i965: Completely annotate the batch bo when aub dumping.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* Glossary:
45 *
46 * URB - uniform resource buffer. A mid-sized buffer which is
47 * partitioned between the fixed function units and used for passing
48 * values (vertices, primitives, constants) between them.
49 *
50 * CURBE - constant URB entry. An urb region (entry) used to hold
51 * constant values which the fixed function units can be instructed to
52 * preload into the GRF when spawning a thread.
53 *
54 * VUE - vertex URB entry. An urb entry holding a vertex and usually
55 * a vertex header. The header contains control information and
56 * things like primitive type, Begin/end flags and clip codes.
57 *
58 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
59 * unit holding rasterization and interpolation parameters.
60 *
61 * GRF - general register file. One of several register files
62 * addressable by programmed threads. The inputs (r0, payload, curbe,
63 * urb) of the thread are preloaded to this area before the thread is
64 * spawned. The registers are individually 8 dwords wide and suitable
65 * for general usage. Registers holding thread input values are not
66 * special and may be overwritten.
67 *
68 * MRF - message register file. Threads communicate (and terminate)
69 * by sending messages. Message parameters are placed in contiguous
70 * MRF registers. All program output is via these messages. URB
71 * entries are populated by sending a message to the shared URB
72 * function containing the new data, together with a control word,
73 * often an unmodified copy of R0.
74 *
75 * R0 - GRF register 0. Typically holds control information used when
76 * sending messages to other threads.
77 *
78 * EU or GEN4 EU: The name of the programmable subsystem of the
79 * i965 hardware. Threads are executed by the EU, the registers
80 * described above are part of the EU architecture.
81 *
82 * Fixed function units:
83 *
84 * CS - Command streamer. Notional first unit, little software
85 * interaction. Holds the URB entries used for constant data, ie the
86 * CURBEs.
87 *
88 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
89 * this unit is responsible for pulling vertices out of vertex buffers
90 * in vram and injecting them into the processing pipe as VUEs. If
91 * enabled, it first passes them to a VS thread which is a good place
92 * for the driver to implement any active vertex shader.
93 *
94 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
95 * enabled, incoming strips etc are passed to GS threads in individual
96 * line/triangle/point units. The GS thread may perform arbitary
97 * computation and emit whatever primtives with whatever vertices it
98 * chooses. This makes GS an excellent place to implement GL's
99 * unfilled polygon modes, though of course it is capable of much
100 * more. Additionally, GS is used to translate away primitives not
101 * handled by latter units, including Quads and Lineloops.
102 *
103 * CS - Clipper. Mesa's clipping algorithms are imported to run on
104 * this unit. The fixed function part performs cliptesting against
105 * the 6 fixed clipplanes and makes descisions on whether or not the
106 * incoming primitive needs to be passed to a thread for clipping.
107 * User clip planes are handled via cooperation with the VS thread.
108 *
109 * SF - Strips Fans or Setup: Triangles are prepared for
110 * rasterization. Interpolation coefficients are calculated.
111 * Flatshading and two-side lighting usually performed here.
112 *
113 * WM - Windower. Interpolation of vertex attributes performed here.
114 * Fragment shader implemented here. SIMD aspects of EU taken full
115 * advantage of, as pixels are processed in blocks of 16.
116 *
117 * CC - Color Calculator. No EU threads associated with this unit.
118 * Handles blending and (presumably) depth and stencil testing.
119 */
120
121
122 #define BRW_MAX_CURBE (32*16)
123
124 struct brw_context;
125 struct brw_instruction;
126 struct brw_vs_prog_key;
127 struct brw_wm_prog_key;
128 struct brw_wm_prog_data;
129
130 enum brw_state_id {
131 BRW_STATE_URB_FENCE,
132 BRW_STATE_FRAGMENT_PROGRAM,
133 BRW_STATE_VERTEX_PROGRAM,
134 BRW_STATE_INPUT_DIMENSIONS,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_WM_INPUT_DIMENSIONS,
140 BRW_STATE_PSP,
141 BRW_STATE_SURFACES,
142 BRW_STATE_VS_BINDING_TABLE,
143 BRW_STATE_GS_BINDING_TABLE,
144 BRW_STATE_PS_BINDING_TABLE,
145 BRW_STATE_INDICES,
146 BRW_STATE_VERTICES,
147 BRW_STATE_BATCH,
148 BRW_STATE_NR_WM_SURFACES,
149 BRW_STATE_NR_VS_SURFACES,
150 BRW_STATE_INDEX_BUFFER,
151 BRW_STATE_VS_CONSTBUF,
152 BRW_STATE_PROGRAM_CACHE,
153 BRW_STATE_STATE_BASE_ADDRESS,
154 BRW_STATE_SOL_INDICES,
155 };
156
157 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
158 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
159 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
160 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
161 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
162 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
163 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
164 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
165 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
184
185 struct brw_state_flags {
186 /** State update flags signalled by mesa internals */
187 GLuint mesa;
188 /**
189 * State update flags signalled as the result of brw_tracked_state updates
190 */
191 GLuint brw;
192 /** State update flags signalled by brw_state_cache.c searches */
193 GLuint cache;
194 };
195
196 #define AUB_TRACE_TYPE_MASK 0x0000ff00
197 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
198 #define AUB_TRACE_TYPE_BATCH (1 << 8)
199 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
200 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
201 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
202 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
203 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
204 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
205 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
206 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
207 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
208 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
209
210 /**
211 * state_struct_type enum values are encoded with the top 16 bits representing
212 * the type to be delivered to the .aub file, and the bottom 16 bits
213 * representing the subtype. This macro performs the encoding.
214 */
215 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
216
217 enum state_struct_type {
218 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
219 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
220 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
221 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
222 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
223 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
224 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
225 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
226 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
227 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
228 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
229 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
230 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
231
232 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
233 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
234 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
235
236 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
237 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
238 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
239 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
240 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
241 };
242
243 /**
244 * Decode a state_struct_type value to determine the type that should be
245 * stored in the .aub file.
246 */
247 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
248 {
249 return (ss_type & 0xFFFF0000) >> 16;
250 }
251
252 /**
253 * Decode a state_struct_type value to determine the subtype that should be
254 * stored in the .aub file.
255 */
256 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
257 {
258 return ss_type & 0xFFFF;
259 }
260
261 /** Subclass of Mesa vertex program */
262 struct brw_vertex_program {
263 struct gl_vertex_program program;
264 GLuint id;
265 bool use_const_buffer;
266 };
267
268
269 /** Subclass of Mesa fragment program */
270 struct brw_fragment_program {
271 struct gl_fragment_program program;
272 GLuint id; /**< serial no. to identify frag progs, never re-used */
273 };
274
275 struct brw_shader {
276 struct gl_shader base;
277
278 /** Shader IR transformed for native compile, at link time. */
279 struct exec_list *ir;
280 };
281
282 struct brw_shader_program {
283 struct gl_shader_program base;
284 };
285
286 enum param_conversion {
287 PARAM_NO_CONVERT,
288 PARAM_CONVERT_F2I,
289 PARAM_CONVERT_F2U,
290 PARAM_CONVERT_F2B,
291 PARAM_CONVERT_ZERO,
292 };
293
294 /* Data about a particular attempt to compile a program. Note that
295 * there can be many of these, each in a different GL state
296 * corresponding to a different brw_wm_prog_key struct, with different
297 * compiled programs:
298 */
299 struct brw_wm_prog_data {
300 GLuint curb_read_length;
301 GLuint urb_read_length;
302
303 GLuint first_curbe_grf;
304 GLuint first_curbe_grf_16;
305 GLuint reg_blocks;
306 GLuint reg_blocks_16;
307 GLuint total_scratch;
308
309 GLuint nr_params; /**< number of float params/constants */
310 GLuint nr_pull_params;
311 bool error;
312 int dispatch_width;
313 uint32_t prog_offset_16;
314
315 /**
316 * Mask of which interpolation modes are required by the fragment shader.
317 * Used in hardware setup on gen6+.
318 */
319 uint32_t barycentric_interp_modes;
320
321 /* Pointer to tracked values (only valid once
322 * _mesa_load_state_parameters has been called at runtime).
323 */
324 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
325 enum param_conversion param_convert[MAX_UNIFORMS * 4];
326 const float *pull_param[MAX_UNIFORMS * 4];
327 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
328 };
329
330 /**
331 * Enum representing the i965-specific vertex results that don't correspond
332 * exactly to any element of gl_vert_result. The values of this enum are
333 * assigned such that they don't conflict with gl_vert_result.
334 */
335 typedef enum
336 {
337 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
338 BRW_VERT_RESULT_HPOS_DUPLICATE,
339 BRW_VERT_RESULT_PAD,
340 /*
341 * It's actually not a vert_result but just a _mark_ to let sf aware that
342 * he need do something special to handle gl_PointCoord builtin variable
343 * correctly. see compile_sf_prog() for more info.
344 */
345 BRW_VERT_RESULT_PNTC,
346 BRW_VERT_RESULT_MAX
347 } brw_vert_result;
348
349
350 /**
351 * Data structure recording the relationship between the gl_vert_result enum
352 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
353 * single octaword within the VUE (128 bits).
354 *
355 * Note that each BRW register contains 256 bits (2 octawords), so when
356 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
357 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
358 * in a vertex shader), each register corresponds to a single VUE slot, since
359 * it contains data for two separate vertices.
360 */
361 struct brw_vue_map {
362 /**
363 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
364 * not stored in a slot (because they are not written, or because
365 * additional processing is applied before storing them in the VUE), the
366 * value is -1.
367 */
368 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
369
370 /**
371 * Map from VUE slot to gl_vert_result value. For slots that do not
372 * directly correspond to a gl_vert_result, the value comes from
373 * brw_vert_result.
374 *
375 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
376 * simplifies code that uses the value stored in slot_to_vert_result to
377 * create a bit mask).
378 */
379 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
380
381 /**
382 * Total number of VUE slots in use
383 */
384 int num_slots;
385 };
386
387 /**
388 * Convert a VUE slot number into a byte offset within the VUE.
389 */
390 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
391 {
392 return 16*slot;
393 }
394
395 /**
396 * Convert a vert_result into a byte offset within the VUE.
397 */
398 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
399 GLuint vert_result)
400 {
401 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
402 }
403
404
405 struct brw_sf_prog_data {
406 GLuint urb_read_length;
407 GLuint total_grf;
408
409 /* Each vertex may have upto 12 attributes, 4 components each,
410 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
411 * rows.
412 *
413 * Actually we use 4 for each, so call it 12 rows.
414 */
415 GLuint urb_entry_size;
416 };
417
418 struct brw_clip_prog_data {
419 GLuint curb_read_length; /* user planes? */
420 GLuint clip_mode;
421 GLuint urb_read_length;
422 GLuint total_grf;
423 };
424
425 struct brw_gs_prog_data {
426 GLuint urb_read_length;
427 GLuint total_grf;
428
429 /**
430 * Gen6 transform feedback: Amount by which the streaming vertex buffer
431 * indices should be incremented each time the GS is invoked.
432 */
433 unsigned svbi_postincrement_value;
434 };
435
436 struct brw_vs_prog_data {
437 struct brw_vue_map vue_map;
438
439 GLuint curb_read_length;
440 GLuint urb_read_length;
441 GLuint total_grf;
442 GLbitfield64 outputs_written;
443 GLuint nr_params; /**< number of float params/constants */
444 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
445 GLuint total_scratch;
446
447 GLbitfield64 inputs_read;
448
449 /* Used for calculating urb partitions:
450 */
451 GLuint urb_entry_size;
452
453 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
454 const float *pull_param[MAX_UNIFORMS * 4];
455
456 bool uses_new_param_layout;
457 bool uses_vertexid;
458 bool userclip;
459
460 int num_surfaces;
461 };
462
463
464 /* Size == 0 if output either not written, or always [0,0,0,1]
465 */
466 struct brw_vs_ouput_sizes {
467 GLubyte output_size[VERT_RESULT_MAX];
468 };
469
470
471 /** Number of texture sampler units */
472 #define BRW_MAX_TEX_UNIT 16
473
474 /** Max number of render targets in a shader */
475 #define BRW_MAX_DRAW_BUFFERS 8
476
477 /**
478 * Max number of binding table entries used for stream output.
479 *
480 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
481 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
482 *
483 * On Gen6, the size of transform feedback data is limited not by the number
484 * of components but by the number of binding table entries we set aside. We
485 * use one binding table entry for a float, one entry for a vector, and one
486 * entry per matrix column. Since the only way we can communicate our
487 * transform feedback capabilities to the client is via
488 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
489 * worst case, in which all the varyings are floats, so we use up one binding
490 * table entry per component. Therefore we need to set aside at least 64
491 * binding table entries for use by transform feedback.
492 *
493 * Note: since we don't currently pack varyings, it is currently impossible
494 * for the client to actually use up all of these binding table entries--if
495 * all of their varyings were floats, they would run out of varying slots and
496 * fail to link. But that's a bug, so it seems prudent to go ahead and
497 * allocate the number of binding table entries we will need once the bug is
498 * fixed.
499 */
500 #define BRW_MAX_SOL_BINDINGS 64
501
502 /** Maximum number of actual buffers used for stream output */
503 #define BRW_MAX_SOL_BUFFERS 4
504
505 /**
506 * Helpers to create Surface Binding Table indexes for draw buffers,
507 * textures, and constant buffers.
508 *
509 * Shader threads access surfaces via numeric handles, rather than directly
510 * using pointers. The binding table maps these numeric handles to the
511 * address of the actual buffer.
512 *
513 * For example, a shader might ask to sample from "surface 7." In this case,
514 * bind[7] would contain a pointer to a texture.
515 *
516 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
517 *
518 * +-------------------------------+
519 * | 0 | Draw buffer 0 |
520 * | . | . |
521 * | : | : |
522 * | 7 | Draw buffer 7 |
523 * |-----|-------------------------|
524 * | 8 | WM Pull Constant Buffer |
525 * |-----|-------------------------|
526 * | 9 | Texture 0 |
527 * | . | . |
528 * | : | : |
529 * | 24 | Texture 15 |
530 * +-------------------------------+
531 *
532 * Our VS binding tables are programmed as follows:
533 *
534 * +-----+-------------------------+
535 * | 0 | VS Pull Constant Buffer |
536 * +-----+-------------------------+
537 * | 1 | Texture 0 |
538 * | . | . |
539 * | : | : |
540 * | 16 | Texture 15 |
541 * +-------------------------------+
542 *
543 * Our (gen6) GS binding tables are programmed as follows:
544 *
545 * +-----+-------------------------+
546 * | 0 | SOL Binding 0 |
547 * | . | . |
548 * | : | : |
549 * | 63 | SOL Binding 63 |
550 * +-----+-------------------------+
551 *
552 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
553 * the identity function or things will break. We do want to keep draw buffers
554 * first so we can use headerless render target writes for RT 0.
555 */
556 #define SURF_INDEX_DRAW(d) (d)
557 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
558 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
559
560 /** Maximum size of the binding table. */
561 #define BRW_MAX_WM_SURFACES SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT)
562
563 #define SURF_INDEX_VERT_CONST_BUFFER (0)
564 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
565 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT)
566
567 #define SURF_INDEX_SOL_BINDING(t) ((t))
568 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
569
570 enum brw_cache_id {
571 BRW_BLEND_STATE,
572 BRW_DEPTH_STENCIL_STATE,
573 BRW_COLOR_CALC_STATE,
574 BRW_CC_VP,
575 BRW_CC_UNIT,
576 BRW_WM_PROG,
577 BRW_BLORP_BLIT_PROG,
578 BRW_SAMPLER,
579 BRW_WM_UNIT,
580 BRW_SF_PROG,
581 BRW_SF_VP,
582 BRW_SF_UNIT, /* scissor state on gen6 */
583 BRW_VS_UNIT,
584 BRW_VS_PROG,
585 BRW_GS_UNIT,
586 BRW_GS_PROG,
587 BRW_CLIP_VP,
588 BRW_CLIP_UNIT,
589 BRW_CLIP_PROG,
590
591 BRW_MAX_CACHE
592 };
593
594 struct brw_cache_item {
595 /**
596 * Effectively part of the key, cache_id identifies what kind of state
597 * buffer is involved, and also which brw->state.dirty.cache flag should
598 * be set when this cache item is chosen.
599 */
600 enum brw_cache_id cache_id;
601 /** 32-bit hash of the key data */
602 GLuint hash;
603 GLuint key_size; /* for variable-sized keys */
604 GLuint aux_size;
605 const void *key;
606
607 uint32_t offset;
608 uint32_t size;
609
610 struct brw_cache_item *next;
611 };
612
613
614
615 struct brw_cache {
616 struct brw_context *brw;
617
618 struct brw_cache_item **items;
619 drm_intel_bo *bo;
620 GLuint size, n_items;
621
622 uint32_t next_offset;
623 bool bo_used_by_gpu;
624 };
625
626
627 /* Considered adding a member to this struct to document which flags
628 * an update might raise so that ordering of the state atoms can be
629 * checked or derived at runtime. Dropped the idea in favor of having
630 * a debug mode where the state is monitored for flags which are
631 * raised that have already been tested against.
632 */
633 struct brw_tracked_state {
634 struct brw_state_flags dirty;
635 void (*emit)( struct brw_context *brw );
636 };
637
638 /* Flags for brw->state.cache.
639 */
640 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
641 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
642 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
643 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
644 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
645 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
646 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
647 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
648 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
649 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
650 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
651 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
652 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
653 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
654 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
655 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
656 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
657 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
658
659 struct brw_cached_batch_item {
660 struct header *header;
661 GLuint sz;
662 struct brw_cached_batch_item *next;
663 };
664
665
666
667 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
668 * be easier if C allowed arrays of packed elements?
669 */
670 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
671
672 struct brw_vertex_buffer {
673 /** Buffer object containing the uploaded vertex data */
674 drm_intel_bo *bo;
675 uint32_t offset;
676 /** Byte stride between elements in the uploaded array */
677 GLuint stride;
678 };
679 struct brw_vertex_element {
680 const struct gl_client_array *glarray;
681
682 int buffer;
683
684 /** The corresponding Mesa vertex attribute */
685 gl_vert_attrib attrib;
686 /** Size of a complete element */
687 GLuint element_size;
688 /** Offset of the first element within the buffer object */
689 unsigned int offset;
690 };
691
692
693
694 struct brw_vertex_info {
695 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
696 };
697
698 struct brw_query_object {
699 struct gl_query_object Base;
700
701 /** Last query BO associated with this query. */
702 drm_intel_bo *bo;
703 /** First index in bo with query data for this object. */
704 int first_index;
705 /** Last index in bo with query data for this object. */
706 int last_index;
707 };
708
709
710 /**
711 * brw_context is derived from intel_context.
712 */
713 struct brw_context
714 {
715 struct intel_context intel; /**< base class, must be first field */
716 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
717
718 bool emit_state_always;
719 bool has_surface_tile_offset;
720 bool has_compr4;
721 bool has_negative_rhw_bug;
722 bool has_aa_line_parameters;
723 bool has_pln;
724 bool precompile;
725
726 struct {
727 struct brw_state_flags dirty;
728 } state;
729
730 struct brw_cache cache;
731 struct brw_cached_batch_item *cached_batch_items;
732
733 struct {
734 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
735 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
736 struct {
737 uint32_t handle;
738 uint32_t offset;
739 uint32_t stride;
740 } current_buffers[VERT_ATTRIB_MAX];
741
742 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
743 GLuint nr_enabled;
744 GLuint nr_buffers, nr_current_buffers;
745
746 /* Summary of size and varying of active arrays, so we can check
747 * for changes to this state:
748 */
749 struct brw_vertex_info info;
750 unsigned int min_index, max_index;
751
752 /* Offset from start of vertex buffer so we can avoid redefining
753 * the same VB packed over and over again.
754 */
755 unsigned int start_vertex_bias;
756 } vb;
757
758 struct {
759 /**
760 * Index buffer for this draw_prims call.
761 *
762 * Updates are signaled by BRW_NEW_INDICES.
763 */
764 const struct _mesa_index_buffer *ib;
765
766 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
767 drm_intel_bo *bo;
768 GLuint type;
769
770 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
771 * avoid re-uploading the IB packet over and over if we're actually
772 * referencing the same index buffer.
773 */
774 unsigned int start_vertex_offset;
775 } ib;
776
777 /* Active vertex program:
778 */
779 const struct gl_vertex_program *vertex_program;
780 const struct gl_fragment_program *fragment_program;
781
782 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
783 uint32_t CMD_VF_STATISTICS;
784 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
785 uint32_t CMD_PIPELINE_SELECT;
786
787 /**
788 * Platform specific constants containing the maximum number of threads
789 * for each pipeline stage.
790 */
791 int max_vs_threads;
792 int max_gs_threads;
793 int max_wm_threads;
794
795 /* BRW_NEW_URB_ALLOCATIONS:
796 */
797 struct {
798 GLuint vsize; /* vertex size plus header in urb registers */
799 GLuint csize; /* constant buffer size in urb registers */
800 GLuint sfsize; /* setup data size in urb registers */
801
802 bool constrained;
803
804 GLuint max_vs_entries; /* Maximum number of VS entries */
805 GLuint max_gs_entries; /* Maximum number of GS entries */
806
807 GLuint nr_vs_entries;
808 GLuint nr_gs_entries;
809 GLuint nr_clip_entries;
810 GLuint nr_sf_entries;
811 GLuint nr_cs_entries;
812
813 /* gen6:
814 * The length of each URB entry owned by the VS (or GS), as
815 * a number of 1024-bit (128-byte) rows. Should be >= 1.
816 *
817 * gen7: Same meaning, but in 512-bit (64-byte) rows.
818 */
819 GLuint vs_size;
820 GLuint gs_size;
821
822 GLuint vs_start;
823 GLuint gs_start;
824 GLuint clip_start;
825 GLuint sf_start;
826 GLuint cs_start;
827 GLuint size; /* Hardware URB size, in KB. */
828
829 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
830 * URB space for the GS.
831 */
832 bool gen6_gs_previously_active;
833 } urb;
834
835
836 /* BRW_NEW_CURBE_OFFSETS:
837 */
838 struct {
839 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
840 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
841 GLuint clip_start;
842 GLuint clip_size;
843 GLuint vs_start;
844 GLuint vs_size;
845 GLuint total_size;
846
847 drm_intel_bo *curbe_bo;
848 /** Offset within curbe_bo of space for current curbe entry */
849 GLuint curbe_offset;
850 /** Offset within curbe_bo of space for next curbe entry */
851 GLuint curbe_next_offset;
852
853 /**
854 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
855 * in brw_curbe.c with the same set of constant data to be uploaded,
856 * so we'd rather not upload new constants in that case (it can cause
857 * a pipeline bubble since only up to 4 can be pipelined at a time).
858 */
859 GLfloat *last_buf;
860 /**
861 * Allocation for where to calculate the next set of CURBEs.
862 * It's a hot enough path that malloc/free of that data matters.
863 */
864 GLfloat *next_buf;
865 GLuint last_bufsz;
866 } curbe;
867
868 /** SAMPLER_STATE count and offset */
869 struct {
870 GLuint count;
871 uint32_t offset;
872 } sampler;
873
874 struct {
875 struct brw_vs_prog_data *prog_data;
876 int8_t *constant_map; /* variable array following prog_data */
877
878 drm_intel_bo *scratch_bo;
879 drm_intel_bo *const_bo;
880 /** Offset in the program cache to the VS program */
881 uint32_t prog_offset;
882 uint32_t state_offset;
883
884 uint32_t push_const_offset; /* Offset in the batchbuffer */
885 int push_const_size; /* in 256-bit register increments */
886
887 /** @{ register allocator */
888
889 struct ra_regs *regs;
890
891 /**
892 * Array of the ra classes for the unaligned contiguous register
893 * block sizes used.
894 */
895 int *classes;
896
897 /**
898 * Mapping for register-allocated objects in *regs to the first
899 * GRF for that object.
900 */
901 uint8_t *ra_reg_to_grf;
902 /** @} */
903
904 uint32_t bind_bo_offset;
905 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
906 } vs;
907
908 struct {
909 struct brw_gs_prog_data *prog_data;
910
911 bool prog_active;
912 /** Offset in the program cache to the CLIP program pre-gen6 */
913 uint32_t prog_offset;
914 uint32_t state_offset;
915
916 uint32_t bind_bo_offset;
917 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
918 } gs;
919
920 struct {
921 struct brw_clip_prog_data *prog_data;
922
923 /** Offset in the program cache to the CLIP program pre-gen6 */
924 uint32_t prog_offset;
925
926 /* Offset in the batch to the CLIP state on pre-gen6. */
927 uint32_t state_offset;
928
929 /* As of gen6, this is the offset in the batch to the CLIP VP,
930 * instead of vp_bo.
931 */
932 uint32_t vp_offset;
933 } clip;
934
935
936 struct {
937 struct brw_sf_prog_data *prog_data;
938
939 /** Offset in the program cache to the CLIP program pre-gen6 */
940 uint32_t prog_offset;
941 uint32_t state_offset;
942 uint32_t vp_offset;
943 } sf;
944
945 struct {
946 struct brw_wm_prog_data *prog_data;
947 struct brw_wm_compile *compile_data;
948
949 /** Input sizes, calculated from active vertex program.
950 * One bit per fragment program input attribute.
951 */
952 GLbitfield input_size_masks[4];
953
954 /** offsets in the batch to sampler default colors (texture border color)
955 */
956 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
957
958 GLuint render_surf;
959
960 drm_intel_bo *scratch_bo;
961
962 /** Offset in the program cache to the WM program */
963 uint32_t prog_offset;
964
965 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
966
967 drm_intel_bo *const_bo; /* pull constant buffer. */
968 /**
969 * This is offset in the batch to the push constants on gen6.
970 *
971 * Pre-gen6, push constants live in the CURBE.
972 */
973 uint32_t push_const_offset;
974
975 /** Binding table of pointers to surf_bo entries */
976 uint32_t bind_bo_offset;
977 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
978
979 /** @{ register allocator */
980
981 struct ra_regs *regs;
982
983 /** Array of the ra classes for the unaligned contiguous
984 * register block sizes used.
985 */
986 int *classes;
987
988 /**
989 * Mapping for register-allocated objects in *regs to the first
990 * GRF for that object.
991 */
992 uint8_t *ra_reg_to_grf;
993
994 /**
995 * ra class for the aligned pairs we use for PLN, which doesn't
996 * appear in *classes.
997 */
998 int aligned_pairs_class;
999
1000 /** @} */
1001 } wm;
1002
1003
1004 struct {
1005 uint32_t state_offset;
1006 uint32_t blend_state_offset;
1007 uint32_t depth_stencil_state_offset;
1008 uint32_t vp_offset;
1009 } cc;
1010
1011 struct {
1012 struct brw_query_object *obj;
1013 drm_intel_bo *bo;
1014 int index;
1015 bool active;
1016 } query;
1017 /* Used to give every program string a unique id
1018 */
1019 GLuint program_id;
1020
1021 int num_atoms;
1022 const struct brw_tracked_state **atoms;
1023
1024 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1025 struct {
1026 uint32_t offset;
1027 uint32_t size;
1028 enum state_struct_type type;
1029 } *state_batch_list;
1030 int state_batch_count;
1031
1032 struct brw_sol_state {
1033 uint32_t svbi_0_starting_index;
1034 uint32_t svbi_0_max_index;
1035 uint32_t offset_0_batch_start;
1036 uint32_t primitives_generated;
1037 uint32_t primitives_written;
1038 } sol;
1039
1040 uint32_t render_target_format[MESA_FORMAT_COUNT];
1041 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1042 };
1043
1044
1045
1046 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1047
1048 struct brw_instruction_info {
1049 char *name;
1050 int nsrc;
1051 int ndst;
1052 bool is_arith;
1053 };
1054 extern const struct brw_instruction_info brw_opcodes[128];
1055
1056 /*======================================================================
1057 * brw_vtbl.c
1058 */
1059 void brwInitVtbl( struct brw_context *brw );
1060
1061 /*======================================================================
1062 * brw_context.c
1063 */
1064 bool brwCreateContext(int api,
1065 const struct gl_config *mesaVis,
1066 __DRIcontext *driContextPriv,
1067 void *sharedContextPrivate);
1068
1069 /*======================================================================
1070 * brw_queryobj.c
1071 */
1072 void brw_init_queryobj_functions(struct dd_function_table *functions);
1073 void brw_prepare_query_begin(struct brw_context *brw);
1074 void brw_emit_query_begin(struct brw_context *brw);
1075 void brw_emit_query_end(struct brw_context *brw);
1076
1077 /*======================================================================
1078 * brw_state_dump.c
1079 */
1080 void brw_debug_batch(struct intel_context *intel);
1081 void brw_annotate_aub(struct intel_context *intel);
1082
1083 /*======================================================================
1084 * brw_tex.c
1085 */
1086 void brw_validate_textures( struct brw_context *brw );
1087
1088
1089 /*======================================================================
1090 * brw_program.c
1091 */
1092 void brwInitFragProgFuncs( struct dd_function_table *functions );
1093
1094 int brw_get_scratch_size(int size);
1095 void brw_get_scratch_bo(struct intel_context *intel,
1096 drm_intel_bo **scratch_bo, int size);
1097
1098
1099 /* brw_urb.c
1100 */
1101 void brw_upload_urb_fence(struct brw_context *brw);
1102
1103 /* brw_curbe.c
1104 */
1105 void brw_upload_cs_urb_state(struct brw_context *brw);
1106
1107 /* brw_disasm.c */
1108 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1109
1110 /* brw_vs.c */
1111 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1112
1113 /* brw_wm_surface_state.c */
1114 void brw_init_surface_formats(struct brw_context *brw);
1115 void
1116 brw_update_sol_surface(struct brw_context *brw,
1117 struct gl_buffer_object *buffer_obj,
1118 uint32_t *out_offset, unsigned num_vector_components,
1119 unsigned stride_dwords, unsigned offset_dwords);
1120
1121 /* gen6_sol.c */
1122 void
1123 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1124 struct gl_transform_feedback_object *obj);
1125 void
1126 brw_end_transform_feedback(struct gl_context *ctx,
1127 struct gl_transform_feedback_object *obj);
1128
1129 /* gen7_sol_state.c */
1130 void
1131 gen7_end_transform_feedback(struct gl_context *ctx,
1132 struct gl_transform_feedback_object *obj);
1133
1134 /* brw_blorp_blit.cpp */
1135 GLbitfield
1136 brw_blorp_framebuffer(struct intel_context *intel,
1137 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1138 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1139 GLbitfield mask, GLenum filter);
1140
1141 /* gen6_multisample_state.c */
1142 void
1143 gen6_emit_3dstate_multisample(struct brw_context *brw,
1144 unsigned num_samples);
1145 void
1146 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1147 unsigned num_samples);
1148
1149
1150
1151 /*======================================================================
1152 * Inline conversion functions. These are better-typed than the
1153 * macros used previously:
1154 */
1155 static INLINE struct brw_context *
1156 brw_context( struct gl_context *ctx )
1157 {
1158 return (struct brw_context *)ctx;
1159 }
1160
1161 static INLINE struct brw_vertex_program *
1162 brw_vertex_program(struct gl_vertex_program *p)
1163 {
1164 return (struct brw_vertex_program *) p;
1165 }
1166
1167 static INLINE const struct brw_vertex_program *
1168 brw_vertex_program_const(const struct gl_vertex_program *p)
1169 {
1170 return (const struct brw_vertex_program *) p;
1171 }
1172
1173 static INLINE struct brw_fragment_program *
1174 brw_fragment_program(struct gl_fragment_program *p)
1175 {
1176 return (struct brw_fragment_program *) p;
1177 }
1178
1179 static INLINE const struct brw_fragment_program *
1180 brw_fragment_program_const(const struct gl_fragment_program *p)
1181 {
1182 return (const struct brw_fragment_program *) p;
1183 }
1184
1185 static inline
1186 float convert_param(enum param_conversion conversion, const float *param)
1187 {
1188 union {
1189 float f;
1190 uint32_t u;
1191 int32_t i;
1192 } fi;
1193
1194 switch (conversion) {
1195 case PARAM_NO_CONVERT:
1196 return *param;
1197 case PARAM_CONVERT_F2I:
1198 fi.i = *param;
1199 return fi.f;
1200 case PARAM_CONVERT_F2U:
1201 fi.u = *param;
1202 return fi.f;
1203 case PARAM_CONVERT_F2B:
1204 if (*param != 0.0)
1205 fi.i = 1;
1206 else
1207 fi.i = 0;
1208 return fi.f;
1209 case PARAM_CONVERT_ZERO:
1210 return 0.0;
1211 default:
1212 return *param;
1213 }
1214 }
1215
1216 /**
1217 * Pre-gen6, the register file of the EUs was shared between threads,
1218 * and each thread used some subset allocated on a 16-register block
1219 * granularity. The unit states wanted these block counts.
1220 */
1221 static inline int
1222 brw_register_blocks(int reg_count)
1223 {
1224 return ALIGN(reg_count, 16) / 16 - 1;
1225 }
1226
1227 static inline uint32_t
1228 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1229 uint32_t prog_offset)
1230 {
1231 struct intel_context *intel = &brw->intel;
1232
1233 if (intel->gen >= 5) {
1234 /* Using state base address. */
1235 return prog_offset;
1236 }
1237
1238 drm_intel_bo_emit_reloc(intel->batch.bo,
1239 state_offset,
1240 brw->cache.bo,
1241 prog_offset,
1242 I915_GEM_DOMAIN_INSTRUCTION, 0);
1243
1244 return brw->cache.bo->offset + prog_offset;
1245 }
1246
1247 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1248
1249 #ifdef __cplusplus
1250 }
1251 #endif
1252
1253 #endif