer.
700 */
701 unsigned int start_vertex_offset;
702 } ib;
703
704 /* Active vertex program:
705 */
706 const struct gl_vertex_program *vertex_program;
707 const struct gl_fragment_program *fragment_program;
708
709 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
710 uint32_t CMD_VF_STATISTICS;
711 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
712 uint32_t CMD_PIPELINE_SELECT;
713
714 /**
715 * Platform specific constants containing the maximum number of threads
716 * for each pipeline stage.
717 */
718 int max_vs_threads;
719 int max_gs_threads;
720 int max_wm_threads;
721
722 /* BRW_NEW_URB_ALLOCATIONS:
723 */
724 struct {
725 GLuint vsize; /* vertex size plus header in urb registers */
726 GLuint csize; /* constant buffer size in urb registers */
727 GLuint sfsize; /* setup data size in urb registers */
728
729 bool constrained;
730
731 GLuint max_vs_entries; /* Maximum number of VS entries */
732 GLuint max_gs_entries; /* Maximum number of GS entries */
733
734 GLuint nr_vs_entries;
735 GLuint nr_gs_entries;
736 GLuint nr_clip_entries;
737 GLuint nr_sf_entries;
738 GLuint nr_cs_entries;
739
740 /* gen6:
741 * The length of each URB entry owned by the VS (or GS), as
742 * a number of 1024-bit (128-byte) rows. Should be >= 1.
743 *
744 * gen7: Same meaning, but in 512-bit (64-byte) rows.
745 */
746 GLuint vs_size;
747 GLuint gs_size;
748
749 GLuint vs_start;
750 GLuint gs_start;
751 GLuint clip_start;
752 GLuint sf_start;
753 GLuint cs_start;
754 GLuint size; /* Hardware URB size, in KB. */
755
756 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
757 * URB space for the GS.
758 */
759 bool gen6_gs_previously_active;
760 } urb;
761
762
763 /* BRW_NEW_CURBE_OFFSETS:
764 */
765 struct {
766 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
767 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
768 GLuint clip_start;
769 GLuint clip_size;
770 GLuint vs_start;
771 GLuint vs_size;
772 GLuint total_size;
773
774 drm_intel_bo *curbe_bo;
775 /** Offset within curbe_bo of space for current curbe entry */
776 GLuint curbe_offset;
777 /** Offset within curbe_bo of space for next curbe entry */
778 GLuint curbe_next_offset;
779
780 /**
781 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
782 * in brw_curbe.c with the same set of constant data to be uploaded,
783 * so we'd rather not upload new constants in that case (it can cause
784 * a pipeline bubble since only up to 4 can be pipelined at a time).
785 */
786 GLfloat *last_buf;
787 /**
788 * Allocation for where to calculate the next set of CURBEs.
789 * It's a hot enough path that malloc/free of that data matters.
790 */
791 GLfloat *next_buf;
792 GLuint last_bufsz;
793 } curbe;
794
795 struct {
796 /** Binding table of pointers to surf_bo entries */
797 uint32_t bo_offset;
798 uint32_t surf_offset[BRW_MAX_SURFACES];
799 } bind;
800
801 /** SAMPLER_STATE count and offset */
802 struct {
803 GLuint count;
804 uint32_t offset;
805 } sampler;
806
807 struct {
808 struct brw_vs_prog_data *prog_data;
809 int8_t *constant_map; /* variable array following prog_data */
810
811 drm_intel_bo *scratch_bo;
812 drm_intel_bo *const_bo;
813 /** Offset in the program cache to the VS program */
814 uint32_t prog_offset;
815 uint32_t state_offset;
816
817 uint32_t push_const_offset; /* Offset in the batchbuffer */
818 int push_const_size; /* in 256-bit register increments */
819
820 /** @{ register allocator */
821
822 struct ra_regs *regs;
823
824 /**
825 * Array of the ra classes for the unaligned contiguous register
826 * block sizes used.
827 */
828 int *classes;
829
830 /**
831 * Mapping for register-allocated objects in *regs to the first
832 * GRF for that object.
833 */
834 uint8_t *ra_reg_to_grf;
835 /** @} */
836 } vs;
837
838 struct {
839 struct brw_gs_prog_data *prog_data;
840
841 bool prog_active;
842 /** Offset in the program cache to the CLIP program pre-gen6 */
843 uint32_t prog_offset;
844 uint32_t state_offset;
845 } gs;
846
847 struct {
848 struct brw_clip_prog_data *prog_data;
849
850 /** Offset in the program cache to the CLIP program pre-gen6 */
851 uint32_t prog_offset;
852
853 /* Offset in the batch to the CLIP state on pre-gen6. */
854 uint32_t state_offset;
855
856 /* As of gen6, this is the offset in the batch to the CLIP VP,
857 * instead of vp_bo.
858 */
859 uint32_t vp_offset;
860 } clip;
861
862
863 struct {
864 struct brw_sf_prog_data *prog_data;
865
866 /** Offset in the program cache to the CLIP program pre-gen6 */
867 uint32_t prog_offset;
868 uint32_t state_offset;
869 uint32_t vp_offset;
870 } sf;
871
872 struct {
873 struct brw_wm_prog_data *prog_data;
874 struct brw_wm_compile *compile_data;
875
876 /** Input sizes, calculated from active vertex program.
877 * One bit per fragment program input attribute.
878 */
879 GLbitfield input_size_masks[4];
880
881 /** offsets in the batch to sampler default colors (texture border color)
882 */
883 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
884
885 GLuint render_surf;
886
887 drm_intel_bo *scratch_bo;
888
889 /** Offset in the program cache to the WM program */
890 uint32_t prog_offset;
891
892 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
893
894 drm_intel_bo *const_bo; /* pull constant buffer. */
895 /**
896 * This is offset in the batch to the push constants on gen6.
897 *
898 * Pre-gen6, push constants live in the CURBE.
899 */
900 uint32_t push_const_offset;
901
902 /** @{ register allocator */
903
904 struct ra_regs *regs;
905
906 /** Array of the ra classes for the unaligned contiguous
907 * register block sizes used.
908 */
909 int *classes;
910
911 /**
912 * Mapping for register-allocated objects in *regs to the first
913 * GRF for that object.
914 */
915 uint8_t *ra_reg_to_grf;
916
917 /**
918 * ra class for the aligned pairs we use for PLN, which doesn't
919 * appear in *classes.
920 */
921 int aligned_pairs_class;
922
923 /** @} */
924 } wm;
925
926
927 struct {
928 uint32_t state_offset;
929 uint32_t blend_state_offset;
930 uint32_t depth_stencil_state_offset;
931 uint32_t vp_offset;
932 } cc;
933
934 struct {
935 struct brw_query_object *obj;
936 drm_intel_bo *bo;
937 int index;
938 bool active;
939 } query;
940 /* Used to give every program string a unique id
941 */
942 GLuint program_id;
943
944 int num_atoms;
945 const struct brw_tracked_state **atoms;
946
947 /* If (INTEL_DEBUG & DEBUG_BATCH) */
948 struct {
949 uint32_t offset;
950 uint32_t size;
951 enum state_struct_type type;
952 } *state_batch_list;
953 int state_batch_count;
954
955 /**
956 * \brief State needed to execute HiZ ops.
957 *
958 * \see gen6_hiz_init()
959 * \see gen6_hiz_exec()
960 */
961 struct brw_hiz_state {
962 /** \brief VBO for rectangle primitive.
963 *
964 * Rather than using glGenBuffers(), we allocate the VBO directly
965 * through drm.
966 */
967 drm_intel_bo *vertex_bo;
968 } hiz;
969
970 struct brw_sol_state {
971 uint32_t svbi_0_starting_index;
972 uint32_t svbi_0_max_index;
973 uint32_t offset_0_batch_start;
974 uint32_t primitives_generated;
975 uint32_t primitives_written;
976 } sol;
977
978 uint32_t render_target_format[MESA_FORMAT_COUNT];
979 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
980 };
981
982
983
984 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
985
986 struct brw_instruction_info {
987 char *name;
988 int nsrc;
989 int ndst;
990 bool is_arith;
991 };
992 extern const struct brw_instruction_info brw_opcodes[128];
993
994 /*======================================================================
995 * brw_vtbl.c
996 */
997 void brwInitVtbl( struct brw_context *brw );
998
999 /*======================================================================
1000 * brw_context.c
1001 */
1002 bool brwCreateContext(int api,
1003 const struct gl_config *mesaVis,
1004 __DRIcontext *driContextPriv,
1005 void *sharedContextPrivate);
1006
1007 /*======================================================================
1008 * brw_queryobj.c
1009 */
1010 void brw_init_queryobj_functions(struct dd_function_table *functions);
1011 void brw_prepare_query_begin(struct brw_context *brw);
1012 void brw_emit_query_begin(struct brw_context *brw);
1013 void brw_emit_query_end(struct brw_context *brw);
1014
1015 /*======================================================================
1016 * brw_state_dump.c
1017 */
1018 void brw_debug_batch(struct intel_context *intel);
1019
1020 /*======================================================================
1021 * brw_tex.c
1022 */
1023 void brw_validate_textures( struct brw_context *brw );
1024
1025
1026 /*======================================================================
1027 * brw_program.c
1028 */
1029 void brwInitFragProgFuncs( struct dd_function_table *functions );
1030
1031 int brw_get_scratch_size(int size);
1032 void brw_get_scratch_bo(struct intel_context *intel,
1033 drm_intel_bo **scratch_bo, int size);
1034
1035
1036 /* brw_urb.c
1037 */
1038 void brw_upload_urb_fence(struct brw_context *brw);
1039
1040 /* brw_curbe.c
1041 */
1042 void brw_upload_cs_urb_state(struct brw_context *brw);
1043
1044 /* brw_disasm.c */
1045 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1046
1047 /* brw_vs.c */
1048 void brw_compute_vue_map(struct brw_vue_map *vue_map,
1049 const struct intel_context *intel,
1050 const struct brw_vs_prog_data *prog_data);
1051 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1052
1053 /* brw_wm.c */
1054 unsigned
1055 brw_compute_barycentric_interp_modes(bool shade_model_flat,
1056 const struct gl_fragment_program *fprog);
1057
1058 /* brw_wm_surface_state.c */
1059 void brw_init_surface_formats(struct brw_context *brw);
1060 void
1061 brw_update_sol_surface(struct brw_context *brw,
1062 struct gl_buffer_object *buffer_obj,
1063 uint32_t *out_offset, unsigned num_vector_components,
1064 unsigned stride_dwords, unsigned offset_dwords);
1065
1066 /* gen6_clip_state.c */
1067 bool
1068 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
1069
1070 /* gen6_sol.c */
1071 void
1072 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1073 struct gl_transform_feedback_object *obj);
1074 void
1075 brw_end_transform_feedback(struct gl_context *ctx,
1076 struct gl_transform_feedback_object *obj);
1077
1078 /* gen7_sol_state.c */
1079 void
1080 gen7_end_transform_feedback(struct gl_context *ctx,
1081 struct gl_transform_feedback_object *obj);
1082
1083
1084
1085 /*======================================================================
1086 * Inline conversion functions. These are better-typed than the
1087 * macros used previously:
1088 */
1089 static INLINE struct brw_context *
1090 brw_context( struct gl_context *ctx )
1091 {
1092 return (struct brw_context *)ctx;
1093 }
1094
1095 static INLINE struct brw_vertex_program *
1096 brw_vertex_program(struct gl_vertex_program *p)
1097 {
1098 return (struct brw_vertex_program *) p;
1099 }
1100
1101 static INLINE const struct brw_vertex_program *
1102 brw_vertex_program_const(const struct gl_vertex_program *p)
1103 {
1104 return (const struct brw_vertex_program *) p;
1105 }
1106
1107 static INLINE struct brw_fragment_program *
1108 brw_fragment_program(struct gl_fragment_program *p)
1109 {
1110 return (struct brw_fragment_program *) p;
1111 }
1112
1113 static INLINE const struct brw_fragment_program *
1114 brw_fragment_program_const(const struct gl_fragment_program *p)
1115 {
1116 return (const struct brw_fragment_program *) p;
1117 }
1118
1119 static inline
1120 float convert_param(enum param_conversion conversion, const float *param)
1121 {
1122 union {
1123 float f;
1124 uint32_t u;
1125 int32_t i;
1126 } fi;
1127
1128 switch (conversion) {
1129 case PARAM_NO_CONVERT:
1130 return *param;
1131 case PARAM_CONVERT_F2I:
1132 fi.i = *param;
1133 return fi.f;
1134 case PARAM_CONVERT_F2U:
1135 fi.u = *param;
1136 return fi.f;
1137 case PARAM_CONVERT_F2B:
1138 if (*param != 0.0)
1139 fi.i = 1;
1140 else
1141 fi.i = 0;
1142 return fi.f;
1143 case PARAM_CONVERT_ZERO:
1144 return 0.0;
1145 default:
1146 return *param;
1147 }
1148 }
1149
1150 /**
1151 * Pre-gen6, the register file of the EUs was shared between threads,
1152 * and each thread used some subset allocated on a 16-register block
1153 * granularity. The unit states wanted these block counts.
1154 */
1155 static inline int
1156 brw_register_blocks(int reg_count)
1157 {
1158 return ALIGN(reg_count, 16) / 16 - 1;
1159 }
1160
1161 static inline uint32_t
1162 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1163 uint32_t prog_offset)
1164 {
1165 struct intel_context *intel = &brw->intel;
1166
1167 if (intel->gen >= 5) {
1168 /* Using state base address. */
1169 return prog_offset;
1170 }
1171
1172 drm_intel_bo_emit_reloc(intel->batch.bo,
1173 state_offset,
1174 brw->cache.bo,
1175 prog_offset,
1176 I915_GEM_DOMAIN_INSTRUCTION, 0);
1177
1178 return brw->cache.bo->offset + prog_offset;
1179 }
1180
1181 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1182
1183 #endif