i965/vs: Start adding support for uniforms
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_WM_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_WM_CONSTBUF,
146 BRW_STATE_PROGRAM_CACHE,
147 BRW_STATE_STATE_BASE_ADDRESS,
148 };
149
150 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
151 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
152 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
153 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
154 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
155 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
156 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
157 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
158 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
159 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
160 #define BRW_NEW_WM_SURFACES (1 << BRW_STATE_WM_SURFACES)
161 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
162 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
163 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
164 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
165 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
166 /**
167 * Used for any batch entry with a relocated pointer that will be used
168 * by any 3D rendering.
169 */
170 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
171 /** \see brw.state.depth_region */
172 #define BRW_NEW_NR_WM_SURFACES (1 << BRW_STATE_NR_WM_SURFACES)
173 #define BRW_NEW_NR_VS_SURFACES (1 << BRW_STATE_NR_VS_SURFACES)
174 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
175 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
176 #define BRW_NEW_WM_CONSTBUF (1 << BRW_STATE_WM_CONSTBUF)
177 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
178 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
179
180 struct brw_state_flags {
181 /** State update flags signalled by mesa internals */
182 GLuint mesa;
183 /**
184 * State update flags signalled as the result of brw_tracked_state updates
185 */
186 GLuint brw;
187 /** State update flags signalled by brw_state_cache.c searches */
188 GLuint cache;
189 };
190
191 enum state_struct_type {
192 AUB_TRACE_VS_STATE = 1,
193 AUB_TRACE_GS_STATE = 2,
194 AUB_TRACE_CLIP_STATE = 3,
195 AUB_TRACE_SF_STATE = 4,
196 AUB_TRACE_WM_STATE = 5,
197 AUB_TRACE_CC_STATE = 6,
198 AUB_TRACE_CLIP_VP_STATE = 7,
199 AUB_TRACE_SF_VP_STATE = 8,
200 AUB_TRACE_CC_VP_STATE = 0x9,
201 AUB_TRACE_SAMPLER_STATE = 0xa,
202 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
203 AUB_TRACE_SCRATCH_SPACE = 0xc,
204 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
205
206 AUB_TRACE_SCISSOR_STATE = 0x15,
207 AUB_TRACE_BLEND_STATE = 0x16,
208 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
209
210 /* Not written to .aub files the same way the structures above are. */
211 AUB_TRACE_NO_TYPE = 0x100,
212 AUB_TRACE_BINDING_TABLE = 0x101,
213 AUB_TRACE_SURFACE_STATE = 0x102,
214 AUB_TRACE_VS_CONSTANTS = 0x103,
215 AUB_TRACE_WM_CONSTANTS = 0x104,
216 };
217
218 /** Subclass of Mesa vertex program */
219 struct brw_vertex_program {
220 struct gl_vertex_program program;
221 GLuint id;
222 GLboolean use_const_buffer;
223 };
224
225
226 /** Subclass of Mesa fragment program */
227 struct brw_fragment_program {
228 struct gl_fragment_program program;
229 GLuint id; /**< serial no. to identify frag progs, never re-used */
230
231 /** for debugging, which texture units are referenced */
232 GLbitfield tex_units_used;
233 };
234
235 struct brw_shader {
236 struct gl_shader base;
237
238 /** Shader IR transformed for native compile, at link time. */
239 struct exec_list *ir;
240 };
241
242 struct brw_shader_program {
243 struct gl_shader_program base;
244 };
245
246 enum param_conversion {
247 PARAM_NO_CONVERT,
248 PARAM_CONVERT_F2I,
249 PARAM_CONVERT_F2U,
250 PARAM_CONVERT_F2B,
251 PARAM_CONVERT_ZERO,
252 };
253
254 /* Data about a particular attempt to compile a program. Note that
255 * there can be many of these, each in a different GL state
256 * corresponding to a different brw_wm_prog_key struct, with different
257 * compiled programs:
258 */
259 struct brw_wm_prog_data {
260 GLuint curb_read_length;
261 GLuint urb_read_length;
262
263 GLuint first_curbe_grf;
264 GLuint first_curbe_grf_16;
265 GLuint reg_blocks;
266 GLuint reg_blocks_16;
267 GLuint total_scratch;
268
269 GLuint nr_params; /**< number of float params/constants */
270 GLuint nr_pull_params;
271 GLboolean error;
272 int dispatch_width;
273 uint32_t prog_offset_16;
274
275 /* Pointer to tracked values (only valid once
276 * _mesa_load_state_parameters has been called at runtime).
277 */
278 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
279 enum param_conversion param_convert[MAX_UNIFORMS * 4];
280 const float *pull_param[MAX_UNIFORMS * 4];
281 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
282 };
283
284 struct brw_sf_prog_data {
285 GLuint urb_read_length;
286 GLuint total_grf;
287
288 /* Each vertex may have upto 12 attributes, 4 components each,
289 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
290 * rows.
291 *
292 * Actually we use 4 for each, so call it 12 rows.
293 */
294 GLuint urb_entry_size;
295 };
296
297 struct brw_clip_prog_data {
298 GLuint curb_read_length; /* user planes? */
299 GLuint clip_mode;
300 GLuint urb_read_length;
301 GLuint total_grf;
302 };
303
304 struct brw_gs_prog_data {
305 GLuint urb_read_length;
306 GLuint total_grf;
307 };
308
309 struct brw_vs_prog_data {
310 GLuint curb_read_length;
311 GLuint urb_read_length;
312 GLuint total_grf;
313 GLbitfield64 outputs_written;
314 GLuint nr_params; /**< number of float params/constants */
315
316 GLuint inputs_read;
317
318 /* Used for calculating urb partitions:
319 */
320 GLuint urb_entry_size;
321
322 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
323 enum param_conversion param_convert[MAX_UNIFORMS * 4];
324 const float *pull_param[MAX_UNIFORMS * 4];
325 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
326
327 bool uses_new_param_layout;
328 };
329
330
331 /* Size == 0 if output either not written, or always [0,0,0,1]
332 */
333 struct brw_vs_ouput_sizes {
334 GLubyte output_size[VERT_RESULT_MAX];
335 };
336
337
338 /** Number of texture sampler units */
339 #define BRW_MAX_TEX_UNIT 16
340
341 /** Max number of render targets in a shader */
342 #define BRW_MAX_DRAW_BUFFERS 8
343
344 /**
345 * Size of our surface binding table for the WM.
346 * This contains pointers to the drawing surfaces and current texture
347 * objects and shader constant buffers (+2).
348 */
349 #define BRW_WM_MAX_SURF (BRW_MAX_DRAW_BUFFERS + BRW_MAX_TEX_UNIT + 1)
350
351 /**
352 * Helpers to convert drawing buffers, textures and constant buffers
353 * to surface binding table indexes, for WM.
354 */
355 #define SURF_INDEX_DRAW(d) (d)
356 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS)
357 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 1 + (t))
358
359 /**
360 * Size of surface binding table for the VS.
361 * Only one constant buffer for now.
362 */
363 #define BRW_VS_MAX_SURF 1
364
365 /**
366 * Only a VS constant buffer
367 */
368 #define SURF_INDEX_VERT_CONST_BUFFER 0
369
370
371 enum brw_cache_id {
372 BRW_BLEND_STATE,
373 BRW_DEPTH_STENCIL_STATE,
374 BRW_COLOR_CALC_STATE,
375 BRW_CC_VP,
376 BRW_CC_UNIT,
377 BRW_WM_PROG,
378 BRW_SAMPLER,
379 BRW_WM_UNIT,
380 BRW_SF_PROG,
381 BRW_SF_VP,
382 BRW_SF_UNIT, /* scissor state on gen6 */
383 BRW_VS_UNIT,
384 BRW_VS_PROG,
385 BRW_GS_UNIT,
386 BRW_GS_PROG,
387 BRW_CLIP_VP,
388 BRW_CLIP_UNIT,
389 BRW_CLIP_PROG,
390
391 BRW_MAX_CACHE
392 };
393
394 struct brw_cache_item {
395 /**
396 * Effectively part of the key, cache_id identifies what kind of state
397 * buffer is involved, and also which brw->state.dirty.cache flag should
398 * be set when this cache item is chosen.
399 */
400 enum brw_cache_id cache_id;
401 /** 32-bit hash of the key data */
402 GLuint hash;
403 GLuint key_size; /* for variable-sized keys */
404 GLuint aux_size;
405 const void *key;
406
407 uint32_t offset;
408 uint32_t size;
409
410 struct brw_cache_item *next;
411 };
412
413
414
415 struct brw_cache {
416 struct brw_context *brw;
417
418 struct brw_cache_item **items;
419 drm_intel_bo *bo;
420 GLuint size, n_items;
421
422 uint32_t next_offset;
423 bool bo_used_by_gpu;
424 };
425
426
427 /* Considered adding a member to this struct to document which flags
428 * an update might raise so that ordering of the state atoms can be
429 * checked or derived at runtime. Dropped the idea in favor of having
430 * a debug mode where the state is monitored for flags which are
431 * raised that have already been tested against.
432 */
433 struct brw_tracked_state {
434 struct brw_state_flags dirty;
435 void (*prepare)( struct brw_context *brw );
436 void (*emit)( struct brw_context *brw );
437 };
438
439 /* Flags for brw->state.cache.
440 */
441 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
442 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
443 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
444 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
445 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
446 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
447 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
448 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
449 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
450 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
451 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
452 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
453 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
454 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
455 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
456 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
457 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
458 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
459
460 struct brw_cached_batch_item {
461 struct header *header;
462 GLuint sz;
463 struct brw_cached_batch_item *next;
464 };
465
466
467
468 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
469 * be easier if C allowed arrays of packed elements?
470 */
471 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
472
473 struct brw_vertex_buffer {
474 /** Buffer object containing the uploaded vertex data */
475 drm_intel_bo *bo;
476 uint32_t offset;
477 /** Byte stride between elements in the uploaded array */
478 GLuint stride;
479 };
480 struct brw_vertex_element {
481 const struct gl_client_array *glarray;
482
483 int buffer;
484
485 /** The corresponding Mesa vertex attribute */
486 gl_vert_attrib attrib;
487 /** Size of a complete element */
488 GLuint element_size;
489 /** Offset of the first element within the buffer object */
490 unsigned int offset;
491 };
492
493
494
495 struct brw_vertex_info {
496 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
497 };
498
499 struct brw_query_object {
500 struct gl_query_object Base;
501
502 /** Last query BO associated with this query. */
503 drm_intel_bo *bo;
504 /** First index in bo with query data for this object. */
505 int first_index;
506 /** Last index in bo with query data for this object. */
507 int last_index;
508 };
509
510
511 /**
512 * brw_context is derived from intel_context.
513 */
514 struct brw_context
515 {
516 struct intel_context intel; /**< base class, must be first field */
517 GLuint primitive;
518
519 GLboolean emit_state_always;
520 GLboolean has_surface_tile_offset;
521 GLboolean has_compr4;
522 GLboolean has_negative_rhw_bug;
523 GLboolean has_aa_line_parameters;
524 GLboolean has_pln;
525
526 struct {
527 struct brw_state_flags dirty;
528 /**
529 * List of buffers accumulated in brw_validate_state to receive
530 * drm_intel_bo_check_aperture treatment before exec, so we can
531 * know if we should flush the batch and try again before
532 * emitting primitives.
533 *
534 * This can be a fixed number as we only have a limited number of
535 * objects referenced from the batchbuffer in a primitive emit,
536 * consisting of the vertex buffers, pipelined state pointers,
537 * the CURBE, the depth buffer, and a query BO.
538 */
539 drm_intel_bo *validated_bos[VERT_ATTRIB_MAX + BRW_WM_MAX_SURF + 16];
540 unsigned int validated_bo_count;
541 } state;
542
543 struct brw_cache cache;
544 struct brw_cached_batch_item *cached_batch_items;
545
546 struct {
547 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
548 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
549 struct {
550 uint32_t handle;
551 uint32_t offset;
552 uint32_t stride;
553 } current_buffers[VERT_ATTRIB_MAX];
554
555 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
556 GLuint nr_enabled;
557 GLuint nr_buffers, nr_current_buffers;
558
559 /* Summary of size and varying of active arrays, so we can check
560 * for changes to this state:
561 */
562 struct brw_vertex_info info;
563 unsigned int min_index, max_index;
564
565 /* Offset from start of vertex buffer so we can avoid redefining
566 * the same VB packed over and over again.
567 */
568 unsigned int start_vertex_bias;
569 } vb;
570
571 struct {
572 /**
573 * Index buffer for this draw_prims call.
574 *
575 * Updates are signaled by BRW_NEW_INDICES.
576 */
577 const struct _mesa_index_buffer *ib;
578
579 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
580 drm_intel_bo *bo;
581 GLuint type;
582
583 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
584 * avoid re-uploading the IB packet over and over if we're actually
585 * referencing the same index buffer.
586 */
587 unsigned int start_vertex_offset;
588 } ib;
589
590 /* Active vertex program:
591 */
592 const struct gl_vertex_program *vertex_program;
593 const struct gl_fragment_program *fragment_program;
594
595 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
596 uint32_t CMD_VF_STATISTICS;
597 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
598 uint32_t CMD_PIPELINE_SELECT;
599 int vs_max_threads;
600 int wm_max_threads;
601
602 /* BRW_NEW_URB_ALLOCATIONS:
603 */
604 struct {
605 GLuint vsize; /* vertex size plus header in urb registers */
606 GLuint csize; /* constant buffer size in urb registers */
607 GLuint sfsize; /* setup data size in urb registers */
608
609 GLboolean constrained;
610
611 GLuint max_vs_entries; /* Maximum number of VS entries */
612 GLuint max_gs_entries; /* Maximum number of GS entries */
613
614 GLuint nr_vs_entries;
615 GLuint nr_gs_entries;
616 GLuint nr_clip_entries;
617 GLuint nr_sf_entries;
618 GLuint nr_cs_entries;
619
620 /* gen6:
621 * The length of each URB entry owned by the VS (or GS), as
622 * a number of 1024-bit (128-byte) rows. Should be >= 1.
623 *
624 * gen7: Same meaning, but in 512-bit (64-byte) rows.
625 */
626 GLuint vs_size;
627 GLuint gs_size;
628
629 GLuint vs_start;
630 GLuint gs_start;
631 GLuint clip_start;
632 GLuint sf_start;
633 GLuint cs_start;
634 GLuint size; /* Hardware URB size, in KB. */
635 } urb;
636
637
638 /* BRW_NEW_CURBE_OFFSETS:
639 */
640 struct {
641 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
642 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
643 GLuint clip_start;
644 GLuint clip_size;
645 GLuint vs_start;
646 GLuint vs_size;
647 GLuint total_size;
648
649 drm_intel_bo *curbe_bo;
650 /** Offset within curbe_bo of space for current curbe entry */
651 GLuint curbe_offset;
652 /** Offset within curbe_bo of space for next curbe entry */
653 GLuint curbe_next_offset;
654
655 /**
656 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
657 * in brw_curbe.c with the same set of constant data to be uploaded,
658 * so we'd rather not upload new constants in that case (it can cause
659 * a pipeline bubble since only up to 4 can be pipelined at a time).
660 */
661 GLfloat *last_buf;
662 /**
663 * Allocation for where to calculate the next set of CURBEs.
664 * It's a hot enough path that malloc/free of that data matters.
665 */
666 GLfloat *next_buf;
667 GLuint last_bufsz;
668 } curbe;
669
670 struct {
671 struct brw_vs_prog_data *prog_data;
672 int8_t *constant_map; /* variable array following prog_data */
673
674 drm_intel_bo *const_bo;
675 /** Offset in the program cache to the VS program */
676 uint32_t prog_offset;
677 uint32_t state_offset;
678
679 /** Binding table of pointers to surf_bo entries */
680 uint32_t bind_bo_offset;
681 uint32_t surf_offset[BRW_VS_MAX_SURF];
682 GLuint nr_surfaces;
683
684 uint32_t push_const_offset; /* Offset in the batchbuffer */
685 int push_const_size; /* in 256-bit register increments */
686 } vs;
687
688 struct {
689 struct brw_gs_prog_data *prog_data;
690
691 GLboolean prog_active;
692 /** Offset in the program cache to the CLIP program pre-gen6 */
693 uint32_t prog_offset;
694 uint32_t state_offset;
695 } gs;
696
697 struct {
698 struct brw_clip_prog_data *prog_data;
699
700 /** Offset in the program cache to the CLIP program pre-gen6 */
701 uint32_t prog_offset;
702
703 /* Offset in the batch to the CLIP state on pre-gen6. */
704 uint32_t state_offset;
705
706 /* As of gen6, this is the offset in the batch to the CLIP VP,
707 * instead of vp_bo.
708 */
709 uint32_t vp_offset;
710 } clip;
711
712
713 struct {
714 struct brw_sf_prog_data *prog_data;
715
716 /** Offset in the program cache to the CLIP program pre-gen6 */
717 uint32_t prog_offset;
718 uint32_t state_offset;
719 uint32_t vp_offset;
720 } sf;
721
722 struct {
723 struct brw_wm_prog_data *prog_data;
724 struct brw_wm_compile *compile_data;
725
726 /** Input sizes, calculated from active vertex program.
727 * One bit per fragment program input attribute.
728 */
729 GLbitfield input_size_masks[4];
730
731 /** offsets in the batch to sampler default colors (texture border color)
732 */
733 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
734
735 GLuint render_surf;
736 GLuint nr_surfaces;
737
738 GLuint max_threads;
739 drm_intel_bo *scratch_bo;
740
741 GLuint sampler_count;
742 uint32_t sampler_offset;
743
744 /** Offset in the program cache to the WM program */
745 uint32_t prog_offset;
746
747 /** Binding table of pointers to surf_bo entries */
748 uint32_t bind_bo_offset;
749 uint32_t surf_offset[BRW_WM_MAX_SURF];
750 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
751
752 drm_intel_bo *const_bo; /* pull constant buffer. */
753 /**
754 * This is offset in the batch to the push constants on gen6.
755 *
756 * Pre-gen6, push constants live in the CURBE.
757 */
758 uint32_t push_const_offset;
759
760 /** @{ register allocator */
761
762 struct ra_regs *regs;
763
764 /** Array of the ra classes for the unaligned contiguous
765 * register block sizes used.
766 */
767 int *classes;
768
769 /**
770 * Mapping for register-allocated objects in *regs to the first
771 * GRF for that object.
772 */
773 uint8_t *ra_reg_to_grf;
774
775 /**
776 * ra class for the aligned pairs we use for PLN, which doesn't
777 * appear in *classes.
778 */
779 int aligned_pairs_class;
780
781 /** @} */
782 } wm;
783
784
785 struct {
786 uint32_t state_offset;
787 uint32_t blend_state_offset;
788 uint32_t depth_stencil_state_offset;
789 uint32_t vp_offset;
790 } cc;
791
792 struct {
793 struct brw_query_object *obj;
794 drm_intel_bo *bo;
795 int index;
796 GLboolean active;
797 } query;
798 /* Used to give every program string a unique id
799 */
800 GLuint program_id;
801
802 int num_prepare_atoms, num_emit_atoms;
803 struct brw_tracked_state prepare_atoms[64], emit_atoms[64];
804
805 /* If (INTEL_DEBUG & DEBUG_BATCH) */
806 struct {
807 uint32_t offset;
808 uint32_t size;
809 enum state_struct_type type;
810 } *state_batch_list;
811 int state_batch_count;
812 };
813
814
815 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
816
817 struct brw_instruction_info {
818 char *name;
819 int nsrc;
820 int ndst;
821 GLboolean is_arith;
822 };
823 extern const struct brw_instruction_info brw_opcodes[128];
824
825 /*======================================================================
826 * brw_vtbl.c
827 */
828 void brwInitVtbl( struct brw_context *brw );
829
830 /*======================================================================
831 * brw_context.c
832 */
833 GLboolean brwCreateContext( int api,
834 const struct gl_config *mesaVis,
835 __DRIcontext *driContextPriv,
836 void *sharedContextPrivate);
837
838 /*======================================================================
839 * brw_queryobj.c
840 */
841 void brw_init_queryobj_functions(struct dd_function_table *functions);
842 void brw_prepare_query_begin(struct brw_context *brw);
843 void brw_emit_query_begin(struct brw_context *brw);
844 void brw_emit_query_end(struct brw_context *brw);
845
846 /*======================================================================
847 * brw_state_dump.c
848 */
849 void brw_debug_batch(struct intel_context *intel);
850
851 /*======================================================================
852 * brw_tex.c
853 */
854 void brw_validate_textures( struct brw_context *brw );
855
856
857 /*======================================================================
858 * brw_program.c
859 */
860 void brwInitFragProgFuncs( struct dd_function_table *functions );
861
862
863 /* brw_urb.c
864 */
865 void brw_upload_urb_fence(struct brw_context *brw);
866
867 /* brw_curbe.c
868 */
869 void brw_upload_cs_urb_state(struct brw_context *brw);
870
871 /* brw_disasm.c */
872 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
873
874 /*======================================================================
875 * Inline conversion functions. These are better-typed than the
876 * macros used previously:
877 */
878 static INLINE struct brw_context *
879 brw_context( struct gl_context *ctx )
880 {
881 return (struct brw_context *)ctx;
882 }
883
884 static INLINE struct brw_vertex_program *
885 brw_vertex_program(struct gl_vertex_program *p)
886 {
887 return (struct brw_vertex_program *) p;
888 }
889
890 static INLINE const struct brw_vertex_program *
891 brw_vertex_program_const(const struct gl_vertex_program *p)
892 {
893 return (const struct brw_vertex_program *) p;
894 }
895
896 static INLINE struct brw_fragment_program *
897 brw_fragment_program(struct gl_fragment_program *p)
898 {
899 return (struct brw_fragment_program *) p;
900 }
901
902 static INLINE const struct brw_fragment_program *
903 brw_fragment_program_const(const struct gl_fragment_program *p)
904 {
905 return (const struct brw_fragment_program *) p;
906 }
907
908 static inline
909 float convert_param(enum param_conversion conversion, const float *param)
910 {
911 union {
912 float f;
913 uint32_t u;
914 int32_t i;
915 } fi;
916
917 switch (conversion) {
918 case PARAM_NO_CONVERT:
919 return *param;
920 case PARAM_CONVERT_F2I:
921 fi.i = *param;
922 return fi.f;
923 case PARAM_CONVERT_F2U:
924 fi.u = *param;
925 return fi.f;
926 case PARAM_CONVERT_F2B:
927 if (*param != 0.0)
928 fi.i = 1;
929 else
930 fi.i = 0;
931 return fi.f;
932 case PARAM_CONVERT_ZERO:
933 return 0.0;
934 default:
935 return *param;
936 }
937 }
938
939 /**
940 * Pre-gen6, the register file of the EUs was shared between threads,
941 * and each thread used some subset allocated on a 16-register block
942 * granularity. The unit states wanted these block counts.
943 */
944 static inline int
945 brw_register_blocks(int reg_count)
946 {
947 return ALIGN(reg_count, 16) / 16 - 1;
948 }
949
950 static inline uint32_t
951 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
952 uint32_t prog_offset)
953 {
954 struct intel_context *intel = &brw->intel;
955
956 if (intel->gen >= 5) {
957 /* Using state base address. */
958 return prog_offset;
959 }
960
961 drm_intel_bo_emit_reloc(intel->batch.bo,
962 state_offset,
963 brw->cache.bo,
964 prog_offset,
965 I915_GEM_DOMAIN_INSTRUCTION, 0);
966
967 return brw->cache.bo->offset + prog_offset;
968 }
969
970 GLboolean brw_do_cubemap_normalize(struct exec_list *instructions);
971
972 #endif