i965: Add support for xfb overflow on query buffer objects.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include <stdbool.h>
37 #include "main/macros.h"
38 #include "main/mtypes.h"
39 #include "brw_structs.h"
40 #include "brw_compiler.h"
41 #include "intel_aub.h"
42
43 #include "isl/isl.h"
44 #include "blorp/blorp.h"
45
46 #include <intel_bufmgr.h>
47
48 #include "intel_debug.h"
49 #include "intel_screen.h"
50 #include "intel_tex_obj.h"
51 #include "intel_resolve_map.h"
52
53 #ifdef __cplusplus
54 extern "C" {
55 #endif
56 /* Glossary:
57 *
58 * URB - uniform resource buffer. A mid-sized buffer which is
59 * partitioned between the fixed function units and used for passing
60 * values (vertices, primitives, constants) between them.
61 *
62 * CURBE - constant URB entry. An urb region (entry) used to hold
63 * constant values which the fixed function units can be instructed to
64 * preload into the GRF when spawning a thread.
65 *
66 * VUE - vertex URB entry. An urb entry holding a vertex and usually
67 * a vertex header. The header contains control information and
68 * things like primitive type, Begin/end flags and clip codes.
69 *
70 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
71 * unit holding rasterization and interpolation parameters.
72 *
73 * GRF - general register file. One of several register files
74 * addressable by programmed threads. The inputs (r0, payload, curbe,
75 * urb) of the thread are preloaded to this area before the thread is
76 * spawned. The registers are individually 8 dwords wide and suitable
77 * for general usage. Registers holding thread input values are not
78 * special and may be overwritten.
79 *
80 * MRF - message register file. Threads communicate (and terminate)
81 * by sending messages. Message parameters are placed in contiguous
82 * MRF registers. All program output is via these messages. URB
83 * entries are populated by sending a message to the shared URB
84 * function containing the new data, together with a control word,
85 * often an unmodified copy of R0.
86 *
87 * R0 - GRF register 0. Typically holds control information used when
88 * sending messages to other threads.
89 *
90 * EU or GEN4 EU: The name of the programmable subsystem of the
91 * i965 hardware. Threads are executed by the EU, the registers
92 * described above are part of the EU architecture.
93 *
94 * Fixed function units:
95 *
96 * CS - Command streamer. Notional first unit, little software
97 * interaction. Holds the URB entries used for constant data, ie the
98 * CURBEs.
99 *
100 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
101 * this unit is responsible for pulling vertices out of vertex buffers
102 * in vram and injecting them into the processing pipe as VUEs. If
103 * enabled, it first passes them to a VS thread which is a good place
104 * for the driver to implement any active vertex shader.
105 *
106 * HS - Hull Shader (Tessellation Control Shader)
107 *
108 * TE - Tessellation Engine (Tessellation Primitive Generation)
109 *
110 * DS - Domain Shader (Tessellation Evaluation Shader)
111 *
112 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
113 * enabled, incoming strips etc are passed to GS threads in individual
114 * line/triangle/point units. The GS thread may perform arbitary
115 * computation and emit whatever primtives with whatever vertices it
116 * chooses. This makes GS an excellent place to implement GL's
117 * unfilled polygon modes, though of course it is capable of much
118 * more. Additionally, GS is used to translate away primitives not
119 * handled by latter units, including Quads and Lineloops.
120 *
121 * CS - Clipper. Mesa's clipping algorithms are imported to run on
122 * this unit. The fixed function part performs cliptesting against
123 * the 6 fixed clipplanes and makes descisions on whether or not the
124 * incoming primitive needs to be passed to a thread for clipping.
125 * User clip planes are handled via cooperation with the VS thread.
126 *
127 * SF - Strips Fans or Setup: Triangles are prepared for
128 * rasterization. Interpolation coefficients are calculated.
129 * Flatshading and two-side lighting usually performed here.
130 *
131 * WM - Windower. Interpolation of vertex attributes performed here.
132 * Fragment shader implemented here. SIMD aspects of EU taken full
133 * advantage of, as pixels are processed in blocks of 16.
134 *
135 * CC - Color Calculator. No EU threads associated with this unit.
136 * Handles blending and (presumably) depth and stencil testing.
137 */
138
139 struct brw_context;
140 struct brw_inst;
141 struct brw_vs_prog_key;
142 struct brw_vue_prog_key;
143 struct brw_wm_prog_key;
144 struct brw_wm_prog_data;
145 struct brw_cs_prog_key;
146 struct brw_cs_prog_data;
147
148 enum brw_pipeline {
149 BRW_RENDER_PIPELINE,
150 BRW_COMPUTE_PIPELINE,
151
152 BRW_NUM_PIPELINES
153 };
154
155 enum brw_cache_id {
156 BRW_CACHE_FS_PROG,
157 BRW_CACHE_BLORP_PROG,
158 BRW_CACHE_SF_PROG,
159 BRW_CACHE_VS_PROG,
160 BRW_CACHE_FF_GS_PROG,
161 BRW_CACHE_GS_PROG,
162 BRW_CACHE_TCS_PROG,
163 BRW_CACHE_TES_PROG,
164 BRW_CACHE_CLIP_PROG,
165 BRW_CACHE_CS_PROG,
166
167 BRW_MAX_CACHE
168 };
169
170 enum brw_state_id {
171 /* brw_cache_ids must come first - see brw_program_cache.c */
172 BRW_STATE_URB_FENCE = BRW_MAX_CACHE,
173 BRW_STATE_FRAGMENT_PROGRAM,
174 BRW_STATE_GEOMETRY_PROGRAM,
175 BRW_STATE_TESS_PROGRAMS,
176 BRW_STATE_VERTEX_PROGRAM,
177 BRW_STATE_CURBE_OFFSETS,
178 BRW_STATE_REDUCED_PRIMITIVE,
179 BRW_STATE_PATCH_PRIMITIVE,
180 BRW_STATE_PRIMITIVE,
181 BRW_STATE_CONTEXT,
182 BRW_STATE_PSP,
183 BRW_STATE_SURFACES,
184 BRW_STATE_BINDING_TABLE_POINTERS,
185 BRW_STATE_INDICES,
186 BRW_STATE_VERTICES,
187 BRW_STATE_DEFAULT_TESS_LEVELS,
188 BRW_STATE_BATCH,
189 BRW_STATE_INDEX_BUFFER,
190 BRW_STATE_VS_CONSTBUF,
191 BRW_STATE_TCS_CONSTBUF,
192 BRW_STATE_TES_CONSTBUF,
193 BRW_STATE_GS_CONSTBUF,
194 BRW_STATE_PROGRAM_CACHE,
195 BRW_STATE_STATE_BASE_ADDRESS,
196 BRW_STATE_VUE_MAP_GEOM_OUT,
197 BRW_STATE_TRANSFORM_FEEDBACK,
198 BRW_STATE_RASTERIZER_DISCARD,
199 BRW_STATE_STATS_WM,
200 BRW_STATE_UNIFORM_BUFFER,
201 BRW_STATE_ATOMIC_BUFFER,
202 BRW_STATE_IMAGE_UNITS,
203 BRW_STATE_META_IN_PROGRESS,
204 BRW_STATE_PUSH_CONSTANT_ALLOCATION,
205 BRW_STATE_NUM_SAMPLES,
206 BRW_STATE_TEXTURE_BUFFER,
207 BRW_STATE_GEN4_UNIT_STATE,
208 BRW_STATE_CC_VP,
209 BRW_STATE_SF_VP,
210 BRW_STATE_CLIP_VP,
211 BRW_STATE_SAMPLER_STATE_TABLE,
212 BRW_STATE_VS_ATTRIB_WORKAROUNDS,
213 BRW_STATE_COMPUTE_PROGRAM,
214 BRW_STATE_CS_WORK_GROUPS,
215 BRW_STATE_URB_SIZE,
216 BRW_STATE_CC_STATE,
217 BRW_STATE_BLORP,
218 BRW_STATE_VIEWPORT_COUNT,
219 BRW_STATE_CONSERVATIVE_RASTERIZATION,
220 BRW_NUM_STATE_BITS
221 };
222
223 /**
224 * BRW_NEW_*_PROG_DATA and BRW_NEW_*_PROGRAM are similar, but distinct.
225 *
226 * BRW_NEW_*_PROGRAM relates to the gl_shader_program/gl_program structures.
227 * When the currently bound shader program differs from the previous draw
228 * call, these will be flagged. They cover brw->{stage}_program and
229 * ctx->{Stage}Program->_Current.
230 *
231 * BRW_NEW_*_PROG_DATA is flagged when the effective shaders change, from a
232 * driver perspective. Even if the same shader is bound at the API level,
233 * we may need to switch between multiple versions of that shader to handle
234 * changes in non-orthagonal state.
235 *
236 * Additionally, multiple shader programs may have identical vertex shaders
237 * (for example), or compile down to the same code in the backend. We combine
238 * those into a single program cache entry.
239 *
240 * BRW_NEW_*_PROG_DATA occurs when switching program cache entries, which
241 * covers the brw_*_prog_data structures, and brw->*.prog_offset.
242 */
243 #define BRW_NEW_FS_PROG_DATA (1ull << BRW_CACHE_FS_PROG)
244 /* XXX: The BRW_NEW_BLORP_BLIT_PROG_DATA dirty bit is unused (as BLORP doesn't
245 * use the normal state upload paths), but the cache is still used. To avoid
246 * polluting the brw_program_cache code with special cases, we retain the
247 * dirty bit for now. It should eventually be removed.
248 */
249 #define BRW_NEW_BLORP_BLIT_PROG_DATA (1ull << BRW_CACHE_BLORP_PROG)
250 #define BRW_NEW_SF_PROG_DATA (1ull << BRW_CACHE_SF_PROG)
251 #define BRW_NEW_VS_PROG_DATA (1ull << BRW_CACHE_VS_PROG)
252 #define BRW_NEW_FF_GS_PROG_DATA (1ull << BRW_CACHE_FF_GS_PROG)
253 #define BRW_NEW_GS_PROG_DATA (1ull << BRW_CACHE_GS_PROG)
254 #define BRW_NEW_TCS_PROG_DATA (1ull << BRW_CACHE_TCS_PROG)
255 #define BRW_NEW_TES_PROG_DATA (1ull << BRW_CACHE_TES_PROG)
256 #define BRW_NEW_CLIP_PROG_DATA (1ull << BRW_CACHE_CLIP_PROG)
257 #define BRW_NEW_CS_PROG_DATA (1ull << BRW_CACHE_CS_PROG)
258 #define BRW_NEW_URB_FENCE (1ull << BRW_STATE_URB_FENCE)
259 #define BRW_NEW_FRAGMENT_PROGRAM (1ull << BRW_STATE_FRAGMENT_PROGRAM)
260 #define BRW_NEW_GEOMETRY_PROGRAM (1ull << BRW_STATE_GEOMETRY_PROGRAM)
261 #define BRW_NEW_TESS_PROGRAMS (1ull << BRW_STATE_TESS_PROGRAMS)
262 #define BRW_NEW_VERTEX_PROGRAM (1ull << BRW_STATE_VERTEX_PROGRAM)
263 #define BRW_NEW_CURBE_OFFSETS (1ull << BRW_STATE_CURBE_OFFSETS)
264 #define BRW_NEW_REDUCED_PRIMITIVE (1ull << BRW_STATE_REDUCED_PRIMITIVE)
265 #define BRW_NEW_PATCH_PRIMITIVE (1ull << BRW_STATE_PATCH_PRIMITIVE)
266 #define BRW_NEW_PRIMITIVE (1ull << BRW_STATE_PRIMITIVE)
267 #define BRW_NEW_CONTEXT (1ull << BRW_STATE_CONTEXT)
268 #define BRW_NEW_PSP (1ull << BRW_STATE_PSP)
269 #define BRW_NEW_SURFACES (1ull << BRW_STATE_SURFACES)
270 #define BRW_NEW_BINDING_TABLE_POINTERS (1ull << BRW_STATE_BINDING_TABLE_POINTERS)
271 #define BRW_NEW_INDICES (1ull << BRW_STATE_INDICES)
272 #define BRW_NEW_VERTICES (1ull << BRW_STATE_VERTICES)
273 #define BRW_NEW_DEFAULT_TESS_LEVELS (1ull << BRW_STATE_DEFAULT_TESS_LEVELS)
274 /**
275 * Used for any batch entry with a relocated pointer that will be used
276 * by any 3D rendering.
277 */
278 #define BRW_NEW_BATCH (1ull << BRW_STATE_BATCH)
279 /** \see brw.state.depth_region */
280 #define BRW_NEW_INDEX_BUFFER (1ull << BRW_STATE_INDEX_BUFFER)
281 #define BRW_NEW_VS_CONSTBUF (1ull << BRW_STATE_VS_CONSTBUF)
282 #define BRW_NEW_TCS_CONSTBUF (1ull << BRW_STATE_TCS_CONSTBUF)
283 #define BRW_NEW_TES_CONSTBUF (1ull << BRW_STATE_TES_CONSTBUF)
284 #define BRW_NEW_GS_CONSTBUF (1ull << BRW_STATE_GS_CONSTBUF)
285 #define BRW_NEW_PROGRAM_CACHE (1ull << BRW_STATE_PROGRAM_CACHE)
286 #define BRW_NEW_STATE_BASE_ADDRESS (1ull << BRW_STATE_STATE_BASE_ADDRESS)
287 #define BRW_NEW_VUE_MAP_GEOM_OUT (1ull << BRW_STATE_VUE_MAP_GEOM_OUT)
288 #define BRW_NEW_VIEWPORT_COUNT (1ull << BRW_STATE_VIEWPORT_COUNT)
289 #define BRW_NEW_TRANSFORM_FEEDBACK (1ull << BRW_STATE_TRANSFORM_FEEDBACK)
290 #define BRW_NEW_RASTERIZER_DISCARD (1ull << BRW_STATE_RASTERIZER_DISCARD)
291 #define BRW_NEW_STATS_WM (1ull << BRW_STATE_STATS_WM)
292 #define BRW_NEW_UNIFORM_BUFFER (1ull << BRW_STATE_UNIFORM_BUFFER)
293 #define BRW_NEW_ATOMIC_BUFFER (1ull << BRW_STATE_ATOMIC_BUFFER)
294 #define BRW_NEW_IMAGE_UNITS (1ull << BRW_STATE_IMAGE_UNITS)
295 #define BRW_NEW_META_IN_PROGRESS (1ull << BRW_STATE_META_IN_PROGRESS)
296 #define BRW_NEW_PUSH_CONSTANT_ALLOCATION (1ull << BRW_STATE_PUSH_CONSTANT_ALLOCATION)
297 #define BRW_NEW_NUM_SAMPLES (1ull << BRW_STATE_NUM_SAMPLES)
298 #define BRW_NEW_TEXTURE_BUFFER (1ull << BRW_STATE_TEXTURE_BUFFER)
299 #define BRW_NEW_GEN4_UNIT_STATE (1ull << BRW_STATE_GEN4_UNIT_STATE)
300 #define BRW_NEW_CC_VP (1ull << BRW_STATE_CC_VP)
301 #define BRW_NEW_SF_VP (1ull << BRW_STATE_SF_VP)
302 #define BRW_NEW_CLIP_VP (1ull << BRW_STATE_CLIP_VP)
303 #define BRW_NEW_SAMPLER_STATE_TABLE (1ull << BRW_STATE_SAMPLER_STATE_TABLE)
304 #define BRW_NEW_VS_ATTRIB_WORKAROUNDS (1ull << BRW_STATE_VS_ATTRIB_WORKAROUNDS)
305 #define BRW_NEW_COMPUTE_PROGRAM (1ull << BRW_STATE_COMPUTE_PROGRAM)
306 #define BRW_NEW_CS_WORK_GROUPS (1ull << BRW_STATE_CS_WORK_GROUPS)
307 #define BRW_NEW_URB_SIZE (1ull << BRW_STATE_URB_SIZE)
308 #define BRW_NEW_CC_STATE (1ull << BRW_STATE_CC_STATE)
309 #define BRW_NEW_BLORP (1ull << BRW_STATE_BLORP)
310 #define BRW_NEW_CONSERVATIVE_RASTERIZATION (1ull << BRW_STATE_CONSERVATIVE_RASTERIZATION)
311
312 struct brw_state_flags {
313 /** State update flags signalled by mesa internals */
314 GLuint mesa;
315 /**
316 * State update flags signalled as the result of brw_tracked_state updates
317 */
318 uint64_t brw;
319 };
320
321
322 /** Subclass of Mesa program */
323 struct brw_program {
324 struct gl_program program;
325 GLuint id;
326
327 bool compiled_once;
328 };
329
330
331 /**
332 * Bitmask indicating which fragment shader inputs represent varyings (and
333 * hence have to be delivered to the fragment shader by the SF/SBE stage).
334 */
335 #define BRW_FS_VARYING_INPUT_MASK \
336 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
337 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
338
339
340 struct brw_sf_prog_data {
341 GLuint urb_read_length;
342 GLuint total_grf;
343
344 /* Each vertex may have upto 12 attributes, 4 components each,
345 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
346 * rows.
347 *
348 * Actually we use 4 for each, so call it 12 rows.
349 */
350 GLuint urb_entry_size;
351 };
352
353
354 /**
355 * We always program SF to start reading at an offset of 1 (2 varying slots)
356 * from the start of the vertex URB entry. This causes it to skip:
357 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
358 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
359 */
360 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
361
362
363 struct brw_clip_prog_data {
364 GLuint curb_read_length; /* user planes? */
365 GLuint clip_mode;
366 GLuint urb_read_length;
367 GLuint total_grf;
368 };
369
370 struct brw_ff_gs_prog_data {
371 GLuint urb_read_length;
372 GLuint total_grf;
373
374 /**
375 * Gen6 transform feedback: Amount by which the streaming vertex buffer
376 * indices should be incremented each time the GS is invoked.
377 */
378 unsigned svbi_postincrement_value;
379 };
380
381 /** Number of texture sampler units */
382 #define BRW_MAX_TEX_UNIT 32
383
384 /** Max number of render targets in a shader */
385 #define BRW_MAX_DRAW_BUFFERS 8
386
387 /** Max number of UBOs in a shader */
388 #define BRW_MAX_UBO 14
389
390 /** Max number of SSBOs in a shader */
391 #define BRW_MAX_SSBO 12
392
393 /** Max number of atomic counter buffer objects in a shader */
394 #define BRW_MAX_ABO 16
395
396 /** Max number of image uniforms in a shader */
397 #define BRW_MAX_IMAGES 32
398
399 /**
400 * Max number of binding table entries used for stream output.
401 *
402 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
403 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
404 *
405 * On Gen6, the size of transform feedback data is limited not by the number
406 * of components but by the number of binding table entries we set aside. We
407 * use one binding table entry for a float, one entry for a vector, and one
408 * entry per matrix column. Since the only way we can communicate our
409 * transform feedback capabilities to the client is via
410 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
411 * worst case, in which all the varyings are floats, so we use up one binding
412 * table entry per component. Therefore we need to set aside at least 64
413 * binding table entries for use by transform feedback.
414 *
415 * Note: since we don't currently pack varyings, it is currently impossible
416 * for the client to actually use up all of these binding table entries--if
417 * all of their varyings were floats, they would run out of varying slots and
418 * fail to link. But that's a bug, so it seems prudent to go ahead and
419 * allocate the number of binding table entries we will need once the bug is
420 * fixed.
421 */
422 #define BRW_MAX_SOL_BINDINGS 64
423
424 /** Maximum number of actual buffers used for stream output */
425 #define BRW_MAX_SOL_BUFFERS 4
426
427 #define BRW_MAX_SURFACES (BRW_MAX_DRAW_BUFFERS + \
428 BRW_MAX_TEX_UNIT * 2 + /* normal, gather */ \
429 BRW_MAX_UBO + \
430 BRW_MAX_SSBO + \
431 BRW_MAX_ABO + \
432 BRW_MAX_IMAGES + \
433 2 + /* shader time, pull constants */ \
434 1 /* cs num work groups */)
435
436 #define SURF_INDEX_GEN6_SOL_BINDING(t) (t)
437
438 /**
439 * Stride in bytes between shader_time entries.
440 *
441 * We separate entries by a cacheline to reduce traffic between EUs writing to
442 * different entries.
443 */
444 #define SHADER_TIME_STRIDE 64
445
446 struct brw_cache {
447 struct brw_context *brw;
448
449 struct brw_cache_item **items;
450 drm_intel_bo *bo;
451 GLuint size, n_items;
452
453 uint32_t next_offset;
454 bool bo_used_by_gpu;
455 };
456
457
458 /* Considered adding a member to this struct to document which flags
459 * an update might raise so that ordering of the state atoms can be
460 * checked or derived at runtime. Dropped the idea in favor of having
461 * a debug mode where the state is monitored for flags which are
462 * raised that have already been tested against.
463 */
464 struct brw_tracked_state {
465 struct brw_state_flags dirty;
466 void (*emit)( struct brw_context *brw );
467 };
468
469 enum shader_time_shader_type {
470 ST_NONE,
471 ST_VS,
472 ST_TCS,
473 ST_TES,
474 ST_GS,
475 ST_FS8,
476 ST_FS16,
477 ST_CS,
478 };
479
480 struct brw_vertex_buffer {
481 /** Buffer object containing the uploaded vertex data */
482 drm_intel_bo *bo;
483 uint32_t offset;
484 uint32_t size;
485 /** Byte stride between elements in the uploaded array */
486 GLuint stride;
487 GLuint step_rate;
488 };
489 struct brw_vertex_element {
490 const struct gl_vertex_array *glarray;
491
492 int buffer;
493 bool is_dual_slot;
494 /** Offset of the first element within the buffer object */
495 unsigned int offset;
496 };
497
498 struct brw_query_object {
499 struct gl_query_object Base;
500
501 /** Last query BO associated with this query. */
502 drm_intel_bo *bo;
503
504 /** Last index in bo with query data for this object. */
505 int last_index;
506
507 /** True if we know the batch has been flushed since we ended the query. */
508 bool flushed;
509 };
510
511 enum brw_gpu_ring {
512 UNKNOWN_RING,
513 RENDER_RING,
514 BLT_RING,
515 };
516
517 struct intel_batchbuffer {
518 /** Current batchbuffer being queued up. */
519 drm_intel_bo *bo;
520 /** Last BO submitted to the hardware. Used for glFinish(). */
521 drm_intel_bo *last_bo;
522
523 #ifdef DEBUG
524 uint16_t emit, total;
525 #endif
526 uint16_t reserved_space;
527 uint32_t *map_next;
528 uint32_t *map;
529 uint32_t *cpu_map;
530 #define BATCH_SZ (8192*sizeof(uint32_t))
531
532 uint32_t state_batch_offset;
533 enum brw_gpu_ring ring;
534 bool needs_sol_reset;
535 bool state_base_address_emitted;
536
537 struct {
538 uint32_t *map_next;
539 int reloc_count;
540 } saved;
541 };
542
543 #define MAX_GS_INPUT_VERTICES 6
544
545 #define BRW_MAX_XFB_STREAMS 4
546
547 struct brw_transform_feedback_object {
548 struct gl_transform_feedback_object base;
549
550 /** A buffer to hold SO_WRITE_OFFSET(n) values while paused. */
551 drm_intel_bo *offset_bo;
552
553 /** If true, SO_WRITE_OFFSET(n) should be reset to zero at next use. */
554 bool zero_offsets;
555
556 /** The most recent primitive mode (GL_TRIANGLES/GL_POINTS/GL_LINES). */
557 GLenum primitive_mode;
558
559 /**
560 * The maximum number of vertices that we can write without overflowing
561 * any of the buffers currently being used for transform feedback.
562 */
563 unsigned max_index;
564
565 /**
566 * Count of primitives generated during this transform feedback operation.
567 * @{
568 */
569 uint64_t prims_generated[BRW_MAX_XFB_STREAMS];
570 drm_intel_bo *prim_count_bo;
571 unsigned prim_count_buffer_index; /**< in number of uint64_t units */
572 /** @} */
573
574 /**
575 * Number of vertices written between last Begin/EndTransformFeedback().
576 *
577 * Used to implement DrawTransformFeedback().
578 */
579 uint64_t vertices_written[BRW_MAX_XFB_STREAMS];
580 bool vertices_written_valid;
581 };
582
583 /**
584 * Data shared between each programmable stage in the pipeline (vs, gs, and
585 * wm).
586 */
587 struct brw_stage_state
588 {
589 gl_shader_stage stage;
590 struct brw_stage_prog_data *prog_data;
591
592 /**
593 * Optional scratch buffer used to store spilled register values and
594 * variably-indexed GRF arrays.
595 *
596 * The contents of this buffer are short-lived so the same memory can be
597 * re-used at will for multiple shader programs (executed by the same fixed
598 * function). However reusing a scratch BO for which shader invocations
599 * are still in flight with a per-thread scratch slot size other than the
600 * original can cause threads with different scratch slot size and FFTID
601 * (which may be executed in parallel depending on the shader stage and
602 * hardware generation) to map to an overlapping region of the scratch
603 * space, which can potentially lead to mutual scratch space corruption.
604 * For that reason if you borrow this scratch buffer you should only be
605 * using the slot size given by the \c per_thread_scratch member below,
606 * unless you're taking additional measures to synchronize thread execution
607 * across slot size changes.
608 */
609 drm_intel_bo *scratch_bo;
610
611 /**
612 * Scratch slot size allocated for each thread in the buffer object given
613 * by \c scratch_bo.
614 */
615 uint32_t per_thread_scratch;
616
617 /** Offset in the program cache to the program */
618 uint32_t prog_offset;
619
620 /** Offset in the batchbuffer to Gen4-5 pipelined state (VS/WM/GS_STATE). */
621 uint32_t state_offset;
622
623 uint32_t push_const_offset; /* Offset in the batchbuffer */
624 int push_const_size; /* in 256-bit register increments */
625
626 /* Binding table: pointers to SURFACE_STATE entries. */
627 uint32_t bind_bo_offset;
628 uint32_t surf_offset[BRW_MAX_SURFACES];
629
630 /** SAMPLER_STATE count and table offset */
631 uint32_t sampler_count;
632 uint32_t sampler_offset;
633 };
634
635 enum brw_predicate_state {
636 /* The first two states are used if we can determine whether to draw
637 * without having to look at the values in the query object buffer. This
638 * will happen if there is no conditional render in progress, if the query
639 * object is already completed or if something else has already added
640 * samples to the preliminary result such as via a BLT command.
641 */
642 BRW_PREDICATE_STATE_RENDER,
643 BRW_PREDICATE_STATE_DONT_RENDER,
644 /* In this case whether to draw or not depends on the result of an
645 * MI_PREDICATE command so the predicate enable bit needs to be checked.
646 */
647 BRW_PREDICATE_STATE_USE_BIT
648 };
649
650 struct shader_times;
651
652 struct gen_l3_config;
653
654 /**
655 * brw_context is derived from gl_context.
656 */
657 struct brw_context
658 {
659 struct gl_context ctx; /**< base class, must be first field */
660
661 struct
662 {
663 uint32_t (*update_renderbuffer_surface)(struct brw_context *brw,
664 struct gl_renderbuffer *rb,
665 uint32_t flags, unsigned unit,
666 uint32_t surf_index);
667 void (*emit_null_surface_state)(struct brw_context *brw,
668 unsigned width,
669 unsigned height,
670 unsigned samples,
671 uint32_t *out_offset);
672
673 /**
674 * Send the appropriate state packets to configure depth, stencil, and
675 * HiZ buffers (i965+ only)
676 */
677 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
678 struct intel_mipmap_tree *depth_mt,
679 uint32_t depth_offset,
680 uint32_t depthbuffer_format,
681 uint32_t depth_surface_type,
682 struct intel_mipmap_tree *stencil_mt,
683 bool hiz, bool separate_stencil,
684 uint32_t width, uint32_t height,
685 uint32_t tile_x, uint32_t tile_y);
686
687 } vtbl;
688
689 dri_bufmgr *bufmgr;
690
691 drm_intel_context *hw_ctx;
692
693 /** BO for post-sync nonzero writes for gen6 workaround. */
694 drm_intel_bo *workaround_bo;
695 uint8_t pipe_controls_since_last_cs_stall;
696
697 /**
698 * Set of drm_intel_bo * that have been rendered to within this batchbuffer
699 * and would need flushing before being used from another cache domain that
700 * isn't coherent with it (i.e. the sampler).
701 */
702 struct set *render_cache;
703
704 /**
705 * Number of resets observed in the system at context creation.
706 *
707 * This is tracked in the context so that we can determine that another
708 * reset has occurred.
709 */
710 uint32_t reset_count;
711
712 struct intel_batchbuffer batch;
713 bool no_batch_wrap;
714
715 struct {
716 drm_intel_bo *bo;
717 uint32_t next_offset;
718 } upload;
719
720 /**
721 * Set if rendering has occurred to the drawable's front buffer.
722 *
723 * This is used in the DRI2 case to detect that glFlush should also copy
724 * the contents of the fake front buffer to the real front buffer.
725 */
726 bool front_buffer_dirty;
727
728 /** Framerate throttling: @{ */
729 drm_intel_bo *throttle_batch[2];
730
731 /* Limit the number of outstanding SwapBuffers by waiting for an earlier
732 * frame of rendering to complete. This gives a very precise cap to the
733 * latency between input and output such that rendering never gets more
734 * than a frame behind the user. (With the caveat that we technically are
735 * not using the SwapBuffers itself as a barrier but the first batch
736 * submitted afterwards, which may be immediately prior to the next
737 * SwapBuffers.)
738 */
739 bool need_swap_throttle;
740
741 /** General throttling, not caught by throttling between SwapBuffers */
742 bool need_flush_throttle;
743 /** @} */
744
745 GLuint stats_wm;
746
747 /**
748 * drirc options:
749 * @{
750 */
751 bool no_rast;
752 bool always_flush_batch;
753 bool always_flush_cache;
754 bool disable_throttling;
755 bool precompile;
756 bool dual_color_blend_by_location;
757
758 driOptionCache optionCache;
759 /** @} */
760
761 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
762
763 GLenum reduced_primitive;
764
765 /**
766 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
767 * variable is set, this is the flag indicating to do expensive work that
768 * might lead to a perf_debug() call.
769 */
770 bool perf_debug;
771
772 uint64_t max_gtt_map_object_size;
773
774 int gen;
775 int gt;
776
777 bool is_g4x;
778 bool is_baytrail;
779 bool is_haswell;
780 bool is_cherryview;
781 bool is_broxton;
782
783 bool has_hiz;
784 bool has_separate_stencil;
785 bool must_use_separate_stencil;
786 bool has_llc;
787 bool has_swizzling;
788 bool has_surface_tile_offset;
789 bool has_compr4;
790 bool has_negative_rhw_bug;
791 bool has_pln;
792 bool no_simd8;
793 bool use_rep_send;
794 bool use_resource_streamer;
795
796 /**
797 * Some versions of Gen hardware don't do centroid interpolation correctly
798 * on unlit pixels, causing incorrect values for derivatives near triangle
799 * edges. Enabling this flag causes the fragment shader to use
800 * non-centroid interpolation for unlit pixels, at the expense of two extra
801 * fragment shader instructions.
802 */
803 bool needs_unlit_centroid_workaround;
804
805 struct isl_device isl_dev;
806
807 struct blorp_context blorp;
808
809 GLuint NewGLState;
810 struct {
811 struct brw_state_flags pipelines[BRW_NUM_PIPELINES];
812 } state;
813
814 enum brw_pipeline last_pipeline;
815
816 struct brw_cache cache;
817
818 /** IDs for meta stencil blit shader programs. */
819 struct gl_shader_program *meta_stencil_blit_programs[2];
820
821 /* Whether a meta-operation is in progress. */
822 bool meta_in_progress;
823
824 /* Whether the last depth/stencil packets were both NULL. */
825 bool no_depth_or_stencil;
826
827 /* The last PMA stall bits programmed. */
828 uint32_t pma_stall_bits;
829
830 struct {
831 struct {
832 /** The value of gl_BaseVertex for the current _mesa_prim. */
833 int gl_basevertex;
834
835 /** The value of gl_BaseInstance for the current _mesa_prim. */
836 int gl_baseinstance;
837 } params;
838
839 /**
840 * Buffer and offset used for GL_ARB_shader_draw_parameters
841 * (for now, only gl_BaseVertex).
842 */
843 drm_intel_bo *draw_params_bo;
844 uint32_t draw_params_offset;
845
846 /**
847 * The value of gl_DrawID for the current _mesa_prim. This always comes
848 * in from it's own vertex buffer since it's not part of the indirect
849 * draw parameters.
850 */
851 int gl_drawid;
852 drm_intel_bo *draw_id_bo;
853 uint32_t draw_id_offset;
854 } draw;
855
856 struct {
857 /**
858 * For gl_NumWorkGroups: If num_work_groups_bo is non NULL, then it is
859 * an indirect call, and num_work_groups_offset is valid. Otherwise,
860 * num_work_groups is set based on glDispatchCompute.
861 */
862 drm_intel_bo *num_work_groups_bo;
863 GLintptr num_work_groups_offset;
864 const GLuint *num_work_groups;
865 } compute;
866
867 struct {
868 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
869 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
870
871 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
872 GLuint nr_enabled;
873 GLuint nr_buffers;
874
875 /* Summary of size and varying of active arrays, so we can check
876 * for changes to this state:
877 */
878 bool index_bounds_valid;
879 unsigned int min_index, max_index;
880
881 /* Offset from start of vertex buffer so we can avoid redefining
882 * the same VB packed over and over again.
883 */
884 unsigned int start_vertex_bias;
885
886 /**
887 * Certain vertex attribute formats aren't natively handled by the
888 * hardware and require special VS code to fix up their values.
889 *
890 * These bitfields indicate which workarounds are needed.
891 */
892 uint8_t attrib_wa_flags[VERT_ATTRIB_MAX];
893 } vb;
894
895 struct {
896 /**
897 * Index buffer for this draw_prims call.
898 *
899 * Updates are signaled by BRW_NEW_INDICES.
900 */
901 const struct _mesa_index_buffer *ib;
902
903 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
904 drm_intel_bo *bo;
905 uint32_t size;
906 GLuint type;
907
908 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
909 * avoid re-uploading the IB packet over and over if we're actually
910 * referencing the same index buffer.
911 */
912 unsigned int start_vertex_offset;
913 } ib;
914
915 /* Active vertex program:
916 */
917 const struct gl_program *vertex_program;
918 const struct gl_program *geometry_program;
919 const struct gl_program *tess_ctrl_program;
920 const struct gl_program *tess_eval_program;
921 const struct gl_program *fragment_program;
922 const struct gl_program *compute_program;
923
924 /**
925 * Number of samples in ctx->DrawBuffer, updated by BRW_NEW_NUM_SAMPLES so
926 * that we don't have to reemit that state every time we change FBOs.
927 */
928 int num_samples;
929
930 /* BRW_NEW_URB_ALLOCATIONS:
931 */
932 struct {
933 GLuint vsize; /* vertex size plus header in urb registers */
934 GLuint gsize; /* GS output size in urb registers */
935 GLuint hsize; /* Tessellation control output size in urb registers */
936 GLuint dsize; /* Tessellation evaluation output size in urb registers */
937 GLuint csize; /* constant buffer size in urb registers */
938 GLuint sfsize; /* setup data size in urb registers */
939
940 bool constrained;
941
942 GLuint nr_vs_entries;
943 GLuint nr_hs_entries;
944 GLuint nr_ds_entries;
945 GLuint nr_gs_entries;
946 GLuint nr_clip_entries;
947 GLuint nr_sf_entries;
948 GLuint nr_cs_entries;
949
950 GLuint vs_start;
951 GLuint hs_start;
952 GLuint ds_start;
953 GLuint gs_start;
954 GLuint clip_start;
955 GLuint sf_start;
956 GLuint cs_start;
957 /**
958 * URB size in the current configuration. The units this is expressed
959 * in are somewhat inconsistent, see gen_device_info::urb::size.
960 *
961 * FINISHME: Represent the URB size consistently in KB on all platforms.
962 */
963 GLuint size;
964
965 /* True if the most recently sent _3DSTATE_URB message allocated
966 * URB space for the GS.
967 */
968 bool gs_present;
969
970 /* True if the most recently sent _3DSTATE_URB message allocated
971 * URB space for the HS and DS.
972 */
973 bool tess_present;
974 } urb;
975
976
977 /* BRW_NEW_CURBE_OFFSETS:
978 */
979 struct {
980 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
981 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
982 GLuint clip_start;
983 GLuint clip_size;
984 GLuint vs_start;
985 GLuint vs_size;
986 GLuint total_size;
987
988 /**
989 * Pointer to the (intel_upload.c-generated) BO containing the uniforms
990 * for upload to the CURBE.
991 */
992 drm_intel_bo *curbe_bo;
993 /** Offset within curbe_bo of space for current curbe entry */
994 GLuint curbe_offset;
995 } curbe;
996
997 /**
998 * Layout of vertex data exiting the geometry portion of the pipleine.
999 * This comes from the last enabled shader stage (GS, DS, or VS).
1000 *
1001 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1002 */
1003 struct brw_vue_map vue_map_geom_out;
1004
1005 struct {
1006 struct brw_stage_state base;
1007 } vs;
1008
1009 struct {
1010 struct brw_stage_state base;
1011
1012 /**
1013 * True if the 3DSTATE_HS command most recently emitted to the 3D
1014 * pipeline enabled the HS; false otherwise.
1015 */
1016 bool enabled;
1017 } tcs;
1018
1019 struct {
1020 struct brw_stage_state base;
1021
1022 /**
1023 * True if the 3DSTATE_DS command most recently emitted to the 3D
1024 * pipeline enabled the DS; false otherwise.
1025 */
1026 bool enabled;
1027 } tes;
1028
1029 struct {
1030 struct brw_stage_state base;
1031
1032 /**
1033 * True if the 3DSTATE_GS command most recently emitted to the 3D
1034 * pipeline enabled the GS; false otherwise.
1035 */
1036 bool enabled;
1037 } gs;
1038
1039 struct {
1040 struct brw_ff_gs_prog_data *prog_data;
1041
1042 bool prog_active;
1043 /** Offset in the program cache to the CLIP program pre-gen6 */
1044 uint32_t prog_offset;
1045 uint32_t state_offset;
1046
1047 uint32_t bind_bo_offset;
1048 /**
1049 * Surface offsets for the binding table. We only need surfaces to
1050 * implement transform feedback so BRW_MAX_SOL_BINDINGS is all that we
1051 * need in this case.
1052 */
1053 uint32_t surf_offset[BRW_MAX_SOL_BINDINGS];
1054 } ff_gs;
1055
1056 struct {
1057 struct brw_clip_prog_data *prog_data;
1058
1059 /** Offset in the program cache to the CLIP program pre-gen6 */
1060 uint32_t prog_offset;
1061
1062 /* Offset in the batch to the CLIP state on pre-gen6. */
1063 uint32_t state_offset;
1064
1065 /* As of gen6, this is the offset in the batch to the CLIP VP,
1066 * instead of vp_bo.
1067 */
1068 uint32_t vp_offset;
1069
1070 /**
1071 * The number of viewports to use. If gl_ViewportIndex is written,
1072 * we can have up to ctx->Const.MaxViewports viewports. If not,
1073 * the viewport index is always 0, so we can only emit one.
1074 */
1075 uint8_t viewport_count;
1076 } clip;
1077
1078
1079 struct {
1080 struct brw_sf_prog_data *prog_data;
1081
1082 /** Offset in the program cache to the CLIP program pre-gen6 */
1083 uint32_t prog_offset;
1084 uint32_t state_offset;
1085 uint32_t vp_offset;
1086 bool viewport_transform_enable;
1087 } sf;
1088
1089 struct {
1090 struct brw_stage_state base;
1091
1092 GLuint render_surf;
1093
1094 /**
1095 * Buffer object used in place of multisampled null render targets on
1096 * Gen6. See brw_emit_null_surface_state().
1097 */
1098 drm_intel_bo *multisampled_null_render_target_bo;
1099 uint32_t fast_clear_op;
1100
1101 float offset_clamp;
1102 } wm;
1103
1104 struct {
1105 struct brw_stage_state base;
1106 } cs;
1107
1108 /* RS hardware binding table */
1109 struct {
1110 drm_intel_bo *bo;
1111 uint32_t next_offset;
1112 } hw_bt_pool;
1113
1114 struct {
1115 uint32_t state_offset;
1116 uint32_t blend_state_offset;
1117 uint32_t depth_stencil_state_offset;
1118 uint32_t vp_offset;
1119 } cc;
1120
1121 struct {
1122 struct brw_query_object *obj;
1123 bool begin_emitted;
1124 } query;
1125
1126 struct {
1127 enum brw_predicate_state state;
1128 bool supported;
1129 } predicate;
1130
1131 int num_atoms[BRW_NUM_PIPELINES];
1132 const struct brw_tracked_state render_atoms[76];
1133 const struct brw_tracked_state compute_atoms[11];
1134
1135 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1136 struct {
1137 uint32_t offset;
1138 uint32_t size;
1139 enum aub_state_struct_type type;
1140 int index;
1141 } *state_batch_list;
1142 int state_batch_count;
1143
1144 uint32_t render_target_format[MESA_FORMAT_COUNT];
1145 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1146
1147 /* PrimitiveRestart */
1148 struct {
1149 bool in_progress;
1150 bool enable_cut_index;
1151 } prim_restart;
1152
1153 /** Computed depth/stencil/hiz state from the current attached
1154 * renderbuffers, valid only during the drawing state upload loop after
1155 * brw_workaround_depthstencil_alignment().
1156 */
1157 struct {
1158 struct intel_mipmap_tree *depth_mt;
1159 struct intel_mipmap_tree *stencil_mt;
1160
1161 /* Inter-tile (page-aligned) byte offsets. */
1162 uint32_t depth_offset, hiz_offset, stencil_offset;
1163 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1164 uint32_t tile_x, tile_y;
1165 } depthstencil;
1166
1167 uint32_t num_instances;
1168 int basevertex;
1169 int baseinstance;
1170
1171 struct {
1172 const struct gen_l3_config *config;
1173 } l3;
1174
1175 struct {
1176 drm_intel_bo *bo;
1177 const char **names;
1178 int *ids;
1179 enum shader_time_shader_type *types;
1180 struct shader_times *cumulative;
1181 int num_entries;
1182 int max_entries;
1183 double report_time;
1184 } shader_time;
1185
1186 struct brw_fast_clear_state *fast_clear_state;
1187
1188 /* Array of flags telling if auxiliary buffer is disabled for corresponding
1189 * renderbuffer. If draw_aux_buffer_disabled[i] is set then use of
1190 * auxiliary buffer for gl_framebuffer::_ColorDrawBuffers[i] is
1191 * disabled.
1192 * This is needed in case the same underlying buffer is also configured
1193 * to be sampled but with a format that the sampling engine can't treat
1194 * compressed or fast cleared.
1195 */
1196 bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS];
1197
1198 __DRIcontext *driContext;
1199 struct intel_screen *screen;
1200 };
1201
1202 /* brw_clear.c */
1203 extern void intelInitClearFuncs(struct dd_function_table *functions);
1204
1205 /*======================================================================
1206 * brw_context.c
1207 */
1208 extern const char *const brw_vendor_string;
1209
1210 extern const char *
1211 brw_get_renderer_string(const struct intel_screen *screen);
1212
1213 enum {
1214 DRI_CONF_BO_REUSE_DISABLED,
1215 DRI_CONF_BO_REUSE_ALL
1216 };
1217
1218 void intel_update_renderbuffers(__DRIcontext *context,
1219 __DRIdrawable *drawable);
1220 void intel_prepare_render(struct brw_context *brw);
1221
1222 void intel_resolve_for_dri2_flush(struct brw_context *brw,
1223 __DRIdrawable *drawable);
1224
1225 GLboolean brwCreateContext(gl_api api,
1226 const struct gl_config *mesaVis,
1227 __DRIcontext *driContextPriv,
1228 unsigned major_version,
1229 unsigned minor_version,
1230 uint32_t flags,
1231 bool notify_reset,
1232 unsigned *error,
1233 void *sharedContextPrivate);
1234
1235 /*======================================================================
1236 * brw_misc_state.c
1237 */
1238 void
1239 brw_meta_resolve_color(struct brw_context *brw,
1240 struct intel_mipmap_tree *mt);
1241
1242 /*======================================================================
1243 * brw_misc_state.c
1244 */
1245 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1246 GLbitfield clear_mask);
1247
1248 /* brw_object_purgeable.c */
1249 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1250
1251 /*======================================================================
1252 * brw_queryobj.c
1253 */
1254 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1255 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1256 void brw_emit_query_begin(struct brw_context *brw);
1257 void brw_emit_query_end(struct brw_context *brw);
1258 void brw_query_counter(struct gl_context *ctx, struct gl_query_object *q);
1259 bool brw_is_query_pipelined(struct brw_query_object *query);
1260
1261 /** gen6_queryobj.c */
1262 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1263 void brw_write_timestamp(struct brw_context *brw, drm_intel_bo *bo, int idx);
1264 void brw_write_depth_count(struct brw_context *brw, drm_intel_bo *bo, int idx);
1265
1266 /** hsw_queryobj.c */
1267 void hsw_overflow_result_to_gpr0(struct brw_context *brw,
1268 struct brw_query_object *query,
1269 int count);
1270 void hsw_init_queryobj_functions(struct dd_function_table *functions);
1271
1272 /** brw_conditional_render.c */
1273 void brw_init_conditional_render_functions(struct dd_function_table *functions);
1274 bool brw_check_conditional_render(struct brw_context *brw);
1275
1276 /** intel_batchbuffer.c */
1277 void brw_load_register_mem(struct brw_context *brw,
1278 uint32_t reg,
1279 drm_intel_bo *bo,
1280 uint32_t read_domains, uint32_t write_domain,
1281 uint32_t offset);
1282 void brw_load_register_mem64(struct brw_context *brw,
1283 uint32_t reg,
1284 drm_intel_bo *bo,
1285 uint32_t read_domains, uint32_t write_domain,
1286 uint32_t offset);
1287 void brw_store_register_mem32(struct brw_context *brw,
1288 drm_intel_bo *bo, uint32_t reg, uint32_t offset);
1289 void brw_store_register_mem64(struct brw_context *brw,
1290 drm_intel_bo *bo, uint32_t reg, uint32_t offset);
1291 void brw_load_register_imm32(struct brw_context *brw,
1292 uint32_t reg, uint32_t imm);
1293 void brw_load_register_imm64(struct brw_context *brw,
1294 uint32_t reg, uint64_t imm);
1295 void brw_load_register_reg(struct brw_context *brw, uint32_t src,
1296 uint32_t dest);
1297 void brw_load_register_reg64(struct brw_context *brw, uint32_t src,
1298 uint32_t dest);
1299 void brw_store_data_imm32(struct brw_context *brw, drm_intel_bo *bo,
1300 uint32_t offset, uint32_t imm);
1301 void brw_store_data_imm64(struct brw_context *brw, drm_intel_bo *bo,
1302 uint32_t offset, uint64_t imm);
1303
1304 /*======================================================================
1305 * brw_state_dump.c
1306 */
1307 void brw_debug_batch(struct brw_context *brw);
1308 void brw_annotate_aub(struct brw_context *brw);
1309
1310 /*======================================================================
1311 * intel_tex_validate.c
1312 */
1313 void brw_validate_textures( struct brw_context *brw );
1314
1315
1316 /*======================================================================
1317 * brw_program.c
1318 */
1319 static inline bool
1320 key_debug(struct brw_context *brw, const char *name, int a, int b)
1321 {
1322 if (a != b) {
1323 perf_debug(" %s %d->%d\n", name, a, b);
1324 return true;
1325 }
1326 return false;
1327 }
1328
1329 void brwInitFragProgFuncs( struct dd_function_table *functions );
1330
1331 /* Per-thread scratch space is a power-of-two multiple of 1KB. */
1332 static inline int
1333 brw_get_scratch_size(int size)
1334 {
1335 return MAX2(1024, util_next_power_of_two(size));
1336 }
1337 void brw_get_scratch_bo(struct brw_context *brw,
1338 drm_intel_bo **scratch_bo, int size);
1339 void brw_alloc_stage_scratch(struct brw_context *brw,
1340 struct brw_stage_state *stage_state,
1341 unsigned per_thread_size,
1342 unsigned thread_count);
1343 void brw_init_shader_time(struct brw_context *brw);
1344 int brw_get_shader_time_index(struct brw_context *brw,
1345 struct gl_program *prog,
1346 enum shader_time_shader_type type,
1347 bool is_glsl_sh);
1348 void brw_collect_and_report_shader_time(struct brw_context *brw);
1349 void brw_destroy_shader_time(struct brw_context *brw);
1350
1351 /* brw_urb.c
1352 */
1353 void brw_upload_urb_fence(struct brw_context *brw);
1354
1355 /* brw_curbe.c
1356 */
1357 void brw_upload_cs_urb_state(struct brw_context *brw);
1358
1359 /* brw_fs_reg_allocate.cpp
1360 */
1361 void brw_fs_alloc_reg_sets(struct brw_compiler *compiler);
1362
1363 /* brw_vec4_reg_allocate.cpp */
1364 void brw_vec4_alloc_reg_set(struct brw_compiler *compiler);
1365
1366 /* brw_disasm.c */
1367 int brw_disassemble_inst(FILE *file, const struct gen_device_info *devinfo,
1368 struct brw_inst *inst, bool is_compacted);
1369
1370 /* brw_vs.c */
1371 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1372
1373 /* brw_draw_upload.c */
1374 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1375 const struct gl_vertex_array *glarray);
1376
1377 static inline unsigned
1378 brw_get_index_type(GLenum type)
1379 {
1380 assert((type == GL_UNSIGNED_BYTE)
1381 || (type == GL_UNSIGNED_SHORT)
1382 || (type == GL_UNSIGNED_INT));
1383
1384 /* The possible values for type are GL_UNSIGNED_BYTE (0x1401),
1385 * GL_UNSIGNED_SHORT (0x1403), and GL_UNSIGNED_INT (0x1405) which we want
1386 * to map to scale factors of 0, 1, and 2, respectively. These scale
1387 * factors are then left-shfited by 8 to be in the correct position in the
1388 * CMD_INDEX_BUFFER packet.
1389 *
1390 * Subtracting 0x1401 gives 0, 2, and 4. Shifting left by 7 afterwards
1391 * gives 0x00000000, 0x00000100, and 0x00000200. These just happen to be
1392 * the values the need to be written in the CMD_INDEX_BUFFER packet.
1393 */
1394 return (type - 0x1401) << 7;
1395 }
1396
1397 void brw_prepare_vertices(struct brw_context *brw);
1398
1399 /* brw_wm_surface_state.c */
1400 void brw_init_surface_formats(struct brw_context *brw);
1401 void brw_create_constant_surface(struct brw_context *brw,
1402 drm_intel_bo *bo,
1403 uint32_t offset,
1404 uint32_t size,
1405 uint32_t *out_offset);
1406 void brw_create_buffer_surface(struct brw_context *brw,
1407 drm_intel_bo *bo,
1408 uint32_t offset,
1409 uint32_t size,
1410 uint32_t *out_offset);
1411 void brw_update_buffer_texture_surface(struct gl_context *ctx,
1412 unsigned unit,
1413 uint32_t *surf_offset);
1414 void
1415 brw_update_sol_surface(struct brw_context *brw,
1416 struct gl_buffer_object *buffer_obj,
1417 uint32_t *out_offset, unsigned num_vector_components,
1418 unsigned stride_dwords, unsigned offset_dwords);
1419 void brw_upload_ubo_surfaces(struct brw_context *brw, struct gl_program *prog,
1420 struct brw_stage_state *stage_state,
1421 struct brw_stage_prog_data *prog_data);
1422 void brw_upload_abo_surfaces(struct brw_context *brw,
1423 const struct gl_program *prog,
1424 struct brw_stage_state *stage_state,
1425 struct brw_stage_prog_data *prog_data);
1426 void brw_upload_image_surfaces(struct brw_context *brw,
1427 const struct gl_program *prog,
1428 struct brw_stage_state *stage_state,
1429 struct brw_stage_prog_data *prog_data);
1430
1431 /* brw_surface_formats.c */
1432 bool brw_render_target_supported(struct brw_context *brw,
1433 struct gl_renderbuffer *rb);
1434 uint32_t brw_depth_format(struct brw_context *brw, mesa_format format);
1435
1436 /* intel_buffer_objects.c */
1437 int brw_bo_map(struct brw_context *brw, drm_intel_bo *bo, int write_enable,
1438 const char *bo_name);
1439 int brw_bo_map_gtt(struct brw_context *brw, drm_intel_bo *bo,
1440 const char *bo_name);
1441
1442 /* intel_extensions.c */
1443 extern void intelInitExtensions(struct gl_context *ctx);
1444
1445 /* intel_state.c */
1446 extern int intel_translate_shadow_compare_func(GLenum func);
1447 extern int intel_translate_compare_func(GLenum func);
1448 extern int intel_translate_stencil_op(GLenum op);
1449 extern int intel_translate_logic_op(GLenum opcode);
1450
1451 /* brw_sync.c */
1452 void brw_init_syncobj_functions(struct dd_function_table *functions);
1453
1454 /* gen6_sol.c */
1455 struct gl_transform_feedback_object *
1456 brw_new_transform_feedback(struct gl_context *ctx, GLuint name);
1457 void
1458 brw_delete_transform_feedback(struct gl_context *ctx,
1459 struct gl_transform_feedback_object *obj);
1460 void
1461 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1462 struct gl_transform_feedback_object *obj);
1463 void
1464 brw_end_transform_feedback(struct gl_context *ctx,
1465 struct gl_transform_feedback_object *obj);
1466 void
1467 brw_pause_transform_feedback(struct gl_context *ctx,
1468 struct gl_transform_feedback_object *obj);
1469 void
1470 brw_resume_transform_feedback(struct gl_context *ctx,
1471 struct gl_transform_feedback_object *obj);
1472 void
1473 brw_save_primitives_written_counters(struct brw_context *brw,
1474 struct brw_transform_feedback_object *obj);
1475 void
1476 brw_compute_xfb_vertices_written(struct brw_context *brw,
1477 struct brw_transform_feedback_object *obj);
1478 GLsizei
1479 brw_get_transform_feedback_vertex_count(struct gl_context *ctx,
1480 struct gl_transform_feedback_object *obj,
1481 GLuint stream);
1482
1483 /* gen7_sol_state.c */
1484 void
1485 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1486 struct gl_transform_feedback_object *obj);
1487 void
1488 gen7_end_transform_feedback(struct gl_context *ctx,
1489 struct gl_transform_feedback_object *obj);
1490 void
1491 gen7_pause_transform_feedback(struct gl_context *ctx,
1492 struct gl_transform_feedback_object *obj);
1493 void
1494 gen7_resume_transform_feedback(struct gl_context *ctx,
1495 struct gl_transform_feedback_object *obj);
1496
1497 /* hsw_sol.c */
1498 void
1499 hsw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1500 struct gl_transform_feedback_object *obj);
1501 void
1502 hsw_end_transform_feedback(struct gl_context *ctx,
1503 struct gl_transform_feedback_object *obj);
1504 void
1505 hsw_pause_transform_feedback(struct gl_context *ctx,
1506 struct gl_transform_feedback_object *obj);
1507 void
1508 hsw_resume_transform_feedback(struct gl_context *ctx,
1509 struct gl_transform_feedback_object *obj);
1510
1511 /* brw_blorp_blit.cpp */
1512 GLbitfield
1513 brw_blorp_framebuffer(struct brw_context *brw,
1514 struct gl_framebuffer *readFb,
1515 struct gl_framebuffer *drawFb,
1516 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1517 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1518 GLbitfield mask, GLenum filter);
1519
1520 bool
1521 brw_blorp_copytexsubimage(struct brw_context *brw,
1522 struct gl_renderbuffer *src_rb,
1523 struct gl_texture_image *dst_image,
1524 int slice,
1525 int srcX0, int srcY0,
1526 int dstX0, int dstY0,
1527 int width, int height);
1528
1529 /* gen6_multisample_state.c */
1530 unsigned
1531 gen6_determine_sample_mask(struct brw_context *brw);
1532
1533 void
1534 gen6_emit_3dstate_multisample(struct brw_context *brw,
1535 unsigned num_samples);
1536 void
1537 gen6_emit_3dstate_sample_mask(struct brw_context *brw, unsigned mask);
1538 void
1539 gen6_get_sample_position(struct gl_context *ctx,
1540 struct gl_framebuffer *fb,
1541 GLuint index,
1542 GLfloat *result);
1543 void
1544 gen6_set_sample_maps(struct gl_context *ctx);
1545
1546 /* gen8_multisample_state.c */
1547 void gen8_emit_3dstate_multisample(struct brw_context *brw, unsigned num_samp);
1548 void gen8_emit_3dstate_sample_pattern(struct brw_context *brw);
1549
1550 /* gen7_urb.c */
1551 void
1552 gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
1553 unsigned hs_size, unsigned ds_size,
1554 unsigned gs_size, unsigned fs_size);
1555
1556 void
1557 gen6_upload_urb(struct brw_context *brw, unsigned vs_size,
1558 bool gs_present, unsigned gs_size);
1559 void
1560 gen7_upload_urb(struct brw_context *brw, unsigned vs_size,
1561 bool gs_present, bool tess_present);
1562
1563 /* brw_reset.c */
1564 extern GLenum
1565 brw_get_graphics_reset_status(struct gl_context *ctx);
1566 void
1567 brw_check_for_reset(struct brw_context *brw);
1568
1569 /* brw_compute.c */
1570 extern void
1571 brw_init_compute_functions(struct dd_function_table *functions);
1572
1573 /*======================================================================
1574 * Inline conversion functions. These are better-typed than the
1575 * macros used previously:
1576 */
1577 static inline struct brw_context *
1578 brw_context( struct gl_context *ctx )
1579 {
1580 return (struct brw_context *)ctx;
1581 }
1582
1583 static inline struct brw_program *
1584 brw_program(struct gl_program *p)
1585 {
1586 return (struct brw_program *) p;
1587 }
1588
1589 static inline const struct brw_program *
1590 brw_program_const(const struct gl_program *p)
1591 {
1592 return (const struct brw_program *) p;
1593 }
1594
1595 /**
1596 * Pre-gen6, the register file of the EUs was shared between threads,
1597 * and each thread used some subset allocated on a 16-register block
1598 * granularity. The unit states wanted these block counts.
1599 */
1600 static inline int
1601 brw_register_blocks(int reg_count)
1602 {
1603 return ALIGN(reg_count, 16) / 16 - 1;
1604 }
1605
1606 static inline uint32_t
1607 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1608 uint32_t prog_offset)
1609 {
1610 if (brw->gen >= 5) {
1611 /* Using state base address. */
1612 return prog_offset;
1613 }
1614
1615 drm_intel_bo_emit_reloc(brw->batch.bo,
1616 state_offset,
1617 brw->cache.bo,
1618 prog_offset,
1619 I915_GEM_DOMAIN_INSTRUCTION, 0);
1620
1621 return brw->cache.bo->offset64 + prog_offset;
1622 }
1623
1624 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1625
1626 extern const char * const conditional_modifier[16];
1627 extern const char *const pred_ctrl_align16[16];
1628
1629 static inline bool
1630 brw_depth_writes_enabled(const struct brw_context *brw)
1631 {
1632 const struct gl_context *ctx = &brw->ctx;
1633
1634 /* We consider depth writes disabled if the depth function is GL_EQUAL,
1635 * because it would just overwrite the existing depth value with itself.
1636 *
1637 * These bonus depth writes not only use bandwidth, but they also can
1638 * prevent early depth processing. For example, if the pixel shader
1639 * discards, the hardware must invoke the to determine whether or not
1640 * to do the depth write. If writes are disabled, we may still be able
1641 * to do the depth test before the shader, and skip the shader execution.
1642 *
1643 * The Broadwell 3DSTATE_WM_DEPTH_STENCIL documentation also contains
1644 * a programming note saying to disable depth writes for EQUAL.
1645 */
1646 return ctx->Depth.Test && ctx->Depth.Mask && ctx->Depth.Func != GL_EQUAL;
1647 }
1648
1649 void
1650 brw_emit_depthbuffer(struct brw_context *brw);
1651
1652 void
1653 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1654 struct intel_mipmap_tree *depth_mt,
1655 uint32_t depth_offset, uint32_t depthbuffer_format,
1656 uint32_t depth_surface_type,
1657 struct intel_mipmap_tree *stencil_mt,
1658 bool hiz, bool separate_stencil,
1659 uint32_t width, uint32_t height,
1660 uint32_t tile_x, uint32_t tile_y);
1661
1662 void
1663 gen6_emit_depth_stencil_hiz(struct brw_context *brw,
1664 struct intel_mipmap_tree *depth_mt,
1665 uint32_t depth_offset, uint32_t depthbuffer_format,
1666 uint32_t depth_surface_type,
1667 struct intel_mipmap_tree *stencil_mt,
1668 bool hiz, bool separate_stencil,
1669 uint32_t width, uint32_t height,
1670 uint32_t tile_x, uint32_t tile_y);
1671
1672 void
1673 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1674 struct intel_mipmap_tree *depth_mt,
1675 uint32_t depth_offset, uint32_t depthbuffer_format,
1676 uint32_t depth_surface_type,
1677 struct intel_mipmap_tree *stencil_mt,
1678 bool hiz, bool separate_stencil,
1679 uint32_t width, uint32_t height,
1680 uint32_t tile_x, uint32_t tile_y);
1681 void
1682 gen8_emit_depth_stencil_hiz(struct brw_context *brw,
1683 struct intel_mipmap_tree *depth_mt,
1684 uint32_t depth_offset, uint32_t depthbuffer_format,
1685 uint32_t depth_surface_type,
1686 struct intel_mipmap_tree *stencil_mt,
1687 bool hiz, bool separate_stencil,
1688 uint32_t width, uint32_t height,
1689 uint32_t tile_x, uint32_t tile_y);
1690
1691 void gen8_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1692 unsigned int level, unsigned int layer, enum blorp_hiz_op op);
1693
1694 uint32_t get_hw_prim_for_gl_prim(int mode);
1695
1696 void
1697 gen6_upload_push_constants(struct brw_context *brw,
1698 const struct gl_program *prog,
1699 const struct brw_stage_prog_data *prog_data,
1700 struct brw_stage_state *stage_state,
1701 enum aub_state_struct_type type);
1702
1703 bool
1704 gen9_use_linear_1d_layout(const struct brw_context *brw,
1705 const struct intel_mipmap_tree *mt);
1706
1707 /* brw_pipe_control.c */
1708 int brw_init_pipe_control(struct brw_context *brw,
1709 const struct gen_device_info *info);
1710 void brw_fini_pipe_control(struct brw_context *brw);
1711
1712 void brw_emit_pipe_control_flush(struct brw_context *brw, uint32_t flags);
1713 void brw_emit_pipe_control_write(struct brw_context *brw, uint32_t flags,
1714 drm_intel_bo *bo, uint32_t offset,
1715 uint32_t imm_lower, uint32_t imm_upper);
1716 void brw_emit_mi_flush(struct brw_context *brw);
1717 void brw_emit_post_sync_nonzero_flush(struct brw_context *brw);
1718 void brw_emit_depth_stall_flushes(struct brw_context *brw);
1719 void gen7_emit_vs_workaround_flush(struct brw_context *brw);
1720 void gen7_emit_cs_stall_flush(struct brw_context *brw);
1721
1722 /* brw_queryformat.c */
1723 void brw_query_internal_format(struct gl_context *ctx, GLenum target,
1724 GLenum internalFormat, GLenum pname,
1725 GLint *params);
1726
1727 #ifdef __cplusplus
1728 }
1729 #endif
1730
1731 #endif