i965: Rely on hardware contexts for query objects on Gen6+.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 BRW_STATE_VUE_MAP_GEOM_OUT,
153 BRW_STATE_TRANSFORM_FEEDBACK,
154 BRW_STATE_RASTERIZER_DISCARD,
155 BRW_STATE_STATS_WM,
156 BRW_STATE_UNIFORM_BUFFER
157 };
158
159 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
160 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
161 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
185 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
186 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
187 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
188 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
189
190 struct brw_state_flags {
191 /** State update flags signalled by mesa internals */
192 GLuint mesa;
193 /**
194 * State update flags signalled as the result of brw_tracked_state updates
195 */
196 GLuint brw;
197 /** State update flags signalled by brw_state_cache.c searches */
198 GLuint cache;
199 };
200
201 #define AUB_TRACE_TYPE_MASK 0x0000ff00
202 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
203 #define AUB_TRACE_TYPE_BATCH (1 << 8)
204 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
205 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
206 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
207 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
208 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
209 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
210 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
211 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
212 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
213 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
214
215 /**
216 * state_struct_type enum values are encoded with the top 16 bits representing
217 * the type to be delivered to the .aub file, and the bottom 16 bits
218 * representing the subtype. This macro performs the encoding.
219 */
220 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
221
222 enum state_struct_type {
223 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
224 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
225 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
226 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
227 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
228 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
229 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
230 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
231 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
232 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
233 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
234 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
235 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
236
237 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
238 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
239 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
240
241 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
242 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
243 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
244 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
245 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
246 };
247
248 /**
249 * Decode a state_struct_type value to determine the type that should be
250 * stored in the .aub file.
251 */
252 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
253 {
254 return (ss_type & 0xFFFF0000) >> 16;
255 }
256
257 /**
258 * Decode a state_struct_type value to determine the subtype that should be
259 * stored in the .aub file.
260 */
261 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
262 {
263 return ss_type & 0xFFFF;
264 }
265
266 /** Subclass of Mesa vertex program */
267 struct brw_vertex_program {
268 struct gl_vertex_program program;
269 GLuint id;
270 };
271
272
273 /** Subclass of Mesa fragment program */
274 struct brw_fragment_program {
275 struct gl_fragment_program program;
276 GLuint id; /**< serial no. to identify frag progs, never re-used */
277 };
278
279 struct brw_shader {
280 struct gl_shader base;
281
282 bool compiled_once;
283
284 /** Shader IR transformed for native compile, at link time. */
285 struct exec_list *ir;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_varying_slot. The values of this enum are
331 * assigned such that they don't conflict with gl_varying_slot.
332 */
333 typedef enum
334 {
335 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
336 BRW_VARYING_SLOT_POS_DUPLICATE,
337 BRW_VARYING_SLOT_PAD,
338 /**
339 * Technically this is not a varying but just a placeholder that
340 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
341 * builtin variable to be compiled correctly. see compile_sf_prog() for
342 * more info.
343 */
344 BRW_VARYING_SLOT_PNTC,
345 BRW_VARYING_SLOT_COUNT
346 } brw_varying_slot;
347
348
349 /**
350 * Data structure recording the relationship between the gl_varying_slot enum
351 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
352 * single octaword within the VUE (128 bits).
353 *
354 * Note that each BRW register contains 256 bits (2 octawords), so when
355 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
356 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
357 * in a vertex shader), each register corresponds to a single VUE slot, since
358 * it contains data for two separate vertices.
359 */
360 struct brw_vue_map {
361 /**
362 * Bitfield representing all varying slots that are (a) stored in this VUE
363 * map, and (b) actually written by the shader. Does not include any of
364 * the additional varying slots defined in brw_varying_slot.
365 */
366 GLbitfield64 slots_valid;
367
368 /**
369 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
370 * not stored in a slot (because they are not written, or because
371 * additional processing is applied before storing them in the VUE), the
372 * value is -1.
373 */
374 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
375
376 /**
377 * Map from VUE slot to gl_varying_slot value. For slots that do not
378 * directly correspond to a gl_varying_slot, the value comes from
379 * brw_varying_slot.
380 *
381 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
382 * simplifies code that uses the value stored in slot_to_varying to
383 * create a bit mask).
384 */
385 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
386
387 /**
388 * Total number of VUE slots in use
389 */
390 int num_slots;
391 };
392
393 /**
394 * Convert a VUE slot number into a byte offset within the VUE.
395 */
396 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
397 {
398 return 16*slot;
399 }
400
401 /**
402 * Convert a vertex output (brw_varying_slot) into a byte offset within the
403 * VUE.
404 */
405 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
406 GLuint varying)
407 {
408 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
409 }
410
411 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
412 GLbitfield64 slots_valid, bool userclip_active);
413
414
415 struct brw_sf_prog_data {
416 GLuint urb_read_length;
417 GLuint total_grf;
418
419 /* Each vertex may have upto 12 attributes, 4 components each,
420 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
421 * rows.
422 *
423 * Actually we use 4 for each, so call it 12 rows.
424 */
425 GLuint urb_entry_size;
426 };
427
428 struct brw_clip_prog_data {
429 GLuint curb_read_length; /* user planes? */
430 GLuint clip_mode;
431 GLuint urb_read_length;
432 GLuint total_grf;
433 };
434
435 struct brw_gs_prog_data {
436 GLuint urb_read_length;
437 GLuint total_grf;
438
439 /**
440 * Gen6 transform feedback: Amount by which the streaming vertex buffer
441 * indices should be incremented each time the GS is invoked.
442 */
443 unsigned svbi_postincrement_value;
444 };
445
446
447 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
448 * this struct!
449 */
450 struct brw_vec4_prog_data {
451 struct brw_vue_map vue_map;
452
453 GLuint curb_read_length;
454 GLuint urb_read_length;
455 GLuint total_grf;
456 GLuint nr_params; /**< number of float params/constants */
457 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
458 GLuint total_scratch;
459
460 /* Used for calculating urb partitions. In the VS, this is the size of the
461 * URB entry used for both input and output to the thread. In the GS, this
462 * is the size of the URB entry used for output.
463 */
464 GLuint urb_entry_size;
465
466 int num_surfaces;
467
468 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
469 const float **param;
470 const float **pull_param;
471 };
472
473
474 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
475 * struct!
476 */
477 struct brw_vs_prog_data {
478 struct brw_vec4_prog_data base;
479
480 GLbitfield64 inputs_read;
481
482 bool uses_vertexid;
483 };
484
485 /** Number of texture sampler units */
486 #define BRW_MAX_TEX_UNIT 16
487
488 /** Max number of render targets in a shader */
489 #define BRW_MAX_DRAW_BUFFERS 8
490
491 /**
492 * Max number of binding table entries used for stream output.
493 *
494 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
495 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
496 *
497 * On Gen6, the size of transform feedback data is limited not by the number
498 * of components but by the number of binding table entries we set aside. We
499 * use one binding table entry for a float, one entry for a vector, and one
500 * entry per matrix column. Since the only way we can communicate our
501 * transform feedback capabilities to the client is via
502 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
503 * worst case, in which all the varyings are floats, so we use up one binding
504 * table entry per component. Therefore we need to set aside at least 64
505 * binding table entries for use by transform feedback.
506 *
507 * Note: since we don't currently pack varyings, it is currently impossible
508 * for the client to actually use up all of these binding table entries--if
509 * all of their varyings were floats, they would run out of varying slots and
510 * fail to link. But that's a bug, so it seems prudent to go ahead and
511 * allocate the number of binding table entries we will need once the bug is
512 * fixed.
513 */
514 #define BRW_MAX_SOL_BINDINGS 64
515
516 /** Maximum number of actual buffers used for stream output */
517 #define BRW_MAX_SOL_BUFFERS 4
518
519 #define BRW_MAX_WM_UBOS 12
520 #define BRW_MAX_VS_UBOS 12
521
522 /**
523 * Helpers to create Surface Binding Table indexes for draw buffers,
524 * textures, and constant buffers.
525 *
526 * Shader threads access surfaces via numeric handles, rather than directly
527 * using pointers. The binding table maps these numeric handles to the
528 * address of the actual buffer.
529 *
530 * For example, a shader might ask to sample from "surface 7." In this case,
531 * bind[7] would contain a pointer to a texture.
532 *
533 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
534 *
535 * +-------------------------------+
536 * | 0 | Draw buffer 0 |
537 * | . | . |
538 * | : | : |
539 * | 7 | Draw buffer 7 |
540 * |-----|-------------------------|
541 * | 8 | WM Pull Constant Buffer |
542 * |-----|-------------------------|
543 * | 9 | Texture 0 |
544 * | . | . |
545 * | : | : |
546 * | 24 | Texture 15 |
547 * |-----|-------------------------|
548 * | 25 | UBO 0 |
549 * | . | . |
550 * | : | : |
551 * | 36 | UBO 11 |
552 * +-------------------------------+
553 *
554 * Our VS binding tables are programmed as follows:
555 *
556 * +-----+-------------------------+
557 * | 0 | VS Pull Constant Buffer |
558 * +-----+-------------------------+
559 * | 1 | Texture 0 |
560 * | . | . |
561 * | : | : |
562 * | 16 | Texture 15 |
563 * +-----+-------------------------+
564 * | 17 | UBO 0 |
565 * | . | . |
566 * | : | : |
567 * | 28 | UBO 11 |
568 * +-------------------------------+
569 *
570 * Our (gen6) GS binding tables are programmed as follows:
571 *
572 * +-----+-------------------------+
573 * | 0 | SOL Binding 0 |
574 * | . | . |
575 * | : | : |
576 * | 63 | SOL Binding 63 |
577 * +-----+-------------------------+
578 *
579 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
580 * the identity function or things will break. We do want to keep draw buffers
581 * first so we can use headerless render target writes for RT 0.
582 */
583 #define SURF_INDEX_DRAW(d) (d)
584 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
585 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
586 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
587 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
588 /** Maximum size of the binding table. */
589 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
590
591 #define SURF_INDEX_VERT_CONST_BUFFER (0)
592 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
593 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
594 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
595 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
596
597 #define SURF_INDEX_SOL_BINDING(t) ((t))
598 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
599
600 /**
601 * Stride in bytes between shader_time entries.
602 *
603 * We separate entries by a cacheline to reduce traffic between EUs writing to
604 * different entries.
605 */
606 #define SHADER_TIME_STRIDE 64
607
608 enum brw_cache_id {
609 BRW_BLEND_STATE,
610 BRW_DEPTH_STENCIL_STATE,
611 BRW_COLOR_CALC_STATE,
612 BRW_CC_VP,
613 BRW_CC_UNIT,
614 BRW_WM_PROG,
615 BRW_BLORP_BLIT_PROG,
616 BRW_BLORP_CLEAR_PROG,
617 BRW_SAMPLER,
618 BRW_WM_UNIT,
619 BRW_SF_PROG,
620 BRW_SF_VP,
621 BRW_SF_UNIT, /* scissor state on gen6 */
622 BRW_VS_UNIT,
623 BRW_VS_PROG,
624 BRW_GS_UNIT,
625 BRW_GS_PROG,
626 BRW_CLIP_VP,
627 BRW_CLIP_UNIT,
628 BRW_CLIP_PROG,
629
630 BRW_MAX_CACHE
631 };
632
633 struct brw_cache_item {
634 /**
635 * Effectively part of the key, cache_id identifies what kind of state
636 * buffer is involved, and also which brw->state.dirty.cache flag should
637 * be set when this cache item is chosen.
638 */
639 enum brw_cache_id cache_id;
640 /** 32-bit hash of the key data */
641 GLuint hash;
642 GLuint key_size; /* for variable-sized keys */
643 GLuint aux_size;
644 const void *key;
645
646 uint32_t offset;
647 uint32_t size;
648
649 struct brw_cache_item *next;
650 };
651
652
653 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
654 int aux_size, const void *key);
655 typedef void (*cache_aux_free_func)(const void *aux);
656
657 struct brw_cache {
658 struct brw_context *brw;
659
660 struct brw_cache_item **items;
661 drm_intel_bo *bo;
662 GLuint size, n_items;
663
664 uint32_t next_offset;
665 bool bo_used_by_gpu;
666
667 /**
668 * Optional functions used in determining whether the prog_data for a new
669 * cache item matches an existing cache item (in case there's relevant data
670 * outside of the prog_data). If NULL, a plain memcmp is done.
671 */
672 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
673 /** Optional functions for freeing other pointers attached to a prog_data. */
674 cache_aux_free_func aux_free[BRW_MAX_CACHE];
675 };
676
677
678 /* Considered adding a member to this struct to document which flags
679 * an update might raise so that ordering of the state atoms can be
680 * checked or derived at runtime. Dropped the idea in favor of having
681 * a debug mode where the state is monitored for flags which are
682 * raised that have already been tested against.
683 */
684 struct brw_tracked_state {
685 struct brw_state_flags dirty;
686 void (*emit)( struct brw_context *brw );
687 };
688
689 enum shader_time_shader_type {
690 ST_NONE,
691 ST_VS,
692 ST_VS_WRITTEN,
693 ST_VS_RESET,
694 ST_FS8,
695 ST_FS8_WRITTEN,
696 ST_FS8_RESET,
697 ST_FS16,
698 ST_FS16_WRITTEN,
699 ST_FS16_RESET,
700 };
701
702 /* Flags for brw->state.cache.
703 */
704 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
705 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
706 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
707 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
708 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
709 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
710 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
711 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
712 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
713 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
714 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
715 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
716 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
717 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
718 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
719 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
720 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
721 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
722
723 struct brw_cached_batch_item {
724 struct header *header;
725 GLuint sz;
726 struct brw_cached_batch_item *next;
727 };
728
729
730
731 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
732 * be easier if C allowed arrays of packed elements?
733 */
734 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
735
736 struct brw_vertex_buffer {
737 /** Buffer object containing the uploaded vertex data */
738 drm_intel_bo *bo;
739 uint32_t offset;
740 /** Byte stride between elements in the uploaded array */
741 GLuint stride;
742 GLuint step_rate;
743 };
744 struct brw_vertex_element {
745 const struct gl_client_array *glarray;
746
747 int buffer;
748
749 /** The corresponding Mesa vertex attribute */
750 gl_vert_attrib attrib;
751 /** Offset of the first element within the buffer object */
752 unsigned int offset;
753 };
754
755 struct brw_query_object {
756 struct gl_query_object Base;
757
758 /** Last query BO associated with this query. */
759 drm_intel_bo *bo;
760
761 /** Last index in bo with query data for this object. */
762 int last_index;
763 };
764
765
766 /**
767 * brw_context is derived from intel_context.
768 */
769 struct brw_context
770 {
771 struct intel_context intel; /**< base class, must be first field */
772 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
773
774 bool emit_state_always;
775 bool has_surface_tile_offset;
776 bool has_compr4;
777 bool has_negative_rhw_bug;
778 bool has_aa_line_parameters;
779 bool has_pln;
780 bool precompile;
781
782 /**
783 * Some versions of Gen hardware don't do centroid interpolation correctly
784 * on unlit pixels, causing incorrect values for derivatives near triangle
785 * edges. Enabling this flag causes the fragment shader to use
786 * non-centroid interpolation for unlit pixels, at the expense of two extra
787 * fragment shader instructions.
788 */
789 bool needs_unlit_centroid_workaround;
790
791 struct {
792 struct brw_state_flags dirty;
793 } state;
794
795 struct brw_cache cache;
796 struct brw_cached_batch_item *cached_batch_items;
797
798 struct {
799 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
800 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
801
802 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
803 GLuint nr_enabled;
804 GLuint nr_buffers;
805
806 /* Summary of size and varying of active arrays, so we can check
807 * for changes to this state:
808 */
809 unsigned int min_index, max_index;
810
811 /* Offset from start of vertex buffer so we can avoid redefining
812 * the same VB packed over and over again.
813 */
814 unsigned int start_vertex_bias;
815 } vb;
816
817 struct {
818 /**
819 * Index buffer for this draw_prims call.
820 *
821 * Updates are signaled by BRW_NEW_INDICES.
822 */
823 const struct _mesa_index_buffer *ib;
824
825 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
826 drm_intel_bo *bo;
827 GLuint type;
828
829 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
830 * avoid re-uploading the IB packet over and over if we're actually
831 * referencing the same index buffer.
832 */
833 unsigned int start_vertex_offset;
834 } ib;
835
836 /* Active vertex program:
837 */
838 const struct gl_vertex_program *vertex_program;
839 const struct gl_fragment_program *fragment_program;
840
841 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
842 uint32_t CMD_VF_STATISTICS;
843 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
844 uint32_t CMD_PIPELINE_SELECT;
845
846 /**
847 * Platform specific constants containing the maximum number of threads
848 * for each pipeline stage.
849 */
850 int max_vs_threads;
851 int max_gs_threads;
852 int max_wm_threads;
853
854 /* BRW_NEW_URB_ALLOCATIONS:
855 */
856 struct {
857 GLuint vsize; /* vertex size plus header in urb registers */
858 GLuint csize; /* constant buffer size in urb registers */
859 GLuint sfsize; /* setup data size in urb registers */
860
861 bool constrained;
862
863 GLuint max_vs_entries; /* Maximum number of VS entries */
864 GLuint max_gs_entries; /* Maximum number of GS entries */
865
866 GLuint nr_vs_entries;
867 GLuint nr_gs_entries;
868 GLuint nr_clip_entries;
869 GLuint nr_sf_entries;
870 GLuint nr_cs_entries;
871
872 GLuint vs_start;
873 GLuint gs_start;
874 GLuint clip_start;
875 GLuint sf_start;
876 GLuint cs_start;
877 GLuint size; /* Hardware URB size, in KB. */
878
879 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
880 * URB space for the GS.
881 */
882 bool gen6_gs_previously_active;
883 } urb;
884
885
886 /* BRW_NEW_CURBE_OFFSETS:
887 */
888 struct {
889 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
890 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
891 GLuint clip_start;
892 GLuint clip_size;
893 GLuint vs_start;
894 GLuint vs_size;
895 GLuint total_size;
896
897 drm_intel_bo *curbe_bo;
898 /** Offset within curbe_bo of space for current curbe entry */
899 GLuint curbe_offset;
900 /** Offset within curbe_bo of space for next curbe entry */
901 GLuint curbe_next_offset;
902
903 /**
904 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
905 * in brw_curbe.c with the same set of constant data to be uploaded,
906 * so we'd rather not upload new constants in that case (it can cause
907 * a pipeline bubble since only up to 4 can be pipelined at a time).
908 */
909 GLfloat *last_buf;
910 /**
911 * Allocation for where to calculate the next set of CURBEs.
912 * It's a hot enough path that malloc/free of that data matters.
913 */
914 GLfloat *next_buf;
915 GLuint last_bufsz;
916 } curbe;
917
918 /** SAMPLER_STATE count and offset */
919 struct {
920 GLuint count;
921 uint32_t offset;
922 } sampler;
923
924 /**
925 * Layout of vertex data exiting the geometry portion of the pipleine.
926 * This comes from the geometry shader if one exists, otherwise from the
927 * vertex shader.
928 *
929 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
930 */
931 struct brw_vue_map vue_map_geom_out;
932
933 struct {
934 struct brw_vs_prog_data *prog_data;
935
936 drm_intel_bo *scratch_bo;
937 drm_intel_bo *const_bo;
938 /** Offset in the program cache to the VS program */
939 uint32_t prog_offset;
940 uint32_t state_offset;
941
942 uint32_t push_const_offset; /* Offset in the batchbuffer */
943 int push_const_size; /* in 256-bit register increments */
944
945 /** @{ register allocator */
946
947 struct ra_regs *regs;
948
949 /**
950 * Array of the ra classes for the unaligned contiguous register
951 * block sizes used.
952 */
953 int *classes;
954
955 /**
956 * Mapping for register-allocated objects in *regs to the first
957 * GRF for that object.
958 */
959 uint8_t *ra_reg_to_grf;
960 /** @} */
961
962 uint32_t bind_bo_offset;
963 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
964 } vs;
965
966 struct {
967 struct brw_gs_prog_data *prog_data;
968
969 bool prog_active;
970 /** Offset in the program cache to the CLIP program pre-gen6 */
971 uint32_t prog_offset;
972 uint32_t state_offset;
973
974 uint32_t bind_bo_offset;
975 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
976 } gs;
977
978 struct {
979 struct brw_clip_prog_data *prog_data;
980
981 /** Offset in the program cache to the CLIP program pre-gen6 */
982 uint32_t prog_offset;
983
984 /* Offset in the batch to the CLIP state on pre-gen6. */
985 uint32_t state_offset;
986
987 /* As of gen6, this is the offset in the batch to the CLIP VP,
988 * instead of vp_bo.
989 */
990 uint32_t vp_offset;
991 } clip;
992
993
994 struct {
995 struct brw_sf_prog_data *prog_data;
996
997 /** Offset in the program cache to the CLIP program pre-gen6 */
998 uint32_t prog_offset;
999 uint32_t state_offset;
1000 uint32_t vp_offset;
1001 } sf;
1002
1003 struct {
1004 struct brw_wm_prog_data *prog_data;
1005
1006 /** offsets in the batch to sampler default colors (texture border color)
1007 */
1008 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1009
1010 GLuint render_surf;
1011
1012 drm_intel_bo *scratch_bo;
1013
1014 /**
1015 * Buffer object used in place of multisampled null render targets on
1016 * Gen6. See brw_update_null_renderbuffer_surface().
1017 */
1018 drm_intel_bo *multisampled_null_render_target_bo;
1019
1020 /** Offset in the program cache to the WM program */
1021 uint32_t prog_offset;
1022
1023 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1024
1025 drm_intel_bo *const_bo; /* pull constant buffer. */
1026 /**
1027 * This is offset in the batch to the push constants on gen6.
1028 *
1029 * Pre-gen6, push constants live in the CURBE.
1030 */
1031 uint32_t push_const_offset;
1032
1033 /** Binding table of pointers to surf_bo entries */
1034 uint32_t bind_bo_offset;
1035 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1036
1037 struct {
1038 struct ra_regs *regs;
1039
1040 /** Array of the ra classes for the unaligned contiguous
1041 * register block sizes used.
1042 */
1043 int *classes;
1044
1045 /**
1046 * Mapping for register-allocated objects in *regs to the first
1047 * GRF for that object.
1048 */
1049 uint8_t *ra_reg_to_grf;
1050
1051 /**
1052 * ra class for the aligned pairs we use for PLN, which doesn't
1053 * appear in *classes.
1054 */
1055 int aligned_pairs_class;
1056 } reg_sets[2];
1057 } wm;
1058
1059
1060 struct {
1061 uint32_t state_offset;
1062 uint32_t blend_state_offset;
1063 uint32_t depth_stencil_state_offset;
1064 uint32_t vp_offset;
1065 } cc;
1066
1067 struct {
1068 struct brw_query_object *obj;
1069 bool begin_emitted;
1070 } query;
1071
1072 int num_atoms;
1073 const struct brw_tracked_state **atoms;
1074
1075 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1076 struct {
1077 uint32_t offset;
1078 uint32_t size;
1079 enum state_struct_type type;
1080 } *state_batch_list;
1081 int state_batch_count;
1082
1083 struct brw_sol_state {
1084 uint32_t svbi_0_starting_index;
1085 uint32_t svbi_0_max_index;
1086 uint32_t offset_0_batch_start;
1087 uint32_t primitives_generated;
1088 uint32_t primitives_written;
1089 bool counting_primitives_generated;
1090 bool counting_primitives_written;
1091 } sol;
1092
1093 uint32_t render_target_format[MESA_FORMAT_COUNT];
1094 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1095
1096 /* PrimitiveRestart */
1097 struct {
1098 bool in_progress;
1099 bool enable_cut_index;
1100 } prim_restart;
1101
1102 /** Computed depth/stencil/hiz state from the current attached
1103 * renderbuffers, valid only during the drawing state upload loop after
1104 * brw_workaround_depthstencil_alignment().
1105 */
1106 struct {
1107 struct intel_mipmap_tree *depth_mt;
1108 struct intel_mipmap_tree *stencil_mt;
1109
1110 /* Inter-tile (page-aligned) byte offsets. */
1111 uint32_t depth_offset, hiz_offset, stencil_offset;
1112 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1113 uint32_t tile_x, tile_y;
1114 } depthstencil;
1115
1116 uint32_t num_instances;
1117 int basevertex;
1118
1119 struct {
1120 drm_intel_bo *bo;
1121 struct gl_shader_program **shader_programs;
1122 struct gl_program **programs;
1123 enum shader_time_shader_type *types;
1124 uint64_t *cumulative;
1125 int num_entries;
1126 int max_entries;
1127 double report_time;
1128 } shader_time;
1129 };
1130
1131 /*======================================================================
1132 * brw_vtbl.c
1133 */
1134 void brwInitVtbl( struct brw_context *brw );
1135
1136 /*======================================================================
1137 * brw_context.c
1138 */
1139 bool brwCreateContext(int api,
1140 const struct gl_config *mesaVis,
1141 __DRIcontext *driContextPriv,
1142 unsigned major_version,
1143 unsigned minor_version,
1144 uint32_t flags,
1145 unsigned *error,
1146 void *sharedContextPrivate);
1147
1148 /*======================================================================
1149 * brw_misc_state.c
1150 */
1151 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1152 uint32_t depth_level,
1153 uint32_t depth_layer,
1154 struct intel_mipmap_tree *stencil_mt,
1155 uint32_t *out_tile_mask_x,
1156 uint32_t *out_tile_mask_y);
1157 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1158 GLbitfield clear_mask);
1159
1160 /*======================================================================
1161 * brw_queryobj.c
1162 */
1163 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1164 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1165 void brw_emit_query_begin(struct brw_context *brw);
1166 void brw_emit_query_end(struct brw_context *brw);
1167
1168 /** gen6_queryobj.c */
1169 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1170
1171 /*======================================================================
1172 * brw_state_dump.c
1173 */
1174 void brw_debug_batch(struct intel_context *intel);
1175 void brw_annotate_aub(struct intel_context *intel);
1176
1177 /*======================================================================
1178 * brw_tex.c
1179 */
1180 void brw_validate_textures( struct brw_context *brw );
1181
1182
1183 /*======================================================================
1184 * brw_program.c
1185 */
1186 void brwInitFragProgFuncs( struct dd_function_table *functions );
1187
1188 int brw_get_scratch_size(int size);
1189 void brw_get_scratch_bo(struct intel_context *intel,
1190 drm_intel_bo **scratch_bo, int size);
1191 void brw_init_shader_time(struct brw_context *brw);
1192 int brw_get_shader_time_index(struct brw_context *brw,
1193 struct gl_shader_program *shader_prog,
1194 struct gl_program *prog,
1195 enum shader_time_shader_type type);
1196 void brw_collect_and_report_shader_time(struct brw_context *brw);
1197 void brw_destroy_shader_time(struct brw_context *brw);
1198
1199 /* brw_urb.c
1200 */
1201 void brw_upload_urb_fence(struct brw_context *brw);
1202
1203 /* brw_curbe.c
1204 */
1205 void brw_upload_cs_urb_state(struct brw_context *brw);
1206
1207 /* brw_fs_reg_allocate.cpp
1208 */
1209 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1210
1211 /* brw_disasm.c */
1212 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1213
1214 /* brw_vs.c */
1215 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1216
1217 /* brw_wm_surface_state.c */
1218 void brw_init_surface_formats(struct brw_context *brw);
1219 void
1220 brw_update_sol_surface(struct brw_context *brw,
1221 struct gl_buffer_object *buffer_obj,
1222 uint32_t *out_offset, unsigned num_vector_components,
1223 unsigned stride_dwords, unsigned offset_dwords);
1224 void brw_upload_ubo_surfaces(struct brw_context *brw,
1225 struct gl_shader *shader,
1226 uint32_t *surf_offsets);
1227
1228 /* gen6_sol.c */
1229 void
1230 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1231 struct gl_transform_feedback_object *obj);
1232 void
1233 brw_end_transform_feedback(struct gl_context *ctx,
1234 struct gl_transform_feedback_object *obj);
1235
1236 /* gen7_sol_state.c */
1237 void
1238 gen7_end_transform_feedback(struct gl_context *ctx,
1239 struct gl_transform_feedback_object *obj);
1240
1241 /* brw_blorp_blit.cpp */
1242 GLbitfield
1243 brw_blorp_framebuffer(struct intel_context *intel,
1244 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1245 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1246 GLbitfield mask, GLenum filter);
1247
1248 bool
1249 brw_blorp_copytexsubimage(struct intel_context *intel,
1250 struct gl_renderbuffer *src_rb,
1251 struct gl_texture_image *dst_image,
1252 int srcX0, int srcY0,
1253 int dstX0, int dstY0,
1254 int width, int height);
1255
1256 /* gen6_multisample_state.c */
1257 void
1258 gen6_emit_3dstate_multisample(struct brw_context *brw,
1259 unsigned num_samples);
1260 void
1261 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1262 unsigned num_samples, float coverage,
1263 bool coverage_invert, unsigned sample_mask);
1264 void
1265 gen6_get_sample_position(struct gl_context *ctx,
1266 struct gl_framebuffer *fb,
1267 GLuint index,
1268 GLfloat *result);
1269
1270 /* gen7_urb.c */
1271 void
1272 gen7_allocate_push_constants(struct brw_context *brw);
1273
1274 void
1275 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1276 GLuint vs_size, GLuint vs_start);
1277
1278
1279
1280 /*======================================================================
1281 * Inline conversion functions. These are better-typed than the
1282 * macros used previously:
1283 */
1284 static INLINE struct brw_context *
1285 brw_context( struct gl_context *ctx )
1286 {
1287 return (struct brw_context *)ctx;
1288 }
1289
1290 static INLINE struct brw_vertex_program *
1291 brw_vertex_program(struct gl_vertex_program *p)
1292 {
1293 return (struct brw_vertex_program *) p;
1294 }
1295
1296 static INLINE const struct brw_vertex_program *
1297 brw_vertex_program_const(const struct gl_vertex_program *p)
1298 {
1299 return (const struct brw_vertex_program *) p;
1300 }
1301
1302 static INLINE struct brw_fragment_program *
1303 brw_fragment_program(struct gl_fragment_program *p)
1304 {
1305 return (struct brw_fragment_program *) p;
1306 }
1307
1308 static INLINE const struct brw_fragment_program *
1309 brw_fragment_program_const(const struct gl_fragment_program *p)
1310 {
1311 return (const struct brw_fragment_program *) p;
1312 }
1313
1314 /**
1315 * Pre-gen6, the register file of the EUs was shared between threads,
1316 * and each thread used some subset allocated on a 16-register block
1317 * granularity. The unit states wanted these block counts.
1318 */
1319 static inline int
1320 brw_register_blocks(int reg_count)
1321 {
1322 return ALIGN(reg_count, 16) / 16 - 1;
1323 }
1324
1325 static inline uint32_t
1326 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1327 uint32_t prog_offset)
1328 {
1329 struct intel_context *intel = &brw->intel;
1330
1331 if (intel->gen >= 5) {
1332 /* Using state base address. */
1333 return prog_offset;
1334 }
1335
1336 drm_intel_bo_emit_reloc(intel->batch.bo,
1337 state_offset,
1338 brw->cache.bo,
1339 prog_offset,
1340 I915_GEM_DOMAIN_INSTRUCTION, 0);
1341
1342 return brw->cache.bo->offset + prog_offset;
1343 }
1344
1345 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1346 bool brw_lower_texture_gradients(struct intel_context *intel,
1347 struct exec_list *instructions);
1348
1349 struct opcode_desc {
1350 char *name;
1351 int nsrc;
1352 int ndst;
1353 };
1354
1355 extern const struct opcode_desc opcode_descs[128];
1356
1357 void
1358 brw_emit_depthbuffer(struct brw_context *brw);
1359
1360 void
1361 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1362 struct intel_mipmap_tree *depth_mt,
1363 uint32_t depth_offset, uint32_t depthbuffer_format,
1364 uint32_t depth_surface_type,
1365 struct intel_mipmap_tree *stencil_mt,
1366 bool hiz, bool separate_stencil,
1367 uint32_t width, uint32_t height,
1368 uint32_t tile_x, uint32_t tile_y);
1369
1370 void
1371 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1372 struct intel_mipmap_tree *depth_mt,
1373 uint32_t depth_offset, uint32_t depthbuffer_format,
1374 uint32_t depth_surface_type,
1375 struct intel_mipmap_tree *stencil_mt,
1376 bool hiz, bool separate_stencil,
1377 uint32_t width, uint32_t height,
1378 uint32_t tile_x, uint32_t tile_y);
1379
1380 #ifdef __cplusplus
1381 }
1382 #endif
1383
1384 #endif