intel: Allow blorp CopyTexSubImage to nonzero destination slices.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_wm_prog_key;
129 struct brw_wm_prog_data;
130
131 enum brw_state_id {
132 BRW_STATE_URB_FENCE,
133 BRW_STATE_FRAGMENT_PROGRAM,
134 BRW_STATE_VERTEX_PROGRAM,
135 BRW_STATE_CURBE_OFFSETS,
136 BRW_STATE_REDUCED_PRIMITIVE,
137 BRW_STATE_PRIMITIVE,
138 BRW_STATE_CONTEXT,
139 BRW_STATE_PSP,
140 BRW_STATE_SURFACES,
141 BRW_STATE_VS_BINDING_TABLE,
142 BRW_STATE_GS_BINDING_TABLE,
143 BRW_STATE_PS_BINDING_TABLE,
144 BRW_STATE_INDICES,
145 BRW_STATE_VERTICES,
146 BRW_STATE_BATCH,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_VUE_MAP_GEOM_OUT,
152 BRW_STATE_TRANSFORM_FEEDBACK,
153 BRW_STATE_RASTERIZER_DISCARD,
154 BRW_STATE_STATS_WM,
155 BRW_STATE_UNIFORM_BUFFER,
156 BRW_STATE_META_IN_PROGRESS,
157 };
158
159 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
160 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
161 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
162 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
163 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
164 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
165 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
166 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
167 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
168 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
169 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
170 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
171 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
172 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
173 /**
174 * Used for any batch entry with a relocated pointer that will be used
175 * by any 3D rendering.
176 */
177 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
178 /** \see brw.state.depth_region */
179 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
180 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
181 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
182 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
183 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
184 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
185 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
186 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
187 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
188 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
189
190 struct brw_state_flags {
191 /** State update flags signalled by mesa internals */
192 GLuint mesa;
193 /**
194 * State update flags signalled as the result of brw_tracked_state updates
195 */
196 GLuint brw;
197 /** State update flags signalled by brw_state_cache.c searches */
198 GLuint cache;
199 };
200
201 #define AUB_TRACE_TYPE_MASK 0x0000ff00
202 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
203 #define AUB_TRACE_TYPE_BATCH (1 << 8)
204 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
205 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
206 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
207 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
208 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
209 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
210 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
211 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
212 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
213 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
214
215 /**
216 * state_struct_type enum values are encoded with the top 16 bits representing
217 * the type to be delivered to the .aub file, and the bottom 16 bits
218 * representing the subtype. This macro performs the encoding.
219 */
220 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
221
222 enum state_struct_type {
223 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
224 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
225 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
226 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
227 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
228 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
229 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
230 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
231 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
232 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
233 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
234 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
235 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
236
237 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
238 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
239 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
240
241 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
242 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
243 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
244 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
245 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
246 };
247
248 /**
249 * Decode a state_struct_type value to determine the type that should be
250 * stored in the .aub file.
251 */
252 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
253 {
254 return (ss_type & 0xFFFF0000) >> 16;
255 }
256
257 /**
258 * Decode a state_struct_type value to determine the subtype that should be
259 * stored in the .aub file.
260 */
261 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
262 {
263 return ss_type & 0xFFFF;
264 }
265
266 /** Subclass of Mesa vertex program */
267 struct brw_vertex_program {
268 struct gl_vertex_program program;
269 GLuint id;
270 };
271
272
273 /** Subclass of Mesa fragment program */
274 struct brw_fragment_program {
275 struct gl_fragment_program program;
276 GLuint id; /**< serial no. to identify frag progs, never re-used */
277 };
278
279 struct brw_shader {
280 struct gl_shader base;
281
282 bool compiled_once;
283
284 /** Shader IR transformed for native compile, at link time. */
285 struct exec_list *ir;
286 };
287
288 /* Data about a particular attempt to compile a program. Note that
289 * there can be many of these, each in a different GL state
290 * corresponding to a different brw_wm_prog_key struct, with different
291 * compiled programs.
292 *
293 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
294 * struct!
295 */
296 struct brw_wm_prog_data {
297 GLuint curb_read_length;
298 GLuint urb_read_length;
299
300 GLuint first_curbe_grf;
301 GLuint first_curbe_grf_16;
302 GLuint reg_blocks;
303 GLuint reg_blocks_16;
304 GLuint total_scratch;
305
306 GLuint nr_params; /**< number of float params/constants */
307 GLuint nr_pull_params;
308 bool dual_src_blend;
309 int dispatch_width;
310 uint32_t prog_offset_16;
311
312 /**
313 * Mask of which interpolation modes are required by the fragment shader.
314 * Used in hardware setup on gen6+.
315 */
316 uint32_t barycentric_interp_modes;
317
318 /* Pointers to tracked values (only valid once
319 * _mesa_load_state_parameters has been called at runtime).
320 *
321 * These must be the last fields of the struct (see
322 * brw_wm_prog_data_compare()).
323 */
324 const float **param;
325 const float **pull_param;
326 };
327
328 /**
329 * Enum representing the i965-specific vertex results that don't correspond
330 * exactly to any element of gl_varying_slot. The values of this enum are
331 * assigned such that they don't conflict with gl_varying_slot.
332 */
333 typedef enum
334 {
335 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
336 BRW_VARYING_SLOT_PAD,
337 /**
338 * Technically this is not a varying but just a placeholder that
339 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
340 * builtin variable to be compiled correctly. see compile_sf_prog() for
341 * more info.
342 */
343 BRW_VARYING_SLOT_PNTC,
344 BRW_VARYING_SLOT_COUNT
345 } brw_varying_slot;
346
347
348 /**
349 * Data structure recording the relationship between the gl_varying_slot enum
350 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
351 * single octaword within the VUE (128 bits).
352 *
353 * Note that each BRW register contains 256 bits (2 octawords), so when
354 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
355 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
356 * in a vertex shader), each register corresponds to a single VUE slot, since
357 * it contains data for two separate vertices.
358 */
359 struct brw_vue_map {
360 /**
361 * Bitfield representing all varying slots that are (a) stored in this VUE
362 * map, and (b) actually written by the shader. Does not include any of
363 * the additional varying slots defined in brw_varying_slot.
364 */
365 GLbitfield64 slots_valid;
366
367 /**
368 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
369 * not stored in a slot (because they are not written, or because
370 * additional processing is applied before storing them in the VUE), the
371 * value is -1.
372 */
373 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
374
375 /**
376 * Map from VUE slot to gl_varying_slot value. For slots that do not
377 * directly correspond to a gl_varying_slot, the value comes from
378 * brw_varying_slot.
379 *
380 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
381 * simplifies code that uses the value stored in slot_to_varying to
382 * create a bit mask).
383 */
384 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
385
386 /**
387 * Total number of VUE slots in use
388 */
389 int num_slots;
390 };
391
392 /**
393 * Convert a VUE slot number into a byte offset within the VUE.
394 */
395 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
396 {
397 return 16*slot;
398 }
399
400 /**
401 * Convert a vertex output (brw_varying_slot) into a byte offset within the
402 * VUE.
403 */
404 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
405 GLuint varying)
406 {
407 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
408 }
409
410 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
411 GLbitfield64 slots_valid, bool userclip_active);
412
413
414 struct brw_sf_prog_data {
415 GLuint urb_read_length;
416 GLuint total_grf;
417
418 /* Each vertex may have upto 12 attributes, 4 components each,
419 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
420 * rows.
421 *
422 * Actually we use 4 for each, so call it 12 rows.
423 */
424 GLuint urb_entry_size;
425 };
426
427 struct brw_clip_prog_data {
428 GLuint curb_read_length; /* user planes? */
429 GLuint clip_mode;
430 GLuint urb_read_length;
431 GLuint total_grf;
432 };
433
434 struct brw_gs_prog_data {
435 GLuint urb_read_length;
436 GLuint total_grf;
437
438 /**
439 * Gen6 transform feedback: Amount by which the streaming vertex buffer
440 * indices should be incremented each time the GS is invoked.
441 */
442 unsigned svbi_postincrement_value;
443 };
444
445
446 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
447 * this struct!
448 */
449 struct brw_vec4_prog_data {
450 struct brw_vue_map vue_map;
451
452 GLuint curb_read_length;
453 GLuint urb_read_length;
454 GLuint total_grf;
455 GLuint nr_params; /**< number of float params/constants */
456 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
457 GLuint total_scratch;
458
459 /* Used for calculating urb partitions. In the VS, this is the size of the
460 * URB entry used for both input and output to the thread. In the GS, this
461 * is the size of the URB entry used for output.
462 */
463 GLuint urb_entry_size;
464
465 int num_surfaces;
466
467 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
468 const float **param;
469 const float **pull_param;
470 };
471
472
473 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
474 * struct!
475 */
476 struct brw_vs_prog_data {
477 struct brw_vec4_prog_data base;
478
479 GLbitfield64 inputs_read;
480
481 bool uses_vertexid;
482 };
483
484 /** Number of texture sampler units */
485 #define BRW_MAX_TEX_UNIT 16
486
487 /** Max number of render targets in a shader */
488 #define BRW_MAX_DRAW_BUFFERS 8
489
490 /**
491 * Max number of binding table entries used for stream output.
492 *
493 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
494 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
495 *
496 * On Gen6, the size of transform feedback data is limited not by the number
497 * of components but by the number of binding table entries we set aside. We
498 * use one binding table entry for a float, one entry for a vector, and one
499 * entry per matrix column. Since the only way we can communicate our
500 * transform feedback capabilities to the client is via
501 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
502 * worst case, in which all the varyings are floats, so we use up one binding
503 * table entry per component. Therefore we need to set aside at least 64
504 * binding table entries for use by transform feedback.
505 *
506 * Note: since we don't currently pack varyings, it is currently impossible
507 * for the client to actually use up all of these binding table entries--if
508 * all of their varyings were floats, they would run out of varying slots and
509 * fail to link. But that's a bug, so it seems prudent to go ahead and
510 * allocate the number of binding table entries we will need once the bug is
511 * fixed.
512 */
513 #define BRW_MAX_SOL_BINDINGS 64
514
515 /** Maximum number of actual buffers used for stream output */
516 #define BRW_MAX_SOL_BUFFERS 4
517
518 #define BRW_MAX_WM_UBOS 12
519 #define BRW_MAX_VS_UBOS 12
520
521 /**
522 * Helpers to create Surface Binding Table indexes for draw buffers,
523 * textures, and constant buffers.
524 *
525 * Shader threads access surfaces via numeric handles, rather than directly
526 * using pointers. The binding table maps these numeric handles to the
527 * address of the actual buffer.
528 *
529 * For example, a shader might ask to sample from "surface 7." In this case,
530 * bind[7] would contain a pointer to a texture.
531 *
532 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
533 *
534 * +-------------------------------+
535 * | 0 | Draw buffer 0 |
536 * | . | . |
537 * | : | : |
538 * | 7 | Draw buffer 7 |
539 * |-----|-------------------------|
540 * | 8 | WM Pull Constant Buffer |
541 * |-----|-------------------------|
542 * | 9 | Texture 0 |
543 * | . | . |
544 * | : | : |
545 * | 24 | Texture 15 |
546 * |-----|-------------------------|
547 * | 25 | UBO 0 |
548 * | . | . |
549 * | : | : |
550 * | 36 | UBO 11 |
551 * +-------------------------------+
552 *
553 * Our VS binding tables are programmed as follows:
554 *
555 * +-----+-------------------------+
556 * | 0 | VS Pull Constant Buffer |
557 * +-----+-------------------------+
558 * | 1 | Texture 0 |
559 * | . | . |
560 * | : | : |
561 * | 16 | Texture 15 |
562 * +-----+-------------------------+
563 * | 17 | UBO 0 |
564 * | . | . |
565 * | : | : |
566 * | 28 | UBO 11 |
567 * +-------------------------------+
568 *
569 * Our (gen6) GS binding tables are programmed as follows:
570 *
571 * +-----+-------------------------+
572 * | 0 | SOL Binding 0 |
573 * | . | . |
574 * | : | : |
575 * | 63 | SOL Binding 63 |
576 * +-----+-------------------------+
577 *
578 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
579 * the identity function or things will break. We do want to keep draw buffers
580 * first so we can use headerless render target writes for RT 0.
581 */
582 #define SURF_INDEX_DRAW(d) (d)
583 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
584 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
585 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
586 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
587 /** Maximum size of the binding table. */
588 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
589
590 #define SURF_INDEX_VERT_CONST_BUFFER (0)
591 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
592 #define SURF_INDEX_VS_UBO(u) (SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT) + u)
593 #define SURF_INDEX_VS_SHADER_TIME (SURF_INDEX_VS_UBO(12))
594 #define BRW_MAX_VS_SURFACES (SURF_INDEX_VS_SHADER_TIME + 1)
595
596 #define SURF_INDEX_SOL_BINDING(t) ((t))
597 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
598
599 /**
600 * Stride in bytes between shader_time entries.
601 *
602 * We separate entries by a cacheline to reduce traffic between EUs writing to
603 * different entries.
604 */
605 #define SHADER_TIME_STRIDE 64
606
607 enum brw_cache_id {
608 BRW_CC_VP,
609 BRW_CC_UNIT,
610 BRW_WM_PROG,
611 BRW_BLORP_BLIT_PROG,
612 BRW_BLORP_CONST_COLOR_PROG,
613 BRW_SAMPLER,
614 BRW_WM_UNIT,
615 BRW_SF_PROG,
616 BRW_SF_VP,
617 BRW_SF_UNIT, /* scissor state on gen6 */
618 BRW_VS_UNIT,
619 BRW_VS_PROG,
620 BRW_GS_UNIT,
621 BRW_GS_PROG,
622 BRW_CLIP_VP,
623 BRW_CLIP_UNIT,
624 BRW_CLIP_PROG,
625
626 BRW_MAX_CACHE
627 };
628
629 struct brw_cache_item {
630 /**
631 * Effectively part of the key, cache_id identifies what kind of state
632 * buffer is involved, and also which brw->state.dirty.cache flag should
633 * be set when this cache item is chosen.
634 */
635 enum brw_cache_id cache_id;
636 /** 32-bit hash of the key data */
637 GLuint hash;
638 GLuint key_size; /* for variable-sized keys */
639 GLuint aux_size;
640 const void *key;
641
642 uint32_t offset;
643 uint32_t size;
644
645 struct brw_cache_item *next;
646 };
647
648
649 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
650 int aux_size, const void *key);
651 typedef void (*cache_aux_free_func)(const void *aux);
652
653 struct brw_cache {
654 struct brw_context *brw;
655
656 struct brw_cache_item **items;
657 drm_intel_bo *bo;
658 GLuint size, n_items;
659
660 uint32_t next_offset;
661 bool bo_used_by_gpu;
662
663 /**
664 * Optional functions used in determining whether the prog_data for a new
665 * cache item matches an existing cache item (in case there's relevant data
666 * outside of the prog_data). If NULL, a plain memcmp is done.
667 */
668 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
669 /** Optional functions for freeing other pointers attached to a prog_data. */
670 cache_aux_free_func aux_free[BRW_MAX_CACHE];
671 };
672
673
674 /* Considered adding a member to this struct to document which flags
675 * an update might raise so that ordering of the state atoms can be
676 * checked or derived at runtime. Dropped the idea in favor of having
677 * a debug mode where the state is monitored for flags which are
678 * raised that have already been tested against.
679 */
680 struct brw_tracked_state {
681 struct brw_state_flags dirty;
682 void (*emit)( struct brw_context *brw );
683 };
684
685 enum shader_time_shader_type {
686 ST_NONE,
687 ST_VS,
688 ST_VS_WRITTEN,
689 ST_VS_RESET,
690 ST_FS8,
691 ST_FS8_WRITTEN,
692 ST_FS8_RESET,
693 ST_FS16,
694 ST_FS16_WRITTEN,
695 ST_FS16_RESET,
696 };
697
698 /* Flags for brw->state.cache.
699 */
700 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
701 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
702 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
703 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
704 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
705 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
706 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
707 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
708 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
709 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
710 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
711 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
712 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
713 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
714 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
715
716 struct brw_cached_batch_item {
717 struct header *header;
718 GLuint sz;
719 struct brw_cached_batch_item *next;
720 };
721
722
723
724 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
725 * be easier if C allowed arrays of packed elements?
726 */
727 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
728
729 struct brw_vertex_buffer {
730 /** Buffer object containing the uploaded vertex data */
731 drm_intel_bo *bo;
732 uint32_t offset;
733 /** Byte stride between elements in the uploaded array */
734 GLuint stride;
735 GLuint step_rate;
736 };
737 struct brw_vertex_element {
738 const struct gl_client_array *glarray;
739
740 int buffer;
741
742 /** The corresponding Mesa vertex attribute */
743 gl_vert_attrib attrib;
744 /** Offset of the first element within the buffer object */
745 unsigned int offset;
746 };
747
748 struct brw_query_object {
749 struct gl_query_object Base;
750
751 /** Last query BO associated with this query. */
752 drm_intel_bo *bo;
753
754 /** Last index in bo with query data for this object. */
755 int last_index;
756 };
757
758
759 /**
760 * brw_context is derived from intel_context.
761 */
762 struct brw_context
763 {
764 struct intel_context intel; /**< base class, must be first field */
765 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
766
767 bool emit_state_always;
768 bool has_surface_tile_offset;
769 bool has_compr4;
770 bool has_negative_rhw_bug;
771 bool has_aa_line_parameters;
772 bool has_pln;
773 bool precompile;
774
775 /**
776 * Some versions of Gen hardware don't do centroid interpolation correctly
777 * on unlit pixels, causing incorrect values for derivatives near triangle
778 * edges. Enabling this flag causes the fragment shader to use
779 * non-centroid interpolation for unlit pixels, at the expense of two extra
780 * fragment shader instructions.
781 */
782 bool needs_unlit_centroid_workaround;
783
784 struct {
785 struct brw_state_flags dirty;
786 } state;
787
788 struct brw_cache cache;
789 struct brw_cached_batch_item *cached_batch_items;
790
791 /* Whether a meta-operation is in progress. */
792 bool meta_in_progress;
793
794 struct {
795 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
796 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
797
798 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
799 GLuint nr_enabled;
800 GLuint nr_buffers;
801
802 /* Summary of size and varying of active arrays, so we can check
803 * for changes to this state:
804 */
805 unsigned int min_index, max_index;
806
807 /* Offset from start of vertex buffer so we can avoid redefining
808 * the same VB packed over and over again.
809 */
810 unsigned int start_vertex_bias;
811 } vb;
812
813 struct {
814 /**
815 * Index buffer for this draw_prims call.
816 *
817 * Updates are signaled by BRW_NEW_INDICES.
818 */
819 const struct _mesa_index_buffer *ib;
820
821 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
822 drm_intel_bo *bo;
823 GLuint type;
824
825 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
826 * avoid re-uploading the IB packet over and over if we're actually
827 * referencing the same index buffer.
828 */
829 unsigned int start_vertex_offset;
830 } ib;
831
832 /* Active vertex program:
833 */
834 const struct gl_vertex_program *vertex_program;
835 const struct gl_fragment_program *fragment_program;
836
837 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
838 uint32_t CMD_VF_STATISTICS;
839 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
840 uint32_t CMD_PIPELINE_SELECT;
841
842 /**
843 * Platform specific constants containing the maximum number of threads
844 * for each pipeline stage.
845 */
846 int max_vs_threads;
847 int max_gs_threads;
848 int max_wm_threads;
849
850 /* BRW_NEW_URB_ALLOCATIONS:
851 */
852 struct {
853 GLuint vsize; /* vertex size plus header in urb registers */
854 GLuint csize; /* constant buffer size in urb registers */
855 GLuint sfsize; /* setup data size in urb registers */
856
857 bool constrained;
858
859 GLuint max_vs_entries; /* Maximum number of VS entries */
860 GLuint max_gs_entries; /* Maximum number of GS entries */
861
862 GLuint nr_vs_entries;
863 GLuint nr_gs_entries;
864 GLuint nr_clip_entries;
865 GLuint nr_sf_entries;
866 GLuint nr_cs_entries;
867
868 GLuint vs_start;
869 GLuint gs_start;
870 GLuint clip_start;
871 GLuint sf_start;
872 GLuint cs_start;
873 GLuint size; /* Hardware URB size, in KB. */
874
875 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
876 * URB space for the GS.
877 */
878 bool gen6_gs_previously_active;
879 } urb;
880
881
882 /* BRW_NEW_CURBE_OFFSETS:
883 */
884 struct {
885 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
886 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
887 GLuint clip_start;
888 GLuint clip_size;
889 GLuint vs_start;
890 GLuint vs_size;
891 GLuint total_size;
892
893 drm_intel_bo *curbe_bo;
894 /** Offset within curbe_bo of space for current curbe entry */
895 GLuint curbe_offset;
896 /** Offset within curbe_bo of space for next curbe entry */
897 GLuint curbe_next_offset;
898
899 /**
900 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
901 * in brw_curbe.c with the same set of constant data to be uploaded,
902 * so we'd rather not upload new constants in that case (it can cause
903 * a pipeline bubble since only up to 4 can be pipelined at a time).
904 */
905 GLfloat *last_buf;
906 /**
907 * Allocation for where to calculate the next set of CURBEs.
908 * It's a hot enough path that malloc/free of that data matters.
909 */
910 GLfloat *next_buf;
911 GLuint last_bufsz;
912 } curbe;
913
914 /** SAMPLER_STATE count and offset */
915 struct {
916 GLuint count;
917 uint32_t offset;
918 } sampler;
919
920 /**
921 * Layout of vertex data exiting the geometry portion of the pipleine.
922 * This comes from the geometry shader if one exists, otherwise from the
923 * vertex shader.
924 *
925 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
926 */
927 struct brw_vue_map vue_map_geom_out;
928
929 struct {
930 struct brw_vs_prog_data *prog_data;
931
932 drm_intel_bo *scratch_bo;
933 drm_intel_bo *const_bo;
934 /** Offset in the program cache to the VS program */
935 uint32_t prog_offset;
936 uint32_t state_offset;
937
938 uint32_t push_const_offset; /* Offset in the batchbuffer */
939 int push_const_size; /* in 256-bit register increments */
940
941 /** @{ register allocator */
942
943 struct ra_regs *regs;
944
945 /**
946 * Array of the ra classes for the unaligned contiguous register
947 * block sizes used.
948 */
949 int *classes;
950
951 /**
952 * Mapping for register-allocated objects in *regs to the first
953 * GRF for that object.
954 */
955 uint8_t *ra_reg_to_grf;
956 /** @} */
957
958 uint32_t bind_bo_offset;
959 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
960 } vs;
961
962 struct {
963 struct brw_gs_prog_data *prog_data;
964
965 bool prog_active;
966 /** Offset in the program cache to the CLIP program pre-gen6 */
967 uint32_t prog_offset;
968 uint32_t state_offset;
969
970 uint32_t bind_bo_offset;
971 uint32_t surf_offset[BRW_MAX_GS_SURFACES];
972 } gs;
973
974 struct {
975 struct brw_clip_prog_data *prog_data;
976
977 /** Offset in the program cache to the CLIP program pre-gen6 */
978 uint32_t prog_offset;
979
980 /* Offset in the batch to the CLIP state on pre-gen6. */
981 uint32_t state_offset;
982
983 /* As of gen6, this is the offset in the batch to the CLIP VP,
984 * instead of vp_bo.
985 */
986 uint32_t vp_offset;
987 } clip;
988
989
990 struct {
991 struct brw_sf_prog_data *prog_data;
992
993 /** Offset in the program cache to the CLIP program pre-gen6 */
994 uint32_t prog_offset;
995 uint32_t state_offset;
996 uint32_t vp_offset;
997 } sf;
998
999 struct {
1000 struct brw_wm_prog_data *prog_data;
1001
1002 /** offsets in the batch to sampler default colors (texture border color)
1003 */
1004 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1005
1006 GLuint render_surf;
1007
1008 drm_intel_bo *scratch_bo;
1009
1010 /**
1011 * Buffer object used in place of multisampled null render targets on
1012 * Gen6. See brw_update_null_renderbuffer_surface().
1013 */
1014 drm_intel_bo *multisampled_null_render_target_bo;
1015
1016 /** Offset in the program cache to the WM program */
1017 uint32_t prog_offset;
1018
1019 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1020
1021 drm_intel_bo *const_bo; /* pull constant buffer. */
1022 /**
1023 * This is offset in the batch to the push constants on gen6.
1024 *
1025 * Pre-gen6, push constants live in the CURBE.
1026 */
1027 uint32_t push_const_offset;
1028
1029 /** Binding table of pointers to surf_bo entries */
1030 uint32_t bind_bo_offset;
1031 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1032
1033 struct {
1034 struct ra_regs *regs;
1035
1036 /** Array of the ra classes for the unaligned contiguous
1037 * register block sizes used.
1038 */
1039 int *classes;
1040
1041 /**
1042 * Mapping for register-allocated objects in *regs to the first
1043 * GRF for that object.
1044 */
1045 uint8_t *ra_reg_to_grf;
1046
1047 /**
1048 * ra class for the aligned pairs we use for PLN, which doesn't
1049 * appear in *classes.
1050 */
1051 int aligned_pairs_class;
1052 } reg_sets[2];
1053 } wm;
1054
1055
1056 struct {
1057 uint32_t state_offset;
1058 uint32_t blend_state_offset;
1059 uint32_t depth_stencil_state_offset;
1060 uint32_t vp_offset;
1061 } cc;
1062
1063 struct {
1064 struct brw_query_object *obj;
1065 bool begin_emitted;
1066 } query;
1067
1068 int num_atoms;
1069 const struct brw_tracked_state **atoms;
1070
1071 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1072 struct {
1073 uint32_t offset;
1074 uint32_t size;
1075 enum state_struct_type type;
1076 } *state_batch_list;
1077 int state_batch_count;
1078
1079 uint32_t render_target_format[MESA_FORMAT_COUNT];
1080 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1081
1082 /* PrimitiveRestart */
1083 struct {
1084 bool in_progress;
1085 bool enable_cut_index;
1086 } prim_restart;
1087
1088 /** Computed depth/stencil/hiz state from the current attached
1089 * renderbuffers, valid only during the drawing state upload loop after
1090 * brw_workaround_depthstencil_alignment().
1091 */
1092 struct {
1093 struct intel_mipmap_tree *depth_mt;
1094 struct intel_mipmap_tree *stencil_mt;
1095
1096 /* Inter-tile (page-aligned) byte offsets. */
1097 uint32_t depth_offset, hiz_offset, stencil_offset;
1098 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1099 uint32_t tile_x, tile_y;
1100 } depthstencil;
1101
1102 uint32_t num_instances;
1103 int basevertex;
1104
1105 struct {
1106 drm_intel_bo *bo;
1107 struct gl_shader_program **shader_programs;
1108 struct gl_program **programs;
1109 enum shader_time_shader_type *types;
1110 uint64_t *cumulative;
1111 int num_entries;
1112 int max_entries;
1113 double report_time;
1114 } shader_time;
1115 };
1116
1117 /*======================================================================
1118 * brw_vtbl.c
1119 */
1120 void brwInitVtbl( struct brw_context *brw );
1121
1122 /*======================================================================
1123 * brw_context.c
1124 */
1125 bool brwCreateContext(int api,
1126 const struct gl_config *mesaVis,
1127 __DRIcontext *driContextPriv,
1128 unsigned major_version,
1129 unsigned minor_version,
1130 uint32_t flags,
1131 unsigned *error,
1132 void *sharedContextPrivate);
1133
1134 /*======================================================================
1135 * brw_misc_state.c
1136 */
1137 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1138 uint32_t depth_level,
1139 uint32_t depth_layer,
1140 struct intel_mipmap_tree *stencil_mt,
1141 uint32_t *out_tile_mask_x,
1142 uint32_t *out_tile_mask_y);
1143 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1144 GLbitfield clear_mask);
1145
1146 /*======================================================================
1147 * brw_queryobj.c
1148 */
1149 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1150 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1151 void brw_emit_query_begin(struct brw_context *brw);
1152 void brw_emit_query_end(struct brw_context *brw);
1153
1154 /** gen6_queryobj.c */
1155 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1156
1157 /*======================================================================
1158 * brw_state_dump.c
1159 */
1160 void brw_debug_batch(struct intel_context *intel);
1161 void brw_annotate_aub(struct intel_context *intel);
1162
1163 /*======================================================================
1164 * brw_tex.c
1165 */
1166 void brw_validate_textures( struct brw_context *brw );
1167
1168
1169 /*======================================================================
1170 * brw_program.c
1171 */
1172 void brwInitFragProgFuncs( struct dd_function_table *functions );
1173
1174 int brw_get_scratch_size(int size);
1175 void brw_get_scratch_bo(struct intel_context *intel,
1176 drm_intel_bo **scratch_bo, int size);
1177 void brw_init_shader_time(struct brw_context *brw);
1178 int brw_get_shader_time_index(struct brw_context *brw,
1179 struct gl_shader_program *shader_prog,
1180 struct gl_program *prog,
1181 enum shader_time_shader_type type);
1182 void brw_collect_and_report_shader_time(struct brw_context *brw);
1183 void brw_destroy_shader_time(struct brw_context *brw);
1184
1185 /* brw_urb.c
1186 */
1187 void brw_upload_urb_fence(struct brw_context *brw);
1188
1189 /* brw_curbe.c
1190 */
1191 void brw_upload_cs_urb_state(struct brw_context *brw);
1192
1193 /* brw_fs_reg_allocate.cpp
1194 */
1195 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1196
1197 /* brw_disasm.c */
1198 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1199
1200 /* brw_vs.c */
1201 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1202
1203 /* brw_wm_surface_state.c */
1204 void brw_init_surface_formats(struct brw_context *brw);
1205 void
1206 brw_update_sol_surface(struct brw_context *brw,
1207 struct gl_buffer_object *buffer_obj,
1208 uint32_t *out_offset, unsigned num_vector_components,
1209 unsigned stride_dwords, unsigned offset_dwords);
1210 void brw_upload_ubo_surfaces(struct brw_context *brw,
1211 struct gl_shader *shader,
1212 uint32_t *surf_offsets);
1213
1214 /* gen6_sol.c */
1215 void
1216 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1217 struct gl_transform_feedback_object *obj);
1218 void
1219 brw_end_transform_feedback(struct gl_context *ctx,
1220 struct gl_transform_feedback_object *obj);
1221
1222 /* gen7_sol_state.c */
1223 void
1224 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1225 struct gl_transform_feedback_object *obj);
1226 void
1227 gen7_end_transform_feedback(struct gl_context *ctx,
1228 struct gl_transform_feedback_object *obj);
1229
1230 /* brw_blorp_blit.cpp */
1231 GLbitfield
1232 brw_blorp_framebuffer(struct intel_context *intel,
1233 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1234 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1235 GLbitfield mask, GLenum filter);
1236
1237 bool
1238 brw_blorp_copytexsubimage(struct intel_context *intel,
1239 struct gl_renderbuffer *src_rb,
1240 struct gl_texture_image *dst_image,
1241 int slice,
1242 int srcX0, int srcY0,
1243 int dstX0, int dstY0,
1244 int width, int height);
1245
1246 /* gen6_multisample_state.c */
1247 void
1248 gen6_emit_3dstate_multisample(struct brw_context *brw,
1249 unsigned num_samples);
1250 void
1251 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1252 unsigned num_samples, float coverage,
1253 bool coverage_invert, unsigned sample_mask);
1254 void
1255 gen6_get_sample_position(struct gl_context *ctx,
1256 struct gl_framebuffer *fb,
1257 GLuint index,
1258 GLfloat *result);
1259
1260 /* gen7_urb.c */
1261 void
1262 gen7_allocate_push_constants(struct brw_context *brw);
1263
1264 void
1265 gen7_emit_urb_state(struct brw_context *brw, GLuint nr_vs_entries,
1266 GLuint vs_size, GLuint vs_start);
1267
1268
1269
1270 /*======================================================================
1271 * Inline conversion functions. These are better-typed than the
1272 * macros used previously:
1273 */
1274 static INLINE struct brw_context *
1275 brw_context( struct gl_context *ctx )
1276 {
1277 return (struct brw_context *)ctx;
1278 }
1279
1280 static INLINE struct brw_vertex_program *
1281 brw_vertex_program(struct gl_vertex_program *p)
1282 {
1283 return (struct brw_vertex_program *) p;
1284 }
1285
1286 static INLINE const struct brw_vertex_program *
1287 brw_vertex_program_const(const struct gl_vertex_program *p)
1288 {
1289 return (const struct brw_vertex_program *) p;
1290 }
1291
1292 static INLINE struct brw_fragment_program *
1293 brw_fragment_program(struct gl_fragment_program *p)
1294 {
1295 return (struct brw_fragment_program *) p;
1296 }
1297
1298 static INLINE const struct brw_fragment_program *
1299 brw_fragment_program_const(const struct gl_fragment_program *p)
1300 {
1301 return (const struct brw_fragment_program *) p;
1302 }
1303
1304 /**
1305 * Pre-gen6, the register file of the EUs was shared between threads,
1306 * and each thread used some subset allocated on a 16-register block
1307 * granularity. The unit states wanted these block counts.
1308 */
1309 static inline int
1310 brw_register_blocks(int reg_count)
1311 {
1312 return ALIGN(reg_count, 16) / 16 - 1;
1313 }
1314
1315 static inline uint32_t
1316 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1317 uint32_t prog_offset)
1318 {
1319 struct intel_context *intel = &brw->intel;
1320
1321 if (intel->gen >= 5) {
1322 /* Using state base address. */
1323 return prog_offset;
1324 }
1325
1326 drm_intel_bo_emit_reloc(intel->batch.bo,
1327 state_offset,
1328 brw->cache.bo,
1329 prog_offset,
1330 I915_GEM_DOMAIN_INSTRUCTION, 0);
1331
1332 return brw->cache.bo->offset + prog_offset;
1333 }
1334
1335 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1336 bool brw_lower_texture_gradients(struct intel_context *intel,
1337 struct exec_list *instructions);
1338
1339 struct opcode_desc {
1340 char *name;
1341 int nsrc;
1342 int ndst;
1343 };
1344
1345 extern const struct opcode_desc opcode_descs[128];
1346
1347 void
1348 brw_emit_depthbuffer(struct brw_context *brw);
1349
1350 void
1351 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1352 struct intel_mipmap_tree *depth_mt,
1353 uint32_t depth_offset, uint32_t depthbuffer_format,
1354 uint32_t depth_surface_type,
1355 struct intel_mipmap_tree *stencil_mt,
1356 bool hiz, bool separate_stencil,
1357 uint32_t width, uint32_t height,
1358 uint32_t tile_x, uint32_t tile_y);
1359
1360 void
1361 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1362 struct intel_mipmap_tree *depth_mt,
1363 uint32_t depth_offset, uint32_t depthbuffer_format,
1364 uint32_t depth_surface_type,
1365 struct intel_mipmap_tree *stencil_mt,
1366 bool hiz, bool separate_stencil,
1367 uint32_t width, uint32_t height,
1368 uint32_t tile_x, uint32_t tile_y);
1369
1370 #ifdef __cplusplus
1371 }
1372 #endif
1373
1374 #endif