mesa,i965: use NewDriverState to communicate TFB state changes with the driver
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 BRW_STATE_VUE_MAP_GEOM_OUT,
153 BRW_STATE_TRANSFORM_FEEDBACK,
154 };
155
156 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
157 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
158 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
159 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
160 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
161 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
162 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
163 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
164 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
165 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
166 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
167 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
168 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
169 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
170 /**
171 * Used for any batch entry with a relocated pointer that will be used
172 * by any 3D rendering.
173 */
174 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
175 /** \see brw.state.depth_region */
176 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
177 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
178 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
179 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
180 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
181 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
182 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
183
184 struct brw_state_flags {
185 /** State update flags signalled by mesa internals */
186 GLuint mesa;
187 /**
188 * State update flags signalled as the result of brw_tracked_state updates
189 */
190 GLuint brw;
191 /** State update flags signalled by brw_state_cache.c searches */
192 GLuint cache;
193 };
194
195 #define AUB_TRACE_TYPE_MASK 0x0000ff00
196 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
197 #define AUB_TRACE_TYPE_BATCH (1 << 8)
198 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
199 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
200 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
201 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
202 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
203 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
205 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
206 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
207 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
208
209 /**
210 * state_struct_type enum values are encoded with the top 16 bits representing
211 * the type to be delivered to the .aub file, and the bottom 16 bits
212 * representing the subtype. This macro performs the encoding.
213 */
214 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
215
216 enum state_struct_type {
217 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
218 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
219 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
220 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
221 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
222 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
223 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
224 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
225 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
226 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
227 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
228 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
229 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
230
231 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
232 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
233 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
234
235 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
236 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
237 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
238 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
239 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
240 };
241
242 /**
243 * Decode a state_struct_type value to determine the type that should be
244 * stored in the .aub file.
245 */
246 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
247 {
248 return (ss_type & 0xFFFF0000) >> 16;
249 }
250
251 /**
252 * Decode a state_struct_type value to determine the subtype that should be
253 * stored in the .aub file.
254 */
255 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
256 {
257 return ss_type & 0xFFFF;
258 }
259
260 /** Subclass of Mesa vertex program */
261 struct brw_vertex_program {
262 struct gl_vertex_program program;
263 GLuint id;
264 };
265
266
267 /** Subclass of Mesa fragment program */
268 struct brw_fragment_program {
269 struct gl_fragment_program program;
270 GLuint id; /**< serial no. to identify frag progs, never re-used */
271 };
272
273 struct brw_shader {
274 struct gl_shader base;
275
276 bool compiled_once;
277
278 /** Shader IR transformed for native compile, at link time. */
279 struct exec_list *ir;
280 };
281
282 /* Data about a particular attempt to compile a program. Note that
283 * there can be many of these, each in a different GL state
284 * corresponding to a different brw_wm_prog_key struct, with different
285 * compiled programs.
286 *
287 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
288 * struct!
289 */
290 struct brw_wm_prog_data {
291 GLuint curb_read_length;
292 GLuint urb_read_length;
293
294 GLuint first_curbe_grf;
295 GLuint first_curbe_grf_16;
296 GLuint reg_blocks;
297 GLuint reg_blocks_16;
298 GLuint total_scratch;
299
300 GLuint nr_params; /**< number of float params/constants */
301 GLuint nr_pull_params;
302 bool dual_src_blend;
303 int dispatch_width;
304 uint32_t prog_offset_16;
305
306 /**
307 * Mask of which interpolation modes are required by the fragment shader.
308 * Used in hardware setup on gen6+.
309 */
310 uint32_t barycentric_interp_modes;
311
312 /* Pointers to tracked values (only valid once
313 * _mesa_load_state_parameters has been called at runtime).
314 *
315 * These must be the last fields of the struct (see
316 * brw_wm_prog_data_compare()).
317 */
318 const float **param;
319 const float **pull_param;
320 };
321
322 /**
323 * Enum representing the i965-specific vertex results that don't correspond
324 * exactly to any element of gl_varying_slot. The values of this enum are
325 * assigned such that they don't conflict with gl_varying_slot.
326 */
327 typedef enum
328 {
329 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
330 BRW_VARYING_SLOT_POS_DUPLICATE,
331 BRW_VARYING_SLOT_PAD,
332 /**
333 * Technically this is not a varying but just a placeholder that
334 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
335 * builtin variable to be compiled correctly. see compile_sf_prog() for
336 * more info.
337 */
338 BRW_VARYING_SLOT_PNTC,
339 BRW_VARYING_SLOT_COUNT
340 } brw_varying_slot;
341
342
343 /**
344 * Data structure recording the relationship between the gl_varying_slot enum
345 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
346 * single octaword within the VUE (128 bits).
347 *
348 * Note that each BRW register contains 256 bits (2 octawords), so when
349 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
350 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
351 * in a vertex shader), each register corresponds to a single VUE slot, since
352 * it contains data for two separate vertices.
353 */
354 struct brw_vue_map {
355 /**
356 * Bitfield representing all varying slots that are (a) stored in this VUE
357 * map, and (b) actually written by the shader. Does not include any of
358 * the additional varying slots defined in brw_varying_slot.
359 */
360 GLbitfield64 slots_valid;
361
362 /**
363 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
364 * not stored in a slot (because they are not written, or because
365 * additional processing is applied before storing them in the VUE), the
366 * value is -1.
367 */
368 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
369
370 /**
371 * Map from VUE slot to gl_varying_slot value. For slots that do not
372 * directly correspond to a gl_varying_slot, the value comes from
373 * brw_varying_slot.
374 *
375 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
376 * simplifies code that uses the value stored in slot_to_varying to
377 * create a bit mask).
378 */
379 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
380
381 /**
382 * Total number of VUE slots in use
383 */
384 int num_slots;
385 };
386
387 /**
388 * Convert a VUE slot number into a byte offset within the VUE.
389 */
390 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
391 {
392 return 16*slot;
393 }
394
395 /**
396 * Convert a vertex output (brw_varying_slot) into a byte offset within the
397 * VUE.
398 */
399 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
400 GLuint varying)
401 {
402 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
403 }
404
405 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
406 GLbitfield64 slots_valid, bool userclip_active);
407
408
409 struct brw_sf_prog_data {
410 GLuint urb_read_length;
411 GLuint total_grf;
412
413 /* Each vertex may have upto 12 attributes, 4 components each,
414 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
415 * rows.
416 *
417 * Actually we use 4 for each, so call it 12 rows.
418 */
419 GLuint urb_entry_size;
420 };
421
422 struct brw_clip_prog_data {
423 GLuint curb_read_length; /* user planes? */
424 GLuint clip_mode;
425 GLuint urb_read_length;
426 GLuint total_grf;
427 };
428
429 struct brw_gs_prog_data {
430 GLuint urb_read_length;
431 GLuint total_grf;
432
433 /**
434 * Gen6 transform feedback: Amount by which the streaming vertex buffer
435 * indices should be incremented each time the GS is invoked.
436 */
437 unsigned svbi_postincrement_value;
438 };
439
440
441 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
442 * this struct!
443 */
444 struct brw_vec4_prog_data {
445 struct brw_vue_map vue_map;
446
447 GLuint curb_read_length;
448 GLuint urb_read_length;
449 GLuint total_grf;
450 GLuint nr_params; /**< number of float params/constants */
451 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
452 GLuint total_scratch;
453
454 /* Used for calculating urb partitions. In the VS, this is the size of the
455 * URB entry used for both input and output to the thread. In the GS, this
456 * is the size of the URB entry used for output.
457 */
458 GLuint urb_entry_size;
459
460 int num_surfaces;
461
462 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
463 const float **param;
464 const float **pull_param;
465 };
466
467
468 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
469 * struct!
470 */
471 struct brw_vs_prog_data {
472 struct brw_vec4_prog_data base;
473
474 GLbitfield64 inputs_read;
475
476 bool uses_vertexid;
477 };
478
479 /** Number of texture sampler units */
480 #define BRW_MAX_TEX_UNIT 16
481
482 /** Max number of render targets in a shader */
483 #define BRW_MAX_DRAW_BUFFERS 8
484
485 /**
486 * Max number of binding table entries used for stream output.
487 *
488 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
489 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
490 *
491 * On Gen6, the size of transform feedback data is limited not by the number
492 * of components but by the number of binding table entries we set aside. We
493 * use one binding table entry for a float, one entry for a vector, and one
494 * entry per matrix column. Since the only way we can communicate our
495 * transform feedback capabilities to the client is via
496 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
497 * worst case, in which all the varyings are floats, so we use up one binding
498 * table entry per component. Therefore we need to set aside at least 64
499 * binding table entries for use by transform feedback.
500 *
501 * Note: since we don't currently pack varyings, it is currently impossible
502 * for the client to actually use up all of these binding table entries--if
503 * all of their varyings were floats, they would run out of varying slots and
504 * fail to link. But that's a bug, so it seems prudent to go ahead and
505 * allocate the number of binding table entries we will need once the bug is
506 * fixed.
507 */
508 #define BRW_MAX_SOL_BINDINGS 64
509
510 /** Maximum number of actual buffers used for stream output */
511 #define BRW_MAX_SOL_BUFFERS 4
512
513 #define BRW_MAX_WM_UBOS 12
514 #define BRW_MAX_VS_UBOS 12
515
516 /**
517 * Helpers to create Surface Binding Table indexes for draw buffers,
518 * textures, and constant buffers.
519 *
520 * Shader threads access surfaces via numeric handles, rather than directly
521 * using pointers. The binding table maps these numeric handles to the
522 * address of the actual buffer.
523 *
524 * For example, a shader might ask to sample from "surface 7." In this case,
525 * bind[7] would contain a pointer to a texture.
526 *
527 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
528 *
529 * +-------------------------------+
530 * | 0 | Draw buffer 0 |
531 * | . | . |
532 * | : | : |
533 * | 7 | Draw buffer 7 |
534 * |-----|-------------------------|
535 * | 8 | WM Pull Constant Buffer |
536 * |-----|-------------------------|
537 * | 9 | Texture 0 |
538 * | . | . |
539 * | : | : |
540 * | 24 | Texture 15 |
541 * |-----|-------------------------|
542 * | 25 | UBO 0 |
543 * | . | . |
544 * | : | : |
545 * | 36 | UBO 11 |
546 * +-------------------------------+
547 *
548 * Our VS binding tables are programmed as follows:
549 *
550 * +-----+-------------------------+
551 * | 0 | VS Pull Constant Buffer |
552 * +-----+-------------------------+
553 * | 1 | Texture 0 |
554 * | . | . |
555 * | : | : |
556 * | 16 | Texture 15 |
557 * +-----+-------------------------+
558 * | 17 | UBO 0 |
559 * | . | . |
560 * | : | : |
561 * | 28 | UBO 11 |
562 * +-------------------------------+
563 *
564 * Our (gen6) GS binding tables are programmed as follows:
565 *
566 * +-----+-------------------------+
567 * | 0 | SOL Binding 0 |
568 * | . | . |
569 * | : | : |
570 * | 63 | SOL Binding 63 |
571 * +-----+-------------------------+
572 *
573 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
574 * the identity function or things will break. We do want to keep draw buffers
575 * first so we can use headerless render target writes for RT 0.
576 */
577 #define SURF_INDEX_DRAW(d) (d)
578 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
579 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
580 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
581 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
582 /** Maximum size of the binding table. */
583 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
584
585 #define SURF_INDEX_VERT_CONST_BUFFER (0)
586 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
587 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
588 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
589 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
590
591 #define SURF_INDEX_SOL_BINDING(t) ((t))
592 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
593
594 /**
595 * Stride in bytes between shader_time entries.
596 *
597 * We separate entries by a cacheline to reduce traffic between EUs writing to
598 * different entries.
599 */
600 #define SHADER_TIME_STRIDE 64
601
602 enum brw_cache_id {
603 BRW_BLEND_STATE,
604 BRW_DEPTH_STENCIL_STATE,
605 BRW_COLOR_CALC_STATE,
606 BRW_CC_VP,
607 BRW_CC_UNIT,
608 BRW_WM_PROG,
609 BRW_BLORP_BLIT_PROG,
610 BRW_SAMPLER,
611 BRW_WM_UNIT,
612 BRW_SF_PROG,
613 BRW_SF_VP,
614 BRW_SF_UNIT, /* scissor state on gen6 */
615 BRW_VS_UNIT,
616 BRW_VS_PROG,
617 BRW_GS_UNIT,
618 BRW_GS_PROG,
619 BRW_CLIP_VP,
620 BRW_CLIP_UNIT,
621 BRW_CLIP_PROG,
622
623 BRW_MAX_CACHE
624 };
625
626 struct brw_cache_item {
627 /**
628 * Effectively part of the key, cache_id identifies what kind of state
629 * buffer is involved, and also which brw->state.dirty.cache flag should
630 * be set when this cache item is chosen.
631 */
632 enum brw_cache_id cache_id;
633 /** 32-bit hash of the key data */
634 GLuint hash;
635 GLuint key_size; /* for variable-sized keys */
636 GLuint aux_size;
637 const void *key;
638
639 uint32_t offset;
640 uint32_t size;
641
642 struct brw_cache_item *next;
643 };
644
645
646 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
647 int aux_size, const void *key);
648 typedef void (*cache_aux_free_func)(const void *aux);
649
650 struct brw_cache {
651 struct brw_context *brw;
652
653 struct brw_cache_item **items;
654 drm_intel_bo *bo;
655 GLuint size, n_items;
656
657 uint32_t next_offset;
658 bool bo_used_by_gpu;
659
660 /**
661 * Optional functions used in determining whether the prog_data for a new
662 * cache item matches an existing cache item (in case there's relevant data
663 * outside of the prog_data). If NULL, a plain memcmp is done.
664 */
665 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
666 /** Optional functions for freeing other pointers attached to a prog_data. */
667 cache_aux_free_func aux_free[BRW_MAX_CACHE];
668 };
669
670
671 /* Considered adding a member to this struct to document which flags
672 * an update might raise so that ordering of the state atoms can be
673 * checked or derived at runtime. Dropped the idea in favor of having
674 * a debug mode where the state is monitored for flags which are
675 * raised that have already been tested against.
676 */
677 struct brw_tracked_state {
678 struct brw_state_flags dirty;
679 void (*emit)( struct brw_context *brw );
680 };
681
682 enum shader_time_shader_type {
683 ST_NONE,
684 ST_VS,
685 ST_VS_WRITTEN,
686 ST_VS_RESET,
687 ST_FS8,
688 ST_FS8_WRITTEN,
689 ST_FS8_RESET,
690 ST_FS16,
691 ST_FS16_WRITTEN,
692 ST_FS16_RESET,
693 };
694
695 /* Flags for brw->state.cache.
696 */
697 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
698 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
699 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
700 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
701 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
702 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
703 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
704 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
705 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
706 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
707 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
708 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
709 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
710 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
711 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
712 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
713 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
714 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
715
716 struct brw_cached_batch_item {
717 struct header *header;
718 GLuint sz;
719 struct brw_cached_batch_item *next;
720 };
721
722
723
724 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
725 * be easier if C allowed arrays of packed elements?
726 */
727 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
728
729 struct brw_vertex_buffer {
730 /** Buffer object containing the uploaded vertex data */
731 drm_intel_bo *bo;
732 uint32_t offset;
733 /** Byte stride between elements in the uploaded array */
734 GLuint stride;
735 GLuint step_rate;
736 };
737 struct brw_vertex_element {
738 const struct gl_client_array *glarray;
739
740 int buffer;
741
742 /** The corresponding Mesa vertex attribute */
743 gl_vert_attrib attrib;
744 /** Offset of the first element within the buffer object */
745 unsigned int offset;
746 };
747
748 struct brw_query_object {
749 struct gl_query_object Base;
750
751 /** Last query BO associated with this query. */
752 drm_intel_bo *bo;
753
754 /** Last index in bo with query data for this object. */
755 int last_index;
756 };
757
758
759 /**
760 * brw_context is derived from intel_context.
761 */
762 struct brw_context
763 {
764 struct intel_context intel; /**< base class, must be first field */
765 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
766
767 bool emit_state_always;
768 bool has_surface_tile_offset;
769 bool has_compr4;
770 bool has_negative_rhw_bug;
771 bool has_aa_line_parameters;
772 bool has_pln;
773 bool precompile;
774
775 /**
776 * Some versions of Gen hardware don't do centroid interpolation correctly
777 * on unlit pixels, causing incorrect values for derivatives near triangle
778 * edges. Enabling this flag causes the fragment shader to use
779 * non-centroid interpolation for unlit pixels, at the expense of two extra
780 * fragment shader instructions.
781 */
782 bool needs_unlit_centroid_workaround;
783
784 struct {
785 struct brw_state_flags dirty;
786 } state;
787
788 struct brw_cache cache;
789 struct brw_cached_batch_item *cached_batch_items;
790
791 struct {
792 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
793 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
794
795 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
796 GLuint nr_enabled;
797 GLuint nr_buffers;
798
799 /* Summary of size and varying of active arrays, so we can check
800 * for changes to this state:
801 */
802 unsigned int min_index, max_index;
803
804 /* Offset from start of vertex buffer so we can avoid redefining
805 * the same VB packed over and over again.
806 */
807 unsigned int start_vertex_bias;
808 } vb;
809
810 struct {
811 /**
812 * Index buffer for this draw_prims call.
813 *
814 * Updates are signaled by BRW_NEW_INDICES.
815 */
816 const struct _mesa_index_buffer *ib;
817
818 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
819 drm_intel_bo *bo;
820 GLuint type;
821
822 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
823 * avoid re-uploading the IB packet over and over if we're actually
824 * referencing the same index buffer.
825 */
826 unsigned int start_vertex_offset;
827 } ib;
828
829 /* Active vertex program:
830 */
831 const struct gl_vertex_program *vertex_program;
832 const struct gl_fragment_program *fragment_program;
833
834 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
835 uint32_t CMD_VF_STATISTICS;
836 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
837 uint32_t CMD_PIPELINE_SELECT;
838
839 /**
840 * Platform specific constants containing the maximum number of threads
841 * for each pipeline stage.
842 */
843 int max_vs_threads;
844 int max_gs_threads;
845 int max_wm_threads;
846
847 /* BRW_NEW_URB_ALLOCATIONS:
848 */
849 struct {
850 GLuint vsize; /* vertex size plus header in urb registers */
851 GLuint csize; /* constant buffer size in urb registers */
852 GLuint sfsize; /* setup data size in urb registers */
853
854 bool constrained;
855
856 GLuint max_vs_entries; /* Maximum number of VS entries */
857 GLuint max_gs_entries; /* Maximum number of GS entries */
858
859 GLuint nr_vs_entries;
860 GLuint nr_gs_entries;
861 GLuint nr_clip_entries;
862 GLuint nr_sf_entries;
863 GLuint nr_cs_entries;
864
865 GLuint vs_start;
866 GLuint gs_start;
867 GLuint clip_start;
868 GLuint sf_start;
869 GLuint cs_start;
870 GLuint size; /* Hardware URB size, in KB. */
871
872 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
873 * URB space for the GS.
874 */
875 bool gen6_gs_previously_active;
876 } urb;
877
878
879 /* BRW_NEW_CURBE_OFFSETS:
880 */
881 struct {
882 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
883 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
884 GLuint clip_start;
885 GLuint clip_size;
886 GLuint vs_start;
887 GLuint vs_size;
888 GLuint total_size;
889
890 drm_intel_bo *curbe_bo;
891 /** Offset within curbe_bo of space for current curbe entry */
892 GLuint curbe_offset;
893 /** Offset within curbe_bo of space for next curbe entry */
894 GLuint curbe_next_offset;
895
896 /**
897 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
898 * in brw_curbe.c with the same set of constant data to be uploaded,
899 * so we'd rather not upload new constants in that case (it can cause
900 * a pipeline bubble since only up to 4 can be pipelined at a time).
901 */
902 GLfloat *last_buf;
903 /**
904 * Allocation for where to calculate the next set of CURBEs.
905 * It's a hot enough path that malloc/free of that data matters.
906 */
907 GLfloat *next_buf;
908 GLuint last_bufsz;
909 } curbe;
910
911 /** SAMPLER_STATE count and offset */
912 struct {
913 GLuint count;
914 uint32_t offset;
915 } sampler;
916
917 /**
918 * Layout of vertex data exiting the geometry portion of the pipleine.
919 * This comes from the geometry shader if one exists, otherwise from the
920 * vertex shader.
921 *
922 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
923 */
924 struct brw_vue_map vue_map_geom_out;
925
926 struct {
927 struct brw_vs_prog_data *prog_data;
928
929 drm_intel_bo *scratch_bo;
930 drm_intel_bo *const_bo;
931 /** Offset in the program cache to the VS program */
932 uint32_t prog_offset;
933 uint32_t state_offset;
934
935 uint32_t push_const_offset; /* Offset in the batchbuffer */
936 int push_const_size; /* in 256-bit register increments */
937
938 /** @{ register allocator */
939
940 struct ra_regs *regs;
941
942 /**
943 * Array of the ra classes for the unaligned contiguous register
944 * block sizes used.
945 */
946 int *classes;
947
948 /**
949 * Mapping for register-allocated objects in *regs to the first
950 * GRF for that object.
951 */
952 uint8_t *ra_reg_to_grf;
953 /** @} */
954
955 uint32_t bind_bo_offset;
956 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
957 } vs;
958
959 struct {
960 struct brw_gs_prog_data *prog_data;
961
962 bool prog_active;
963 /** Offset in the program cache to the CLIP program pre-gen6 */
964 uint32_t prog_offset;
965 uint32_t state_offset;
966
967 uint32_t bind_bo_offset;
968 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
969 } gs;
970
971 struct {
972 struct brw_clip_prog_data *prog_data;
973
974 /** Offset in the program cache to the CLIP program pre-gen6 */
975 uint32_t prog_offset;
976
977 /* Offset in the batch to the CLIP state on pre-gen6. */
978 uint32_t state_offset;
979
980 /* As of gen6, this is the offset in the batch to the CLIP VP,
981 * instead of vp_bo.
982 */
983 uint32_t vp_offset;
984 } clip;
985
986
987 struct {
988 struct brw_sf_prog_data *prog_data;
989
990 /** Offset in the program cache to the CLIP program pre-gen6 */
991 uint32_t prog_offset;
992 uint32_t state_offset;
993 uint32_t vp_offset;
994 } sf;
995
996 struct {
997 struct brw_wm_prog_data *prog_data;
998
999 /** offsets in the batch to sampler default colors (texture border color)
1000 */
1001 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1002
1003 GLuint render_surf;
1004
1005 drm_intel_bo *scratch_bo;
1006
1007 /**
1008 * Buffer object used in place of multisampled null render targets on
1009 * Gen6. See brw_update_null_renderbuffer_surface().
1010 */
1011 drm_intel_bo *multisampled_null_render_target_bo;
1012
1013 /** Offset in the program cache to the WM program */
1014 uint32_t prog_offset;
1015
1016 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1017
1018 drm_intel_bo *const_bo; /* pull constant buffer. */
1019 /**
1020 * This is offset in the batch to the push constants on gen6.
1021 *
1022 * Pre-gen6, push constants live in the CURBE.
1023 */
1024 uint32_t push_const_offset;
1025
1026 /** Binding table of pointers to surf_bo entries */
1027 uint32_t bind_bo_offset;
1028 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1029
1030 struct {
1031 struct ra_regs *regs;
1032
1033 /** Array of the ra classes for the unaligned contiguous
1034 * register block sizes used.
1035 */
1036 int *classes;
1037
1038 /**
1039 * Mapping for register-allocated objects in *regs to the first
1040 * GRF for that object.
1041 */
1042 uint8_t *ra_reg_to_grf;
1043
1044 /**
1045 * ra class for the aligned pairs we use for PLN, which doesn't
1046 * appear in *classes.
1047 */
1048 int aligned_pairs_class;
1049 } reg_sets[2];
1050 } wm;
1051
1052
1053 struct {
1054 uint32_t state_offset;
1055 uint32_t blend_state_offset;
1056 uint32_t depth_stencil_state_offset;
1057 uint32_t vp_offset;
1058 } cc;
1059
1060 struct {
1061 struct brw_query_object *obj;
1062 bool begin_emitted;
1063 } query;
1064
1065 int num_atoms;
1066 const struct brw_tracked_state **atoms;
1067
1068 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1069 struct {
1070 uint32_t offset;
1071 uint32_t size;
1072 enum state_struct_type type;
1073 } *state_batch_list;
1074 int state_batch_count;
1075
1076 struct brw_sol_state {
1077 uint32_t svbi_0_starting_index;
1078 uint32_t svbi_0_max_index;
1079 uint32_t offset_0_batch_start;
1080 uint32_t primitives_generated;
1081 uint32_t primitives_written;
1082 bool counting_primitives_generated;
1083 bool counting_primitives_written;
1084 } sol;
1085
1086 uint32_t render_target_format[MESA_FORMAT_COUNT];
1087 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1088
1089 /* PrimitiveRestart */
1090 struct {
1091 bool in_progress;
1092 bool enable_cut_index;
1093 } prim_restart;
1094
1095 /** Computed depth/stencil/hiz state from the current attached
1096 * renderbuffers, valid only during the drawing state upload loop after
1097 * brw_workaround_depthstencil_alignment().
1098 */
1099 struct {
1100 struct intel_mipmap_tree *depth_mt;
1101 struct intel_mipmap_tree *stencil_mt;
1102
1103 /* Inter-tile (page-aligned) byte offsets. */
1104 uint32_t depth_offset, hiz_offset, stencil_offset;
1105 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1106 uint32_t tile_x, tile_y;
1107 } depthstencil;
1108
1109 uint32_t num_instances;
1110 int basevertex;
1111
1112 struct {
1113 drm_intel_bo *bo;
1114 struct gl_shader_program **shader_programs;
1115 struct gl_program **programs;
1116 enum shader_time_shader_type *types;
1117 uint64_t *cumulative;
1118 int num_entries;
1119 int max_entries;
1120 double report_time;
1121 } shader_time;
1122 };
1123
1124 /*======================================================================
1125 * brw_vtbl.c
1126 */
1127 void brwInitVtbl( struct brw_context *brw );
1128
1129 /*======================================================================
1130 * brw_context.c
1131 */
1132 bool brwCreateContext(int api,
1133 const struct gl_config *mesaVis,
1134 __DRIcontext *driContextPriv,
1135 unsigned major_version,
1136 unsigned minor_version,
1137 uint32_t flags,
1138 unsigned *error,
1139 void *sharedContextPrivate);
1140
1141 /*======================================================================
1142 * brw_misc_state.c
1143 */
1144 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1145 uint32_t depth_level,
1146 uint32_t depth_layer,
1147 struct intel_mipmap_tree *stencil_mt,
1148 uint32_t *out_tile_mask_x,
1149 uint32_t *out_tile_mask_y);
1150 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1151 GLbitfield clear_mask);
1152
1153 /*======================================================================
1154 * brw_queryobj.c
1155 */
1156 void brw_init_queryobj_functions(struct dd_function_table *functions);
1157 void brw_emit_query_begin(struct brw_context *brw);
1158 void brw_emit_query_end(struct brw_context *brw);
1159
1160 /*======================================================================
1161 * brw_state_dump.c
1162 */
1163 void brw_debug_batch(struct intel_context *intel);
1164 void brw_annotate_aub(struct intel_context *intel);
1165
1166 /*======================================================================
1167 * brw_tex.c
1168 */
1169 void brw_validate_textures( struct brw_context *brw );
1170
1171
1172 /*======================================================================
1173 * brw_program.c
1174 */
1175 void brwInitFragProgFuncs( struct dd_function_table *functions );
1176
1177 int brw_get_scratch_size(int size);
1178 void brw_get_scratch_bo(struct intel_context *intel,
1179 drm_intel_bo **scratch_bo, int size);
1180 void brw_init_shader_time(struct brw_context *brw);
1181 int brw_get_shader_time_index(struct brw_context *brw,
1182 struct gl_shader_program *shader_prog,
1183 struct gl_program *prog,
1184 enum shader_time_shader_type type);
1185 void brw_collect_and_report_shader_time(struct brw_context *brw);
1186 void brw_destroy_shader_time(struct brw_context *brw);
1187
1188 /* brw_urb.c
1189 */
1190 void brw_upload_urb_fence(struct brw_context *brw);
1191
1192 /* brw_curbe.c
1193 */
1194 void brw_upload_cs_urb_state(struct brw_context *brw);
1195
1196 /* brw_fs_reg_allocate.cpp
1197 */
1198 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1199
1200 /* brw_disasm.c */
1201 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1202
1203 /* brw_vs.c */
1204 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1205
1206 /* brw_wm_surface_state.c */
1207 void brw_init_surface_formats(struct brw_context *brw);
1208 void
1209 brw_update_sol_surface(struct brw_context *brw,
1210 struct gl_buffer_object *buffer_obj,
1211 uint32_t *out_offset, unsigned num_vector_components,
1212 unsigned stride_dwords, unsigned offset_dwords);
1213 void brw_upload_ubo_surfaces(struct brw_context *brw,
1214 struct gl_shader *shader,
1215 uint32_t *surf_offsets);
1216
1217 /* gen6_sol.c */
1218 void
1219 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1220 struct gl_transform_feedback_object *obj);
1221 void
1222 brw_end_transform_feedback(struct gl_context *ctx,
1223 struct gl_transform_feedback_object *obj);
1224
1225 /* gen7_sol_state.c */
1226 void
1227 gen7_end_transform_feedback(struct gl_context *ctx,
1228 struct gl_transform_feedback_object *obj);
1229
1230 /* brw_blorp_blit.cpp */
1231 GLbitfield
1232 brw_blorp_framebuffer(struct intel_context *intel,
1233 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1234 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1235 GLbitfield mask, GLenum filter);
1236
1237 bool
1238 brw_blorp_copytexsubimage(struct intel_context *intel,
1239 struct gl_renderbuffer *src_rb,
1240 struct gl_texture_image *dst_image,
1241 int srcX0, int srcY0,
1242 int dstX0, int dstY0,
1243 int width, int height);
1244
1245 /* gen6_multisample_state.c */
1246 void
1247 gen6_emit_3dstate_multisample(struct brw_context *brw,
1248 unsigned num_samples);
1249 void
1250 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1251 unsigned num_samples, float coverage,
1252 bool coverage_invert, unsigned sample_mask);
1253 void
1254 gen6_get_sample_position(struct gl_context *ctx,
1255 struct gl_framebuffer *fb,
1256 GLuint index,
1257 GLfloat *result);
1258
1259 /* gen7_urb.c */
1260 void
1261 gen7_allocate_push_constants(struct brw_context *brw);
1262
1263 void
1264 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1265 GLuint vs_size, GLuint vs_start);
1266
1267
1268
1269 /*======================================================================
1270 * Inline conversion functions. These are better-typed than the
1271 * macros used previously:
1272 */
1273 static INLINE struct brw_context *
1274 brw_context( struct gl_context *ctx )
1275 {
1276 return (struct brw_context *)ctx;
1277 }
1278
1279 static INLINE struct brw_vertex_program *
1280 brw_vertex_program(struct gl_vertex_program *p)
1281 {
1282 return (struct brw_vertex_program *) p;
1283 }
1284
1285 static INLINE const struct brw_vertex_program *
1286 brw_vertex_program_const(const struct gl_vertex_program *p)
1287 {
1288 return (const struct brw_vertex_program *) p;
1289 }
1290
1291 static INLINE struct brw_fragment_program *
1292 brw_fragment_program(struct gl_fragment_program *p)
1293 {
1294 return (struct brw_fragment_program *) p;
1295 }
1296
1297 static INLINE const struct brw_fragment_program *
1298 brw_fragment_program_const(const struct gl_fragment_program *p)
1299 {
1300 return (const struct brw_fragment_program *) p;
1301 }
1302
1303 /**
1304 * Pre-gen6, the register file of the EUs was shared between threads,
1305 * and each thread used some subset allocated on a 16-register block
1306 * granularity. The unit states wanted these block counts.
1307 */
1308 static inline int
1309 brw_register_blocks(int reg_count)
1310 {
1311 return ALIGN(reg_count, 16) / 16 - 1;
1312 }
1313
1314 static inline uint32_t
1315 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1316 uint32_t prog_offset)
1317 {
1318 struct intel_context *intel = &brw->intel;
1319
1320 if (intel->gen >= 5) {
1321 /* Using state base address. */
1322 return prog_offset;
1323 }
1324
1325 drm_intel_bo_emit_reloc(intel->batch.bo,
1326 state_offset,
1327 brw->cache.bo,
1328 prog_offset,
1329 I915_GEM_DOMAIN_INSTRUCTION, 0);
1330
1331 return brw->cache.bo->offset + prog_offset;
1332 }
1333
1334 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1335 bool brw_lower_texture_gradients(struct exec_list *instructions);
1336
1337 struct opcode_desc {
1338 char *name;
1339 int nsrc;
1340 int ndst;
1341 };
1342
1343 extern const struct opcode_desc opcode_descs[128];
1344
1345 void
1346 brw_emit_depthbuffer(struct brw_context *brw);
1347
1348 void
1349 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1350 struct intel_mipmap_tree *depth_mt,
1351 uint32_t depth_offset, uint32_t depthbuffer_format,
1352 uint32_t depth_surface_type,
1353 struct intel_mipmap_tree *stencil_mt,
1354 bool hiz, bool separate_stencil,
1355 uint32_t width, uint32_t height,
1356 uint32_t tile_x, uint32_t tile_y);
1357
1358 void
1359 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1360 struct intel_mipmap_tree *depth_mt,
1361 uint32_t depth_offset, uint32_t depthbuffer_format,
1362 uint32_t depth_surface_type,
1363 struct intel_mipmap_tree *stencil_mt,
1364 bool hiz, bool separate_stencil,
1365 uint32_t width, uint32_t height,
1366 uint32_t tile_x, uint32_t tile_y);
1367
1368 #ifdef __cplusplus
1369 }
1370 #endif
1371
1372 #endif