i965: create code path to handle primitive restart in hardware
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 #define AUB_TRACE_TYPE_MASK 0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
198 #define AUB_TRACE_TYPE_BATCH (1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
209
210 /**
211 * state_struct_type enum values are encoded with the top 16 bits representing
212 * the type to be delivered to the .aub file, and the bottom 16 bits
213 * representing the subtype. This macro performs the encoding.
214 */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216
217 enum state_struct_type {
218 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231
232 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235
236 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242
243 /**
244 * Decode a state_struct_type value to determine the type that should be
245 * stored in the .aub file.
246 */
247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249 return (ss_type & 0xFFFF0000) >> 16;
250 }
251
252 /**
253 * Decode a state_struct_type value to determine the subtype that should be
254 * stored in the .aub file.
255 */
256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258 return ss_type & 0xFFFF;
259 }
260
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263 struct gl_vertex_program program;
264 GLuint id;
265 bool use_const_buffer;
266 };
267
268
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271 struct gl_fragment_program program;
272 GLuint id; /**< serial no. to identify frag progs, never re-used */
273 };
274
275 struct brw_shader {
276 struct gl_shader base;
277
278 /** Shader IR transformed for native compile, at link time. */
279 struct exec_list *ir;
280 };
281
282 struct brw_shader_program {
283 struct gl_shader_program base;
284 };
285
286 enum param_conversion {
287 PARAM_NO_CONVERT,
288 PARAM_CONVERT_F2I,
289 PARAM_CONVERT_F2U,
290 PARAM_CONVERT_F2B,
291 PARAM_CONVERT_ZERO,
292 };
293
294 /* Data about a particular attempt to compile a program. Note that
295 * there can be many of these, each in a different GL state
296 * corresponding to a different brw_wm_prog_key struct, with different
297 * compiled programs:
298 */
299 struct brw_wm_prog_data {
300 GLuint curb_read_length;
301 GLuint urb_read_length;
302
303 GLuint first_curbe_grf;
304 GLuint first_curbe_grf_16;
305 GLuint reg_blocks;
306 GLuint reg_blocks_16;
307 GLuint total_scratch;
308
309 GLuint nr_params; /**< number of float params/constants */
310 GLuint nr_pull_params;
311 bool error;
312 bool dual_src_blend;
313 int dispatch_width;
314 uint32_t prog_offset_16;
315
316 /**
317 * Mask of which interpolation modes are required by the fragment shader.
318 * Used in hardware setup on gen6+.
319 */
320 uint32_t barycentric_interp_modes;
321
322 /* Pointer to tracked values (only valid once
323 * _mesa_load_state_parameters has been called at runtime).
324 */
325 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
326 enum param_conversion param_convert[MAX_UNIFORMS * 4];
327 const float *pull_param[MAX_UNIFORMS * 4];
328 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
329 };
330
331 /**
332 * Enum representing the i965-specific vertex results that don't correspond
333 * exactly to any element of gl_vert_result. The values of this enum are
334 * assigned such that they don't conflict with gl_vert_result.
335 */
336 typedef enum
337 {
338 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
339 BRW_VERT_RESULT_HPOS_DUPLICATE,
340 BRW_VERT_RESULT_PAD,
341 /*
342 * It's actually not a vert_result but just a _mark_ to let sf aware that
343 * he need do something special to handle gl_PointCoord builtin variable
344 * correctly. see compile_sf_prog() for more info.
345 */
346 BRW_VERT_RESULT_PNTC,
347 BRW_VERT_RESULT_MAX
348 } brw_vert_result;
349
350
351 /**
352 * Data structure recording the relationship between the gl_vert_result enum
353 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
354 * single octaword within the VUE (128 bits).
355 *
356 * Note that each BRW register contains 256 bits (2 octawords), so when
357 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
358 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
359 * in a vertex shader), each register corresponds to a single VUE slot, since
360 * it contains data for two separate vertices.
361 */
362 struct brw_vue_map {
363 /**
364 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
365 * not stored in a slot (because they are not written, or because
366 * additional processing is applied before storing them in the VUE), the
367 * value is -1.
368 */
369 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
370
371 /**
372 * Map from VUE slot to gl_vert_result value. For slots that do not
373 * directly correspond to a gl_vert_result, the value comes from
374 * brw_vert_result.
375 *
376 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
377 * simplifies code that uses the value stored in slot_to_vert_result to
378 * create a bit mask).
379 */
380 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
381
382 /**
383 * Total number of VUE slots in use
384 */
385 int num_slots;
386 };
387
388 /**
389 * Convert a VUE slot number into a byte offset within the VUE.
390 */
391 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
392 {
393 return 16*slot;
394 }
395
396 /**
397 * Convert a vert_result into a byte offset within the VUE.
398 */
399 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
400 GLuint vert_result)
401 {
402 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
403 }
404
405
406 struct brw_sf_prog_data {
407 GLuint urb_read_length;
408 GLuint total_grf;
409
410 /* Each vertex may have upto 12 attributes, 4 components each,
411 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
412 * rows.
413 *
414 * Actually we use 4 for each, so call it 12 rows.
415 */
416 GLuint urb_entry_size;
417 };
418
419 struct brw_clip_prog_data {
420 GLuint curb_read_length; /* user planes? */
421 GLuint clip_mode;
422 GLuint urb_read_length;
423 GLuint total_grf;
424 };
425
426 struct brw_gs_prog_data {
427 GLuint urb_read_length;
428 GLuint total_grf;
429
430 /**
431 * Gen6 transform feedback: Amount by which the streaming vertex buffer
432 * indices should be incremented each time the GS is invoked.
433 */
434 unsigned svbi_postincrement_value;
435 };
436
437 struct brw_vs_prog_data {
438 struct brw_vue_map vue_map;
439
440 GLuint curb_read_length;
441 GLuint urb_read_length;
442 GLuint total_grf;
443 GLbitfield64 outputs_written;
444 GLuint nr_params; /**< number of float params/constants */
445 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
446 GLuint total_scratch;
447
448 GLbitfield64 inputs_read;
449
450 /* Used for calculating urb partitions:
451 */
452 GLuint urb_entry_size;
453
454 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
455 const float *pull_param[MAX_UNIFORMS * 4];
456
457 bool uses_new_param_layout;
458 bool uses_vertexid;
459 bool userclip;
460
461 int num_surfaces;
462 };
463
464
465 /* Size == 0 if output either not written, or always [0,0,0,1]
466 */
467 struct brw_vs_ouput_sizes {
468 GLubyte output_size[VERT_RESULT_MAX];
469 };
470
471
472 /** Number of texture sampler units */
473 #define BRW_MAX_TEX_UNIT 16
474
475 /** Max number of render targets in a shader */
476 #define BRW_MAX_DRAW_BUFFERS 8
477
478 /**
479 * Max number of binding table entries used for stream output.
480 *
481 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
482 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
483 *
484 * On Gen6, the size of transform feedback data is limited not by the number
485 * of components but by the number of binding table entries we set aside. We
486 * use one binding table entry for a float, one entry for a vector, and one
487 * entry per matrix column. Since the only way we can communicate our
488 * transform feedback capabilities to the client is via
489 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
490 * worst case, in which all the varyings are floats, so we use up one binding
491 * table entry per component. Therefore we need to set aside at least 64
492 * binding table entries for use by transform feedback.
493 *
494 * Note: since we don't currently pack varyings, it is currently impossible
495 * for the client to actually use up all of these binding table entries--if
496 * all of their varyings were floats, they would run out of varying slots and
497 * fail to link. But that's a bug, so it seems prudent to go ahead and
498 * allocate the number of binding table entries we will need once the bug is
499 * fixed.
500 */
501 #define BRW_MAX_SOL_BINDINGS 64
502
503 /** Maximum number of actual buffers used for stream output */
504 #define BRW_MAX_SOL_BUFFERS 4
505
506 /**
507 * Helpers to create Surface Binding Table indexes for draw buffers,
508 * textures, and constant buffers.
509 *
510 * Shader threads access surfaces via numeric handles, rather than directly
511 * using pointers. The binding table maps these numeric handles to the
512 * address of the actual buffer.
513 *
514 * For example, a shader might ask to sample from "surface 7." In this case,
515 * bind[7] would contain a pointer to a texture.
516 *
517 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
518 *
519 * +-------------------------------+
520 * | 0 | Draw buffer 0 |
521 * | . | . |
522 * | : | : |
523 * | 7 | Draw buffer 7 |
524 * |-----|-------------------------|
525 * | 8 | WM Pull Constant Buffer |
526 * |-----|-------------------------|
527 * | 9 | Texture 0 |
528 * | . | . |
529 * | : | : |
530 * | 24 | Texture 15 |
531 * +-------------------------------+
532 *
533 * Our VS binding tables are programmed as follows:
534 *
535 * +-----+-------------------------+
536 * | 0 | VS Pull Constant Buffer |
537 * +-----+-------------------------+
538 * | 1 | Texture 0 |
539 * | . | . |
540 * | : | : |
541 * | 16 | Texture 15 |
542 * +-------------------------------+
543 *
544 * Our (gen6) GS binding tables are programmed as follows:
545 *
546 * +-----+-------------------------+
547 * | 0 | SOL Binding 0 |
548 * | . | . |
549 * | : | : |
550 * | 63 | SOL Binding 63 |
551 * +-----+-------------------------+
552 *
553 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
554 * the identity function or things will break. We do want to keep draw buffers
555 * first so we can use headerless render target writes for RT 0.
556 */
557 #define SURF_INDEX_DRAW(d) (d)
558 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
559 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
560
561 /** Maximum size of the binding table. */
562 #define BRW_MAX_WM_SURFACES SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT)
563
564 #define SURF_INDEX_VERT_CONST_BUFFER (0)
565 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
566 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT)
567
568 #define SURF_INDEX_SOL_BINDING(t) ((t))
569 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
570
571 enum brw_cache_id {
572 BRW_BLEND_STATE,
573 BRW_DEPTH_STENCIL_STATE,
574 BRW_COLOR_CALC_STATE,
575 BRW_CC_VP,
576 BRW_CC_UNIT,
577 BRW_WM_PROG,
578 BRW_BLORP_BLIT_PROG,
579 BRW_SAMPLER,
580 BRW_WM_UNIT,
581 BRW_SF_PROG,
582 BRW_SF_VP,
583 BRW_SF_UNIT, /* scissor state on gen6 */
584 BRW_VS_UNIT,
585 BRW_VS_PROG,
586 BRW_GS_UNIT,
587 BRW_GS_PROG,
588 BRW_CLIP_VP,
589 BRW_CLIP_UNIT,
590 BRW_CLIP_PROG,
591
592 BRW_MAX_CACHE
593 };
594
595 struct brw_cache_item {
596 /**
597 * Effectively part of the key, cache_id identifies what kind of state
598 * buffer is involved, and also which brw->state.dirty.cache flag should
599 * be set when this cache item is chosen.
600 */
601 enum brw_cache_id cache_id;
602 /** 32-bit hash of the key data */
603 GLuint hash;
604 GLuint key_size; /* for variable-sized keys */
605 GLuint aux_size;
606 const void *key;
607
608 uint32_t offset;
609 uint32_t size;
610
611 struct brw_cache_item *next;
612 };
613
614
615
616 struct brw_cache {
617 struct brw_context *brw;
618
619 struct brw_cache_item **items;
620 drm_intel_bo *bo;
621 GLuint size, n_items;
622
623 uint32_t next_offset;
624 bool bo_used_by_gpu;
625 };
626
627
628 /* Considered adding a member to this struct to document which flags
629 * an update might raise so that ordering of the state atoms can be
630 * checked or derived at runtime. Dropped the idea in favor of having
631 * a debug mode where the state is monitored for flags which are
632 * raised that have already been tested against.
633 */
634 struct brw_tracked_state {
635 struct brw_state_flags dirty;
636 void (*emit)( struct brw_context *brw );
637 };
638
639 /* Flags for brw->state.cache.
640 */
641 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
642 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
643 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
644 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
645 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
646 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
647 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
648 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
649 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
650 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
651 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
652 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
653 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
654 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
655 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
656 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
657 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
658 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
659
660 struct brw_cached_batch_item {
661 struct header *header;
662 GLuint sz;
663 struct brw_cached_batch_item *next;
664 };
665
666
667
668 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
669 * be easier if C allowed arrays of packed elements?
670 */
671 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
672
673 struct brw_vertex_buffer {
674 /** Buffer object containing the uploaded vertex data */
675 drm_intel_bo *bo;
676 uint32_t offset;
677 /** Byte stride between elements in the uploaded array */
678 GLuint stride;
679 };
680 struct brw_vertex_element {
681 const struct gl_client_array *glarray;
682
683 int buffer;
684
685 /** The corresponding Mesa vertex attribute */
686 gl_vert_attrib attrib;
687 /** Size of a complete element */
688 GLuint element_size;
689 /** Offset of the first element within the buffer object */
690 unsigned int offset;
691 };
692
693
694
695 struct brw_vertex_info {
696 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
697 };
698
699 struct brw_query_object {
700 struct gl_query_object Base;
701
702 /** Last query BO associated with this query. */
703 drm_intel_bo *bo;
704 /** First index in bo with query data for this object. */
705 int first_index;
706 /** Last index in bo with query data for this object. */
707 int last_index;
708 };
709
710
711 /**
712 * brw_context is derived from intel_context.
713 */
714 struct brw_context
715 {
716 struct intel_context intel; /**< base class, must be first field */
717 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
718
719 bool emit_state_always;
720 bool has_surface_tile_offset;
721 bool has_compr4;
722 bool has_negative_rhw_bug;
723 bool has_aa_line_parameters;
724 bool has_pln;
725 bool precompile;
726
727 struct {
728 struct brw_state_flags dirty;
729 } state;
730
731 struct brw_cache cache;
732 struct brw_cached_batch_item *cached_batch_items;
733
734 struct {
735 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
736 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
737 struct {
738 uint32_t handle;
739 uint32_t offset;
740 uint32_t stride;
741 } current_buffers[VERT_ATTRIB_MAX];
742
743 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
744 GLuint nr_enabled;
745 GLuint nr_buffers, nr_current_buffers;
746
747 /* Summary of size and varying of active arrays, so we can check
748 * for changes to this state:
749 */
750 struct brw_vertex_info info;
751 unsigned int min_index, max_index;
752
753 /* Offset from start of vertex buffer so we can avoid redefining
754 * the same VB packed over and over again.
755 */
756 unsigned int start_vertex_bias;
757 } vb;
758
759 struct {
760 /**
761 * Index buffer for this draw_prims call.
762 *
763 * Updates are signaled by BRW_NEW_INDICES.
764 */
765 const struct _mesa_index_buffer *ib;
766
767 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
768 drm_intel_bo *bo;
769 GLuint type;
770
771 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
772 * avoid re-uploading the IB packet over and over if we're actually
773 * referencing the same index buffer.
774 */
775 unsigned int start_vertex_offset;
776 } ib;
777
778 /* Active vertex program:
779 */
780 const struct gl_vertex_program *vertex_program;
781 const struct gl_fragment_program *fragment_program;
782
783 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
784 uint32_t CMD_VF_STATISTICS;
785 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
786 uint32_t CMD_PIPELINE_SELECT;
787
788 /**
789 * Platform specific constants containing the maximum number of threads
790 * for each pipeline stage.
791 */
792 int max_vs_threads;
793 int max_gs_threads;
794 int max_wm_threads;
795
796 /* BRW_NEW_URB_ALLOCATIONS:
797 */
798 struct {
799 GLuint vsize; /* vertex size plus header in urb registers */
800 GLuint csize; /* constant buffer size in urb registers */
801 GLuint sfsize; /* setup data size in urb registers */
802
803 bool constrained;
804
805 GLuint max_vs_entries; /* Maximum number of VS entries */
806 GLuint max_gs_entries; /* Maximum number of GS entries */
807
808 GLuint nr_vs_entries;
809 GLuint nr_gs_entries;
810 GLuint nr_clip_entries;
811 GLuint nr_sf_entries;
812 GLuint nr_cs_entries;
813
814 /* gen6:
815 * The length of each URB entry owned by the VS (or GS), as
816 * a number of 1024-bit (128-byte) rows. Should be >= 1.
817 *
818 * gen7: Same meaning, but in 512-bit (64-byte) rows.
819 */
820 GLuint vs_size;
821 GLuint gs_size;
822
823 GLuint vs_start;
824 GLuint gs_start;
825 GLuint clip_start;
826 GLuint sf_start;
827 GLuint cs_start;
828 GLuint size; /* Hardware URB size, in KB. */
829
830 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
831 * URB space for the GS.
832 */
833 bool gen6_gs_previously_active;
834 } urb;
835
836
837 /* BRW_NEW_CURBE_OFFSETS:
838 */
839 struct {
840 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
841 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
842 GLuint clip_start;
843 GLuint clip_size;
844 GLuint vs_start;
845 GLuint vs_size;
846 GLuint total_size;
847
848 drm_intel_bo *curbe_bo;
849 /** Offset within curbe_bo of space for current curbe entry */
850 GLuint curbe_offset;
851 /** Offset within curbe_bo of space for next curbe entry */
852 GLuint curbe_next_offset;
853
854 /**
855 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
856 * in brw_curbe.c with the same set of constant data to be uploaded,
857 * so we'd rather not upload new constants in that case (it can cause
858 * a pipeline bubble since only up to 4 can be pipelined at a time).
859 */
860 GLfloat *last_buf;
861 /**
862 * Allocation for where to calculate the next set of CURBEs.
863 * It's a hot enough path that malloc/free of that data matters.
864 */
865 GLfloat *next_buf;
866 GLuint last_bufsz;
867 } curbe;
868
869 /** SAMPLER_STATE count and offset */
870 struct {
871 GLuint count;
872 uint32_t offset;
873 } sampler;
874
875 struct {
876 struct brw_vs_prog_data *prog_data;
877 int8_t *constant_map; /* variable array following prog_data */
878
879 drm_intel_bo *scratch_bo;
880 drm_intel_bo *const_bo;
881 /** Offset in the program cache to the VS program */
882 uint32_t prog_offset;
883 uint32_t state_offset;
884
885 uint32_t push_const_offset; /* Offset in the batchbuffer */
886 int push_const_size; /* in 256-bit register increments */
887
888 /** @{ register allocator */
889
890 struct ra_regs *regs;
891
892 /**
893 * Array of the ra classes for the unaligned contiguous register
894 * block sizes used.
895 */
896 int *classes;
897
898 /**
899 * Mapping for register-allocated objects in *regs to the first
900 * GRF for that object.
901 */
902 uint8_t *ra_reg_to_grf;
903 /** @} */
904
905 uint32_t bind_bo_offset;
906 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
907 } vs;
908
909 struct {
910 struct brw_gs_prog_data *prog_data;
911
912 bool prog_active;
913 /** Offset in the program cache to the CLIP program pre-gen6 */
914 uint32_t prog_offset;
915 uint32_t state_offset;
916
917 uint32_t bind_bo_offset;
918 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
919 } gs;
920
921 struct {
922 struct brw_clip_prog_data *prog_data;
923
924 /** Offset in the program cache to the CLIP program pre-gen6 */
925 uint32_t prog_offset;
926
927 /* Offset in the batch to the CLIP state on pre-gen6. */
928 uint32_t state_offset;
929
930 /* As of gen6, this is the offset in the batch to the CLIP VP,
931 * instead of vp_bo.
932 */
933 uint32_t vp_offset;
934 } clip;
935
936
937 struct {
938 struct brw_sf_prog_data *prog_data;
939
940 /** Offset in the program cache to the CLIP program pre-gen6 */
941 uint32_t prog_offset;
942 uint32_t state_offset;
943 uint32_t vp_offset;
944 } sf;
945
946 struct {
947 struct brw_wm_prog_data *prog_data;
948 struct brw_wm_compile *compile_data;
949
950 /** Input sizes, calculated from active vertex program.
951 * One bit per fragment program input attribute.
952 */
953 GLbitfield input_size_masks[4];
954
955 /** offsets in the batch to sampler default colors (texture border color)
956 */
957 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
958
959 GLuint render_surf;
960
961 drm_intel_bo *scratch_bo;
962
963 /** Offset in the program cache to the WM program */
964 uint32_t prog_offset;
965
966 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
967
968 drm_intel_bo *const_bo; /* pull constant buffer. */
969 /**
970 * This is offset in the batch to the push constants on gen6.
971 *
972 * Pre-gen6, push constants live in the CURBE.
973 */
974 uint32_t push_const_offset;
975
976 /** Binding table of pointers to surf_bo entries */
977 uint32_t bind_bo_offset;
978 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
979
980 /** @{ register allocator */
981
982 struct ra_regs *regs;
983
984 /** Array of the ra classes for the unaligned contiguous
985 * register block sizes used.
986 */
987 int *classes;
988
989 /**
990 * Mapping for register-allocated objects in *regs to the first
991 * GRF for that object.
992 */
993 uint8_t *ra_reg_to_grf;
994
995 /**
996 * ra class for the aligned pairs we use for PLN, which doesn't
997 * appear in *classes.
998 */
999 int aligned_pairs_class;
1000
1001 /** @} */
1002 } wm;
1003
1004
1005 struct {
1006 uint32_t state_offset;
1007 uint32_t blend_state_offset;
1008 uint32_t depth_stencil_state_offset;
1009 uint32_t vp_offset;
1010 } cc;
1011
1012 struct {
1013 struct brw_query_object *obj;
1014 drm_intel_bo *bo;
1015 int index;
1016 bool active;
1017 } query;
1018 /* Used to give every program string a unique id
1019 */
1020 GLuint program_id;
1021
1022 int num_atoms;
1023 const struct brw_tracked_state **atoms;
1024
1025 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1026 struct {
1027 uint32_t offset;
1028 uint32_t size;
1029 enum state_struct_type type;
1030 } *state_batch_list;
1031 int state_batch_count;
1032
1033 struct brw_sol_state {
1034 uint32_t svbi_0_starting_index;
1035 uint32_t svbi_0_max_index;
1036 uint32_t offset_0_batch_start;
1037 uint32_t primitives_generated;
1038 uint32_t primitives_written;
1039 } sol;
1040
1041 uint32_t render_target_format[MESA_FORMAT_COUNT];
1042 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1043
1044 /* PrimitiveRestart */
1045 struct {
1046 bool in_progress;
1047 } prim_restart;
1048 };
1049
1050
1051
1052 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1053
1054 struct brw_instruction_info {
1055 char *name;
1056 int nsrc;
1057 int ndst;
1058 bool is_arith;
1059 };
1060 extern const struct brw_instruction_info brw_opcodes[128];
1061
1062 /*======================================================================
1063 * brw_vtbl.c
1064 */
1065 void brwInitVtbl( struct brw_context *brw );
1066
1067 /*======================================================================
1068 * brw_context.c
1069 */
1070 bool brwCreateContext(int api,
1071 const struct gl_config *mesaVis,
1072 __DRIcontext *driContextPriv,
1073 void *sharedContextPrivate);
1074
1075 /*======================================================================
1076 * brw_queryobj.c
1077 */
1078 void brw_init_queryobj_functions(struct dd_function_table *functions);
1079 void brw_prepare_query_begin(struct brw_context *brw);
1080 void brw_emit_query_begin(struct brw_context *brw);
1081 void brw_emit_query_end(struct brw_context *brw);
1082
1083 /*======================================================================
1084 * brw_state_dump.c
1085 */
1086 void brw_debug_batch(struct intel_context *intel);
1087 void brw_annotate_aub(struct intel_context *intel);
1088
1089 /*======================================================================
1090 * brw_tex.c
1091 */
1092 void brw_validate_textures( struct brw_context *brw );
1093
1094
1095 /*======================================================================
1096 * brw_program.c
1097 */
1098 void brwInitFragProgFuncs( struct dd_function_table *functions );
1099
1100 int brw_get_scratch_size(int size);
1101 void brw_get_scratch_bo(struct intel_context *intel,
1102 drm_intel_bo **scratch_bo, int size);
1103
1104
1105 /* brw_urb.c
1106 */
1107 void brw_upload_urb_fence(struct brw_context *brw);
1108
1109 /* brw_curbe.c
1110 */
1111 void brw_upload_cs_urb_state(struct brw_context *brw);
1112
1113 /* brw_disasm.c */
1114 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1115
1116 /* brw_vs.c */
1117 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1118
1119 /* brw_wm_surface_state.c */
1120 void brw_init_surface_formats(struct brw_context *brw);
1121 void
1122 brw_update_sol_surface(struct brw_context *brw,
1123 struct gl_buffer_object *buffer_obj,
1124 uint32_t *out_offset, unsigned num_vector_components,
1125 unsigned stride_dwords, unsigned offset_dwords);
1126
1127 /* gen6_sol.c */
1128 void
1129 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1130 struct gl_transform_feedback_object *obj);
1131 void
1132 brw_end_transform_feedback(struct gl_context *ctx,
1133 struct gl_transform_feedback_object *obj);
1134
1135 /* gen7_sol_state.c */
1136 void
1137 gen7_end_transform_feedback(struct gl_context *ctx,
1138 struct gl_transform_feedback_object *obj);
1139
1140 /* brw_blorp_blit.cpp */
1141 GLbitfield
1142 brw_blorp_framebuffer(struct intel_context *intel,
1143 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1144 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1145 GLbitfield mask, GLenum filter);
1146
1147 /* gen6_multisample_state.c */
1148 void
1149 gen6_emit_3dstate_multisample(struct brw_context *brw,
1150 unsigned num_samples);
1151 void
1152 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1153 unsigned num_samples);
1154
1155
1156
1157 /*======================================================================
1158 * Inline conversion functions. These are better-typed than the
1159 * macros used previously:
1160 */
1161 static INLINE struct brw_context *
1162 brw_context( struct gl_context *ctx )
1163 {
1164 return (struct brw_context *)ctx;
1165 }
1166
1167 static INLINE struct brw_vertex_program *
1168 brw_vertex_program(struct gl_vertex_program *p)
1169 {
1170 return (struct brw_vertex_program *) p;
1171 }
1172
1173 static INLINE const struct brw_vertex_program *
1174 brw_vertex_program_const(const struct gl_vertex_program *p)
1175 {
1176 return (const struct brw_vertex_program *) p;
1177 }
1178
1179 static INLINE struct brw_fragment_program *
1180 brw_fragment_program(struct gl_fragment_program *p)
1181 {
1182 return (struct brw_fragment_program *) p;
1183 }
1184
1185 static INLINE const struct brw_fragment_program *
1186 brw_fragment_program_const(const struct gl_fragment_program *p)
1187 {
1188 return (const struct brw_fragment_program *) p;
1189 }
1190
1191 static inline
1192 float convert_param(enum param_conversion conversion, const float *param)
1193 {
1194 union {
1195 float f;
1196 uint32_t u;
1197 int32_t i;
1198 } fi;
1199
1200 switch (conversion) {
1201 case PARAM_NO_CONVERT:
1202 return *param;
1203 case PARAM_CONVERT_F2I:
1204 fi.i = *param;
1205 return fi.f;
1206 case PARAM_CONVERT_F2U:
1207 fi.u = *param;
1208 return fi.f;
1209 case PARAM_CONVERT_F2B:
1210 if (*param != 0.0)
1211 fi.i = 1;
1212 else
1213 fi.i = 0;
1214 return fi.f;
1215 case PARAM_CONVERT_ZERO:
1216 return 0.0;
1217 default:
1218 return *param;
1219 }
1220 }
1221
1222 /**
1223 * Pre-gen6, the register file of the EUs was shared between threads,
1224 * and each thread used some subset allocated on a 16-register block
1225 * granularity. The unit states wanted these block counts.
1226 */
1227 static inline int
1228 brw_register_blocks(int reg_count)
1229 {
1230 return ALIGN(reg_count, 16) / 16 - 1;
1231 }
1232
1233 static inline uint32_t
1234 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1235 uint32_t prog_offset)
1236 {
1237 struct intel_context *intel = &brw->intel;
1238
1239 if (intel->gen >= 5) {
1240 /* Using state base address. */
1241 return prog_offset;
1242 }
1243
1244 drm_intel_bo_emit_reloc(intel->batch.bo,
1245 state_offset,
1246 brw->cache.bo,
1247 prog_offset,
1248 I915_GEM_DOMAIN_INSTRUCTION, 0);
1249
1250 return brw->cache.bo->offset + prog_offset;
1251 }
1252
1253 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1254
1255 #ifdef __cplusplus
1256 }
1257 #endif
1258
1259 #endif