i965: Move intel_context::upload to brw_context.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_VUE_MAP_GEOM_OUT,
152 BRW_STATE_TRANSFORM_FEEDBACK,
153 BRW_STATE_RASTERIZER_DISCARD,
154 BRW_STATE_STATS_WM,
155 BRW_STATE_UNIFORM_BUFFER,
156 BRW_STATE_META_IN_PROGRESS,
157 };
158
159 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
160 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
161 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
184 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
185 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
186 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
187 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
188 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
189
190 struct brw_state_flags {
191 /** State update flags signalled by mesa internals */
192 GLuint mesa;
193 /**
194 * State update flags signalled as the result of brw_tracked_state updates
195 */
196 GLuint brw;
197 /** State update flags signalled by brw_state_cache.c searches */
198 GLuint cache;
199 };
200
201 #define AUB_TRACE_TYPE_MASK 0x0000ff00
202 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
203 #define AUB_TRACE_TYPE_BATCH (1 << 8)
204 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
205 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
206 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
207 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
208 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
209 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
210 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
211 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
212 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
213 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
214
215 /**
216 * state_struct_type enum values are encoded with the top 16 bits representing
217 * the type to be delivered to the .aub file, and the bottom 16 bits
218 * representing the subtype. This macro performs the encoding.
219 */
220 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
221
222 enum state_struct_type {
223 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
224 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
225 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
226 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
227 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
228 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
229 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
230 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
231 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
232 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
233 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
234 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
235 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
236
237 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
238 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
239 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
240
241 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
242 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
243 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
244 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
245 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
246 };
247
248 /**
249 * Decode a state_struct_type value to determine the type that should be
250 * stored in the .aub file.
251 */
252 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
253 {
254 return (ss_type & 0xFFFF0000) >> 16;
255 }
256
257 /**
258 * Decode a state_struct_type value to determine the subtype that should be
259 * stored in the .aub file.
260 */
261 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
262 {
263 return ss_type & 0xFFFF;
264 }
265
266 /** Subclass of Mesa vertex program */
267 struct brw_vertex_program {
268 struct gl_vertex_program program;
269 GLuint id;
270 };
271
272
273 /** Subclass of Mesa fragment program */
274 struct brw_fragment_program {
275 struct gl_fragment_program program;
276 GLuint id; /**< serial no. to identify frag progs, never re-used */
277 };
278
279 struct brw_shader {
280 struct gl_shader base;
281
282 bool compiled_once;
283
284 /** Shader IR transformed for native compile, at link time. */
285 struct exec_list *ir;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_varying_slot. The values of this enum are
331 * assigned such that they don't conflict with gl_varying_slot.
332 */
333 typedef enum
334 {
335 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
336 BRW_VARYING_SLOT_PAD,
337 /**
338 * Technically this is not a varying but just a placeholder that
339 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
340 * builtin variable to be compiled correctly. see compile_sf_prog() for
341 * more info.
342 */
343 BRW_VARYING_SLOT_PNTC,
344 BRW_VARYING_SLOT_COUNT
345 } brw_varying_slot;
346
347
348 /**
349 * Data structure recording the relationship between the gl_varying_slot enum
350 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
351 * single octaword within the VUE (128 bits).
352 *
353 * Note that each BRW register contains 256 bits (2 octawords), so when
354 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
355 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
356 * in a vertex shader), each register corresponds to a single VUE slot, since
357 * it contains data for two separate vertices.
358 */
359 struct brw_vue_map {
360 /**
361 * Bitfield representing all varying slots that are (a) stored in this VUE
362 * map, and (b) actually written by the shader. Does not include any of
363 * the additional varying slots defined in brw_varying_slot.
364 */
365 GLbitfield64 slots_valid;
366
367 /**
368 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
369 * not stored in a slot (because they are not written, or because
370 * additional processing is applied before storing them in the VUE), the
371 * value is -1.
372 */
373 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
374
375 /**
376 * Map from VUE slot to gl_varying_slot value. For slots that do not
377 * directly correspond to a gl_varying_slot, the value comes from
378 * brw_varying_slot.
379 *
380 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
381 * simplifies code that uses the value stored in slot_to_varying to
382 * create a bit mask).
383 */
384 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
385
386 /**
387 * Total number of VUE slots in use
388 */
389 int num_slots;
390 };
391
392 /**
393 * Convert a VUE slot number into a byte offset within the VUE.
394 */
395 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
396 {
397 return 16*slot;
398 }
399
400 /**
401 * Convert a vertex output (brw_varying_slot) into a byte offset within the
402 * VUE.
403 */
404 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
405 GLuint varying)
406 {
407 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
408 }
409
410 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
411 GLbitfield64 slots_valid, bool userclip_active);
412
413
414 struct brw_sf_prog_data {
415 GLuint urb_read_length;
416 GLuint total_grf;
417
418 /* Each vertex may have upto 12 attributes, 4 components each,
419 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
420 * rows.
421 *
422 * Actually we use 4 for each, so call it 12 rows.
423 */
424 GLuint urb_entry_size;
425 };
426
427 struct brw_clip_prog_data {
428 GLuint curb_read_length; /* user planes? */
429 GLuint clip_mode;
430 GLuint urb_read_length;
431 GLuint total_grf;
432 };
433
434 struct brw_gs_prog_data {
435 GLuint urb_read_length;
436 GLuint total_grf;
437
438 /**
439 * Gen6 transform feedback: Amount by which the streaming vertex buffer
440 * indices should be incremented each time the GS is invoked.
441 */
442 unsigned svbi_postincrement_value;
443 };
444
445
446 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
447 * this struct!
448 */
449 struct brw_vec4_prog_data {
450 struct brw_vue_map vue_map;
451
452 GLuint curb_read_length;
453 GLuint urb_read_length;
454 GLuint total_grf;
455 GLuint nr_params; /**< number of float params/constants */
456 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
457 GLuint total_scratch;
458
459 /* Used for calculating urb partitions. In the VS, this is the size of the
460 * URB entry used for both input and output to the thread. In the GS, this
461 * is the size of the URB entry used for output.
462 */
463 GLuint urb_entry_size;
464
465 int num_surfaces;
466
467 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
468 const float **param;
469 const float **pull_param;
470 };
471
472
473 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
474 * struct!
475 */
476 struct brw_vs_prog_data {
477 struct brw_vec4_prog_data base;
478
479 GLbitfield64 inputs_read;
480
481 bool uses_vertexid;
482 };
483
484 /** Number of texture sampler units */
485 #define BRW_MAX_TEX_UNIT 16
486
487 /** Max number of render targets in a shader */
488 #define BRW_MAX_DRAW_BUFFERS 8
489
490 /**
491 * Max number of binding table entries used for stream output.
492 *
493 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
494 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
495 *
496 * On Gen6, the size of transform feedback data is limited not by the number
497 * of components but by the number of binding table entries we set aside. We
498 * use one binding table entry for a float, one entry for a vector, and one
499 * entry per matrix column. Since the only way we can communicate our
500 * transform feedback capabilities to the client is via
501 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
502 * worst case, in which all the varyings are floats, so we use up one binding
503 * table entry per component. Therefore we need to set aside at least 64
504 * binding table entries for use by transform feedback.
505 *
506 * Note: since we don't currently pack varyings, it is currently impossible
507 * for the client to actually use up all of these binding table entries--if
508 * all of their varyings were floats, they would run out of varying slots and
509 * fail to link. But that's a bug, so it seems prudent to go ahead and
510 * allocate the number of binding table entries we will need once the bug is
511 * fixed.
512 */
513 #define BRW_MAX_SOL_BINDINGS 64
514
515 /** Maximum number of actual buffers used for stream output */
516 #define BRW_MAX_SOL_BUFFERS 4
517
518 #define BRW_MAX_WM_UBOS 12
519 #define BRW_MAX_VS_UBOS 12
520
521 /**
522 * Helpers to create Surface Binding Table indexes for draw buffers,
523 * textures, and constant buffers.
524 *
525 * Shader threads access surfaces via numeric handles, rather than directly
526 * using pointers. The binding table maps these numeric handles to the
527 * address of the actual buffer.
528 *
529 * For example, a shader might ask to sample from "surface 7." In this case,
530 * bind[7] would contain a pointer to a texture.
531 *
532 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
533 *
534 * +-------------------------------+
535 * | 0 | Draw buffer 0 |
536 * | . | . |
537 * | : | : |
538 * | 7 | Draw buffer 7 |
539 * |-----|-------------------------|
540 * | 8 | WM Pull Constant Buffer |
541 * |-----|-------------------------|
542 * | 9 | Texture 0 |
543 * | . | . |
544 * | : | : |
545 * | 24 | Texture 15 |
546 * |-----|-------------------------|
547 * | 25 | UBO 0 |
548 * | . | . |
549 * | : | : |
550 * | 36 | UBO 11 |
551 * +-------------------------------+
552 *
553 * Our VS binding tables are programmed as follows:
554 *
555 * +-----+-------------------------+
556 * | 0 | VS Pull Constant Buffer |
557 * +-----+-------------------------+
558 * | 1 | Texture 0 |
559 * | . | . |
560 * | : | : |
561 * | 16 | Texture 15 |
562 * +-----+-------------------------+
563 * | 17 | UBO 0 |
564 * | . | . |
565 * | : | : |
566 * | 28 | UBO 11 |
567 * +-------------------------------+
568 *
569 * Our (gen6) GS binding tables are programmed as follows:
570 *
571 * +-----+-------------------------+
572 * | 0 | SOL Binding 0 |
573 * | . | . |
574 * | : | : |
575 * | 63 | SOL Binding 63 |
576 * +-----+-------------------------+
577 *
578 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
579 * the identity function or things will break. We do want to keep draw buffers
580 * first so we can use headerless render target writes for RT 0.
581 */
582 #define SURF_INDEX_DRAW(d) (d)
583 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
584 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
585 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
586 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
587 /** Maximum size of the binding table. */
588 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
589
590 #define SURF_INDEX_VERT_CONST_BUFFER (0)
591 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
592 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
593 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
594 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
595
596 #define SURF_INDEX_SOL_BINDING(t) ((t))
597 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
598
599 /**
600 * Stride in bytes between shader_time entries.
601 *
602 * We separate entries by a cacheline to reduce traffic between EUs writing to
603 * different entries.
604 */
605 #define SHADER_TIME_STRIDE 64
606
607 enum brw_cache_id {
608 BRW_CC_VP,
609 BRW_CC_UNIT,
610 BRW_WM_PROG,
611 BRW_BLORP_BLIT_PROG,
612 BRW_BLORP_CONST_COLOR_PROG,
613 BRW_SAMPLER,
614 BRW_WM_UNIT,
615 BRW_SF_PROG,
616 BRW_SF_VP,
617 BRW_SF_UNIT, /* scissor state on gen6 */
618 BRW_VS_UNIT,
619 BRW_VS_PROG,
620 BRW_GS_UNIT,
621 BRW_GS_PROG,
622 BRW_CLIP_VP,
623 BRW_CLIP_UNIT,
624 BRW_CLIP_PROG,
625
626 BRW_MAX_CACHE
627 };
628
629 struct brw_cache_item {
630 /**
631 * Effectively part of the key, cache_id identifies what kind of state
632 * buffer is involved, and also which brw->state.dirty.cache flag should
633 * be set when this cache item is chosen.
634 */
635 enum brw_cache_id cache_id;
636 /** 32-bit hash of the key data */
637 GLuint hash;
638 GLuint key_size; /* for variable-sized keys */
639 GLuint aux_size;
640 const void *key;
641
642 uint32_t offset;
643 uint32_t size;
644
645 struct brw_cache_item *next;
646 };
647
648
649 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
650 int aux_size, const void *key);
651 typedef void (*cache_aux_free_func)(const void *aux);
652
653 struct brw_cache {
654 struct brw_context *brw;
655
656 struct brw_cache_item **items;
657 drm_intel_bo *bo;
658 GLuint size, n_items;
659
660 uint32_t next_offset;
661 bool bo_used_by_gpu;
662
663 /**
664 * Optional functions used in determining whether the prog_data for a new
665 * cache item matches an existing cache item (in case there's relevant data
666 * outside of the prog_data). If NULL, a plain memcmp is done.
667 */
668 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
669 /** Optional functions for freeing other pointers attached to a prog_data. */
670 cache_aux_free_func aux_free[BRW_MAX_CACHE];
671 };
672
673
674 /* Considered adding a member to this struct to document which flags
675 * an update might raise so that ordering of the state atoms can be
676 * checked or derived at runtime. Dropped the idea in favor of having
677 * a debug mode where the state is monitored for flags which are
678 * raised that have already been tested against.
679 */
680 struct brw_tracked_state {
681 struct brw_state_flags dirty;
682 void (*emit)( struct brw_context *brw );
683 };
684
685 enum shader_time_shader_type {
686 ST_NONE,
687 ST_VS,
688 ST_VS_WRITTEN,
689 ST_VS_RESET,
690 ST_FS8,
691 ST_FS8_WRITTEN,
692 ST_FS8_RESET,
693 ST_FS16,
694 ST_FS16_WRITTEN,
695 ST_FS16_RESET,
696 };
697
698 /* Flags for brw->state.cache.
699 */
700 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
701 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
702 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
703 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
704 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
705 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
706 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
707 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
708 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
709 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
710 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
711 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
712 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
713 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
714 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
715
716 struct brw_cached_batch_item {
717 struct header *header;
718 GLuint sz;
719 struct brw_cached_batch_item *next;
720 };
721
722
723
724 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
725 * be easier if C allowed arrays of packed elements?
726 */
727 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
728
729 struct brw_vertex_buffer {
730 /** Buffer object containing the uploaded vertex data */
731 drm_intel_bo *bo;
732 uint32_t offset;
733 /** Byte stride between elements in the uploaded array */
734 GLuint stride;
735 GLuint step_rate;
736 };
737 struct brw_vertex_element {
738 const struct gl_client_array *glarray;
739
740 int buffer;
741
742 /** The corresponding Mesa vertex attribute */
743 gl_vert_attrib attrib;
744 /** Offset of the first element within the buffer object */
745 unsigned int offset;
746 };
747
748 struct brw_query_object {
749 struct gl_query_object Base;
750
751 /** Last query BO associated with this query. */
752 drm_intel_bo *bo;
753
754 /** Last index in bo with query data for this object. */
755 int last_index;
756 };
757
758
759 /**
760 * brw_context is derived from intel_context.
761 */
762 struct brw_context
763 {
764 struct intel_context intel; /**< base class, must be first field */
765
766 struct
767 {
768 void (*destroy) (struct brw_context * brw);
769 void (*finish_batch) (struct brw_context * brw);
770 void (*new_batch) (struct brw_context * brw);
771
772 void (*update_texture_surface)(struct gl_context *ctx,
773 unsigned unit,
774 uint32_t *binding_table,
775 unsigned surf_index);
776 void (*update_renderbuffer_surface)(struct brw_context *brw,
777 struct gl_renderbuffer *rb,
778 bool layered,
779 unsigned unit);
780 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
781 unsigned unit);
782 void (*create_constant_surface)(struct brw_context *brw,
783 drm_intel_bo *bo,
784 uint32_t offset,
785 uint32_t size,
786 uint32_t *out_offset,
787 bool dword_pitch);
788
789 /**
790 * Send the appropriate state packets to configure depth, stencil, and
791 * HiZ buffers (i965+ only)
792 */
793 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
794 struct intel_mipmap_tree *depth_mt,
795 uint32_t depth_offset,
796 uint32_t depthbuffer_format,
797 uint32_t depth_surface_type,
798 struct intel_mipmap_tree *stencil_mt,
799 bool hiz, bool separate_stencil,
800 uint32_t width, uint32_t height,
801 uint32_t tile_x, uint32_t tile_y);
802
803 } vtbl;
804
805 dri_bufmgr *bufmgr;
806
807 drm_intel_context *hw_ctx;
808
809 struct intel_batchbuffer batch;
810 bool no_batch_wrap;
811
812 struct {
813 drm_intel_bo *bo;
814 GLuint offset;
815 uint32_t buffer_len;
816 uint32_t buffer_offset;
817 char buffer[4096];
818 } upload;
819
820 /**
821 * Set if rendering has occured to the drawable's front buffer.
822 *
823 * This is used in the DRI2 case to detect that glFlush should also copy
824 * the contents of the fake front buffer to the real front buffer.
825 */
826 bool front_buffer_dirty;
827
828 /**
829 * Track whether front-buffer rendering is currently enabled
830 *
831 * A separate flag is used to track this in order to support MRT more
832 * easily.
833 */
834 bool is_front_buffer_rendering;
835
836 /**
837 * Track whether front-buffer is the current read target.
838 *
839 * This is closely associated with is_front_buffer_rendering, but may
840 * be set separately. The DRI2 fake front buffer must be referenced
841 * either way.
842 */
843 bool is_front_buffer_reading;
844
845 /** Framerate throttling: @{ */
846 drm_intel_bo *first_post_swapbuffers_batch;
847 bool need_throttle;
848 /** @} */
849
850 GLuint stats_wm;
851
852 /**
853 * drirc options:
854 * @{
855 */
856 bool no_rast;
857 bool always_flush_batch;
858 bool always_flush_cache;
859 bool disable_throttling;
860 bool precompile;
861
862 driOptionCache optionCache;
863 /** @} */
864
865 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
866
867 GLenum reduced_primitive;
868
869 /**
870 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
871 * variable is set, this is the flag indicating to do expensive work that
872 * might lead to a perf_debug() call.
873 */
874 bool perf_debug;
875
876 uint32_t max_gtt_map_object_size;
877
878 bool emit_state_always;
879 bool has_surface_tile_offset;
880 bool has_compr4;
881 bool has_negative_rhw_bug;
882 bool has_aa_line_parameters;
883 bool has_pln;
884
885 /**
886 * Some versions of Gen hardware don't do centroid interpolation correctly
887 * on unlit pixels, causing incorrect values for derivatives near triangle
888 * edges. Enabling this flag causes the fragment shader to use
889 * non-centroid interpolation for unlit pixels, at the expense of two extra
890 * fragment shader instructions.
891 */
892 bool needs_unlit_centroid_workaround;
893
894 struct {
895 struct brw_state_flags dirty;
896 } state;
897
898 struct brw_cache cache;
899 struct brw_cached_batch_item *cached_batch_items;
900
901 /* Whether a meta-operation is in progress. */
902 bool meta_in_progress;
903
904 struct {
905 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
906 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
907
908 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
909 GLuint nr_enabled;
910 GLuint nr_buffers;
911
912 /* Summary of size and varying of active arrays, so we can check
913 * for changes to this state:
914 */
915 unsigned int min_index, max_index;
916
917 /* Offset from start of vertex buffer so we can avoid redefining
918 * the same VB packed over and over again.
919 */
920 unsigned int start_vertex_bias;
921 } vb;
922
923 struct {
924 /**
925 * Index buffer for this draw_prims call.
926 *
927 * Updates are signaled by BRW_NEW_INDICES.
928 */
929 const struct _mesa_index_buffer *ib;
930
931 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
932 drm_intel_bo *bo;
933 GLuint type;
934
935 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
936 * avoid re-uploading the IB packet over and over if we're actually
937 * referencing the same index buffer.
938 */
939 unsigned int start_vertex_offset;
940 } ib;
941
942 /* Active vertex program:
943 */
944 const struct gl_vertex_program *vertex_program;
945 const struct gl_fragment_program *fragment_program;
946
947 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
948 uint32_t CMD_VF_STATISTICS;
949 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
950 uint32_t CMD_PIPELINE_SELECT;
951
952 /**
953 * Platform specific constants containing the maximum number of threads
954 * for each pipeline stage.
955 */
956 int max_vs_threads;
957 int max_gs_threads;
958 int max_wm_threads;
959
960 /* BRW_NEW_URB_ALLOCATIONS:
961 */
962 struct {
963 GLuint vsize; /* vertex size plus header in urb registers */
964 GLuint csize; /* constant buffer size in urb registers */
965 GLuint sfsize; /* setup data size in urb registers */
966
967 bool constrained;
968
969 GLuint max_vs_entries; /* Maximum number of VS entries */
970 GLuint max_gs_entries; /* Maximum number of GS entries */
971
972 GLuint nr_vs_entries;
973 GLuint nr_gs_entries;
974 GLuint nr_clip_entries;
975 GLuint nr_sf_entries;
976 GLuint nr_cs_entries;
977
978 GLuint vs_start;
979 GLuint gs_start;
980 GLuint clip_start;
981 GLuint sf_start;
982 GLuint cs_start;
983 GLuint size; /* Hardware URB size, in KB. */
984
985 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
986 * URB space for the GS.
987 */
988 bool gen6_gs_previously_active;
989 } urb;
990
991
992 /* BRW_NEW_CURBE_OFFSETS:
993 */
994 struct {
995 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
996 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
997 GLuint clip_start;
998 GLuint clip_size;
999 GLuint vs_start;
1000 GLuint vs_size;
1001 GLuint total_size;
1002
1003 drm_intel_bo *curbe_bo;
1004 /** Offset within curbe_bo of space for current curbe entry */
1005 GLuint curbe_offset;
1006 /** Offset within curbe_bo of space for next curbe entry */
1007 GLuint curbe_next_offset;
1008
1009 /**
1010 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
1011 * in brw_curbe.c with the same set of constant data to be uploaded,
1012 * so we'd rather not upload new constants in that case (it can cause
1013 * a pipeline bubble since only up to 4 can be pipelined at a time).
1014 */
1015 GLfloat *last_buf;
1016 /**
1017 * Allocation for where to calculate the next set of CURBEs.
1018 * It's a hot enough path that malloc/free of that data matters.
1019 */
1020 GLfloat *next_buf;
1021 GLuint last_bufsz;
1022 } curbe;
1023
1024 /** SAMPLER_STATE count and offset */
1025 struct {
1026 GLuint count;
1027 uint32_t offset;
1028 } sampler;
1029
1030 /**
1031 * Layout of vertex data exiting the geometry portion of the pipleine.
1032 * This comes from the geometry shader if one exists, otherwise from the
1033 * vertex shader.
1034 *
1035 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1036 */
1037 struct brw_vue_map vue_map_geom_out;
1038
1039 struct {
1040 struct brw_vs_prog_data *prog_data;
1041
1042 drm_intel_bo *scratch_bo;
1043 drm_intel_bo *const_bo;
1044 /** Offset in the program cache to the VS program */
1045 uint32_t prog_offset;
1046 uint32_t state_offset;
1047
1048 uint32_t push_const_offset; /* Offset in the batchbuffer */
1049 int push_const_size; /* in 256-bit register increments */
1050
1051 /** @{ register allocator */
1052
1053 struct ra_regs *regs;
1054
1055 /**
1056 * Array of the ra classes for the unaligned contiguous register
1057 * block sizes used.
1058 */
1059 int *classes;
1060
1061 /**
1062 * Mapping for register-allocated objects in *regs to the first
1063 * GRF for that object.
1064 */
1065 uint8_t *ra_reg_to_grf;
1066 /** @} */
1067
1068 uint32_t bind_bo_offset;
1069 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
1070 } vs;
1071
1072 struct {
1073 struct brw_gs_prog_data *prog_data;
1074
1075 bool prog_active;
1076 /** Offset in the program cache to the CLIP program pre-gen6 */
1077 uint32_t prog_offset;
1078 uint32_t state_offset;
1079
1080 uint32_t bind_bo_offset;
1081 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
1082 } gs;
1083
1084 struct {
1085 struct brw_clip_prog_data *prog_data;
1086
1087 /** Offset in the program cache to the CLIP program pre-gen6 */
1088 uint32_t prog_offset;
1089
1090 /* Offset in the batch to the CLIP state on pre-gen6. */
1091 uint32_t state_offset;
1092
1093 /* As of gen6, this is the offset in the batch to the CLIP VP,
1094 * instead of vp_bo.
1095 */
1096 uint32_t vp_offset;
1097 } clip;
1098
1099
1100 struct {
1101 struct brw_sf_prog_data *prog_data;
1102
1103 /** Offset in the program cache to the CLIP program pre-gen6 */
1104 uint32_t prog_offset;
1105 uint32_t state_offset;
1106 uint32_t vp_offset;
1107 } sf;
1108
1109 struct {
1110 struct brw_wm_prog_data *prog_data;
1111
1112 /** offsets in the batch to sampler default colors (texture border color)
1113 */
1114 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1115
1116 GLuint render_surf;
1117
1118 drm_intel_bo *scratch_bo;
1119
1120 /**
1121 * Buffer object used in place of multisampled null render targets on
1122 * Gen6. See brw_update_null_renderbuffer_surface().
1123 */
1124 drm_intel_bo *multisampled_null_render_target_bo;
1125
1126 /** Offset in the program cache to the WM program */
1127 uint32_t prog_offset;
1128
1129 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1130
1131 drm_intel_bo *const_bo; /* pull constant buffer. */
1132 /**
1133 * This is offset in the batch to the push constants on gen6.
1134 *
1135 * Pre-gen6, push constants live in the CURBE.
1136 */
1137 uint32_t push_const_offset;
1138
1139 /** Binding table of pointers to surf_bo entries */
1140 uint32_t bind_bo_offset;
1141 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1142
1143 struct {
1144 struct ra_regs *regs;
1145
1146 /** Array of the ra classes for the unaligned contiguous
1147 * register block sizes used.
1148 */
1149 int *classes;
1150
1151 /**
1152 * Mapping for register-allocated objects in *regs to the first
1153 * GRF for that object.
1154 */
1155 uint8_t *ra_reg_to_grf;
1156
1157 /**
1158 * ra class for the aligned pairs we use for PLN, which doesn't
1159 * appear in *classes.
1160 */
1161 int aligned_pairs_class;
1162 } reg_sets[2];
1163 } wm;
1164
1165
1166 struct {
1167 uint32_t state_offset;
1168 uint32_t blend_state_offset;
1169 uint32_t depth_stencil_state_offset;
1170 uint32_t vp_offset;
1171 } cc;
1172
1173 struct {
1174 struct brw_query_object *obj;
1175 bool begin_emitted;
1176 } query;
1177
1178 int num_atoms;
1179 const struct brw_tracked_state **atoms;
1180
1181 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1182 struct {
1183 uint32_t offset;
1184 uint32_t size;
1185 enum state_struct_type type;
1186 } *state_batch_list;
1187 int state_batch_count;
1188
1189 uint32_t render_target_format[MESA_FORMAT_COUNT];
1190 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1191
1192 /* PrimitiveRestart */
1193 struct {
1194 bool in_progress;
1195 bool enable_cut_index;
1196 } prim_restart;
1197
1198 /** Computed depth/stencil/hiz state from the current attached
1199 * renderbuffers, valid only during the drawing state upload loop after
1200 * brw_workaround_depthstencil_alignment().
1201 */
1202 struct {
1203 struct intel_mipmap_tree *depth_mt;
1204 struct intel_mipmap_tree *stencil_mt;
1205
1206 /* Inter-tile (page-aligned) byte offsets. */
1207 uint32_t depth_offset, hiz_offset, stencil_offset;
1208 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1209 uint32_t tile_x, tile_y;
1210 } depthstencil;
1211
1212 uint32_t num_instances;
1213 int basevertex;
1214
1215 struct {
1216 drm_intel_bo *bo;
1217 struct gl_shader_program **shader_programs;
1218 struct gl_program **programs;
1219 enum shader_time_shader_type *types;
1220 uint64_t *cumulative;
1221 int num_entries;
1222 int max_entries;
1223 double report_time;
1224 } shader_time;
1225 };
1226
1227 /*======================================================================
1228 * brw_vtbl.c
1229 */
1230 void brwInitVtbl( struct brw_context *brw );
1231
1232 /*======================================================================
1233 * brw_context.c
1234 */
1235 bool brwCreateContext(int api,
1236 const struct gl_config *mesaVis,
1237 __DRIcontext *driContextPriv,
1238 unsigned major_version,
1239 unsigned minor_version,
1240 uint32_t flags,
1241 unsigned *error,
1242 void *sharedContextPrivate);
1243
1244 /*======================================================================
1245 * brw_misc_state.c
1246 */
1247 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1248 uint32_t depth_level,
1249 uint32_t depth_layer,
1250 struct intel_mipmap_tree *stencil_mt,
1251 uint32_t *out_tile_mask_x,
1252 uint32_t *out_tile_mask_y);
1253 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1254 GLbitfield clear_mask);
1255
1256 /*======================================================================
1257 * brw_queryobj.c
1258 */
1259 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1260 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1261 void brw_emit_query_begin(struct brw_context *brw);
1262 void brw_emit_query_end(struct brw_context *brw);
1263
1264 /** gen6_queryobj.c */
1265 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1266
1267 /*======================================================================
1268 * brw_state_dump.c
1269 */
1270 void brw_debug_batch(struct brw_context *brw);
1271 void brw_annotate_aub(struct brw_context *brw);
1272
1273 /*======================================================================
1274 * brw_tex.c
1275 */
1276 void brw_validate_textures( struct brw_context *brw );
1277
1278
1279 /*======================================================================
1280 * brw_program.c
1281 */
1282 void brwInitFragProgFuncs( struct dd_function_table *functions );
1283
1284 int brw_get_scratch_size(int size);
1285 void brw_get_scratch_bo(struct brw_context *brw,
1286 drm_intel_bo **scratch_bo, int size);
1287 void brw_init_shader_time(struct brw_context *brw);
1288 int brw_get_shader_time_index(struct brw_context *brw,
1289 struct gl_shader_program *shader_prog,
1290 struct gl_program *prog,
1291 enum shader_time_shader_type type);
1292 void brw_collect_and_report_shader_time(struct brw_context *brw);
1293 void brw_destroy_shader_time(struct brw_context *brw);
1294
1295 /* brw_urb.c
1296 */
1297 void brw_upload_urb_fence(struct brw_context *brw);
1298
1299 /* brw_curbe.c
1300 */
1301 void brw_upload_cs_urb_state(struct brw_context *brw);
1302
1303 /* brw_fs_reg_allocate.cpp
1304 */
1305 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1306
1307 /* brw_disasm.c */
1308 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1309
1310 /* brw_vs.c */
1311 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1312
1313 /* brw_wm_surface_state.c */
1314 void brw_init_surface_formats(struct brw_context *brw);
1315 void
1316 brw_update_sol_surface(struct brw_context *brw,
1317 struct gl_buffer_object *buffer_obj,
1318 uint32_t *out_offset, unsigned num_vector_components,
1319 unsigned stride_dwords, unsigned offset_dwords);
1320 void brw_upload_ubo_surfaces(struct brw_context *brw,
1321 struct gl_shader *shader,
1322 uint32_t *surf_offsets);
1323
1324 /* brw_surface_formats.c */
1325 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1326 bool brw_render_target_supported(struct brw_context *brw,
1327 struct gl_renderbuffer *rb);
1328
1329 /* gen6_sol.c */
1330 void
1331 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1332 struct gl_transform_feedback_object *obj);
1333 void
1334 brw_end_transform_feedback(struct gl_context *ctx,
1335 struct gl_transform_feedback_object *obj);
1336
1337 /* gen7_sol_state.c */
1338 void
1339 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1340 struct gl_transform_feedback_object *obj);
1341 void
1342 gen7_end_transform_feedback(struct gl_context *ctx,
1343 struct gl_transform_feedback_object *obj);
1344
1345 /* brw_blorp_blit.cpp */
1346 GLbitfield
1347 brw_blorp_framebuffer(struct brw_context *brw,
1348 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1349 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1350 GLbitfield mask, GLenum filter);
1351
1352 bool
1353 brw_blorp_copytexsubimage(struct brw_context *brw,
1354 struct gl_renderbuffer *src_rb,
1355 struct gl_texture_image *dst_image,
1356 int slice,
1357 int srcX0, int srcY0,
1358 int dstX0, int dstY0,
1359 int width, int height);
1360
1361 /* gen6_multisample_state.c */
1362 void
1363 gen6_emit_3dstate_multisample(struct brw_context *brw,
1364 unsigned num_samples);
1365 void
1366 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1367 unsigned num_samples, float coverage,
1368 bool coverage_invert, unsigned sample_mask);
1369 void
1370 gen6_get_sample_position(struct gl_context *ctx,
1371 struct gl_framebuffer *fb,
1372 GLuint index,
1373 GLfloat *result);
1374
1375 /* gen7_urb.c */
1376 void
1377 gen7_allocate_push_constants(struct brw_context *brw);
1378
1379 void
1380 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1381 GLuint vs_size, GLuint vs_start);
1382
1383
1384
1385 /*======================================================================
1386 * Inline conversion functions. These are better-typed than the
1387 * macros used previously:
1388 */
1389 static INLINE struct brw_context *
1390 brw_context( struct gl_context *ctx )
1391 {
1392 return (struct brw_context *)ctx;
1393 }
1394
1395 static INLINE struct brw_vertex_program *
1396 brw_vertex_program(struct gl_vertex_program *p)
1397 {
1398 return (struct brw_vertex_program *) p;
1399 }
1400
1401 static INLINE const struct brw_vertex_program *
1402 brw_vertex_program_const(const struct gl_vertex_program *p)
1403 {
1404 return (const struct brw_vertex_program *) p;
1405 }
1406
1407 static INLINE struct brw_fragment_program *
1408 brw_fragment_program(struct gl_fragment_program *p)
1409 {
1410 return (struct brw_fragment_program *) p;
1411 }
1412
1413 static INLINE const struct brw_fragment_program *
1414 brw_fragment_program_const(const struct gl_fragment_program *p)
1415 {
1416 return (const struct brw_fragment_program *) p;
1417 }
1418
1419 /**
1420 * Pre-gen6, the register file of the EUs was shared between threads,
1421 * and each thread used some subset allocated on a 16-register block
1422 * granularity. The unit states wanted these block counts.
1423 */
1424 static inline int
1425 brw_register_blocks(int reg_count)
1426 {
1427 return ALIGN(reg_count, 16) / 16 - 1;
1428 }
1429
1430 static inline uint32_t
1431 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1432 uint32_t prog_offset)
1433 {
1434 struct intel_context *intel = &brw->intel;
1435
1436 if (intel->gen >= 5) {
1437 /* Using state base address. */
1438 return prog_offset;
1439 }
1440
1441 drm_intel_bo_emit_reloc(brw->batch.bo,
1442 state_offset,
1443 brw->cache.bo,
1444 prog_offset,
1445 I915_GEM_DOMAIN_INSTRUCTION, 0);
1446
1447 return brw->cache.bo->offset + prog_offset;
1448 }
1449
1450 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1451 bool brw_lower_texture_gradients(struct brw_context *brw,
1452 struct exec_list *instructions);
1453
1454 struct opcode_desc {
1455 char *name;
1456 int nsrc;
1457 int ndst;
1458 };
1459
1460 extern const struct opcode_desc opcode_descs[128];
1461
1462 void
1463 brw_emit_depthbuffer(struct brw_context *brw);
1464
1465 void
1466 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1467 struct intel_mipmap_tree *depth_mt,
1468 uint32_t depth_offset, uint32_t depthbuffer_format,
1469 uint32_t depth_surface_type,
1470 struct intel_mipmap_tree *stencil_mt,
1471 bool hiz, bool separate_stencil,
1472 uint32_t width, uint32_t height,
1473 uint32_t tile_x, uint32_t tile_y);
1474
1475 void
1476 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1477 struct intel_mipmap_tree *depth_mt,
1478 uint32_t depth_offset, uint32_t depthbuffer_format,
1479 uint32_t depth_surface_type,
1480 struct intel_mipmap_tree *stencil_mt,
1481 bool hiz, bool separate_stencil,
1482 uint32_t width, uint32_t height,
1483 uint32_t tile_x, uint32_t tile_y);
1484
1485 #ifdef __cplusplus
1486 }
1487 #endif
1488
1489 #endif