mesa: Make gl_program::InputsRead 64 bits.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122
123 enum brw_state_id {
124 BRW_STATE_URB_FENCE,
125 BRW_STATE_FRAGMENT_PROGRAM,
126 BRW_STATE_VERTEX_PROGRAM,
127 BRW_STATE_INPUT_DIMENSIONS,
128 BRW_STATE_CURBE_OFFSETS,
129 BRW_STATE_REDUCED_PRIMITIVE,
130 BRW_STATE_PRIMITIVE,
131 BRW_STATE_CONTEXT,
132 BRW_STATE_WM_INPUT_DIMENSIONS,
133 BRW_STATE_PSP,
134 BRW_STATE_WM_SURFACES,
135 BRW_STATE_VS_BINDING_TABLE,
136 BRW_STATE_GS_BINDING_TABLE,
137 BRW_STATE_PS_BINDING_TABLE,
138 BRW_STATE_INDICES,
139 BRW_STATE_VERTICES,
140 BRW_STATE_BATCH,
141 BRW_STATE_NR_WM_SURFACES,
142 BRW_STATE_NR_VS_SURFACES,
143 BRW_STATE_INDEX_BUFFER,
144 BRW_STATE_VS_CONSTBUF,
145 BRW_STATE_PROGRAM_CACHE,
146 BRW_STATE_STATE_BASE_ADDRESS,
147 BRW_STATE_HIZ,
148 };
149
150 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
151 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
152 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
153 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
154 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
155 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
156 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
157 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
158 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
159 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
160 #define BRW_NEW_WM_SURFACES (1 << BRW_STATE_WM_SURFACES)
161 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
162 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
163 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
164 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
165 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
166 /**
167 * Used for any batch entry with a relocated pointer that will be used
168 * by any 3D rendering.
169 */
170 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
171 /** \see brw.state.depth_region */
172 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
173 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
174 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
175 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
176 #define BRW_NEW_HIZ (1 << BRW_STATE_HIZ)
177
178 struct brw_state_flags {
179 /** State update flags signalled by mesa internals */
180 GLuint mesa;
181 /**
182 * State update flags signalled as the result of brw_tracked_state updates
183 */
184 GLuint brw;
185 /** State update flags signalled by brw_state_cache.c searches */
186 GLuint cache;
187 };
188
189 enum state_struct_type {
190 AUB_TRACE_VS_STATE = 1,
191 AUB_TRACE_GS_STATE = 2,
192 AUB_TRACE_CLIP_STATE = 3,
193 AUB_TRACE_SF_STATE = 4,
194 AUB_TRACE_WM_STATE = 5,
195 AUB_TRACE_CC_STATE = 6,
196 AUB_TRACE_CLIP_VP_STATE = 7,
197 AUB_TRACE_SF_VP_STATE = 8,
198 AUB_TRACE_CC_VP_STATE = 0x9,
199 AUB_TRACE_SAMPLER_STATE = 0xa,
200 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
201 AUB_TRACE_SCRATCH_SPACE = 0xc,
202 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
203
204 AUB_TRACE_SCISSOR_STATE = 0x15,
205 AUB_TRACE_BLEND_STATE = 0x16,
206 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
207
208 /* Not written to .aub files the same way the structures above are. */
209 AUB_TRACE_NO_TYPE = 0x100,
210 AUB_TRACE_BINDING_TABLE = 0x101,
211 AUB_TRACE_SURFACE_STATE = 0x102,
212 AUB_TRACE_VS_CONSTANTS = 0x103,
213 AUB_TRACE_WM_CONSTANTS = 0x104,
214 };
215
216 /** Subclass of Mesa vertex program */
217 struct brw_vertex_program {
218 struct gl_vertex_program program;
219 GLuint id;
220 bool use_const_buffer;
221 };
222
223
224 /** Subclass of Mesa fragment program */
225 struct brw_fragment_program {
226 struct gl_fragment_program program;
227 GLuint id; /**< serial no. to identify frag progs, never re-used */
228 };
229
230 struct brw_shader {
231 struct gl_shader base;
232
233 /** Shader IR transformed for native compile, at link time. */
234 struct exec_list *ir;
235 };
236
237 struct brw_shader_program {
238 struct gl_shader_program base;
239 };
240
241 enum param_conversion {
242 PARAM_NO_CONVERT,
243 PARAM_CONVERT_F2I,
244 PARAM_CONVERT_F2U,
245 PARAM_CONVERT_F2B,
246 PARAM_CONVERT_ZERO,
247 };
248
249 /* Data about a particular attempt to compile a program. Note that
250 * there can be many of these, each in a different GL state
251 * corresponding to a different brw_wm_prog_key struct, with different
252 * compiled programs:
253 */
254 struct brw_wm_prog_data {
255 GLuint curb_read_length;
256 GLuint urb_read_length;
257
258 GLuint first_curbe_grf;
259 GLuint first_curbe_grf_16;
260 GLuint reg_blocks;
261 GLuint reg_blocks_16;
262 GLuint total_scratch;
263
264 GLuint nr_params; /**< number of float params/constants */
265 GLuint nr_pull_params;
266 bool error;
267 int dispatch_width;
268 uint32_t prog_offset_16;
269
270 /* Pointer to tracked values (only valid once
271 * _mesa_load_state_parameters has been called at runtime).
272 */
273 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
274 enum param_conversion param_convert[MAX_UNIFORMS * 4];
275 const float *pull_param[MAX_UNIFORMS * 4];
276 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
277 };
278
279 /**
280 * Enum representing the i965-specific vertex results that don't correspond
281 * exactly to any element of gl_vert_result. The values of this enum are
282 * assigned such that they don't conflict with gl_vert_result.
283 */
284 typedef enum
285 {
286 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
287 BRW_VERT_RESULT_HPOS_DUPLICATE,
288 BRW_VERT_RESULT_PAD,
289 BRW_VERT_RESULT_MAX
290 } brw_vert_result;
291
292
293 /**
294 * Data structure recording the relationship between the gl_vert_result enum
295 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
296 * single octaword within the VUE (128 bits).
297 *
298 * Note that each BRW register contains 256 bits (2 octawords), so when
299 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
300 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
301 * in a vertex shader), each register corresponds to a single VUE slot, since
302 * it contains data for two separate vertices.
303 */
304 struct brw_vue_map {
305 /**
306 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
307 * not stored in a slot (because they are not written, or because
308 * additional processing is applied before storing them in the VUE), the
309 * value is -1.
310 */
311 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
312
313 /**
314 * Map from VUE slot to gl_vert_result value. For slots that do not
315 * directly correspond to a gl_vert_result, the value comes from
316 * brw_vert_result.
317 *
318 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
319 * simplifies code that uses the value stored in slot_to_vert_result to
320 * create a bit mask).
321 */
322 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
323
324 /**
325 * Total number of VUE slots in use
326 */
327 int num_slots;
328 };
329
330 /**
331 * Convert a VUE slot number into a byte offset within the VUE.
332 */
333 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
334 {
335 return 16*slot;
336 }
337
338 /**
339 * Convert a vert_result into a byte offset within the VUE.
340 */
341 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
342 GLuint vert_result)
343 {
344 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
345 }
346
347
348 struct brw_sf_prog_data {
349 GLuint urb_read_length;
350 GLuint total_grf;
351
352 /* Each vertex may have upto 12 attributes, 4 components each,
353 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
354 * rows.
355 *
356 * Actually we use 4 for each, so call it 12 rows.
357 */
358 GLuint urb_entry_size;
359 };
360
361 struct brw_clip_prog_data {
362 GLuint curb_read_length; /* user planes? */
363 GLuint clip_mode;
364 GLuint urb_read_length;
365 GLuint total_grf;
366 };
367
368 struct brw_gs_prog_data {
369 GLuint urb_read_length;
370 GLuint total_grf;
371 };
372
373 struct brw_vs_prog_data {
374 GLuint curb_read_length;
375 GLuint urb_read_length;
376 GLuint total_grf;
377 GLbitfield64 outputs_written;
378 GLuint nr_params; /**< number of float params/constants */
379 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
380 GLuint total_scratch;
381
382 GLbitfield64 inputs_read;
383
384 /* Used for calculating urb partitions:
385 */
386 GLuint urb_entry_size;
387
388 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
389 const float *pull_param[MAX_UNIFORMS * 4];
390
391 bool uses_new_param_layout;
392 bool uses_vertexid;
393 };
394
395
396 /* Size == 0 if output either not written, or always [0,0,0,1]
397 */
398 struct brw_vs_ouput_sizes {
399 GLubyte output_size[VERT_RESULT_MAX];
400 };
401
402
403 /** Number of texture sampler units */
404 #define BRW_MAX_TEX_UNIT 16
405
406 /** Max number of render targets in a shader */
407 #define BRW_MAX_DRAW_BUFFERS 8
408
409 /**
410 * Helpers to create Surface Binding Table indexes for draw buffers,
411 * textures, and constant buffers.
412 *
413 * Shader threads access surfaces via numeric handles, rather than directly
414 * using pointers. The binding table maps these numeric handles to the
415 * address of the actual buffer.
416 *
417 * For example, a shader might ask to sample from "surface 7." In this case,
418 * bind[7] would contain a pointer to a texture.
419 *
420 * Although the hardware supports separate binding tables per pipeline stage
421 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
422 * them. This is purely for convenience.
423 *
424 * Currently our binding tables are (arbitrarily) programmed as follows:
425 *
426 * +-------------------------------+
427 * | 0 | Draw buffer 0 | .
428 * | . | . | \
429 * | : | : | > Only relevant to the WM.
430 * | 7 | Draw buffer 7 | /
431 * |-----|-------------------------| `
432 * | 8 | VS Pull Constant Buffer |
433 * | 9 | WM Pull Constant Buffer |
434 * |-----|-------------------------|
435 * | 10 | Texture 0 |
436 * | . | . |
437 * | : | : |
438 * | 25 | Texture 15 |
439 * +-------------------------------+
440 *
441 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
442 * the identity function or things will break. We do want to keep draw buffers
443 * first so we can use headerless render target writes for RT 0.
444 */
445 #define SURF_INDEX_DRAW(d) (d)
446 #define SURF_INDEX_VERT_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 0)
447 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
448 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
449
450 /** Maximum size of the binding table. */
451 #define BRW_MAX_SURFACES (BRW_MAX_DRAW_BUFFERS + BRW_MAX_TEX_UNIT + 2)
452
453 enum brw_cache_id {
454 BRW_BLEND_STATE,
455 BRW_DEPTH_STENCIL_STATE,
456 BRW_COLOR_CALC_STATE,
457 BRW_CC_VP,
458 BRW_CC_UNIT,
459 BRW_WM_PROG,
460 BRW_SAMPLER,
461 BRW_WM_UNIT,
462 BRW_SF_PROG,
463 BRW_SF_VP,
464 BRW_SF_UNIT, /* scissor state on gen6 */
465 BRW_VS_UNIT,
466 BRW_VS_PROG,
467 BRW_GS_UNIT,
468 BRW_GS_PROG,
469 BRW_CLIP_VP,
470 BRW_CLIP_UNIT,
471 BRW_CLIP_PROG,
472
473 BRW_MAX_CACHE
474 };
475
476 struct brw_cache_item {
477 /**
478 * Effectively part of the key, cache_id identifies what kind of state
479 * buffer is involved, and also which brw->state.dirty.cache flag should
480 * be set when this cache item is chosen.
481 */
482 enum brw_cache_id cache_id;
483 /** 32-bit hash of the key data */
484 GLuint hash;
485 GLuint key_size; /* for variable-sized keys */
486 GLuint aux_size;
487 const void *key;
488
489 uint32_t offset;
490 uint32_t size;
491
492 struct brw_cache_item *next;
493 };
494
495
496
497 struct brw_cache {
498 struct brw_context *brw;
499
500 struct brw_cache_item **items;
501 drm_intel_bo *bo;
502 GLuint size, n_items;
503
504 uint32_t next_offset;
505 bool bo_used_by_gpu;
506 };
507
508
509 /* Considered adding a member to this struct to document which flags
510 * an update might raise so that ordering of the state atoms can be
511 * checked or derived at runtime. Dropped the idea in favor of having
512 * a debug mode where the state is monitored for flags which are
513 * raised that have already been tested against.
514 */
515 struct brw_tracked_state {
516 struct brw_state_flags dirty;
517 void (*emit)( struct brw_context *brw );
518 };
519
520 /* Flags for brw->state.cache.
521 */
522 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
523 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
524 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
525 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
526 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
527 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
528 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
529 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
530 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
531 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
532 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
533 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
534 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
535 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
536 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
537 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
538 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
539 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
540
541 struct brw_cached_batch_item {
542 struct header *header;
543 GLuint sz;
544 struct brw_cached_batch_item *next;
545 };
546
547
548
549 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
550 * be easier if C allowed arrays of packed elements?
551 */
552 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
553
554 struct brw_vertex_buffer {
555 /** Buffer object containing the uploaded vertex data */
556 drm_intel_bo *bo;
557 uint32_t offset;
558 /** Byte stride between elements in the uploaded array */
559 GLuint stride;
560 };
561 struct brw_vertex_element {
562 const struct gl_client_array *glarray;
563
564 int buffer;
565
566 /** The corresponding Mesa vertex attribute */
567 gl_vert_attrib attrib;
568 /** Size of a complete element */
569 GLuint element_size;
570 /** Offset of the first element within the buffer object */
571 unsigned int offset;
572 };
573
574
575
576 struct brw_vertex_info {
577 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
578 };
579
580 struct brw_query_object {
581 struct gl_query_object Base;
582
583 /** Last query BO associated with this query. */
584 drm_intel_bo *bo;
585 /** First index in bo with query data for this object. */
586 int first_index;
587 /** Last index in bo with query data for this object. */
588 int last_index;
589 };
590
591
592 /**
593 * brw_context is derived from intel_context.
594 */
595 struct brw_context
596 {
597 struct intel_context intel; /**< base class, must be first field */
598 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
599
600 bool emit_state_always;
601 bool has_surface_tile_offset;
602 bool has_compr4;
603 bool has_negative_rhw_bug;
604 bool has_aa_line_parameters;
605 bool has_pln;
606 bool new_vs_backend;
607
608 struct {
609 struct brw_state_flags dirty;
610 } state;
611
612 struct brw_cache cache;
613 struct brw_cached_batch_item *cached_batch_items;
614
615 struct {
616 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
617 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
618 struct {
619 uint32_t handle;
620 uint32_t offset;
621 uint32_t stride;
622 } current_buffers[VERT_ATTRIB_MAX];
623
624 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
625 GLuint nr_enabled;
626 GLuint nr_buffers, nr_current_buffers;
627
628 /* Summary of size and varying of active arrays, so we can check
629 * for changes to this state:
630 */
631 struct brw_vertex_info info;
632 unsigned int min_index, max_index;
633
634 /* Offset from start of vertex buffer so we can avoid redefining
635 * the same VB packed over and over again.
636 */
637 unsigned int start_vertex_bias;
638 } vb;
639
640 struct {
641 /**
642 * Index buffer for this draw_prims call.
643 *
644 * Updates are signaled by BRW_NEW_INDICES.
645 */
646 const struct _mesa_index_buffer *ib;
647
648 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
649 drm_intel_bo *bo;
650 GLuint type;
651
652 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
653 * avoid re-uploading the IB packet over and over if we're actually
654 * referencing the same index buffer.
655 */
656 unsigned int start_vertex_offset;
657 } ib;
658
659 /* Active vertex program:
660 */
661 const struct gl_vertex_program *vertex_program;
662 const struct gl_fragment_program *fragment_program;
663
664 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
665 uint32_t CMD_VF_STATISTICS;
666 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
667 uint32_t CMD_PIPELINE_SELECT;
668
669 /**
670 * Platform specific constants containing the maximum number of threads
671 * for each pipeline stage.
672 */
673 int max_vs_threads;
674 int max_gs_threads;
675 int max_wm_threads;
676
677 /* BRW_NEW_URB_ALLOCATIONS:
678 */
679 struct {
680 GLuint vsize; /* vertex size plus header in urb registers */
681 GLuint csize; /* constant buffer size in urb registers */
682 GLuint sfsize; /* setup data size in urb registers */
683
684 bool constrained;
685
686 GLuint max_vs_entries; /* Maximum number of VS entries */
687 GLuint max_gs_entries; /* Maximum number of GS entries */
688
689 GLuint nr_vs_entries;
690 GLuint nr_gs_entries;
691 GLuint nr_clip_entries;
692 GLuint nr_sf_entries;
693 GLuint nr_cs_entries;
694
695 /* gen6:
696 * The length of each URB entry owned by the VS (or GS), as
697 * a number of 1024-bit (128-byte) rows. Should be >= 1.
698 *
699 * gen7: Same meaning, but in 512-bit (64-byte) rows.
700 */
701 GLuint vs_size;
702 GLuint gs_size;
703
704 GLuint vs_start;
705 GLuint gs_start;
706 GLuint clip_start;
707 GLuint sf_start;
708 GLuint cs_start;
709 GLuint size; /* Hardware URB size, in KB. */
710 } urb;
711
712
713 /* BRW_NEW_CURBE_OFFSETS:
714 */
715 struct {
716 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
717 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
718 GLuint clip_start;
719 GLuint clip_size;
720 GLuint vs_start;
721 GLuint vs_size;
722 GLuint total_size;
723
724 drm_intel_bo *curbe_bo;
725 /** Offset within curbe_bo of space for current curbe entry */
726 GLuint curbe_offset;
727 /** Offset within curbe_bo of space for next curbe entry */
728 GLuint curbe_next_offset;
729
730 /**
731 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
732 * in brw_curbe.c with the same set of constant data to be uploaded,
733 * so we'd rather not upload new constants in that case (it can cause
734 * a pipeline bubble since only up to 4 can be pipelined at a time).
735 */
736 GLfloat *last_buf;
737 /**
738 * Allocation for where to calculate the next set of CURBEs.
739 * It's a hot enough path that malloc/free of that data matters.
740 */
741 GLfloat *next_buf;
742 GLuint last_bufsz;
743 } curbe;
744
745 struct {
746 /** Binding table of pointers to surf_bo entries */
747 uint32_t bo_offset;
748 uint32_t surf_offset[BRW_MAX_SURFACES];
749 } bind;
750
751 /** SAMPLER_STATE count and offset */
752 struct {
753 GLuint count;
754 uint32_t offset;
755 } sampler;
756
757 struct {
758 struct brw_vs_prog_data *prog_data;
759 int8_t *constant_map; /* variable array following prog_data */
760
761 drm_intel_bo *scratch_bo;
762 drm_intel_bo *const_bo;
763 /** Offset in the program cache to the VS program */
764 uint32_t prog_offset;
765 uint32_t state_offset;
766
767 uint32_t push_const_offset; /* Offset in the batchbuffer */
768 int push_const_size; /* in 256-bit register increments */
769
770 /** @{ register allocator */
771
772 struct ra_regs *regs;
773
774 /**
775 * Array of the ra classes for the unaligned contiguous register
776 * block sizes used.
777 */
778 int *classes;
779
780 /**
781 * Mapping for register-allocated objects in *regs to the first
782 * GRF for that object.
783 */
784 uint8_t *ra_reg_to_grf;
785 /** @} */
786 } vs;
787
788 struct {
789 struct brw_gs_prog_data *prog_data;
790
791 bool prog_active;
792 /** Offset in the program cache to the CLIP program pre-gen6 */
793 uint32_t prog_offset;
794 uint32_t state_offset;
795 } gs;
796
797 struct {
798 struct brw_clip_prog_data *prog_data;
799
800 /** Offset in the program cache to the CLIP program pre-gen6 */
801 uint32_t prog_offset;
802
803 /* Offset in the batch to the CLIP state on pre-gen6. */
804 uint32_t state_offset;
805
806 /* As of gen6, this is the offset in the batch to the CLIP VP,
807 * instead of vp_bo.
808 */
809 uint32_t vp_offset;
810 } clip;
811
812
813 struct {
814 struct brw_sf_prog_data *prog_data;
815
816 /** Offset in the program cache to the CLIP program pre-gen6 */
817 uint32_t prog_offset;
818 uint32_t state_offset;
819 uint32_t vp_offset;
820 } sf;
821
822 struct {
823 struct brw_wm_prog_data *prog_data;
824 struct brw_wm_compile *compile_data;
825
826 /** Input sizes, calculated from active vertex program.
827 * One bit per fragment program input attribute.
828 */
829 GLbitfield input_size_masks[4];
830
831 /** offsets in the batch to sampler default colors (texture border color)
832 */
833 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
834
835 GLuint render_surf;
836
837 drm_intel_bo *scratch_bo;
838
839 /** Offset in the program cache to the WM program */
840 uint32_t prog_offset;
841
842 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
843
844 drm_intel_bo *const_bo; /* pull constant buffer. */
845 /**
846 * This is offset in the batch to the push constants on gen6.
847 *
848 * Pre-gen6, push constants live in the CURBE.
849 */
850 uint32_t push_const_offset;
851
852 /** @{ register allocator */
853
854 struct ra_regs *regs;
855
856 /** Array of the ra classes for the unaligned contiguous
857 * register block sizes used.
858 */
859 int *classes;
860
861 /**
862 * Mapping for register-allocated objects in *regs to the first
863 * GRF for that object.
864 */
865 uint8_t *ra_reg_to_grf;
866
867 /**
868 * ra class for the aligned pairs we use for PLN, which doesn't
869 * appear in *classes.
870 */
871 int aligned_pairs_class;
872
873 /** @} */
874 } wm;
875
876
877 struct {
878 uint32_t state_offset;
879 uint32_t blend_state_offset;
880 uint32_t depth_stencil_state_offset;
881 uint32_t vp_offset;
882 } cc;
883
884 struct {
885 struct brw_query_object *obj;
886 drm_intel_bo *bo;
887 int index;
888 bool active;
889 } query;
890 /* Used to give every program string a unique id
891 */
892 GLuint program_id;
893
894 int num_atoms;
895 const struct brw_tracked_state **atoms;
896
897 /* If (INTEL_DEBUG & DEBUG_BATCH) */
898 struct {
899 uint32_t offset;
900 uint32_t size;
901 enum state_struct_type type;
902 } *state_batch_list;
903 int state_batch_count;
904
905 /**
906 * \brief State needed to execute HiZ meta-ops
907 *
908 * All fields except \c op are initialized by gen6_hiz_init().
909 */
910 struct brw_hiz_state {
911 /**
912 * \brief Indicates which HiZ operation is in progress.
913 *
914 * See the following sections of the Sandy Bridge PRM, Volume 1, Part2:
915 * - 7.5.3.1 Depth Buffer Clear
916 * - 7.5.3.2 Depth Buffer Resolve
917 * - 7.5.3.3 Hierarchical Depth Buffer Resolve
918 */
919 enum brw_hiz_op {
920 BRW_HIZ_OP_NONE = 0,
921 BRW_HIZ_OP_DEPTH_CLEAR,
922 BRW_HIZ_OP_DEPTH_RESOLVE,
923 BRW_HIZ_OP_HIZ_RESOLVE,
924 } op;
925
926 /** \brief Shader state */
927 struct {
928 GLuint program;
929 GLuint position_vbo;
930 GLint position_location;
931 } shader;
932
933 /** \brief VAO for the rectangle primitive's vertices. */
934 GLuint vao;
935
936 GLuint fbo;
937 struct gl_renderbuffer *depth_rb;
938 } hiz;
939
940 uint32_t render_target_format[MESA_FORMAT_COUNT];
941 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
942 };
943
944
945
946 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
947
948 struct brw_instruction_info {
949 char *name;
950 int nsrc;
951 int ndst;
952 bool is_arith;
953 };
954 extern const struct brw_instruction_info brw_opcodes[128];
955
956 /*======================================================================
957 * brw_vtbl.c
958 */
959 void brwInitVtbl( struct brw_context *brw );
960
961 /*======================================================================
962 * brw_context.c
963 */
964 bool brwCreateContext(int api,
965 const struct gl_config *mesaVis,
966 __DRIcontext *driContextPriv,
967 void *sharedContextPrivate);
968
969 /*======================================================================
970 * brw_queryobj.c
971 */
972 void brw_init_queryobj_functions(struct dd_function_table *functions);
973 void brw_prepare_query_begin(struct brw_context *brw);
974 void brw_emit_query_begin(struct brw_context *brw);
975 void brw_emit_query_end(struct brw_context *brw);
976
977 /*======================================================================
978 * brw_state_dump.c
979 */
980 void brw_debug_batch(struct intel_context *intel);
981
982 /*======================================================================
983 * brw_tex.c
984 */
985 void brw_validate_textures( struct brw_context *brw );
986
987
988 /*======================================================================
989 * brw_program.c
990 */
991 void brwInitFragProgFuncs( struct dd_function_table *functions );
992
993 int brw_get_scratch_size(int size);
994 void brw_get_scratch_bo(struct intel_context *intel,
995 drm_intel_bo **scratch_bo, int size);
996
997
998 /* brw_urb.c
999 */
1000 void brw_upload_urb_fence(struct brw_context *brw);
1001
1002 /* brw_curbe.c
1003 */
1004 void brw_upload_cs_urb_state(struct brw_context *brw);
1005
1006 /* brw_disasm.c */
1007 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1008
1009 /* brw_vs.c */
1010 void brw_compute_vue_map(struct brw_vue_map *vue_map,
1011 const struct intel_context *intel,
1012 bool userclip_active,
1013 GLbitfield64 outputs_written);
1014 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1015
1016 /* brw_wm.c */
1017 unsigned
1018 brw_compute_barycentric_interp_modes(bool shade_model_flat,
1019 const struct gl_fragment_program *fprog);
1020
1021 /* brw_wm_surface_state.c */
1022 void brw_init_surface_formats(struct brw_context *brw);
1023
1024 /* gen6_clip_state.c */
1025 bool
1026 brw_fprog_uses_noperspective(const struct gl_fragment_program *fprog);
1027
1028
1029
1030 /*======================================================================
1031 * Inline conversion functions. These are better-typed than the
1032 * macros used previously:
1033 */
1034 static INLINE struct brw_context *
1035 brw_context( struct gl_context *ctx )
1036 {
1037 return (struct brw_context *)ctx;
1038 }
1039
1040 static INLINE struct brw_vertex_program *
1041 brw_vertex_program(struct gl_vertex_program *p)
1042 {
1043 return (struct brw_vertex_program *) p;
1044 }
1045
1046 static INLINE const struct brw_vertex_program *
1047 brw_vertex_program_const(const struct gl_vertex_program *p)
1048 {
1049 return (const struct brw_vertex_program *) p;
1050 }
1051
1052 static INLINE struct brw_fragment_program *
1053 brw_fragment_program(struct gl_fragment_program *p)
1054 {
1055 return (struct brw_fragment_program *) p;
1056 }
1057
1058 static INLINE const struct brw_fragment_program *
1059 brw_fragment_program_const(const struct gl_fragment_program *p)
1060 {
1061 return (const struct brw_fragment_program *) p;
1062 }
1063
1064 static inline
1065 float convert_param(enum param_conversion conversion, const float *param)
1066 {
1067 union {
1068 float f;
1069 uint32_t u;
1070 int32_t i;
1071 } fi;
1072
1073 switch (conversion) {
1074 case PARAM_NO_CONVERT:
1075 return *param;
1076 case PARAM_CONVERT_F2I:
1077 fi.i = *param;
1078 return fi.f;
1079 case PARAM_CONVERT_F2U:
1080 fi.u = *param;
1081 return fi.f;
1082 case PARAM_CONVERT_F2B:
1083 if (*param != 0.0)
1084 fi.i = 1;
1085 else
1086 fi.i = 0;
1087 return fi.f;
1088 case PARAM_CONVERT_ZERO:
1089 return 0.0;
1090 default:
1091 return *param;
1092 }
1093 }
1094
1095 /**
1096 * Pre-gen6, the register file of the EUs was shared between threads,
1097 * and each thread used some subset allocated on a 16-register block
1098 * granularity. The unit states wanted these block counts.
1099 */
1100 static inline int
1101 brw_register_blocks(int reg_count)
1102 {
1103 return ALIGN(reg_count, 16) / 16 - 1;
1104 }
1105
1106 static inline uint32_t
1107 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1108 uint32_t prog_offset)
1109 {
1110 struct intel_context *intel = &brw->intel;
1111
1112 if (intel->gen >= 5) {
1113 /* Using state base address. */
1114 return prog_offset;
1115 }
1116
1117 drm_intel_bo_emit_reloc(intel->batch.bo,
1118 state_offset,
1119 brw->cache.bo,
1120 prog_offset,
1121 I915_GEM_DOMAIN_INSTRUCTION, 0);
1122
1123 return brw->cache.bo->offset + prog_offset;
1124 }
1125
1126 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1127
1128 #endif