Merge branch 'gallium-userbuf'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 enum state_struct_type {
197 AUB_TRACE_VS_STATE = 1,
198 AUB_TRACE_GS_STATE = 2,
199 AUB_TRACE_CLIP_STATE = 3,
200 AUB_TRACE_SF_STATE = 4,
201 AUB_TRACE_WM_STATE = 5,
202 AUB_TRACE_CC_STATE = 6,
203 AUB_TRACE_CLIP_VP_STATE = 7,
204 AUB_TRACE_SF_VP_STATE = 8,
205 AUB_TRACE_CC_VP_STATE = 0x9,
206 AUB_TRACE_SAMPLER_STATE = 0xa,
207 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
208 AUB_TRACE_SCRATCH_SPACE = 0xc,
209 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
210
211 AUB_TRACE_SCISSOR_STATE = 0x15,
212 AUB_TRACE_BLEND_STATE = 0x16,
213 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
214
215 /* Not written to .aub files the same way the structures above are. */
216 AUB_TRACE_NO_TYPE = 0x100,
217 AUB_TRACE_BINDING_TABLE = 0x101,
218 AUB_TRACE_SURFACE_STATE = 0x102,
219 AUB_TRACE_VS_CONSTANTS = 0x103,
220 AUB_TRACE_WM_CONSTANTS = 0x104,
221 };
222
223 /** Subclass of Mesa vertex program */
224 struct brw_vertex_program {
225 struct gl_vertex_program program;
226 GLuint id;
227 bool use_const_buffer;
228 };
229
230
231 /** Subclass of Mesa fragment program */
232 struct brw_fragment_program {
233 struct gl_fragment_program program;
234 GLuint id; /**< serial no. to identify frag progs, never re-used */
235 };
236
237 struct brw_shader {
238 struct gl_shader base;
239
240 /** Shader IR transformed for native compile, at link time. */
241 struct exec_list *ir;
242 };
243
244 struct brw_shader_program {
245 struct gl_shader_program base;
246 };
247
248 enum param_conversion {
249 PARAM_NO_CONVERT,
250 PARAM_CONVERT_F2I,
251 PARAM_CONVERT_F2U,
252 PARAM_CONVERT_F2B,
253 PARAM_CONVERT_ZERO,
254 };
255
256 /* Data about a particular attempt to compile a program. Note that
257 * there can be many of these, each in a different GL state
258 * corresponding to a different brw_wm_prog_key struct, with different
259 * compiled programs:
260 */
261 struct brw_wm_prog_data {
262 GLuint curb_read_length;
263 GLuint urb_read_length;
264
265 GLuint first_curbe_grf;
266 GLuint first_curbe_grf_16;
267 GLuint reg_blocks;
268 GLuint reg_blocks_16;
269 GLuint total_scratch;
270
271 GLuint nr_params; /**< number of float params/constants */
272 GLuint nr_pull_params;
273 bool error;
274 int dispatch_width;
275 uint32_t prog_offset_16;
276
277 /**
278 * Mask of which interpolation modes are required by the fragment shader.
279 * Used in hardware setup on gen6+.
280 */
281 uint32_t barycentric_interp_modes;
282
283 /* Pointer to tracked values (only valid once
284 * _mesa_load_state_parameters has been called at runtime).
285 */
286 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
287 enum param_conversion param_convert[MAX_UNIFORMS * 4];
288 const float *pull_param[MAX_UNIFORMS * 4];
289 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
290 };
291
292 /**
293 * Enum representing the i965-specific vertex results that don't correspond
294 * exactly to any element of gl_vert_result. The values of this enum are
295 * assigned such that they don't conflict with gl_vert_result.
296 */
297 typedef enum
298 {
299 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
300 BRW_VERT_RESULT_HPOS_DUPLICATE,
301 BRW_VERT_RESULT_PAD,
302 /*
303 * It's actually not a vert_result but just a _mark_ to let sf aware that
304 * he need do something special to handle gl_PointCoord builtin variable
305 * correctly. see compile_sf_prog() for more info.
306 */
307 BRW_VERT_RESULT_PNTC,
308 BRW_VERT_RESULT_MAX
309 } brw_vert_result;
310
311
312 /**
313 * Data structure recording the relationship between the gl_vert_result enum
314 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
315 * single octaword within the VUE (128 bits).
316 *
317 * Note that each BRW register contains 256 bits (2 octawords), so when
318 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
319 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
320 * in a vertex shader), each register corresponds to a single VUE slot, since
321 * it contains data for two separate vertices.
322 */
323 struct brw_vue_map {
324 /**
325 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
326 * not stored in a slot (because they are not written, or because
327 * additional processing is applied before storing them in the VUE), the
328 * value is -1.
329 */
330 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
331
332 /**
333 * Map from VUE slot to gl_vert_result value. For slots that do not
334 * directly correspond to a gl_vert_result, the value comes from
335 * brw_vert_result.
336 *
337 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
338 * simplifies code that uses the value stored in slot_to_vert_result to
339 * create a bit mask).
340 */
341 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
342
343 /**
344 * Total number of VUE slots in use
345 */
346 int num_slots;
347 };
348
349 /**
350 * Convert a VUE slot number into a byte offset within the VUE.
351 */
352 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
353 {
354 return 16*slot;
355 }
356
357 /**
358 * Convert a vert_result into a byte offset within the VUE.
359 */
360 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
361 GLuint vert_result)
362 {
363 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
364 }
365
366
367 struct brw_sf_prog_data {
368 GLuint urb_read_length;
369 GLuint total_grf;
370
371 /* Each vertex may have upto 12 attributes, 4 components each,
372 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
373 * rows.
374 *
375 * Actually we use 4 for each, so call it 12 rows.
376 */
377 GLuint urb_entry_size;
378 };
379
380 struct brw_clip_prog_data {
381 GLuint curb_read_length; /* user planes? */
382 GLuint clip_mode;
383 GLuint urb_read_length;
384 GLuint total_grf;
385 };
386
387 struct brw_gs_prog_data {
388 GLuint urb_read_length;
389 GLuint total_grf;
390
391 /**
392 * Gen6 transform feedback: Amount by which the streaming vertex buffer
393 * indices should be incremented each time the GS is invoked.
394 */
395 unsigned svbi_postincrement_value;
396 };
397
398 struct brw_vs_prog_data {
399 struct brw_vue_map vue_map;
400
401 GLuint curb_read_length;
402 GLuint urb_read_length;
403 GLuint total_grf;
404 GLbitfield64 outputs_written;
405 GLuint nr_params; /**< number of float params/constants */
406 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
407 GLuint total_scratch;
408
409 GLbitfield64 inputs_read;
410
411 /* Used for calculating urb partitions:
412 */
413 GLuint urb_entry_size;
414
415 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
416 const float *pull_param[MAX_UNIFORMS * 4];
417
418 bool uses_new_param_layout;
419 bool uses_vertexid;
420 bool userclip;
421
422 int num_surfaces;
423 };
424
425
426 /* Size == 0 if output either not written, or always [0,0,0,1]
427 */
428 struct brw_vs_ouput_sizes {
429 GLubyte output_size[VERT_RESULT_MAX];
430 };
431
432
433 /** Number of texture sampler units */
434 #define BRW_MAX_TEX_UNIT 16
435
436 /** Max number of render targets in a shader */
437 #define BRW_MAX_DRAW_BUFFERS 8
438
439 /**
440 * Max number of binding table entries used for stream output.
441 *
442 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
443 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
444 *
445 * On Gen6, the size of transform feedback data is limited not by the number
446 * of components but by the number of binding table entries we set aside. We
447 * use one binding table entry for a float, one entry for a vector, and one
448 * entry per matrix column. Since the only way we can communicate our
449 * transform feedback capabilities to the client is via
450 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
451 * worst case, in which all the varyings are floats, so we use up one binding
452 * table entry per component. Therefore we need to set aside at least 64
453 * binding table entries for use by transform feedback.
454 *
455 * Note: since we don't currently pack varyings, it is currently impossible
456 * for the client to actually use up all of these binding table entries--if
457 * all of their varyings were floats, they would run out of varying slots and
458 * fail to link. But that's a bug, so it seems prudent to go ahead and
459 * allocate the number of binding table entries we will need once the bug is
460 * fixed.
461 */
462 #define BRW_MAX_SOL_BINDINGS 64
463
464 /** Maximum number of actual buffers used for stream output */
465 #define BRW_MAX_SOL_BUFFERS 4
466
467 /**
468 * Helpers to create Surface Binding Table indexes for draw buffers,
469 * textures, and constant buffers.
470 *
471 * Shader threads access surfaces via numeric handles, rather than directly
472 * using pointers. The binding table maps these numeric handles to the
473 * address of the actual buffer.
474 *
475 * For example, a shader might ask to sample from "surface 7." In this case,
476 * bind[7] would contain a pointer to a texture.
477 *
478 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
479 *
480 * +-------------------------------+
481 * | 0 | Draw buffer 0 |
482 * | . | . |
483 * | : | : |
484 * | 7 | Draw buffer 7 |
485 * |-----|-------------------------|
486 * | 8 | WM Pull Constant Buffer |
487 * |-----|-------------------------|
488 * | 9 | Texture 0 |
489 * | . | . |
490 * | : | : |
491 * | 24 | Texture 15 |
492 * +-------------------------------+
493 *
494 * Our VS binding tables are programmed as follows:
495 *
496 * +-----+-------------------------+
497 * | 0 | VS Pull Constant Buffer |
498 * +-----+-------------------------+
499 * | 1 | Texture 0 |
500 * | . | . |
501 * | : | : |
502 * | 16 | Texture 15 |
503 * +-------------------------------+
504 *
505 * Our (gen6) GS binding tables are programmed as follows:
506 *
507 * +-----+-------------------------+
508 * | 0 | SOL Binding 0 |
509 * | . | . |
510 * | : | : |
511 * | 63 | SOL Binding 63 |
512 * +-----+-------------------------+
513 *
514 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
515 * the identity function or things will break. We do want to keep draw buffers
516 * first so we can use headerless render target writes for RT 0.
517 */
518 #define SURF_INDEX_DRAW(d) (d)
519 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
520 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
521
522 /** Maximum size of the binding table. */
523 #define BRW_MAX_WM_SURFACES SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT)
524
525 #define SURF_INDEX_VERT_CONST_BUFFER (0)
526 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
527 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT)
528
529 #define SURF_INDEX_SOL_BINDING(t) ((t))
530 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
531
532 enum brw_cache_id {
533 BRW_BLEND_STATE,
534 BRW_DEPTH_STENCIL_STATE,
535 BRW_COLOR_CALC_STATE,
536 BRW_CC_VP,
537 BRW_CC_UNIT,
538 BRW_WM_PROG,
539 BRW_SAMPLER,
540 BRW_WM_UNIT,
541 BRW_SF_PROG,
542 BRW_SF_VP,
543 BRW_SF_UNIT, /* scissor state on gen6 */
544 BRW_VS_UNIT,
545 BRW_VS_PROG,
546 BRW_GS_UNIT,
547 BRW_GS_PROG,
548 BRW_CLIP_VP,
549 BRW_CLIP_UNIT,
550 BRW_CLIP_PROG,
551
552 BRW_MAX_CACHE
553 };
554
555 struct brw_cache_item {
556 /**
557 * Effectively part of the key, cache_id identifies what kind of state
558 * buffer is involved, and also which brw->state.dirty.cache flag should
559 * be set when this cache item is chosen.
560 */
561 enum brw_cache_id cache_id;
562 /** 32-bit hash of the key data */
563 GLuint hash;
564 GLuint key_size; /* for variable-sized keys */
565 GLuint aux_size;
566 const void *key;
567
568 uint32_t offset;
569 uint32_t size;
570
571 struct brw_cache_item *next;
572 };
573
574
575
576 struct brw_cache {
577 struct brw_context *brw;
578
579 struct brw_cache_item **items;
580 drm_intel_bo *bo;
581 GLuint size, n_items;
582
583 uint32_t next_offset;
584 bool bo_used_by_gpu;
585 };
586
587
588 /* Considered adding a member to this struct to document which flags
589 * an update might raise so that ordering of the state atoms can be
590 * checked or derived at runtime. Dropped the idea in favor of having
591 * a debug mode where the state is monitored for flags which are
592 * raised that have already been tested against.
593 */
594 struct brw_tracked_state {
595 struct brw_state_flags dirty;
596 void (*emit)( struct brw_context *brw );
597 };
598
599 /* Flags for brw->state.cache.
600 */
601 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
602 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
603 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
604 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
605 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
606 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
607 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
608 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
609 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
610 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
611 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
612 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
613 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
614 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
615 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
616 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
617 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
618 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
619
620 struct brw_cached_batch_item {
621 struct header *header;
622 GLuint sz;
623 struct brw_cached_batch_item *next;
624 };
625
626
627
628 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
629 * be easier if C allowed arrays of packed elements?
630 */
631 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
632
633 struct brw_vertex_buffer {
634 /** Buffer object containing the uploaded vertex data */
635 drm_intel_bo *bo;
636 uint32_t offset;
637 /** Byte stride between elements in the uploaded array */
638 GLuint stride;
639 };
640 struct brw_vertex_element {
641 const struct gl_client_array *glarray;
642
643 int buffer;
644
645 /** The corresponding Mesa vertex attribute */
646 gl_vert_attrib attrib;
647 /** Size of a complete element */
648 GLuint element_size;
649 /** Offset of the first element within the buffer object */
650 unsigned int offset;
651 };
652
653
654
655 struct brw_vertex_info {
656 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
657 };
658
659 struct brw_query_object {
660 struct gl_query_object Base;
661
662 /** Last query BO associated with this query. */
663 drm_intel_bo *bo;
664 /** First index in bo with query data for this object. */
665 int first_index;
666 /** Last index in bo with query data for this object. */
667 int last_index;
668 };
669
670
671 /**
672 * brw_context is derived from intel_context.
673 */
674 struct brw_context
675 {
676 struct intel_context intel; /**< base class, must be first field */
677 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
678
679 bool emit_state_always;
680 bool has_surface_tile_offset;
681 bool has_compr4;
682 bool has_negative_rhw_bug;
683 bool has_aa_line_parameters;
684 bool has_pln;
685 bool precompile;
686
687 struct {
688 struct brw_state_flags dirty;
689 } state;
690
691 struct brw_cache cache;
692 struct brw_cached_batch_item *cached_batch_items;
693
694 struct {
695 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
696 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
697 struct {
698 uint32_t handle;
699 uint32_t offset;
700 uint32_t stride;
701 } current_buffers[VERT_ATTRIB_MAX];
702
703 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
704 GLuint nr_enabled;
705 GLuint nr_buffers, nr_current_buffers;
706
707 /* Summary of size and varying of active arrays, so we can check
708 * for changes to this state:
709 */
710 struct brw_vertex_info info;
711 unsigned int min_index, max_index;
712
713 /* Offset from start of vertex buffer so we can avoid redefining
714 * the same VB packed over and over again.
715 */
716 unsigned int start_vertex_bias;
717 } vb;
718
719 struct {
720 /**
721 * Index buffer for this draw_prims call.
722 *
723 * Updates are signaled by BRW_NEW_INDICES.
724 */
725 const struct _mesa_index_buffer *ib;
726
727 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
728 drm_intel_bo *bo;
729 GLuint type;
730
731 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
732 * avoid re-uploading the IB packet over and over if we're actually
733 * referencing the same index buffer.
734 */
735 unsigned int start_vertex_offset;
736 } ib;
737
738 /* Active vertex program:
739 */
740 const struct gl_vertex_program *vertex_program;
741 const struct gl_fragment_program *fragment_program;
742
743 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
744 uint32_t CMD_VF_STATISTICS;
745 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
746 uint32_t CMD_PIPELINE_SELECT;
747
748 /**
749 * Platform specific constants containing the maximum number of threads
750 * for each pipeline stage.
751 */
752 int max_vs_threads;
753 int max_gs_threads;
754 int max_wm_threads;
755
756 /* BRW_NEW_URB_ALLOCATIONS:
757 */
758 struct {
759 GLuint vsize; /* vertex size plus header in urb registers */
760 GLuint csize; /* constant buffer size in urb registers */
761 GLuint sfsize; /* setup data size in urb registers */
762
763 bool constrained;
764
765 GLuint max_vs_entries; /* Maximum number of VS entries */
766 GLuint max_gs_entries; /* Maximum number of GS entries */
767
768 GLuint nr_vs_entries;
769 GLuint nr_gs_entries;
770 GLuint nr_clip_entries;
771 GLuint nr_sf_entries;
772 GLuint nr_cs_entries;
773
774 /* gen6:
775 * The length of each URB entry owned by the VS (or GS), as
776 * a number of 1024-bit (128-byte) rows. Should be >= 1.
777 *
778 * gen7: Same meaning, but in 512-bit (64-byte) rows.
779 */
780 GLuint vs_size;
781 GLuint gs_size;
782
783 GLuint vs_start;
784 GLuint gs_start;
785 GLuint clip_start;
786 GLuint sf_start;
787 GLuint cs_start;
788 GLuint size; /* Hardware URB size, in KB. */
789
790 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
791 * URB space for the GS.
792 */
793 bool gen6_gs_previously_active;
794 } urb;
795
796
797 /* BRW_NEW_CURBE_OFFSETS:
798 */
799 struct {
800 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
801 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
802 GLuint clip_start;
803 GLuint clip_size;
804 GLuint vs_start;
805 GLuint vs_size;
806 GLuint total_size;
807
808 drm_intel_bo *curbe_bo;
809 /** Offset within curbe_bo of space for current curbe entry */
810 GLuint curbe_offset;
811 /** Offset within curbe_bo of space for next curbe entry */
812 GLuint curbe_next_offset;
813
814 /**
815 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
816 * in brw_curbe.c with the same set of constant data to be uploaded,
817 * so we'd rather not upload new constants in that case (it can cause
818 * a pipeline bubble since only up to 4 can be pipelined at a time).
819 */
820 GLfloat *last_buf;
821 /**
822 * Allocation for where to calculate the next set of CURBEs.
823 * It's a hot enough path that malloc/free of that data matters.
824 */
825 GLfloat *next_buf;
826 GLuint last_bufsz;
827 } curbe;
828
829 /** SAMPLER_STATE count and offset */
830 struct {
831 GLuint count;
832 uint32_t offset;
833 } sampler;
834
835 struct {
836 struct brw_vs_prog_data *prog_data;
837 int8_t *constant_map; /* variable array following prog_data */
838
839 drm_intel_bo *scratch_bo;
840 drm_intel_bo *const_bo;
841 /** Offset in the program cache to the VS program */
842 uint32_t prog_offset;
843 uint32_t state_offset;
844
845 uint32_t push_const_offset; /* Offset in the batchbuffer */
846 int push_const_size; /* in 256-bit register increments */
847
848 /** @{ register allocator */
849
850 struct ra_regs *regs;
851
852 /**
853 * Array of the ra classes for the unaligned contiguous register
854 * block sizes used.
855 */
856 int *classes;
857
858 /**
859 * Mapping for register-allocated objects in *regs to the first
860 * GRF for that object.
861 */
862 uint8_t *ra_reg_to_grf;
863 /** @} */
864
865 uint32_t bind_bo_offset;
866 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
867 } vs;
868
869 struct {
870 struct brw_gs_prog_data *prog_data;
871
872 bool prog_active;
873 /** Offset in the program cache to the CLIP program pre-gen6 */
874 uint32_t prog_offset;
875 uint32_t state_offset;
876
877 uint32_t bind_bo_offset;
878 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
879 } gs;
880
881 struct {
882 struct brw_clip_prog_data *prog_data;
883
884 /** Offset in the program cache to the CLIP program pre-gen6 */
885 uint32_t prog_offset;
886
887 /* Offset in the batch to the CLIP state on pre-gen6. */
888 uint32_t state_offset;
889
890 /* As of gen6, this is the offset in the batch to the CLIP VP,
891 * instead of vp_bo.
892 */
893 uint32_t vp_offset;
894 } clip;
895
896
897 struct {
898 struct brw_sf_prog_data *prog_data;
899
900 /** Offset in the program cache to the CLIP program pre-gen6 */
901 uint32_t prog_offset;
902 uint32_t state_offset;
903 uint32_t vp_offset;
904 } sf;
905
906 struct {
907 struct brw_wm_prog_data *prog_data;
908 struct brw_wm_compile *compile_data;
909
910 /** Input sizes, calculated from active vertex program.
911 * One bit per fragment program input attribute.
912 */
913 GLbitfield input_size_masks[4];
914
915 /** offsets in the batch to sampler default colors (texture border color)
916 */
917 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
918
919 GLuint render_surf;
920
921 drm_intel_bo *scratch_bo;
922
923 /** Offset in the program cache to the WM program */
924 uint32_t prog_offset;
925
926 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
927
928 drm_intel_bo *const_bo; /* pull constant buffer. */
929 /**
930 * This is offset in the batch to the push constants on gen6.
931 *
932 * Pre-gen6, push constants live in the CURBE.
933 */
934 uint32_t push_const_offset;
935
936 /** Binding table of pointers to surf_bo entries */
937 uint32_t bind_bo_offset;
938 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
939
940 /** @{ register allocator */
941
942 struct ra_regs *regs;
943
944 /** Array of the ra classes for the unaligned contiguous
945 * register block sizes used.
946 */
947 int *classes;
948
949 /**
950 * Mapping for register-allocated objects in *regs to the first
951 * GRF for that object.
952 */
953 uint8_t *ra_reg_to_grf;
954
955 /**
956 * ra class for the aligned pairs we use for PLN, which doesn't
957 * appear in *classes.
958 */
959 int aligned_pairs_class;
960
961 /** @} */
962 } wm;
963
964
965 struct {
966 uint32_t state_offset;
967 uint32_t blend_state_offset;
968 uint32_t depth_stencil_state_offset;
969 uint32_t vp_offset;
970 } cc;
971
972 struct {
973 struct brw_query_object *obj;
974 drm_intel_bo *bo;
975 int index;
976 bool active;
977 } query;
978 /* Used to give every program string a unique id
979 */
980 GLuint program_id;
981
982 int num_atoms;
983 const struct brw_tracked_state **atoms;
984
985 /* If (INTEL_DEBUG & DEBUG_BATCH) */
986 struct {
987 uint32_t offset;
988 uint32_t size;
989 enum state_struct_type type;
990 } *state_batch_list;
991 int state_batch_count;
992
993 struct brw_sol_state {
994 uint32_t svbi_0_starting_index;
995 uint32_t svbi_0_max_index;
996 uint32_t offset_0_batch_start;
997 uint32_t primitives_generated;
998 uint32_t primitives_written;
999 } sol;
1000
1001 uint32_t render_target_format[MESA_FORMAT_COUNT];
1002 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1003 };
1004
1005
1006
1007 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1008
1009 struct brw_instruction_info {
1010 char *name;
1011 int nsrc;
1012 int ndst;
1013 bool is_arith;
1014 };
1015 extern const struct brw_instruction_info brw_opcodes[128];
1016
1017 /*======================================================================
1018 * brw_vtbl.c
1019 */
1020 void brwInitVtbl( struct brw_context *brw );
1021
1022 /*======================================================================
1023 * brw_context.c
1024 */
1025 bool brwCreateContext(int api,
1026 const struct gl_config *mesaVis,
1027 __DRIcontext *driContextPriv,
1028 void *sharedContextPrivate);
1029
1030 /*======================================================================
1031 * brw_queryobj.c
1032 */
1033 void brw_init_queryobj_functions(struct dd_function_table *functions);
1034 void brw_prepare_query_begin(struct brw_context *brw);
1035 void brw_emit_query_begin(struct brw_context *brw);
1036 void brw_emit_query_end(struct brw_context *brw);
1037
1038 /*======================================================================
1039 * brw_state_dump.c
1040 */
1041 void brw_debug_batch(struct intel_context *intel);
1042
1043 /*======================================================================
1044 * brw_tex.c
1045 */
1046 void brw_validate_textures( struct brw_context *brw );
1047
1048
1049 /*======================================================================
1050 * brw_program.c
1051 */
1052 void brwInitFragProgFuncs( struct dd_function_table *functions );
1053
1054 int brw_get_scratch_size(int size);
1055 void brw_get_scratch_bo(struct intel_context *intel,
1056 drm_intel_bo **scratch_bo, int size);
1057
1058
1059 /* brw_urb.c
1060 */
1061 void brw_upload_urb_fence(struct brw_context *brw);
1062
1063 /* brw_curbe.c
1064 */
1065 void brw_upload_cs_urb_state(struct brw_context *brw);
1066
1067 /* brw_disasm.c */
1068 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1069
1070 /* brw_vs.c */
1071 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1072
1073 /* brw_wm_surface_state.c */
1074 void brw_init_surface_formats(struct brw_context *brw);
1075 void
1076 brw_update_sol_surface(struct brw_context *brw,
1077 struct gl_buffer_object *buffer_obj,
1078 uint32_t *out_offset, unsigned num_vector_components,
1079 unsigned stride_dwords, unsigned offset_dwords);
1080
1081 /* gen6_sol.c */
1082 void
1083 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1084 struct gl_transform_feedback_object *obj);
1085 void
1086 brw_end_transform_feedback(struct gl_context *ctx,
1087 struct gl_transform_feedback_object *obj);
1088
1089 /* gen7_sol_state.c */
1090 void
1091 gen7_end_transform_feedback(struct gl_context *ctx,
1092 struct gl_transform_feedback_object *obj);
1093
1094
1095
1096 /*======================================================================
1097 * Inline conversion functions. These are better-typed than the
1098 * macros used previously:
1099 */
1100 static INLINE struct brw_context *
1101 brw_context( struct gl_context *ctx )
1102 {
1103 return (struct brw_context *)ctx;
1104 }
1105
1106 static INLINE struct brw_vertex_program *
1107 brw_vertex_program(struct gl_vertex_program *p)
1108 {
1109 return (struct brw_vertex_program *) p;
1110 }
1111
1112 static INLINE const struct brw_vertex_program *
1113 brw_vertex_program_const(const struct gl_vertex_program *p)
1114 {
1115 return (const struct brw_vertex_program *) p;
1116 }
1117
1118 static INLINE struct brw_fragment_program *
1119 brw_fragment_program(struct gl_fragment_program *p)
1120 {
1121 return (struct brw_fragment_program *) p;
1122 }
1123
1124 static INLINE const struct brw_fragment_program *
1125 brw_fragment_program_const(const struct gl_fragment_program *p)
1126 {
1127 return (const struct brw_fragment_program *) p;
1128 }
1129
1130 static inline
1131 float convert_param(enum param_conversion conversion, const float *param)
1132 {
1133 union {
1134 float f;
1135 uint32_t u;
1136 int32_t i;
1137 } fi;
1138
1139 switch (conversion) {
1140 case PARAM_NO_CONVERT:
1141 return *param;
1142 case PARAM_CONVERT_F2I:
1143 fi.i = *param;
1144 return fi.f;
1145 case PARAM_CONVERT_F2U:
1146 fi.u = *param;
1147 return fi.f;
1148 case PARAM_CONVERT_F2B:
1149 if (*param != 0.0)
1150 fi.i = 1;
1151 else
1152 fi.i = 0;
1153 return fi.f;
1154 case PARAM_CONVERT_ZERO:
1155 return 0.0;
1156 default:
1157 return *param;
1158 }
1159 }
1160
1161 /**
1162 * Pre-gen6, the register file of the EUs was shared between threads,
1163 * and each thread used some subset allocated on a 16-register block
1164 * granularity. The unit states wanted these block counts.
1165 */
1166 static inline int
1167 brw_register_blocks(int reg_count)
1168 {
1169 return ALIGN(reg_count, 16) / 16 - 1;
1170 }
1171
1172 static inline uint32_t
1173 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1174 uint32_t prog_offset)
1175 {
1176 struct intel_context *intel = &brw->intel;
1177
1178 if (intel->gen >= 5) {
1179 /* Using state base address. */
1180 return prog_offset;
1181 }
1182
1183 drm_intel_bo_emit_reloc(intel->batch.bo,
1184 state_offset,
1185 brw->cache.bo,
1186 prog_offset,
1187 I915_GEM_DOMAIN_INSTRUCTION, 0);
1188
1189 return brw->cache.bo->offset + prog_offset;
1190 }
1191
1192 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1193
1194 #ifdef __cplusplus
1195 }
1196 #endif
1197
1198 #endif