i965: Emit the depth/stencil state pointer directly, not via atoms.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_VUE_MAP_GEOM_OUT,
152 BRW_STATE_TRANSFORM_FEEDBACK,
153 BRW_STATE_RASTERIZER_DISCARD,
154 BRW_STATE_STATS_WM,
155 BRW_STATE_UNIFORM_BUFFER,
156 BRW_STATE_META_IN_PROGRESS,
157 };
158
159 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
160 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
161 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
184 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
185 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
186 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
187 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
188 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
189
190 struct brw_state_flags {
191 /** State update flags signalled by mesa internals */
192 GLuint mesa;
193 /**
194 * State update flags signalled as the result of brw_tracked_state updates
195 */
196 GLuint brw;
197 /** State update flags signalled by brw_state_cache.c searches */
198 GLuint cache;
199 };
200
201 #define AUB_TRACE_TYPE_MASK 0x0000ff00
202 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
203 #define AUB_TRACE_TYPE_BATCH (1 << 8)
204 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
205 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
206 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
207 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
208 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
209 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
210 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
211 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
212 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
213 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
214
215 /**
216 * state_struct_type enum values are encoded with the top 16 bits representing
217 * the type to be delivered to the .aub file, and the bottom 16 bits
218 * representing the subtype. This macro performs the encoding.
219 */
220 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
221
222 enum state_struct_type {
223 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
224 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
225 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
226 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
227 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
228 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
229 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
230 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
231 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
232 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
233 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
234 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
235 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
236
237 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
238 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
239 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
240
241 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
242 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
243 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
244 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
245 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
246 };
247
248 /**
249 * Decode a state_struct_type value to determine the type that should be
250 * stored in the .aub file.
251 */
252 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
253 {
254 return (ss_type & 0xFFFF0000) >> 16;
255 }
256
257 /**
258 * Decode a state_struct_type value to determine the subtype that should be
259 * stored in the .aub file.
260 */
261 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
262 {
263 return ss_type & 0xFFFF;
264 }
265
266 /** Subclass of Mesa vertex program */
267 struct brw_vertex_program {
268 struct gl_vertex_program program;
269 GLuint id;
270 };
271
272
273 /** Subclass of Mesa fragment program */
274 struct brw_fragment_program {
275 struct gl_fragment_program program;
276 GLuint id; /**< serial no. to identify frag progs, never re-used */
277 };
278
279 struct brw_shader {
280 struct gl_shader base;
281
282 bool compiled_once;
283
284 /** Shader IR transformed for native compile, at link time. */
285 struct exec_list *ir;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_varying_slot. The values of this enum are
331 * assigned such that they don't conflict with gl_varying_slot.
332 */
333 typedef enum
334 {
335 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
336 BRW_VARYING_SLOT_POS_DUPLICATE,
337 BRW_VARYING_SLOT_PAD,
338 /**
339 * Technically this is not a varying but just a placeholder that
340 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
341 * builtin variable to be compiled correctly. see compile_sf_prog() for
342 * more info.
343 */
344 BRW_VARYING_SLOT_PNTC,
345 BRW_VARYING_SLOT_COUNT
346 } brw_varying_slot;
347
348
349 /**
350 * Data structure recording the relationship between the gl_varying_slot enum
351 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
352 * single octaword within the VUE (128 bits).
353 *
354 * Note that each BRW register contains 256 bits (2 octawords), so when
355 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
356 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
357 * in a vertex shader), each register corresponds to a single VUE slot, since
358 * it contains data for two separate vertices.
359 */
360 struct brw_vue_map {
361 /**
362 * Bitfield representing all varying slots that are (a) stored in this VUE
363 * map, and (b) actually written by the shader. Does not include any of
364 * the additional varying slots defined in brw_varying_slot.
365 */
366 GLbitfield64 slots_valid;
367
368 /**
369 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
370 * not stored in a slot (because they are not written, or because
371 * additional processing is applied before storing them in the VUE), the
372 * value is -1.
373 */
374 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
375
376 /**
377 * Map from VUE slot to gl_varying_slot value. For slots that do not
378 * directly correspond to a gl_varying_slot, the value comes from
379 * brw_varying_slot.
380 *
381 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
382 * simplifies code that uses the value stored in slot_to_varying to
383 * create a bit mask).
384 */
385 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
386
387 /**
388 * Total number of VUE slots in use
389 */
390 int num_slots;
391 };
392
393 /**
394 * Convert a VUE slot number into a byte offset within the VUE.
395 */
396 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
397 {
398 return 16*slot;
399 }
400
401 /**
402 * Convert a vertex output (brw_varying_slot) into a byte offset within the
403 * VUE.
404 */
405 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
406 GLuint varying)
407 {
408 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
409 }
410
411 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
412 GLbitfield64 slots_valid, bool userclip_active);
413
414
415 struct brw_sf_prog_data {
416 GLuint urb_read_length;
417 GLuint total_grf;
418
419 /* Each vertex may have upto 12 attributes, 4 components each,
420 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
421 * rows.
422 *
423 * Actually we use 4 for each, so call it 12 rows.
424 */
425 GLuint urb_entry_size;
426 };
427
428 struct brw_clip_prog_data {
429 GLuint curb_read_length; /* user planes? */
430 GLuint clip_mode;
431 GLuint urb_read_length;
432 GLuint total_grf;
433 };
434
435 struct brw_gs_prog_data {
436 GLuint urb_read_length;
437 GLuint total_grf;
438
439 /**
440 * Gen6 transform feedback: Amount by which the streaming vertex buffer
441 * indices should be incremented each time the GS is invoked.
442 */
443 unsigned svbi_postincrement_value;
444 };
445
446
447 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
448 * this struct!
449 */
450 struct brw_vec4_prog_data {
451 struct brw_vue_map vue_map;
452
453 GLuint curb_read_length;
454 GLuint urb_read_length;
455 GLuint total_grf;
456 GLuint nr_params; /**< number of float params/constants */
457 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
458 GLuint total_scratch;
459
460 /* Used for calculating urb partitions. In the VS, this is the size of the
461 * URB entry used for both input and output to the thread. In the GS, this
462 * is the size of the URB entry used for output.
463 */
464 GLuint urb_entry_size;
465
466 int num_surfaces;
467
468 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
469 const float **param;
470 const float **pull_param;
471 };
472
473
474 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
475 * struct!
476 */
477 struct brw_vs_prog_data {
478 struct brw_vec4_prog_data base;
479
480 GLbitfield64 inputs_read;
481
482 bool uses_vertexid;
483 };
484
485 /** Number of texture sampler units */
486 #define BRW_MAX_TEX_UNIT 16
487
488 /** Max number of render targets in a shader */
489 #define BRW_MAX_DRAW_BUFFERS 8
490
491 /**
492 * Max number of binding table entries used for stream output.
493 *
494 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
495 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
496 *
497 * On Gen6, the size of transform feedback data is limited not by the number
498 * of components but by the number of binding table entries we set aside. We
499 * use one binding table entry for a float, one entry for a vector, and one
500 * entry per matrix column. Since the only way we can communicate our
501 * transform feedback capabilities to the client is via
502 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
503 * worst case, in which all the varyings are floats, so we use up one binding
504 * table entry per component. Therefore we need to set aside at least 64
505 * binding table entries for use by transform feedback.
506 *
507 * Note: since we don't currently pack varyings, it is currently impossible
508 * for the client to actually use up all of these binding table entries--if
509 * all of their varyings were floats, they would run out of varying slots and
510 * fail to link. But that's a bug, so it seems prudent to go ahead and
511 * allocate the number of binding table entries we will need once the bug is
512 * fixed.
513 */
514 #define BRW_MAX_SOL_BINDINGS 64
515
516 /** Maximum number of actual buffers used for stream output */
517 #define BRW_MAX_SOL_BUFFERS 4
518
519 #define BRW_MAX_WM_UBOS 12
520 #define BRW_MAX_VS_UBOS 12
521
522 /**
523 * Helpers to create Surface Binding Table indexes for draw buffers,
524 * textures, and constant buffers.
525 *
526 * Shader threads access surfaces via numeric handles, rather than directly
527 * using pointers. The binding table maps these numeric handles to the
528 * address of the actual buffer.
529 *
530 * For example, a shader might ask to sample from "surface 7." In this case,
531 * bind[7] would contain a pointer to a texture.
532 *
533 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
534 *
535 * +-------------------------------+
536 * | 0 | Draw buffer 0 |
537 * | . | . |
538 * | : | : |
539 * | 7 | Draw buffer 7 |
540 * |-----|-------------------------|
541 * | 8 | WM Pull Constant Buffer |
542 * |-----|-------------------------|
543 * | 9 | Texture 0 |
544 * | . | . |
545 * | : | : |
546 * | 24 | Texture 15 |
547 * |-----|-------------------------|
548 * | 25 | UBO 0 |
549 * | . | . |
550 * | : | : |
551 * | 36 | UBO 11 |
552 * +-------------------------------+
553 *
554 * Our VS binding tables are programmed as follows:
555 *
556 * +-----+-------------------------+
557 * | 0 | VS Pull Constant Buffer |
558 * +-----+-------------------------+
559 * | 1 | Texture 0 |
560 * | . | . |
561 * | : | : |
562 * | 16 | Texture 15 |
563 * +-----+-------------------------+
564 * | 17 | UBO 0 |
565 * | . | . |
566 * | : | : |
567 * | 28 | UBO 11 |
568 * +-------------------------------+
569 *
570 * Our (gen6) GS binding tables are programmed as follows:
571 *
572 * +-----+-------------------------+
573 * | 0 | SOL Binding 0 |
574 * | . | . |
575 * | : | : |
576 * | 63 | SOL Binding 63 |
577 * +-----+-------------------------+
578 *
579 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
580 * the identity function or things will break. We do want to keep draw buffers
581 * first so we can use headerless render target writes for RT 0.
582 */
583 #define SURF_INDEX_DRAW(d) (d)
584 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
585 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
586 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
587 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
588 /** Maximum size of the binding table. */
589 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
590
591 #define SURF_INDEX_VERT_CONST_BUFFER (0)
592 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
593 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
594 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
595 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
596
597 #define SURF_INDEX_SOL_BINDING(t) ((t))
598 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
599
600 /**
601 * Stride in bytes between shader_time entries.
602 *
603 * We separate entries by a cacheline to reduce traffic between EUs writing to
604 * different entries.
605 */
606 #define SHADER_TIME_STRIDE 64
607
608 enum brw_cache_id {
609 BRW_CC_VP,
610 BRW_CC_UNIT,
611 BRW_WM_PROG,
612 BRW_BLORP_BLIT_PROG,
613 BRW_BLORP_CLEAR_PROG,
614 BRW_SAMPLER,
615 BRW_WM_UNIT,
616 BRW_SF_PROG,
617 BRW_SF_VP,
618 BRW_SF_UNIT, /* scissor state on gen6 */
619 BRW_VS_UNIT,
620 BRW_VS_PROG,
621 BRW_GS_UNIT,
622 BRW_GS_PROG,
623 BRW_CLIP_VP,
624 BRW_CLIP_UNIT,
625 BRW_CLIP_PROG,
626
627 BRW_MAX_CACHE
628 };
629
630 struct brw_cache_item {
631 /**
632 * Effectively part of the key, cache_id identifies what kind of state
633 * buffer is involved, and also which brw->state.dirty.cache flag should
634 * be set when this cache item is chosen.
635 */
636 enum brw_cache_id cache_id;
637 /** 32-bit hash of the key data */
638 GLuint hash;
639 GLuint key_size; /* for variable-sized keys */
640 GLuint aux_size;
641 const void *key;
642
643 uint32_t offset;
644 uint32_t size;
645
646 struct brw_cache_item *next;
647 };
648
649
650 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
651 int aux_size, const void *key);
652 typedef void (*cache_aux_free_func)(const void *aux);
653
654 struct brw_cache {
655 struct brw_context *brw;
656
657 struct brw_cache_item **items;
658 drm_intel_bo *bo;
659 GLuint size, n_items;
660
661 uint32_t next_offset;
662 bool bo_used_by_gpu;
663
664 /**
665 * Optional functions used in determining whether the prog_data for a new
666 * cache item matches an existing cache item (in case there's relevant data
667 * outside of the prog_data). If NULL, a plain memcmp is done.
668 */
669 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
670 /** Optional functions for freeing other pointers attached to a prog_data. */
671 cache_aux_free_func aux_free[BRW_MAX_CACHE];
672 };
673
674
675 /* Considered adding a member to this struct to document which flags
676 * an update might raise so that ordering of the state atoms can be
677 * checked or derived at runtime. Dropped the idea in favor of having
678 * a debug mode where the state is monitored for flags which are
679 * raised that have already been tested against.
680 */
681 struct brw_tracked_state {
682 struct brw_state_flags dirty;
683 void (*emit)( struct brw_context *brw );
684 };
685
686 enum shader_time_shader_type {
687 ST_NONE,
688 ST_VS,
689 ST_VS_WRITTEN,
690 ST_VS_RESET,
691 ST_FS8,
692 ST_FS8_WRITTEN,
693 ST_FS8_RESET,
694 ST_FS16,
695 ST_FS16_WRITTEN,
696 ST_FS16_RESET,
697 };
698
699 /* Flags for brw->state.cache.
700 */
701 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
702 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
703 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
704 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
705 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
706 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
707 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
708 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
709 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
710 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
711 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
712 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
713 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
714 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
715 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
716
717 struct brw_cached_batch_item {
718 struct header *header;
719 GLuint sz;
720 struct brw_cached_batch_item *next;
721 };
722
723
724
725 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
726 * be easier if C allowed arrays of packed elements?
727 */
728 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
729
730 struct brw_vertex_buffer {
731 /** Buffer object containing the uploaded vertex data */
732 drm_intel_bo *bo;
733 uint32_t offset;
734 /** Byte stride between elements in the uploaded array */
735 GLuint stride;
736 GLuint step_rate;
737 };
738 struct brw_vertex_element {
739 const struct gl_client_array *glarray;
740
741 int buffer;
742
743 /** The corresponding Mesa vertex attribute */
744 gl_vert_attrib attrib;
745 /** Offset of the first element within the buffer object */
746 unsigned int offset;
747 };
748
749 struct brw_query_object {
750 struct gl_query_object Base;
751
752 /** Last query BO associated with this query. */
753 drm_intel_bo *bo;
754
755 /** Last index in bo with query data for this object. */
756 int last_index;
757 };
758
759
760 /**
761 * brw_context is derived from intel_context.
762 */
763 struct brw_context
764 {
765 struct intel_context intel; /**< base class, must be first field */
766 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
767
768 bool emit_state_always;
769 bool has_surface_tile_offset;
770 bool has_compr4;
771 bool has_negative_rhw_bug;
772 bool has_aa_line_parameters;
773 bool has_pln;
774 bool precompile;
775
776 /**
777 * Some versions of Gen hardware don't do centroid interpolation correctly
778 * on unlit pixels, causing incorrect values for derivatives near triangle
779 * edges. Enabling this flag causes the fragment shader to use
780 * non-centroid interpolation for unlit pixels, at the expense of two extra
781 * fragment shader instructions.
782 */
783 bool needs_unlit_centroid_workaround;
784
785 struct {
786 struct brw_state_flags dirty;
787 } state;
788
789 struct brw_cache cache;
790 struct brw_cached_batch_item *cached_batch_items;
791
792 /* Whether a meta-operation is in progress. */
793 bool meta_in_progress;
794
795 struct {
796 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
797 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
798
799 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
800 GLuint nr_enabled;
801 GLuint nr_buffers;
802
803 /* Summary of size and varying of active arrays, so we can check
804 * for changes to this state:
805 */
806 unsigned int min_index, max_index;
807
808 /* Offset from start of vertex buffer so we can avoid redefining
809 * the same VB packed over and over again.
810 */
811 unsigned int start_vertex_bias;
812 } vb;
813
814 struct {
815 /**
816 * Index buffer for this draw_prims call.
817 *
818 * Updates are signaled by BRW_NEW_INDICES.
819 */
820 const struct _mesa_index_buffer *ib;
821
822 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
823 drm_intel_bo *bo;
824 GLuint type;
825
826 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
827 * avoid re-uploading the IB packet over and over if we're actually
828 * referencing the same index buffer.
829 */
830 unsigned int start_vertex_offset;
831 } ib;
832
833 /* Active vertex program:
834 */
835 const struct gl_vertex_program *vertex_program;
836 const struct gl_fragment_program *fragment_program;
837
838 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
839 uint32_t CMD_VF_STATISTICS;
840 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
841 uint32_t CMD_PIPELINE_SELECT;
842
843 /**
844 * Platform specific constants containing the maximum number of threads
845 * for each pipeline stage.
846 */
847 int max_vs_threads;
848 int max_gs_threads;
849 int max_wm_threads;
850
851 /* BRW_NEW_URB_ALLOCATIONS:
852 */
853 struct {
854 GLuint vsize; /* vertex size plus header in urb registers */
855 GLuint csize; /* constant buffer size in urb registers */
856 GLuint sfsize; /* setup data size in urb registers */
857
858 bool constrained;
859
860 GLuint max_vs_entries; /* Maximum number of VS entries */
861 GLuint max_gs_entries; /* Maximum number of GS entries */
862
863 GLuint nr_vs_entries;
864 GLuint nr_gs_entries;
865 GLuint nr_clip_entries;
866 GLuint nr_sf_entries;
867 GLuint nr_cs_entries;
868
869 GLuint vs_start;
870 GLuint gs_start;
871 GLuint clip_start;
872 GLuint sf_start;
873 GLuint cs_start;
874 GLuint size; /* Hardware URB size, in KB. */
875
876 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
877 * URB space for the GS.
878 */
879 bool gen6_gs_previously_active;
880 } urb;
881
882
883 /* BRW_NEW_CURBE_OFFSETS:
884 */
885 struct {
886 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
887 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
888 GLuint clip_start;
889 GLuint clip_size;
890 GLuint vs_start;
891 GLuint vs_size;
892 GLuint total_size;
893
894 drm_intel_bo *curbe_bo;
895 /** Offset within curbe_bo of space for current curbe entry */
896 GLuint curbe_offset;
897 /** Offset within curbe_bo of space for next curbe entry */
898 GLuint curbe_next_offset;
899
900 /**
901 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
902 * in brw_curbe.c with the same set of constant data to be uploaded,
903 * so we'd rather not upload new constants in that case (it can cause
904 * a pipeline bubble since only up to 4 can be pipelined at a time).
905 */
906 GLfloat *last_buf;
907 /**
908 * Allocation for where to calculate the next set of CURBEs.
909 * It's a hot enough path that malloc/free of that data matters.
910 */
911 GLfloat *next_buf;
912 GLuint last_bufsz;
913 } curbe;
914
915 /** SAMPLER_STATE count and offset */
916 struct {
917 GLuint count;
918 uint32_t offset;
919 } sampler;
920
921 /**
922 * Layout of vertex data exiting the geometry portion of the pipleine.
923 * This comes from the geometry shader if one exists, otherwise from the
924 * vertex shader.
925 *
926 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
927 */
928 struct brw_vue_map vue_map_geom_out;
929
930 struct {
931 struct brw_vs_prog_data *prog_data;
932
933 drm_intel_bo *scratch_bo;
934 drm_intel_bo *const_bo;
935 /** Offset in the program cache to the VS program */
936 uint32_t prog_offset;
937 uint32_t state_offset;
938
939 uint32_t push_const_offset; /* Offset in the batchbuffer */
940 int push_const_size; /* in 256-bit register increments */
941
942 /** @{ register allocator */
943
944 struct ra_regs *regs;
945
946 /**
947 * Array of the ra classes for the unaligned contiguous register
948 * block sizes used.
949 */
950 int *classes;
951
952 /**
953 * Mapping for register-allocated objects in *regs to the first
954 * GRF for that object.
955 */
956 uint8_t *ra_reg_to_grf;
957 /** @} */
958
959 uint32_t bind_bo_offset;
960 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
961 } vs;
962
963 struct {
964 struct brw_gs_prog_data *prog_data;
965
966 bool prog_active;
967 /** Offset in the program cache to the CLIP program pre-gen6 */
968 uint32_t prog_offset;
969 uint32_t state_offset;
970
971 uint32_t bind_bo_offset;
972 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
973 } gs;
974
975 struct {
976 struct brw_clip_prog_data *prog_data;
977
978 /** Offset in the program cache to the CLIP program pre-gen6 */
979 uint32_t prog_offset;
980
981 /* Offset in the batch to the CLIP state on pre-gen6. */
982 uint32_t state_offset;
983
984 /* As of gen6, this is the offset in the batch to the CLIP VP,
985 * instead of vp_bo.
986 */
987 uint32_t vp_offset;
988 } clip;
989
990
991 struct {
992 struct brw_sf_prog_data *prog_data;
993
994 /** Offset in the program cache to the CLIP program pre-gen6 */
995 uint32_t prog_offset;
996 uint32_t state_offset;
997 uint32_t vp_offset;
998 } sf;
999
1000 struct {
1001 struct brw_wm_prog_data *prog_data;
1002
1003 /** offsets in the batch to sampler default colors (texture border color)
1004 */
1005 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1006
1007 GLuint render_surf;
1008
1009 drm_intel_bo *scratch_bo;
1010
1011 /**
1012 * Buffer object used in place of multisampled null render targets on
1013 * Gen6. See brw_update_null_renderbuffer_surface().
1014 */
1015 drm_intel_bo *multisampled_null_render_target_bo;
1016
1017 /** Offset in the program cache to the WM program */
1018 uint32_t prog_offset;
1019
1020 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1021
1022 drm_intel_bo *const_bo; /* pull constant buffer. */
1023 /**
1024 * This is offset in the batch to the push constants on gen6.
1025 *
1026 * Pre-gen6, push constants live in the CURBE.
1027 */
1028 uint32_t push_const_offset;
1029
1030 /** Binding table of pointers to surf_bo entries */
1031 uint32_t bind_bo_offset;
1032 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1033
1034 struct {
1035 struct ra_regs *regs;
1036
1037 /** Array of the ra classes for the unaligned contiguous
1038 * register block sizes used.
1039 */
1040 int *classes;
1041
1042 /**
1043 * Mapping for register-allocated objects in *regs to the first
1044 * GRF for that object.
1045 */
1046 uint8_t *ra_reg_to_grf;
1047
1048 /**
1049 * ra class for the aligned pairs we use for PLN, which doesn't
1050 * appear in *classes.
1051 */
1052 int aligned_pairs_class;
1053 } reg_sets[2];
1054 } wm;
1055
1056
1057 struct {
1058 uint32_t state_offset;
1059 uint32_t blend_state_offset;
1060 uint32_t depth_stencil_state_offset;
1061 uint32_t vp_offset;
1062 } cc;
1063
1064 struct {
1065 struct brw_query_object *obj;
1066 bool begin_emitted;
1067 } query;
1068
1069 int num_atoms;
1070 const struct brw_tracked_state **atoms;
1071
1072 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1073 struct {
1074 uint32_t offset;
1075 uint32_t size;
1076 enum state_struct_type type;
1077 } *state_batch_list;
1078 int state_batch_count;
1079
1080 uint32_t render_target_format[MESA_FORMAT_COUNT];
1081 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1082
1083 /* PrimitiveRestart */
1084 struct {
1085 bool in_progress;
1086 bool enable_cut_index;
1087 } prim_restart;
1088
1089 /** Computed depth/stencil/hiz state from the current attached
1090 * renderbuffers, valid only during the drawing state upload loop after
1091 * brw_workaround_depthstencil_alignment().
1092 */
1093 struct {
1094 struct intel_mipmap_tree *depth_mt;
1095 struct intel_mipmap_tree *stencil_mt;
1096
1097 /* Inter-tile (page-aligned) byte offsets. */
1098 uint32_t depth_offset, hiz_offset, stencil_offset;
1099 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1100 uint32_t tile_x, tile_y;
1101 } depthstencil;
1102
1103 uint32_t num_instances;
1104 int basevertex;
1105
1106 struct {
1107 drm_intel_bo *bo;
1108 struct gl_shader_program **shader_programs;
1109 struct gl_program **programs;
1110 enum shader_time_shader_type *types;
1111 uint64_t *cumulative;
1112 int num_entries;
1113 int max_entries;
1114 double report_time;
1115 } shader_time;
1116 };
1117
1118 /*======================================================================
1119 * brw_vtbl.c
1120 */
1121 void brwInitVtbl( struct brw_context *brw );
1122
1123 /*======================================================================
1124 * brw_context.c
1125 */
1126 bool brwCreateContext(int api,
1127 const struct gl_config *mesaVis,
1128 __DRIcontext *driContextPriv,
1129 unsigned major_version,
1130 unsigned minor_version,
1131 uint32_t flags,
1132 unsigned *error,
1133 void *sharedContextPrivate);
1134
1135 /*======================================================================
1136 * brw_misc_state.c
1137 */
1138 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1139 uint32_t depth_level,
1140 uint32_t depth_layer,
1141 struct intel_mipmap_tree *stencil_mt,
1142 uint32_t *out_tile_mask_x,
1143 uint32_t *out_tile_mask_y);
1144 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1145 GLbitfield clear_mask);
1146
1147 /*======================================================================
1148 * brw_queryobj.c
1149 */
1150 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1151 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1152 void brw_emit_query_begin(struct brw_context *brw);
1153 void brw_emit_query_end(struct brw_context *brw);
1154
1155 /** gen6_queryobj.c */
1156 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1157
1158 /*======================================================================
1159 * brw_state_dump.c
1160 */
1161 void brw_debug_batch(struct intel_context *intel);
1162 void brw_annotate_aub(struct intel_context *intel);
1163
1164 /*======================================================================
1165 * brw_tex.c
1166 */
1167 void brw_validate_textures( struct brw_context *brw );
1168
1169
1170 /*======================================================================
1171 * brw_program.c
1172 */
1173 void brwInitFragProgFuncs( struct dd_function_table *functions );
1174
1175 int brw_get_scratch_size(int size);
1176 void brw_get_scratch_bo(struct intel_context *intel,
1177 drm_intel_bo **scratch_bo, int size);
1178 void brw_init_shader_time(struct brw_context *brw);
1179 int brw_get_shader_time_index(struct brw_context *brw,
1180 struct gl_shader_program *shader_prog,
1181 struct gl_program *prog,
1182 enum shader_time_shader_type type);
1183 void brw_collect_and_report_shader_time(struct brw_context *brw);
1184 void brw_destroy_shader_time(struct brw_context *brw);
1185
1186 /* brw_urb.c
1187 */
1188 void brw_upload_urb_fence(struct brw_context *brw);
1189
1190 /* brw_curbe.c
1191 */
1192 void brw_upload_cs_urb_state(struct brw_context *brw);
1193
1194 /* brw_fs_reg_allocate.cpp
1195 */
1196 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1197
1198 /* brw_disasm.c */
1199 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1200
1201 /* brw_vs.c */
1202 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1203
1204 /* brw_wm_surface_state.c */
1205 void brw_init_surface_formats(struct brw_context *brw);
1206 void
1207 brw_update_sol_surface(struct brw_context *brw,
1208 struct gl_buffer_object *buffer_obj,
1209 uint32_t *out_offset, unsigned num_vector_components,
1210 unsigned stride_dwords, unsigned offset_dwords);
1211 void brw_upload_ubo_surfaces(struct brw_context *brw,
1212 struct gl_shader *shader,
1213 uint32_t *surf_offsets);
1214
1215 /* gen6_sol.c */
1216 void
1217 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1218 struct gl_transform_feedback_object *obj);
1219 void
1220 brw_end_transform_feedback(struct gl_context *ctx,
1221 struct gl_transform_feedback_object *obj);
1222
1223 /* gen7_sol_state.c */
1224 void
1225 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1226 struct gl_transform_feedback_object *obj);
1227 void
1228 gen7_end_transform_feedback(struct gl_context *ctx,
1229 struct gl_transform_feedback_object *obj);
1230
1231 /* brw_blorp_blit.cpp */
1232 GLbitfield
1233 brw_blorp_framebuffer(struct intel_context *intel,
1234 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1235 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1236 GLbitfield mask, GLenum filter);
1237
1238 bool
1239 brw_blorp_copytexsubimage(struct intel_context *intel,
1240 struct gl_renderbuffer *src_rb,
1241 struct gl_texture_image *dst_image,
1242 int srcX0, int srcY0,
1243 int dstX0, int dstY0,
1244 int width, int height);
1245
1246 /* gen6_multisample_state.c */
1247 void
1248 gen6_emit_3dstate_multisample(struct brw_context *brw,
1249 unsigned num_samples);
1250 void
1251 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1252 unsigned num_samples, float coverage,
1253 bool coverage_invert, unsigned sample_mask);
1254 void
1255 gen6_get_sample_position(struct gl_context *ctx,
1256 struct gl_framebuffer *fb,
1257 GLuint index,
1258 GLfloat *result);
1259
1260 /* gen7_urb.c */
1261 void
1262 gen7_allocate_push_constants(struct brw_context *brw);
1263
1264 void
1265 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1266 GLuint vs_size, GLuint vs_start);
1267
1268
1269
1270 /*======================================================================
1271 * Inline conversion functions. These are better-typed than the
1272 * macros used previously:
1273 */
1274 static INLINE struct brw_context *
1275 brw_context( struct gl_context *ctx )
1276 {
1277 return (struct brw_context *)ctx;
1278 }
1279
1280 static INLINE struct brw_vertex_program *
1281 brw_vertex_program(struct gl_vertex_program *p)
1282 {
1283 return (struct brw_vertex_program *) p;
1284 }
1285
1286 static INLINE const struct brw_vertex_program *
1287 brw_vertex_program_const(const struct gl_vertex_program *p)
1288 {
1289 return (const struct brw_vertex_program *) p;
1290 }
1291
1292 static INLINE struct brw_fragment_program *
1293 brw_fragment_program(struct gl_fragment_program *p)
1294 {
1295 return (struct brw_fragment_program *) p;
1296 }
1297
1298 static INLINE const struct brw_fragment_program *
1299 brw_fragment_program_const(const struct gl_fragment_program *p)
1300 {
1301 return (const struct brw_fragment_program *) p;
1302 }
1303
1304 /**
1305 * Pre-gen6, the register file of the EUs was shared between threads,
1306 * and each thread used some subset allocated on a 16-register block
1307 * granularity. The unit states wanted these block counts.
1308 */
1309 static inline int
1310 brw_register_blocks(int reg_count)
1311 {
1312 return ALIGN(reg_count, 16) / 16 - 1;
1313 }
1314
1315 static inline uint32_t
1316 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1317 uint32_t prog_offset)
1318 {
1319 struct intel_context *intel = &brw->intel;
1320
1321 if (intel->gen >= 5) {
1322 /* Using state base address. */
1323 return prog_offset;
1324 }
1325
1326 drm_intel_bo_emit_reloc(intel->batch.bo,
1327 state_offset,
1328 brw->cache.bo,
1329 prog_offset,
1330 I915_GEM_DOMAIN_INSTRUCTION, 0);
1331
1332 return brw->cache.bo->offset + prog_offset;
1333 }
1334
1335 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1336 bool brw_lower_texture_gradients(struct intel_context *intel,
1337 struct exec_list *instructions);
1338
1339 struct opcode_desc {
1340 char *name;
1341 int nsrc;
1342 int ndst;
1343 };
1344
1345 extern const struct opcode_desc opcode_descs[128];
1346
1347 void
1348 brw_emit_depthbuffer(struct brw_context *brw);
1349
1350 void
1351 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1352 struct intel_mipmap_tree *depth_mt,
1353 uint32_t depth_offset, uint32_t depthbuffer_format,
1354 uint32_t depth_surface_type,
1355 struct intel_mipmap_tree *stencil_mt,
1356 bool hiz, bool separate_stencil,
1357 uint32_t width, uint32_t height,
1358 uint32_t tile_x, uint32_t tile_y);
1359
1360 void
1361 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1362 struct intel_mipmap_tree *depth_mt,
1363 uint32_t depth_offset, uint32_t depthbuffer_format,
1364 uint32_t depth_surface_type,
1365 struct intel_mipmap_tree *stencil_mt,
1366 bool hiz, bool separate_stencil,
1367 uint32_t width, uint32_t height,
1368 uint32_t tile_x, uint32_t tile_y);
1369
1370 #ifdef __cplusplus
1371 }
1372 #endif
1373
1374 #endif