i965/sf: Use BRW_SF_URB_ENTRY_READ_OFFSET rather than hardcoded values.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_vec4_prog_key;
129 struct brw_wm_prog_key;
130 struct brw_wm_prog_data;
131
132 enum brw_state_id {
133 BRW_STATE_URB_FENCE,
134 BRW_STATE_FRAGMENT_PROGRAM,
135 BRW_STATE_GEOMETRY_PROGRAM,
136 BRW_STATE_VERTEX_PROGRAM,
137 BRW_STATE_CURBE_OFFSETS,
138 BRW_STATE_REDUCED_PRIMITIVE,
139 BRW_STATE_PRIMITIVE,
140 BRW_STATE_CONTEXT,
141 BRW_STATE_PSP,
142 BRW_STATE_SURFACES,
143 BRW_STATE_VS_BINDING_TABLE,
144 BRW_STATE_GS_BINDING_TABLE,
145 BRW_STATE_PS_BINDING_TABLE,
146 BRW_STATE_INDICES,
147 BRW_STATE_VERTICES,
148 BRW_STATE_BATCH,
149 BRW_STATE_INDEX_BUFFER,
150 BRW_STATE_VS_CONSTBUF,
151 BRW_STATE_GS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_VUE_MAP_VS,
155 BRW_STATE_VUE_MAP_GEOM_OUT,
156 BRW_STATE_TRANSFORM_FEEDBACK,
157 BRW_STATE_RASTERIZER_DISCARD,
158 BRW_STATE_STATS_WM,
159 BRW_STATE_UNIFORM_BUFFER,
160 BRW_STATE_META_IN_PROGRESS,
161 BRW_STATE_INTERPOLATION_MAP,
162 BRW_STATE_PUSH_CONSTANT_ALLOCATION,
163 BRW_NUM_STATE_BITS
164 };
165
166 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
167 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
168 #define BRW_NEW_GEOMETRY_PROGRAM (1 << BRW_STATE_GEOMETRY_PROGRAM)
169 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
170 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
171 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
172 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
173 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
174 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
175 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
176 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
177 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
178 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
179 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
180 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
181 /**
182 * Used for any batch entry with a relocated pointer that will be used
183 * by any 3D rendering.
184 */
185 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
186 /** \see brw.state.depth_region */
187 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
188 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
189 #define BRW_NEW_GS_CONSTBUF (1 << BRW_STATE_GS_CONSTBUF)
190 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
191 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
192 #define BRW_NEW_VUE_MAP_VS (1 << BRW_STATE_VUE_MAP_VS)
193 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
194 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
195 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
196 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
197 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
198 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
199 #define BRW_NEW_INTERPOLATION_MAP (1 << BRW_STATE_INTERPOLATION_MAP)
200 #define BRW_NEW_PUSH_CONSTANT_ALLOCATION (1 << BRW_STATE_PUSH_CONSTANT_ALLOCATION)
201
202 struct brw_state_flags {
203 /** State update flags signalled by mesa internals */
204 GLuint mesa;
205 /**
206 * State update flags signalled as the result of brw_tracked_state updates
207 */
208 GLuint brw;
209 /** State update flags signalled by brw_state_cache.c searches */
210 GLuint cache;
211 };
212
213 #define AUB_TRACE_TYPE_MASK 0x0000ff00
214 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
215 #define AUB_TRACE_TYPE_BATCH (1 << 8)
216 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
217 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
218 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
219 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
220 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
221 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
222 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
223 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
224 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
225 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
226
227 /**
228 * state_struct_type enum values are encoded with the top 16 bits representing
229 * the type to be delivered to the .aub file, and the bottom 16 bits
230 * representing the subtype. This macro performs the encoding.
231 */
232 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
233
234 enum state_struct_type {
235 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
236 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
237 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
238 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
239 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
240 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
241 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
242 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
243 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
244 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
245 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
246 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
247 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
248
249 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
250 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
251 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
252
253 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
254 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
255 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
256 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
257 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
258 };
259
260 /**
261 * Decode a state_struct_type value to determine the type that should be
262 * stored in the .aub file.
263 */
264 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
265 {
266 return (ss_type & 0xFFFF0000) >> 16;
267 }
268
269 /**
270 * Decode a state_struct_type value to determine the subtype that should be
271 * stored in the .aub file.
272 */
273 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
274 {
275 return ss_type & 0xFFFF;
276 }
277
278 /** Subclass of Mesa vertex program */
279 struct brw_vertex_program {
280 struct gl_vertex_program program;
281 GLuint id;
282 };
283
284
285 /** Subclass of Mesa geometry program */
286 struct brw_geometry_program {
287 struct gl_geometry_program program;
288 unsigned id; /**< serial no. to identify geom progs, never re-used */
289 };
290
291
292 /** Subclass of Mesa fragment program */
293 struct brw_fragment_program {
294 struct gl_fragment_program program;
295 GLuint id; /**< serial no. to identify frag progs, never re-used */
296 };
297
298 struct brw_shader {
299 struct gl_shader base;
300
301 bool compiled_once;
302
303 /** Shader IR transformed for native compile, at link time. */
304 struct exec_list *ir;
305 };
306
307 /* Data about a particular attempt to compile a program. Note that
308 * there can be many of these, each in a different GL state
309 * corresponding to a different brw_wm_prog_key struct, with different
310 * compiled programs.
311 *
312 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
313 * struct!
314 */
315 struct brw_wm_prog_data {
316 GLuint curb_read_length;
317 GLuint num_varying_inputs;
318
319 GLuint first_curbe_grf;
320 GLuint first_curbe_grf_16;
321 GLuint reg_blocks;
322 GLuint reg_blocks_16;
323 GLuint total_scratch;
324
325 unsigned binding_table_size;
326
327 GLuint nr_params; /**< number of float params/constants */
328 GLuint nr_pull_params;
329 bool dual_src_blend;
330 int dispatch_width;
331 uint32_t prog_offset_16;
332
333 /**
334 * Mask of which interpolation modes are required by the fragment shader.
335 * Used in hardware setup on gen6+.
336 */
337 uint32_t barycentric_interp_modes;
338
339 /**
340 * Map from gl_varying_slot to the position within the FS setup data
341 * payload where the varying's attribute vertex deltas should be delivered.
342 * For varying slots that are not used by the FS, the value is -1.
343 */
344 int urb_setup[VARYING_SLOT_MAX];
345
346 /* Pointers to tracked values (only valid once
347 * _mesa_load_state_parameters has been called at runtime).
348 *
349 * These must be the last fields of the struct (see
350 * brw_wm_prog_data_compare()).
351 */
352 const float **param;
353 const float **pull_param;
354 };
355
356 /**
357 * Enum representing the i965-specific vertex results that don't correspond
358 * exactly to any element of gl_varying_slot. The values of this enum are
359 * assigned such that they don't conflict with gl_varying_slot.
360 */
361 typedef enum
362 {
363 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
364 BRW_VARYING_SLOT_PAD,
365 /**
366 * Technically this is not a varying but just a placeholder that
367 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
368 * builtin variable to be compiled correctly. see compile_sf_prog() for
369 * more info.
370 */
371 BRW_VARYING_SLOT_PNTC,
372 BRW_VARYING_SLOT_COUNT
373 } brw_varying_slot;
374
375
376 /**
377 * Data structure recording the relationship between the gl_varying_slot enum
378 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
379 * single octaword within the VUE (128 bits).
380 *
381 * Note that each BRW register contains 256 bits (2 octawords), so when
382 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
383 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
384 * in a vertex shader), each register corresponds to a single VUE slot, since
385 * it contains data for two separate vertices.
386 */
387 struct brw_vue_map {
388 /**
389 * Bitfield representing all varying slots that are (a) stored in this VUE
390 * map, and (b) actually written by the shader. Does not include any of
391 * the additional varying slots defined in brw_varying_slot.
392 */
393 GLbitfield64 slots_valid;
394
395 /**
396 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
397 * not stored in a slot (because they are not written, or because
398 * additional processing is applied before storing them in the VUE), the
399 * value is -1.
400 */
401 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
402
403 /**
404 * Map from VUE slot to gl_varying_slot value. For slots that do not
405 * directly correspond to a gl_varying_slot, the value comes from
406 * brw_varying_slot.
407 *
408 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
409 * simplifies code that uses the value stored in slot_to_varying to
410 * create a bit mask).
411 */
412 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
413
414 /**
415 * Total number of VUE slots in use
416 */
417 int num_slots;
418 };
419
420 /**
421 * Convert a VUE slot number into a byte offset within the VUE.
422 */
423 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
424 {
425 return 16*slot;
426 }
427
428 /**
429 * Convert a vertex output (brw_varying_slot) into a byte offset within the
430 * VUE.
431 */
432 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
433 GLuint varying)
434 {
435 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
436 }
437
438 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
439 GLbitfield64 slots_valid, bool userclip_active);
440
441
442 /*
443 * Mapping of VUE map slots to interpolation modes.
444 */
445 struct interpolation_mode_map {
446 unsigned char mode[BRW_VARYING_SLOT_COUNT];
447 };
448
449 static inline bool brw_any_flat_varyings(struct interpolation_mode_map *map)
450 {
451 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
452 if (map->mode[i] == INTERP_QUALIFIER_FLAT)
453 return true;
454
455 return false;
456 }
457
458 static inline bool brw_any_noperspective_varyings(struct interpolation_mode_map *map)
459 {
460 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
461 if (map->mode[i] == INTERP_QUALIFIER_NOPERSPECTIVE)
462 return true;
463
464 return false;
465 }
466
467
468 struct brw_sf_prog_data {
469 GLuint urb_read_length;
470 GLuint total_grf;
471
472 /* Each vertex may have upto 12 attributes, 4 components each,
473 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
474 * rows.
475 *
476 * Actually we use 4 for each, so call it 12 rows.
477 */
478 GLuint urb_entry_size;
479 };
480
481
482 /**
483 * We always program SF to start reading at an offset of 1 (2 varying slots)
484 * from the start of the vertex URB entry. This causes it to skip:
485 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
486 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
487 */
488 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
489
490
491 struct brw_clip_prog_data {
492 GLuint curb_read_length; /* user planes? */
493 GLuint clip_mode;
494 GLuint urb_read_length;
495 GLuint total_grf;
496 };
497
498 struct brw_ff_gs_prog_data {
499 GLuint urb_read_length;
500 GLuint total_grf;
501
502 /**
503 * Gen6 transform feedback: Amount by which the streaming vertex buffer
504 * indices should be incremented each time the GS is invoked.
505 */
506 unsigned svbi_postincrement_value;
507 };
508
509
510 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
511 * this struct!
512 */
513 struct brw_vec4_prog_data {
514 struct brw_vue_map vue_map;
515
516 /**
517 * Register where the thread expects to find input data from the URB
518 * (typically uniforms, followed by per-vertex inputs).
519 */
520 unsigned dispatch_grf_start_reg;
521
522 GLuint curb_read_length;
523 GLuint urb_read_length;
524 GLuint total_grf;
525 GLuint nr_params; /**< number of float params/constants */
526 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
527 GLuint total_scratch;
528
529 /* Used for calculating urb partitions. In the VS, this is the size of the
530 * URB entry used for both input and output to the thread. In the GS, this
531 * is the size of the URB entry used for output.
532 */
533 GLuint urb_entry_size;
534
535 unsigned binding_table_size;
536
537 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
538 const float **param;
539 const float **pull_param;
540 };
541
542
543 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
544 * struct!
545 */
546 struct brw_vs_prog_data {
547 struct brw_vec4_prog_data base;
548
549 GLbitfield64 inputs_read;
550
551 bool uses_vertexid;
552 };
553
554
555 /* Note: brw_gs_prog_data_compare() must be updated when adding fields to
556 * this struct!
557 */
558 struct brw_gs_prog_data
559 {
560 struct brw_vec4_prog_data base;
561
562 /**
563 * Size of an output vertex, measured in HWORDS (32 bytes).
564 */
565 unsigned output_vertex_size_hwords;
566
567 unsigned output_topology;
568
569 /**
570 * Size of the control data (cut bits or StreamID bits), in hwords (32
571 * bytes). 0 if there is no control data.
572 */
573 unsigned control_data_header_size_hwords;
574
575 /**
576 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
577 * if the control data is StreamID bits, or
578 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
579 * Ignored if control_data_header_size is 0.
580 */
581 unsigned control_data_format;
582 };
583
584 /** Number of texture sampler units */
585 #define BRW_MAX_TEX_UNIT 16
586
587 /** Max number of render targets in a shader */
588 #define BRW_MAX_DRAW_BUFFERS 8
589
590 /**
591 * Max number of binding table entries used for stream output.
592 *
593 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
594 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
595 *
596 * On Gen6, the size of transform feedback data is limited not by the number
597 * of components but by the number of binding table entries we set aside. We
598 * use one binding table entry for a float, one entry for a vector, and one
599 * entry per matrix column. Since the only way we can communicate our
600 * transform feedback capabilities to the client is via
601 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
602 * worst case, in which all the varyings are floats, so we use up one binding
603 * table entry per component. Therefore we need to set aside at least 64
604 * binding table entries for use by transform feedback.
605 *
606 * Note: since we don't currently pack varyings, it is currently impossible
607 * for the client to actually use up all of these binding table entries--if
608 * all of their varyings were floats, they would run out of varying slots and
609 * fail to link. But that's a bug, so it seems prudent to go ahead and
610 * allocate the number of binding table entries we will need once the bug is
611 * fixed.
612 */
613 #define BRW_MAX_SOL_BINDINGS 64
614
615 /** Maximum number of actual buffers used for stream output */
616 #define BRW_MAX_SOL_BUFFERS 4
617
618 #define BRW_MAX_WM_UBOS 12
619 #define BRW_MAX_VS_UBOS 12
620
621 /**
622 * Helpers to create Surface Binding Table indexes for draw buffers,
623 * textures, and constant buffers.
624 *
625 * Shader threads access surfaces via numeric handles, rather than directly
626 * using pointers. The binding table maps these numeric handles to the
627 * address of the actual buffer.
628 *
629 * For example, a shader might ask to sample from "surface 7." In this case,
630 * bind[7] would contain a pointer to a texture.
631 *
632 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
633 *
634 * +-------------------------------+
635 * | 0 | Draw buffer 0 |
636 * | . | . |
637 * | : | : |
638 * | 7 | Draw buffer 7 |
639 * |-----|-------------------------|
640 * | 8 | WM Pull Constant Buffer |
641 * |-----|-------------------------|
642 * | 9 | Texture 0 |
643 * | . | . |
644 * | : | : |
645 * | 24 | Texture 15 |
646 * |-----|-------------------------|
647 * | 25 | UBO 0 |
648 * | . | . |
649 * | : | : |
650 * | 36 | UBO 11 |
651 * +-------------------------------+
652 *
653 * Our VS (and Gen7 GS) binding tables are programmed as follows:
654 *
655 * +-----+-------------------------+
656 * | 0 | Pull Constant Buffer |
657 * +-----+-------------------------+
658 * | 1 | Texture 0 |
659 * | . | . |
660 * | : | : |
661 * | 16 | Texture 15 |
662 * +-----+-------------------------+
663 * | 17 | UBO 0 |
664 * | . | . |
665 * | : | : |
666 * | 28 | UBO 11 |
667 * +-------------------------------+
668 *
669 * Our (gen6) GS binding tables are programmed as follows:
670 *
671 * +-----+-------------------------+
672 * | 0 | SOL Binding 0 |
673 * | . | . |
674 * | : | : |
675 * | 63 | SOL Binding 63 |
676 * +-----+-------------------------+
677 */
678 #define SURF_INDEX_DRAW(d) (d)
679 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
680 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
681 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
682 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
683 /** Maximum size of the binding table. */
684 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
685
686 #define SURF_INDEX_VEC4_CONST_BUFFER (0)
687 #define SURF_INDEX_VEC4_TEXTURE(t) (SURF_INDEX_VEC4_CONST_BUFFER + 1 + (t))
688 #define SURF_INDEX_VEC4_UBO(u) (SURF_INDEX_VEC4_TEXTURE(BRW_MAX_TEX_UNIT) + u)
689 #define SURF_INDEX_VEC4_SHADER_TIME (SURF_INDEX_VEC4_UBO(12))
690 #define BRW_MAX_VEC4_SURFACES (SURF_INDEX_VEC4_SHADER_TIME + 1)
691
692 #define SURF_INDEX_GEN6_SOL_BINDING(t) (t)
693 #define BRW_MAX_GEN6_GS_SURFACES SURF_INDEX_GEN6_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
694
695 /**
696 * Stride in bytes between shader_time entries.
697 *
698 * We separate entries by a cacheline to reduce traffic between EUs writing to
699 * different entries.
700 */
701 #define SHADER_TIME_STRIDE 64
702
703 enum brw_cache_id {
704 BRW_CC_VP,
705 BRW_CC_UNIT,
706 BRW_WM_PROG,
707 BRW_BLORP_BLIT_PROG,
708 BRW_BLORP_CONST_COLOR_PROG,
709 BRW_SAMPLER,
710 BRW_WM_UNIT,
711 BRW_SF_PROG,
712 BRW_SF_VP,
713 BRW_SF_UNIT, /* scissor state on gen6 */
714 BRW_VS_UNIT,
715 BRW_VS_PROG,
716 BRW_FF_GS_UNIT,
717 BRW_FF_GS_PROG,
718 BRW_GS_PROG,
719 BRW_CLIP_VP,
720 BRW_CLIP_UNIT,
721 BRW_CLIP_PROG,
722
723 BRW_MAX_CACHE
724 };
725
726 struct brw_cache_item {
727 /**
728 * Effectively part of the key, cache_id identifies what kind of state
729 * buffer is involved, and also which brw->state.dirty.cache flag should
730 * be set when this cache item is chosen.
731 */
732 enum brw_cache_id cache_id;
733 /** 32-bit hash of the key data */
734 GLuint hash;
735 GLuint key_size; /* for variable-sized keys */
736 GLuint aux_size;
737 const void *key;
738
739 uint32_t offset;
740 uint32_t size;
741
742 struct brw_cache_item *next;
743 };
744
745
746 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
747 int aux_size, const void *key);
748 typedef void (*cache_aux_free_func)(const void *aux);
749
750 struct brw_cache {
751 struct brw_context *brw;
752
753 struct brw_cache_item **items;
754 drm_intel_bo *bo;
755 GLuint size, n_items;
756
757 uint32_t next_offset;
758 bool bo_used_by_gpu;
759
760 /**
761 * Optional functions used in determining whether the prog_data for a new
762 * cache item matches an existing cache item (in case there's relevant data
763 * outside of the prog_data). If NULL, a plain memcmp is done.
764 */
765 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
766 /** Optional functions for freeing other pointers attached to a prog_data. */
767 cache_aux_free_func aux_free[BRW_MAX_CACHE];
768 };
769
770
771 /* Considered adding a member to this struct to document which flags
772 * an update might raise so that ordering of the state atoms can be
773 * checked or derived at runtime. Dropped the idea in favor of having
774 * a debug mode where the state is monitored for flags which are
775 * raised that have already been tested against.
776 */
777 struct brw_tracked_state {
778 struct brw_state_flags dirty;
779 void (*emit)( struct brw_context *brw );
780 };
781
782 enum shader_time_shader_type {
783 ST_NONE,
784 ST_VS,
785 ST_VS_WRITTEN,
786 ST_VS_RESET,
787 ST_FS8,
788 ST_FS8_WRITTEN,
789 ST_FS8_RESET,
790 ST_FS16,
791 ST_FS16_WRITTEN,
792 ST_FS16_RESET,
793 };
794
795 /* Flags for brw->state.cache.
796 */
797 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
798 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
799 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
800 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
801 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
802 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
803 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
804 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
805 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
806 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
807 #define CACHE_NEW_FF_GS_UNIT (1<<BRW_FF_GS_UNIT)
808 #define CACHE_NEW_FF_GS_PROG (1<<BRW_FF_GS_PROG)
809 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
810 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
811 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
812 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
813
814 struct brw_cached_batch_item {
815 struct header *header;
816 GLuint sz;
817 struct brw_cached_batch_item *next;
818 };
819
820 struct brw_vertex_buffer {
821 /** Buffer object containing the uploaded vertex data */
822 drm_intel_bo *bo;
823 uint32_t offset;
824 /** Byte stride between elements in the uploaded array */
825 GLuint stride;
826 GLuint step_rate;
827 };
828 struct brw_vertex_element {
829 const struct gl_client_array *glarray;
830
831 int buffer;
832
833 /** The corresponding Mesa vertex attribute */
834 gl_vert_attrib attrib;
835 /** Offset of the first element within the buffer object */
836 unsigned int offset;
837 };
838
839 struct brw_query_object {
840 struct gl_query_object Base;
841
842 /** Last query BO associated with this query. */
843 drm_intel_bo *bo;
844
845 /** Last index in bo with query data for this object. */
846 int last_index;
847 };
848
849
850 /**
851 * Data shared between brw_context::vs and brw_context::gs
852 */
853 struct brw_stage_state
854 {
855 /**
856 * Optional scratch buffer used to store spilled register values and
857 * variably-indexed GRF arrays.
858 */
859 drm_intel_bo *scratch_bo;
860
861 /** Pull constant buffer */
862 drm_intel_bo *const_bo;
863
864 /** Offset in the program cache to the program */
865 uint32_t prog_offset;
866
867 /** Offset in the batchbuffer to Gen4-5 pipelined state (VS/WM/GS_STATE). */
868 uint32_t state_offset;
869
870 uint32_t push_const_offset; /* Offset in the batchbuffer */
871 int push_const_size; /* in 256-bit register increments */
872
873 /* Binding table: pointers to SURFACE_STATE entries. */
874 uint32_t bind_bo_offset;
875 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
876
877 /** SAMPLER_STATE count and table offset */
878 uint32_t sampler_count;
879 uint32_t sampler_offset;
880
881 /** Offsets in the batch to sampler default colors (texture border color) */
882 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
883 };
884
885
886 /**
887 * brw_context is derived from gl_context.
888 */
889 struct brw_context
890 {
891 struct gl_context ctx; /**< base class, must be first field */
892
893 struct
894 {
895 void (*destroy) (struct brw_context * brw);
896 void (*finish_batch) (struct brw_context * brw);
897 void (*new_batch) (struct brw_context * brw);
898
899 void (*update_texture_surface)(struct gl_context *ctx,
900 unsigned unit,
901 uint32_t *surf_offset);
902 void (*update_renderbuffer_surface)(struct brw_context *brw,
903 struct gl_renderbuffer *rb,
904 bool layered,
905 unsigned unit);
906 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
907 unsigned unit);
908 void (*create_constant_surface)(struct brw_context *brw,
909 drm_intel_bo *bo,
910 uint32_t offset,
911 uint32_t size,
912 uint32_t *out_offset,
913 bool dword_pitch);
914
915 /** Upload a SAMPLER_STATE table. */
916 void (*upload_sampler_state_table)(struct brw_context *brw,
917 struct gl_program *prog,
918 uint32_t sampler_count,
919 uint32_t *sst_offset,
920 uint32_t *sdc_offset);
921
922 /**
923 * Send the appropriate state packets to configure depth, stencil, and
924 * HiZ buffers (i965+ only)
925 */
926 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
927 struct intel_mipmap_tree *depth_mt,
928 uint32_t depth_offset,
929 uint32_t depthbuffer_format,
930 uint32_t depth_surface_type,
931 struct intel_mipmap_tree *stencil_mt,
932 bool hiz, bool separate_stencil,
933 uint32_t width, uint32_t height,
934 uint32_t tile_x, uint32_t tile_y);
935
936 } vtbl;
937
938 dri_bufmgr *bufmgr;
939
940 drm_intel_context *hw_ctx;
941
942 struct intel_batchbuffer batch;
943 bool no_batch_wrap;
944
945 struct {
946 drm_intel_bo *bo;
947 GLuint offset;
948 uint32_t buffer_len;
949 uint32_t buffer_offset;
950 char buffer[4096];
951 } upload;
952
953 /**
954 * Set if rendering has occured to the drawable's front buffer.
955 *
956 * This is used in the DRI2 case to detect that glFlush should also copy
957 * the contents of the fake front buffer to the real front buffer.
958 */
959 bool front_buffer_dirty;
960
961 /**
962 * Track whether front-buffer rendering is currently enabled
963 *
964 * A separate flag is used to track this in order to support MRT more
965 * easily.
966 */
967 bool is_front_buffer_rendering;
968
969 /**
970 * Track whether front-buffer is the current read target.
971 *
972 * This is closely associated with is_front_buffer_rendering, but may
973 * be set separately. The DRI2 fake front buffer must be referenced
974 * either way.
975 */
976 bool is_front_buffer_reading;
977
978 /** Framerate throttling: @{ */
979 drm_intel_bo *first_post_swapbuffers_batch;
980 bool need_throttle;
981 /** @} */
982
983 GLuint stats_wm;
984
985 /**
986 * drirc options:
987 * @{
988 */
989 bool no_rast;
990 bool always_flush_batch;
991 bool always_flush_cache;
992 bool disable_throttling;
993 bool precompile;
994
995 driOptionCache optionCache;
996 /** @} */
997
998 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
999
1000 GLenum reduced_primitive;
1001
1002 /**
1003 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
1004 * variable is set, this is the flag indicating to do expensive work that
1005 * might lead to a perf_debug() call.
1006 */
1007 bool perf_debug;
1008
1009 uint32_t max_gtt_map_object_size;
1010
1011 bool emit_state_always;
1012
1013 int gen;
1014 int gt;
1015
1016 bool is_g4x;
1017 bool is_baytrail;
1018 bool is_haswell;
1019
1020 bool has_hiz;
1021 bool has_separate_stencil;
1022 bool must_use_separate_stencil;
1023 bool has_llc;
1024 bool has_swizzling;
1025 bool has_surface_tile_offset;
1026 bool has_compr4;
1027 bool has_negative_rhw_bug;
1028 bool has_aa_line_parameters;
1029 bool has_pln;
1030
1031 /**
1032 * Some versions of Gen hardware don't do centroid interpolation correctly
1033 * on unlit pixels, causing incorrect values for derivatives near triangle
1034 * edges. Enabling this flag causes the fragment shader to use
1035 * non-centroid interpolation for unlit pixels, at the expense of two extra
1036 * fragment shader instructions.
1037 */
1038 bool needs_unlit_centroid_workaround;
1039
1040 GLuint NewGLState;
1041 struct {
1042 struct brw_state_flags dirty;
1043 } state;
1044
1045 struct brw_cache cache;
1046 struct brw_cached_batch_item *cached_batch_items;
1047
1048 /* Whether a meta-operation is in progress. */
1049 bool meta_in_progress;
1050
1051 struct {
1052 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
1053 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
1054
1055 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
1056 GLuint nr_enabled;
1057 GLuint nr_buffers;
1058
1059 /* Summary of size and varying of active arrays, so we can check
1060 * for changes to this state:
1061 */
1062 unsigned int min_index, max_index;
1063
1064 /* Offset from start of vertex buffer so we can avoid redefining
1065 * the same VB packed over and over again.
1066 */
1067 unsigned int start_vertex_bias;
1068 } vb;
1069
1070 struct {
1071 /**
1072 * Index buffer for this draw_prims call.
1073 *
1074 * Updates are signaled by BRW_NEW_INDICES.
1075 */
1076 const struct _mesa_index_buffer *ib;
1077
1078 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
1079 drm_intel_bo *bo;
1080 GLuint type;
1081
1082 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
1083 * avoid re-uploading the IB packet over and over if we're actually
1084 * referencing the same index buffer.
1085 */
1086 unsigned int start_vertex_offset;
1087 } ib;
1088
1089 /* Active vertex program:
1090 */
1091 const struct gl_vertex_program *vertex_program;
1092 const struct gl_geometry_program *geometry_program;
1093 const struct gl_fragment_program *fragment_program;
1094
1095 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
1096 uint32_t CMD_VF_STATISTICS;
1097 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
1098 uint32_t CMD_PIPELINE_SELECT;
1099
1100 /**
1101 * Platform specific constants containing the maximum number of threads
1102 * for each pipeline stage.
1103 */
1104 int max_vs_threads;
1105 int max_gs_threads;
1106 int max_wm_threads;
1107
1108 /* BRW_NEW_URB_ALLOCATIONS:
1109 */
1110 struct {
1111 GLuint vsize; /* vertex size plus header in urb registers */
1112 GLuint csize; /* constant buffer size in urb registers */
1113 GLuint sfsize; /* setup data size in urb registers */
1114
1115 bool constrained;
1116
1117 GLuint min_vs_entries; /* Minimum number of VS entries */
1118 GLuint max_vs_entries; /* Maximum number of VS entries */
1119 GLuint max_gs_entries; /* Maximum number of GS entries */
1120
1121 GLuint nr_vs_entries;
1122 GLuint nr_gs_entries;
1123 GLuint nr_clip_entries;
1124 GLuint nr_sf_entries;
1125 GLuint nr_cs_entries;
1126
1127 GLuint vs_start;
1128 GLuint gs_start;
1129 GLuint clip_start;
1130 GLuint sf_start;
1131 GLuint cs_start;
1132 GLuint size; /* Hardware URB size, in KB. */
1133
1134 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
1135 * URB space for the GS.
1136 */
1137 bool gen6_gs_previously_active;
1138 } urb;
1139
1140
1141 /* BRW_NEW_CURBE_OFFSETS:
1142 */
1143 struct {
1144 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1145 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1146 GLuint clip_start;
1147 GLuint clip_size;
1148 GLuint vs_start;
1149 GLuint vs_size;
1150 GLuint total_size;
1151
1152 drm_intel_bo *curbe_bo;
1153 /** Offset within curbe_bo of space for current curbe entry */
1154 GLuint curbe_offset;
1155 /** Offset within curbe_bo of space for next curbe entry */
1156 GLuint curbe_next_offset;
1157
1158 /**
1159 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
1160 * in brw_curbe.c with the same set of constant data to be uploaded,
1161 * so we'd rather not upload new constants in that case (it can cause
1162 * a pipeline bubble since only up to 4 can be pipelined at a time).
1163 */
1164 GLfloat *last_buf;
1165 /**
1166 * Allocation for where to calculate the next set of CURBEs.
1167 * It's a hot enough path that malloc/free of that data matters.
1168 */
1169 GLfloat *next_buf;
1170 GLuint last_bufsz;
1171 } curbe;
1172
1173 /**
1174 * Layout of vertex data exiting the vertex shader.
1175 *
1176 * BRW_NEW_VUE_MAP_VS is flagged when this VUE map changes.
1177 */
1178 struct brw_vue_map vue_map_vs;
1179
1180 /**
1181 * Layout of vertex data exiting the geometry portion of the pipleine.
1182 * This comes from the geometry shader if one exists, otherwise from the
1183 * vertex shader.
1184 *
1185 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1186 */
1187 struct brw_vue_map vue_map_geom_out;
1188
1189 /**
1190 * Data structures used by all vec4 program compiles (not specific to any
1191 * particular program).
1192 */
1193 struct {
1194 struct ra_regs *regs;
1195
1196 /**
1197 * Array of the ra classes for the unaligned contiguous register
1198 * block sizes used.
1199 */
1200 int *classes;
1201
1202 /**
1203 * Mapping for register-allocated objects in *regs to the first
1204 * GRF for that object.
1205 */
1206 uint8_t *ra_reg_to_grf;
1207 } vec4;
1208
1209 struct {
1210 struct brw_stage_state base;
1211 struct brw_vs_prog_data *prog_data;
1212 } vs;
1213
1214 struct {
1215 struct brw_stage_state base;
1216 struct brw_gs_prog_data *prog_data;
1217 } gs;
1218
1219 struct {
1220 struct brw_ff_gs_prog_data *prog_data;
1221
1222 bool prog_active;
1223 /** Offset in the program cache to the CLIP program pre-gen6 */
1224 uint32_t prog_offset;
1225 uint32_t state_offset;
1226
1227 uint32_t bind_bo_offset;
1228 uint32_t surf_offset[BRW_MAX_GEN6_GS_SURFACES];
1229 } ff_gs;
1230
1231 struct {
1232 struct brw_clip_prog_data *prog_data;
1233
1234 /** Offset in the program cache to the CLIP program pre-gen6 */
1235 uint32_t prog_offset;
1236
1237 /* Offset in the batch to the CLIP state on pre-gen6. */
1238 uint32_t state_offset;
1239
1240 /* As of gen6, this is the offset in the batch to the CLIP VP,
1241 * instead of vp_bo.
1242 */
1243 uint32_t vp_offset;
1244 } clip;
1245
1246
1247 struct {
1248 struct brw_sf_prog_data *prog_data;
1249
1250 /** Offset in the program cache to the CLIP program pre-gen6 */
1251 uint32_t prog_offset;
1252 uint32_t state_offset;
1253 uint32_t vp_offset;
1254 } sf;
1255
1256 struct {
1257 struct brw_stage_state base;
1258 struct brw_wm_prog_data *prog_data;
1259
1260 GLuint render_surf;
1261
1262 /**
1263 * Buffer object used in place of multisampled null render targets on
1264 * Gen6. See brw_update_null_renderbuffer_surface().
1265 */
1266 drm_intel_bo *multisampled_null_render_target_bo;
1267
1268 struct {
1269 struct ra_regs *regs;
1270
1271 /** Array of the ra classes for the unaligned contiguous
1272 * register block sizes used.
1273 */
1274 int *classes;
1275
1276 /**
1277 * Mapping for register-allocated objects in *regs to the first
1278 * GRF for that object.
1279 */
1280 uint8_t *ra_reg_to_grf;
1281
1282 /**
1283 * ra class for the aligned pairs we use for PLN, which doesn't
1284 * appear in *classes.
1285 */
1286 int aligned_pairs_class;
1287 } reg_sets[2];
1288 } wm;
1289
1290
1291 struct {
1292 uint32_t state_offset;
1293 uint32_t blend_state_offset;
1294 uint32_t depth_stencil_state_offset;
1295 uint32_t vp_offset;
1296 } cc;
1297
1298 struct {
1299 struct brw_query_object *obj;
1300 bool begin_emitted;
1301 } query;
1302
1303 int num_atoms;
1304 const struct brw_tracked_state **atoms;
1305
1306 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1307 struct {
1308 uint32_t offset;
1309 uint32_t size;
1310 enum state_struct_type type;
1311 } *state_batch_list;
1312 int state_batch_count;
1313
1314 uint32_t render_target_format[MESA_FORMAT_COUNT];
1315 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1316
1317 /* Interpolation modes, one byte per vue slot.
1318 * Used Gen4/5 by the clip|sf|wm stages. Ignored on Gen6+.
1319 */
1320 struct interpolation_mode_map interpolation_mode;
1321
1322 /* PrimitiveRestart */
1323 struct {
1324 bool in_progress;
1325 bool enable_cut_index;
1326 } prim_restart;
1327
1328 /** Computed depth/stencil/hiz state from the current attached
1329 * renderbuffers, valid only during the drawing state upload loop after
1330 * brw_workaround_depthstencil_alignment().
1331 */
1332 struct {
1333 struct intel_mipmap_tree *depth_mt;
1334 struct intel_mipmap_tree *stencil_mt;
1335
1336 /* Inter-tile (page-aligned) byte offsets. */
1337 uint32_t depth_offset, hiz_offset, stencil_offset;
1338 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1339 uint32_t tile_x, tile_y;
1340 } depthstencil;
1341
1342 uint32_t num_instances;
1343 int basevertex;
1344
1345 struct {
1346 drm_intel_bo *bo;
1347 struct gl_shader_program **shader_programs;
1348 struct gl_program **programs;
1349 enum shader_time_shader_type *types;
1350 uint64_t *cumulative;
1351 int num_entries;
1352 int max_entries;
1353 double report_time;
1354 } shader_time;
1355
1356 __DRIcontext *driContext;
1357 struct intel_screen *intelScreen;
1358 void (*saved_viewport)(struct gl_context *ctx,
1359 GLint x, GLint y, GLsizei width, GLsizei height);
1360 };
1361
1362 /*======================================================================
1363 * brw_vtbl.c
1364 */
1365 void brwInitVtbl( struct brw_context *brw );
1366
1367 /*======================================================================
1368 * brw_context.c
1369 */
1370 bool brwCreateContext(int api,
1371 const struct gl_config *mesaVis,
1372 __DRIcontext *driContextPriv,
1373 unsigned major_version,
1374 unsigned minor_version,
1375 uint32_t flags,
1376 unsigned *error,
1377 void *sharedContextPrivate);
1378
1379 /*======================================================================
1380 * brw_misc_state.c
1381 */
1382 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1383 uint32_t depth_level,
1384 uint32_t depth_layer,
1385 struct intel_mipmap_tree *stencil_mt,
1386 uint32_t *out_tile_mask_x,
1387 uint32_t *out_tile_mask_y);
1388 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1389 GLbitfield clear_mask);
1390
1391 /* brw_object_purgeable.c */
1392 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1393
1394 /*======================================================================
1395 * brw_queryobj.c
1396 */
1397 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1398 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1399 void brw_emit_query_begin(struct brw_context *brw);
1400 void brw_emit_query_end(struct brw_context *brw);
1401
1402 /** gen6_queryobj.c */
1403 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1404
1405 /*======================================================================
1406 * brw_state_dump.c
1407 */
1408 void brw_debug_batch(struct brw_context *brw);
1409 void brw_annotate_aub(struct brw_context *brw);
1410
1411 /*======================================================================
1412 * brw_tex.c
1413 */
1414 void brw_validate_textures( struct brw_context *brw );
1415
1416
1417 /*======================================================================
1418 * brw_program.c
1419 */
1420 void brwInitFragProgFuncs( struct dd_function_table *functions );
1421
1422 int brw_get_scratch_size(int size);
1423 void brw_get_scratch_bo(struct brw_context *brw,
1424 drm_intel_bo **scratch_bo, int size);
1425 void brw_init_shader_time(struct brw_context *brw);
1426 int brw_get_shader_time_index(struct brw_context *brw,
1427 struct gl_shader_program *shader_prog,
1428 struct gl_program *prog,
1429 enum shader_time_shader_type type);
1430 void brw_collect_and_report_shader_time(struct brw_context *brw);
1431 void brw_destroy_shader_time(struct brw_context *brw);
1432
1433 /* brw_urb.c
1434 */
1435 void brw_upload_urb_fence(struct brw_context *brw);
1436
1437 /* brw_curbe.c
1438 */
1439 void brw_upload_cs_urb_state(struct brw_context *brw);
1440
1441 /* brw_fs_reg_allocate.cpp
1442 */
1443 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1444
1445 /* brw_vec4_reg_allocate.cpp */
1446 void brw_vec4_alloc_reg_set(struct brw_context *brw);
1447
1448 /* brw_disasm.c */
1449 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1450
1451 /* brw_vs.c */
1452 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1453
1454 /* brw_draw_upload.c */
1455 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1456 const struct gl_client_array *glarray);
1457 unsigned brw_get_index_type(GLenum type);
1458
1459 /* brw_wm_surface_state.c */
1460 void brw_init_surface_formats(struct brw_context *brw);
1461 void
1462 brw_update_sol_surface(struct brw_context *brw,
1463 struct gl_buffer_object *buffer_obj,
1464 uint32_t *out_offset, unsigned num_vector_components,
1465 unsigned stride_dwords, unsigned offset_dwords);
1466 void brw_upload_ubo_surfaces(struct brw_context *brw,
1467 struct gl_shader *shader,
1468 uint32_t *surf_offsets);
1469
1470 /* brw_surface_formats.c */
1471 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1472 bool brw_render_target_supported(struct brw_context *brw,
1473 struct gl_renderbuffer *rb);
1474
1475 /* gen6_sol.c */
1476 void
1477 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1478 struct gl_transform_feedback_object *obj);
1479 void
1480 brw_end_transform_feedback(struct gl_context *ctx,
1481 struct gl_transform_feedback_object *obj);
1482
1483 /* gen7_sol_state.c */
1484 void
1485 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1486 struct gl_transform_feedback_object *obj);
1487 void
1488 gen7_end_transform_feedback(struct gl_context *ctx,
1489 struct gl_transform_feedback_object *obj);
1490
1491 /* brw_blorp_blit.cpp */
1492 GLbitfield
1493 brw_blorp_framebuffer(struct brw_context *brw,
1494 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1495 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1496 GLbitfield mask, GLenum filter);
1497
1498 bool
1499 brw_blorp_copytexsubimage(struct brw_context *brw,
1500 struct gl_renderbuffer *src_rb,
1501 struct gl_texture_image *dst_image,
1502 int slice,
1503 int srcX0, int srcY0,
1504 int dstX0, int dstY0,
1505 int width, int height);
1506
1507 /* gen6_multisample_state.c */
1508 void
1509 gen6_emit_3dstate_multisample(struct brw_context *brw,
1510 unsigned num_samples);
1511 void
1512 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1513 unsigned num_samples, float coverage,
1514 bool coverage_invert, unsigned sample_mask);
1515 void
1516 gen6_get_sample_position(struct gl_context *ctx,
1517 struct gl_framebuffer *fb,
1518 GLuint index,
1519 GLfloat *result);
1520
1521 /* gen7_urb.c */
1522 void
1523 gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
1524 unsigned gs_size, unsigned fs_size);
1525
1526 void
1527 gen7_emit_urb_state(struct brw_context *brw,
1528 unsigned nr_vs_entries, unsigned vs_size,
1529 unsigned vs_start, unsigned nr_gs_entries,
1530 unsigned gs_size, unsigned gs_start);
1531
1532
1533
1534 /*======================================================================
1535 * Inline conversion functions. These are better-typed than the
1536 * macros used previously:
1537 */
1538 static INLINE struct brw_context *
1539 brw_context( struct gl_context *ctx )
1540 {
1541 return (struct brw_context *)ctx;
1542 }
1543
1544 static INLINE struct brw_vertex_program *
1545 brw_vertex_program(struct gl_vertex_program *p)
1546 {
1547 return (struct brw_vertex_program *) p;
1548 }
1549
1550 static INLINE const struct brw_vertex_program *
1551 brw_vertex_program_const(const struct gl_vertex_program *p)
1552 {
1553 return (const struct brw_vertex_program *) p;
1554 }
1555
1556 static INLINE struct brw_fragment_program *
1557 brw_fragment_program(struct gl_fragment_program *p)
1558 {
1559 return (struct brw_fragment_program *) p;
1560 }
1561
1562 static INLINE const struct brw_fragment_program *
1563 brw_fragment_program_const(const struct gl_fragment_program *p)
1564 {
1565 return (const struct brw_fragment_program *) p;
1566 }
1567
1568 /**
1569 * Pre-gen6, the register file of the EUs was shared between threads,
1570 * and each thread used some subset allocated on a 16-register block
1571 * granularity. The unit states wanted these block counts.
1572 */
1573 static inline int
1574 brw_register_blocks(int reg_count)
1575 {
1576 return ALIGN(reg_count, 16) / 16 - 1;
1577 }
1578
1579 static inline uint32_t
1580 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1581 uint32_t prog_offset)
1582 {
1583 if (brw->gen >= 5) {
1584 /* Using state base address. */
1585 return prog_offset;
1586 }
1587
1588 drm_intel_bo_emit_reloc(brw->batch.bo,
1589 state_offset,
1590 brw->cache.bo,
1591 prog_offset,
1592 I915_GEM_DOMAIN_INSTRUCTION, 0);
1593
1594 return brw->cache.bo->offset + prog_offset;
1595 }
1596
1597 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1598 bool brw_lower_texture_gradients(struct brw_context *brw,
1599 struct exec_list *instructions);
1600
1601 struct opcode_desc {
1602 char *name;
1603 int nsrc;
1604 int ndst;
1605 };
1606
1607 extern const struct opcode_desc opcode_descs[128];
1608
1609 void
1610 brw_emit_depthbuffer(struct brw_context *brw);
1611
1612 void
1613 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1614 struct intel_mipmap_tree *depth_mt,
1615 uint32_t depth_offset, uint32_t depthbuffer_format,
1616 uint32_t depth_surface_type,
1617 struct intel_mipmap_tree *stencil_mt,
1618 bool hiz, bool separate_stencil,
1619 uint32_t width, uint32_t height,
1620 uint32_t tile_x, uint32_t tile_y);
1621
1622 void
1623 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1624 struct intel_mipmap_tree *depth_mt,
1625 uint32_t depth_offset, uint32_t depthbuffer_format,
1626 uint32_t depth_surface_type,
1627 struct intel_mipmap_tree *stencil_mt,
1628 bool hiz, bool separate_stencil,
1629 uint32_t width, uint32_t height,
1630 uint32_t tile_x, uint32_t tile_y);
1631
1632 extern const GLuint prim_to_hw_prim[GL_POLYGON+1];
1633
1634 void
1635 brw_setup_vec4_key_clip_info(struct brw_context *brw,
1636 struct brw_vec4_prog_key *key,
1637 bool program_uses_clip_distance);
1638
1639 void
1640 gen6_upload_vec4_push_constants(struct brw_context *brw,
1641 const struct gl_program *prog,
1642 const struct brw_vec4_prog_data *prog_data,
1643 struct brw_stage_state *stage_state,
1644 enum state_struct_type type);
1645
1646 #ifdef __cplusplus
1647 }
1648 #endif
1649
1650 #endif