i965: Split the gen6 GS binding table to a separate table.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39
40
41 /* Glossary:
42 *
43 * URB - uniform resource buffer. A mid-sized buffer which is
44 * partitioned between the fixed function units and used for passing
45 * values (vertices, primitives, constants) between them.
46 *
47 * CURBE - constant URB entry. An urb region (entry) used to hold
48 * constant values which the fixed function units can be instructed to
49 * preload into the GRF when spawning a thread.
50 *
51 * VUE - vertex URB entry. An urb entry holding a vertex and usually
52 * a vertex header. The header contains control information and
53 * things like primitive type, Begin/end flags and clip codes.
54 *
55 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
56 * unit holding rasterization and interpolation parameters.
57 *
58 * GRF - general register file. One of several register files
59 * addressable by programmed threads. The inputs (r0, payload, curbe,
60 * urb) of the thread are preloaded to this area before the thread is
61 * spawned. The registers are individually 8 dwords wide and suitable
62 * for general usage. Registers holding thread input values are not
63 * special and may be overwritten.
64 *
65 * MRF - message register file. Threads communicate (and terminate)
66 * by sending messages. Message parameters are placed in contiguous
67 * MRF registers. All program output is via these messages. URB
68 * entries are populated by sending a message to the shared URB
69 * function containing the new data, together with a control word,
70 * often an unmodified copy of R0.
71 *
72 * R0 - GRF register 0. Typically holds control information used when
73 * sending messages to other threads.
74 *
75 * EU or GEN4 EU: The name of the programmable subsystem of the
76 * i965 hardware. Threads are executed by the EU, the registers
77 * described above are part of the EU architecture.
78 *
79 * Fixed function units:
80 *
81 * CS - Command streamer. Notional first unit, little software
82 * interaction. Holds the URB entries used for constant data, ie the
83 * CURBEs.
84 *
85 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
86 * this unit is responsible for pulling vertices out of vertex buffers
87 * in vram and injecting them into the processing pipe as VUEs. If
88 * enabled, it first passes them to a VS thread which is a good place
89 * for the driver to implement any active vertex shader.
90 *
91 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
92 * enabled, incoming strips etc are passed to GS threads in individual
93 * line/triangle/point units. The GS thread may perform arbitary
94 * computation and emit whatever primtives with whatever vertices it
95 * chooses. This makes GS an excellent place to implement GL's
96 * unfilled polygon modes, though of course it is capable of much
97 * more. Additionally, GS is used to translate away primitives not
98 * handled by latter units, including Quads and Lineloops.
99 *
100 * CS - Clipper. Mesa's clipping algorithms are imported to run on
101 * this unit. The fixed function part performs cliptesting against
102 * the 6 fixed clipplanes and makes descisions on whether or not the
103 * incoming primitive needs to be passed to a thread for clipping.
104 * User clip planes are handled via cooperation with the VS thread.
105 *
106 * SF - Strips Fans or Setup: Triangles are prepared for
107 * rasterization. Interpolation coefficients are calculated.
108 * Flatshading and two-side lighting usually performed here.
109 *
110 * WM - Windower. Interpolation of vertex attributes performed here.
111 * Fragment shader implemented here. SIMD aspects of EU taken full
112 * advantage of, as pixels are processed in blocks of 16.
113 *
114 * CC - Color Calculator. No EU threads associated with this unit.
115 * Handles blending and (presumably) depth and stencil testing.
116 */
117
118
119 #define BRW_MAX_CURBE (32*16)
120
121 struct brw_context;
122 struct brw_instruction;
123 struct brw_vs_prog_key;
124 struct brw_wm_prog_key;
125 struct brw_wm_prog_data;
126
127 enum brw_state_id {
128 BRW_STATE_URB_FENCE,
129 BRW_STATE_FRAGMENT_PROGRAM,
130 BRW_STATE_VERTEX_PROGRAM,
131 BRW_STATE_INPUT_DIMENSIONS,
132 BRW_STATE_CURBE_OFFSETS,
133 BRW_STATE_REDUCED_PRIMITIVE,
134 BRW_STATE_PRIMITIVE,
135 BRW_STATE_CONTEXT,
136 BRW_STATE_WM_INPUT_DIMENSIONS,
137 BRW_STATE_PSP,
138 BRW_STATE_SURFACES,
139 BRW_STATE_VS_BINDING_TABLE,
140 BRW_STATE_GS_BINDING_TABLE,
141 BRW_STATE_PS_BINDING_TABLE,
142 BRW_STATE_INDICES,
143 BRW_STATE_VERTICES,
144 BRW_STATE_BATCH,
145 BRW_STATE_NR_WM_SURFACES,
146 BRW_STATE_NR_VS_SURFACES,
147 BRW_STATE_INDEX_BUFFER,
148 BRW_STATE_VS_CONSTBUF,
149 BRW_STATE_PROGRAM_CACHE,
150 BRW_STATE_STATE_BASE_ADDRESS,
151 BRW_STATE_SOL_INDICES,
152 };
153
154 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
155 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
156 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
157 #define BRW_NEW_INPUT_DIMENSIONS (1 << BRW_STATE_INPUT_DIMENSIONS)
158 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
159 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
160 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
161 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
162 #define BRW_NEW_WM_INPUT_DIMENSIONS (1 << BRW_STATE_WM_INPUT_DIMENSIONS)
163 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
164 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
165 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
166 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
167 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
168 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
169 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
170 /**
171 * Used for any batch entry with a relocated pointer that will be used
172 * by any 3D rendering.
173 */
174 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
175 /** \see brw.state.depth_region */
176 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
177 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
178 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
179 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
180 #define BRW_NEW_SOL_INDICES (1 << BRW_STATE_SOL_INDICES)
181
182 struct brw_state_flags {
183 /** State update flags signalled by mesa internals */
184 GLuint mesa;
185 /**
186 * State update flags signalled as the result of brw_tracked_state updates
187 */
188 GLuint brw;
189 /** State update flags signalled by brw_state_cache.c searches */
190 GLuint cache;
191 };
192
193 enum state_struct_type {
194 AUB_TRACE_VS_STATE = 1,
195 AUB_TRACE_GS_STATE = 2,
196 AUB_TRACE_CLIP_STATE = 3,
197 AUB_TRACE_SF_STATE = 4,
198 AUB_TRACE_WM_STATE = 5,
199 AUB_TRACE_CC_STATE = 6,
200 AUB_TRACE_CLIP_VP_STATE = 7,
201 AUB_TRACE_SF_VP_STATE = 8,
202 AUB_TRACE_CC_VP_STATE = 0x9,
203 AUB_TRACE_SAMPLER_STATE = 0xa,
204 AUB_TRACE_KERNEL_INSTRUCTIONS = 0xb,
205 AUB_TRACE_SCRATCH_SPACE = 0xc,
206 AUB_TRACE_SAMPLER_DEFAULT_COLOR = 0xd,
207
208 AUB_TRACE_SCISSOR_STATE = 0x15,
209 AUB_TRACE_BLEND_STATE = 0x16,
210 AUB_TRACE_DEPTH_STENCIL_STATE = 0x17,
211
212 /* Not written to .aub files the same way the structures above are. */
213 AUB_TRACE_NO_TYPE = 0x100,
214 AUB_TRACE_BINDING_TABLE = 0x101,
215 AUB_TRACE_SURFACE_STATE = 0x102,
216 AUB_TRACE_VS_CONSTANTS = 0x103,
217 AUB_TRACE_WM_CONSTANTS = 0x104,
218 };
219
220 /** Subclass of Mesa vertex program */
221 struct brw_vertex_program {
222 struct gl_vertex_program program;
223 GLuint id;
224 bool use_const_buffer;
225 };
226
227
228 /** Subclass of Mesa fragment program */
229 struct brw_fragment_program {
230 struct gl_fragment_program program;
231 GLuint id; /**< serial no. to identify frag progs, never re-used */
232 };
233
234 struct brw_shader {
235 struct gl_shader base;
236
237 /** Shader IR transformed for native compile, at link time. */
238 struct exec_list *ir;
239 };
240
241 struct brw_shader_program {
242 struct gl_shader_program base;
243 };
244
245 enum param_conversion {
246 PARAM_NO_CONVERT,
247 PARAM_CONVERT_F2I,
248 PARAM_CONVERT_F2U,
249 PARAM_CONVERT_F2B,
250 PARAM_CONVERT_ZERO,
251 };
252
253 /* Data about a particular attempt to compile a program. Note that
254 * there can be many of these, each in a different GL state
255 * corresponding to a different brw_wm_prog_key struct, with different
256 * compiled programs:
257 */
258 struct brw_wm_prog_data {
259 GLuint curb_read_length;
260 GLuint urb_read_length;
261
262 GLuint first_curbe_grf;
263 GLuint first_curbe_grf_16;
264 GLuint reg_blocks;
265 GLuint reg_blocks_16;
266 GLuint total_scratch;
267
268 GLuint nr_params; /**< number of float params/constants */
269 GLuint nr_pull_params;
270 bool error;
271 int dispatch_width;
272 uint32_t prog_offset_16;
273
274 /**
275 * Mask of which interpolation modes are required by the fragment shader.
276 * Used in hardware setup on gen6+.
277 */
278 uint32_t barycentric_interp_modes;
279
280 /* Pointer to tracked values (only valid once
281 * _mesa_load_state_parameters has been called at runtime).
282 */
283 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
284 enum param_conversion param_convert[MAX_UNIFORMS * 4];
285 const float *pull_param[MAX_UNIFORMS * 4];
286 enum param_conversion pull_param_convert[MAX_UNIFORMS * 4];
287 };
288
289 /**
290 * Enum representing the i965-specific vertex results that don't correspond
291 * exactly to any element of gl_vert_result. The values of this enum are
292 * assigned such that they don't conflict with gl_vert_result.
293 */
294 typedef enum
295 {
296 BRW_VERT_RESULT_NDC = VERT_RESULT_MAX,
297 BRW_VERT_RESULT_HPOS_DUPLICATE,
298 BRW_VERT_RESULT_PAD,
299 BRW_VERT_RESULT_MAX
300 } brw_vert_result;
301
302
303 /**
304 * Data structure recording the relationship between the gl_vert_result enum
305 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
306 * single octaword within the VUE (128 bits).
307 *
308 * Note that each BRW register contains 256 bits (2 octawords), so when
309 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
310 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
311 * in a vertex shader), each register corresponds to a single VUE slot, since
312 * it contains data for two separate vertices.
313 */
314 struct brw_vue_map {
315 /**
316 * Map from gl_vert_result value to VUE slot. For gl_vert_results that are
317 * not stored in a slot (because they are not written, or because
318 * additional processing is applied before storing them in the VUE), the
319 * value is -1.
320 */
321 int vert_result_to_slot[BRW_VERT_RESULT_MAX];
322
323 /**
324 * Map from VUE slot to gl_vert_result value. For slots that do not
325 * directly correspond to a gl_vert_result, the value comes from
326 * brw_vert_result.
327 *
328 * For slots that are not in use, the value is BRW_VERT_RESULT_MAX (this
329 * simplifies code that uses the value stored in slot_to_vert_result to
330 * create a bit mask).
331 */
332 int slot_to_vert_result[BRW_VERT_RESULT_MAX];
333
334 /**
335 * Total number of VUE slots in use
336 */
337 int num_slots;
338 };
339
340 /**
341 * Convert a VUE slot number into a byte offset within the VUE.
342 */
343 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
344 {
345 return 16*slot;
346 }
347
348 /**
349 * Convert a vert_result into a byte offset within the VUE.
350 */
351 static inline GLuint brw_vert_result_to_offset(struct brw_vue_map *vue_map,
352 GLuint vert_result)
353 {
354 return brw_vue_slot_to_offset(vue_map->vert_result_to_slot[vert_result]);
355 }
356
357
358 struct brw_sf_prog_data {
359 GLuint urb_read_length;
360 GLuint total_grf;
361
362 /* Each vertex may have upto 12 attributes, 4 components each,
363 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
364 * rows.
365 *
366 * Actually we use 4 for each, so call it 12 rows.
367 */
368 GLuint urb_entry_size;
369 };
370
371 struct brw_clip_prog_data {
372 GLuint curb_read_length; /* user planes? */
373 GLuint clip_mode;
374 GLuint urb_read_length;
375 GLuint total_grf;
376 };
377
378 struct brw_gs_prog_data {
379 GLuint urb_read_length;
380 GLuint total_grf;
381
382 /**
383 * Gen6 transform feedback: Amount by which the streaming vertex buffer
384 * indices should be incremented each time the GS is invoked.
385 */
386 unsigned svbi_postincrement_value;
387 };
388
389 struct brw_vs_prog_data {
390 struct brw_vue_map vue_map;
391
392 GLuint curb_read_length;
393 GLuint urb_read_length;
394 GLuint total_grf;
395 GLbitfield64 outputs_written;
396 GLuint nr_params; /**< number of float params/constants */
397 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
398 GLuint total_scratch;
399
400 GLbitfield64 inputs_read;
401
402 /* Used for calculating urb partitions:
403 */
404 GLuint urb_entry_size;
405
406 const float *param[MAX_UNIFORMS * 4]; /* should be: BRW_MAX_CURBE */
407 const float *pull_param[MAX_UNIFORMS * 4];
408
409 bool uses_new_param_layout;
410 bool uses_vertexid;
411 bool userclip;
412
413 int num_surfaces;
414 };
415
416
417 /* Size == 0 if output either not written, or always [0,0,0,1]
418 */
419 struct brw_vs_ouput_sizes {
420 GLubyte output_size[VERT_RESULT_MAX];
421 };
422
423
424 /** Number of texture sampler units */
425 #define BRW_MAX_TEX_UNIT 16
426
427 /** Max number of render targets in a shader */
428 #define BRW_MAX_DRAW_BUFFERS 8
429
430 /**
431 * Max number of binding table entries used for stream output.
432 *
433 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
434 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
435 *
436 * On Gen6, the size of transform feedback data is limited not by the number
437 * of components but by the number of binding table entries we set aside. We
438 * use one binding table entry for a float, one entry for a vector, and one
439 * entry per matrix column. Since the only way we can communicate our
440 * transform feedback capabilities to the client is via
441 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
442 * worst case, in which all the varyings are floats, so we use up one binding
443 * table entry per component. Therefore we need to set aside at least 64
444 * binding table entries for use by transform feedback.
445 *
446 * Note: since we don't currently pack varyings, it is currently impossible
447 * for the client to actually use up all of these binding table entries--if
448 * all of their varyings were floats, they would run out of varying slots and
449 * fail to link. But that's a bug, so it seems prudent to go ahead and
450 * allocate the number of binding table entries we will need once the bug is
451 * fixed.
452 */
453 #define BRW_MAX_SOL_BINDINGS 64
454
455 /** Maximum number of actual buffers used for stream output */
456 #define BRW_MAX_SOL_BUFFERS 4
457
458 /**
459 * Helpers to create Surface Binding Table indexes for draw buffers,
460 * textures, and constant buffers.
461 *
462 * Shader threads access surfaces via numeric handles, rather than directly
463 * using pointers. The binding table maps these numeric handles to the
464 * address of the actual buffer.
465 *
466 * For example, a shader might ask to sample from "surface 7." In this case,
467 * bind[7] would contain a pointer to a texture.
468 *
469 * Although the hardware supports separate binding tables per pipeline stage
470 * (VS, HS, DS, GS, PS), we currently share a single binding table for all of
471 * them. This is purely for convenience.
472 *
473 * Currently our SOL/WM binding tables are (arbitrarily) programmed as follows:
474 *
475 * +-------------------------------+
476 * | 0 | Draw buffer 0 | .
477 * | . | . | \
478 * | : | : | > Only relevant to the WM.
479 * | 7 | Draw buffer 7 | /
480 * |-----|-------------------------| `
481 * | 8 | WM Pull Constant Buffer |
482 * |-----|-------------------------|
483 * | 9 | Texture 0 |
484 * | . | . |
485 * | : | : |
486 * | 24 | Texture 15 |
487 * +-------------------------------+
488 *
489 * Our VS binding tables are programmed as follows:
490 *
491 * +-----+-------------------------+ `
492 * | 0 | VS Pull Constant Buffer |
493 * +-----+-------------------------+
494 * | 1 | Texture 0 |
495 * | . | . |
496 * | : | : |
497 * | 16 | Texture 15 |
498 * +-------------------------------+
499 *
500 * Our (gen6) GS binding tables are programmed as follows:
501 *
502 * +-----+-------------------------+
503 * | 0 | SOL Binding 0 |
504 * | . | . |
505 * | : | : |
506 * | 63 | SOL Binding 63 |
507 * +-----+-------------------------+
508 *
509 * Note that nothing actually uses the SURF_INDEX_DRAW macro, so it has to be
510 * the identity function or things will break. We do want to keep draw buffers
511 * first so we can use headerless render target writes for RT 0.
512 */
513 #define SURF_INDEX_DRAW(d) (d)
514 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
515 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
516
517 /** Maximum size of the binding table. */
518 #define BRW_MAX_SURFACES SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT)
519
520 #define SURF_INDEX_VERT_CONST_BUFFER (0)
521 #define SURF_INDEX_VS_TEXTURE(t) (SURF_INDEX_VERT_CONST_BUFFER + 1 + (t))
522 #define BRW_MAX_VS_SURFACES SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT)
523
524 #define SURF_INDEX_SOL_BINDING(t) ((t))
525 #define BRW_MAX_GS_SURFACES SURF_INDEX_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
526
527 enum brw_cache_id {
528 BRW_BLEND_STATE,
529 BRW_DEPTH_STENCIL_STATE,
530 BRW_COLOR_CALC_STATE,
531 BRW_CC_VP,
532 BRW_CC_UNIT,
533 BRW_WM_PROG,
534 BRW_SAMPLER,
535 BRW_WM_UNIT,
536 BRW_SF_PROG,
537 BRW_SF_VP,
538 BRW_SF_UNIT, /* scissor state on gen6 */
539 BRW_VS_UNIT,
540 BRW_VS_PROG,
541 BRW_GS_UNIT,
542 BRW_GS_PROG,
543 BRW_CLIP_VP,
544 BRW_CLIP_UNIT,
545 BRW_CLIP_PROG,
546
547 BRW_MAX_CACHE
548 };
549
550 struct brw_cache_item {
551 /**
552 * Effectively part of the key, cache_id identifies what kind of state
553 * buffer is involved, and also which brw->state.dirty.cache flag should
554 * be set when this cache item is chosen.
555 */
556 enum brw_cache_id cache_id;
557 /** 32-bit hash of the key data */
558 GLuint hash;
559 GLuint key_size; /* for variable-sized keys */
560 GLuint aux_size;
561 const void *key;
562
563 uint32_t offset;
564 uint32_t size;
565
566 struct brw_cache_item *next;
567 };
568
569
570
571 struct brw_cache {
572 struct brw_context *brw;
573
574 struct brw_cache_item **items;
575 drm_intel_bo *bo;
576 GLuint size, n_items;
577
578 uint32_t next_offset;
579 bool bo_used_by_gpu;
580 };
581
582
583 /* Considered adding a member to this struct to document which flags
584 * an update might raise so that ordering of the state atoms can be
585 * checked or derived at runtime. Dropped the idea in favor of having
586 * a debug mode where the state is monitored for flags which are
587 * raised that have already been tested against.
588 */
589 struct brw_tracked_state {
590 struct brw_state_flags dirty;
591 void (*emit)( struct brw_context *brw );
592 };
593
594 /* Flags for brw->state.cache.
595 */
596 #define CACHE_NEW_BLEND_STATE (1<<BRW_BLEND_STATE)
597 #define CACHE_NEW_DEPTH_STENCIL_STATE (1<<BRW_DEPTH_STENCIL_STATE)
598 #define CACHE_NEW_COLOR_CALC_STATE (1<<BRW_COLOR_CALC_STATE)
599 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
600 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
601 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
602 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
603 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
604 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
605 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
606 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
607 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
608 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
609 #define CACHE_NEW_GS_UNIT (1<<BRW_GS_UNIT)
610 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
611 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
612 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
613 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
614
615 struct brw_cached_batch_item {
616 struct header *header;
617 GLuint sz;
618 struct brw_cached_batch_item *next;
619 };
620
621
622
623 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
624 * be easier if C allowed arrays of packed elements?
625 */
626 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
627
628 struct brw_vertex_buffer {
629 /** Buffer object containing the uploaded vertex data */
630 drm_intel_bo *bo;
631 uint32_t offset;
632 /** Byte stride between elements in the uploaded array */
633 GLuint stride;
634 };
635 struct brw_vertex_element {
636 const struct gl_client_array *glarray;
637
638 int buffer;
639
640 /** The corresponding Mesa vertex attribute */
641 gl_vert_attrib attrib;
642 /** Size of a complete element */
643 GLuint element_size;
644 /** Offset of the first element within the buffer object */
645 unsigned int offset;
646 };
647
648
649
650 struct brw_vertex_info {
651 GLuint sizes[ATTRIB_BIT_DWORDS * 2]; /* sizes:2[VERT_ATTRIB_MAX] */
652 };
653
654 struct brw_query_object {
655 struct gl_query_object Base;
656
657 /** Last query BO associated with this query. */
658 drm_intel_bo *bo;
659 /** First index in bo with query data for this object. */
660 int first_index;
661 /** Last index in bo with query data for this object. */
662 int last_index;
663 };
664
665
666 /**
667 * brw_context is derived from intel_context.
668 */
669 struct brw_context
670 {
671 struct intel_context intel; /**< base class, must be first field */
672 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
673
674 bool emit_state_always;
675 bool has_surface_tile_offset;
676 bool has_compr4;
677 bool has_negative_rhw_bug;
678 bool has_aa_line_parameters;
679 bool has_pln;
680 bool precompile;
681
682 struct {
683 struct brw_state_flags dirty;
684 } state;
685
686 struct brw_cache cache;
687 struct brw_cached_batch_item *cached_batch_items;
688
689 struct {
690 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
691 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
692 struct {
693 uint32_t handle;
694 uint32_t offset;
695 uint32_t stride;
696 } current_buffers[VERT_ATTRIB_MAX];
697
698 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
699 GLuint nr_enabled;
700 GLuint nr_buffers, nr_current_buffers;
701
702 /* Summary of size and varying of active arrays, so we can check
703 * for changes to this state:
704 */
705 struct brw_vertex_info info;
706 unsigned int min_index, max_index;
707
708 /* Offset from start of vertex buffer so we can avoid redefining
709 * the same VB packed over and over again.
710 */
711 unsigned int start_vertex_bias;
712 } vb;
713
714 struct {
715 /**
716 * Index buffer for this draw_prims call.
717 *
718 * Updates are signaled by BRW_NEW_INDICES.
719 */
720 const struct _mesa_index_buffer *ib;
721
722 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
723 drm_intel_bo *bo;
724 GLuint type;
725
726 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
727 * avoid re-uploading the IB packet over and over if we're actually
728 * referencing the same index buffer.
729 */
730 unsigned int start_vertex_offset;
731 } ib;
732
733 /* Active vertex program:
734 */
735 const struct gl_vertex_program *vertex_program;
736 const struct gl_fragment_program *fragment_program;
737
738 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
739 uint32_t CMD_VF_STATISTICS;
740 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
741 uint32_t CMD_PIPELINE_SELECT;
742
743 /**
744 * Platform specific constants containing the maximum number of threads
745 * for each pipeline stage.
746 */
747 int max_vs_threads;
748 int max_gs_threads;
749 int max_wm_threads;
750
751 /* BRW_NEW_URB_ALLOCATIONS:
752 */
753 struct {
754 GLuint vsize; /* vertex size plus header in urb registers */
755 GLuint csize; /* constant buffer size in urb registers */
756 GLuint sfsize; /* setup data size in urb registers */
757
758 bool constrained;
759
760 GLuint max_vs_entries; /* Maximum number of VS entries */
761 GLuint max_gs_entries; /* Maximum number of GS entries */
762
763 GLuint nr_vs_entries;
764 GLuint nr_gs_entries;
765 GLuint nr_clip_entries;
766 GLuint nr_sf_entries;
767 GLuint nr_cs_entries;
768
769 /* gen6:
770 * The length of each URB entry owned by the VS (or GS), as
771 * a number of 1024-bit (128-byte) rows. Should be >= 1.
772 *
773 * gen7: Same meaning, but in 512-bit (64-byte) rows.
774 */
775 GLuint vs_size;
776 GLuint gs_size;
777
778 GLuint vs_start;
779 GLuint gs_start;
780 GLuint clip_start;
781 GLuint sf_start;
782 GLuint cs_start;
783 GLuint size; /* Hardware URB size, in KB. */
784
785 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
786 * URB space for the GS.
787 */
788 bool gen6_gs_previously_active;
789 } urb;
790
791
792 /* BRW_NEW_CURBE_OFFSETS:
793 */
794 struct {
795 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
796 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
797 GLuint clip_start;
798 GLuint clip_size;
799 GLuint vs_start;
800 GLuint vs_size;
801 GLuint total_size;
802
803 drm_intel_bo *curbe_bo;
804 /** Offset within curbe_bo of space for current curbe entry */
805 GLuint curbe_offset;
806 /** Offset within curbe_bo of space for next curbe entry */
807 GLuint curbe_next_offset;
808
809 /**
810 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
811 * in brw_curbe.c with the same set of constant data to be uploaded,
812 * so we'd rather not upload new constants in that case (it can cause
813 * a pipeline bubble since only up to 4 can be pipelined at a time).
814 */
815 GLfloat *last_buf;
816 /**
817 * Allocation for where to calculate the next set of CURBEs.
818 * It's a hot enough path that malloc/free of that data matters.
819 */
820 GLfloat *next_buf;
821 GLuint last_bufsz;
822 } curbe;
823
824 struct {
825 /** Binding table of pointers to surf_bo entries */
826 uint32_t bo_offset;
827 uint32_t surf_offset[BRW_MAX_SURFACES];
828 } bind;
829
830 /** SAMPLER_STATE count and offset */
831 struct {
832 GLuint count;
833 uint32_t offset;
834 } sampler;
835
836 struct {
837 struct brw_vs_prog_data *prog_data;
838 int8_t *constant_map; /* variable array following prog_data */
839
840 drm_intel_bo *scratch_bo;
841 drm_intel_bo *const_bo;
842 /** Offset in the program cache to the VS program */
843 uint32_t prog_offset;
844 uint32_t state_offset;
845
846 uint32_t push_const_offset; /* Offset in the batchbuffer */
847 int push_const_size; /* in 256-bit register increments */
848
849 /** @{ register allocator */
850
851 struct ra_regs *regs;
852
853 /**
854 * Array of the ra classes for the unaligned contiguous register
855 * block sizes used.
856 */
857 int *classes;
858
859 /**
860 * Mapping for register-allocated objects in *regs to the first
861 * GRF for that object.
862 */
863 uint8_t *ra_reg_to_grf;
864 /** @} */
865
866 uint32_t bind_bo_offset;
867 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
868 } vs;
869
870 struct {
871 struct brw_gs_prog_data *prog_data;
872
873 bool prog_active;
874 /** Offset in the program cache to the CLIP program pre-gen6 */
875 uint32_t prog_offset;
876 uint32_t state_offset;
877
878 uint32_t bind_bo_offset;
879 uint32_t surf_offset[BRW_MAX_VS_SURFACES];
880 } gs;
881
882 struct {
883 struct brw_clip_prog_data *prog_data;
884
885 /** Offset in the program cache to the CLIP program pre-gen6 */
886 uint32_t prog_offset;
887
888 /* Offset in the batch to the CLIP state on pre-gen6. */
889 uint32_t state_offset;
890
891 /* As of gen6, this is the offset in the batch to the CLIP VP,
892 * instead of vp_bo.
893 */
894 uint32_t vp_offset;
895 } clip;
896
897
898 struct {
899 struct brw_sf_prog_data *prog_data;
900
901 /** Offset in the program cache to the CLIP program pre-gen6 */
902 uint32_t prog_offset;
903 uint32_t state_offset;
904 uint32_t vp_offset;
905 } sf;
906
907 struct {
908 struct brw_wm_prog_data *prog_data;
909 struct brw_wm_compile *compile_data;
910
911 /** Input sizes, calculated from active vertex program.
912 * One bit per fragment program input attribute.
913 */
914 GLbitfield input_size_masks[4];
915
916 /** offsets in the batch to sampler default colors (texture border color)
917 */
918 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
919
920 GLuint render_surf;
921
922 drm_intel_bo *scratch_bo;
923
924 /** Offset in the program cache to the WM program */
925 uint32_t prog_offset;
926
927 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
928
929 drm_intel_bo *const_bo; /* pull constant buffer. */
930 /**
931 * This is offset in the batch to the push constants on gen6.
932 *
933 * Pre-gen6, push constants live in the CURBE.
934 */
935 uint32_t push_const_offset;
936
937 /** @{ register allocator */
938
939 struct ra_regs *regs;
940
941 /** Array of the ra classes for the unaligned contiguous
942 * register block sizes used.
943 */
944 int *classes;
945
946 /**
947 * Mapping for register-allocated objects in *regs to the first
948 * GRF for that object.
949 */
950 uint8_t *ra_reg_to_grf;
951
952 /**
953 * ra class for the aligned pairs we use for PLN, which doesn't
954 * appear in *classes.
955 */
956 int aligned_pairs_class;
957
958 /** @} */
959 } wm;
960
961
962 struct {
963 uint32_t state_offset;
964 uint32_t blend_state_offset;
965 uint32_t depth_stencil_state_offset;
966 uint32_t vp_offset;
967 } cc;
968
969 struct {
970 struct brw_query_object *obj;
971 drm_intel_bo *bo;
972 int index;
973 bool active;
974 } query;
975 /* Used to give every program string a unique id
976 */
977 GLuint program_id;
978
979 int num_atoms;
980 const struct brw_tracked_state **atoms;
981
982 /* If (INTEL_DEBUG & DEBUG_BATCH) */
983 struct {
984 uint32_t offset;
985 uint32_t size;
986 enum state_struct_type type;
987 } *state_batch_list;
988 int state_batch_count;
989
990 /**
991 * \brief State needed to execute HiZ ops.
992 *
993 * \see gen6_hiz_init()
994 * \see gen6_hiz_exec()
995 */
996 struct brw_hiz_state {
997 /** \brief VBO for rectangle primitive.
998 *
999 * Rather than using glGenBuffers(), we allocate the VBO directly
1000 * through drm.
1001 */
1002 drm_intel_bo *vertex_bo;
1003 } hiz;
1004
1005 struct brw_sol_state {
1006 uint32_t svbi_0_starting_index;
1007 uint32_t svbi_0_max_index;
1008 uint32_t offset_0_batch_start;
1009 uint32_t primitives_generated;
1010 uint32_t primitives_written;
1011 } sol;
1012
1013 uint32_t render_target_format[MESA_FORMAT_COUNT];
1014 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1015 };
1016
1017
1018
1019 #define BRW_PACKCOLOR8888(r,g,b,a) ((r<<24) | (g<<16) | (b<<8) | a)
1020
1021 struct brw_instruction_info {
1022 char *name;
1023 int nsrc;
1024 int ndst;
1025 bool is_arith;
1026 };
1027 extern const struct brw_instruction_info brw_opcodes[128];
1028
1029 /*======================================================================
1030 * brw_vtbl.c
1031 */
1032 void brwInitVtbl( struct brw_context *brw );
1033
1034 /*======================================================================
1035 * brw_context.c
1036 */
1037 bool brwCreateContext(int api,
1038 const struct gl_config *mesaVis,
1039 __DRIcontext *driContextPriv,
1040 void *sharedContextPrivate);
1041
1042 /*======================================================================
1043 * brw_queryobj.c
1044 */
1045 void brw_init_queryobj_functions(struct dd_function_table *functions);
1046 void brw_prepare_query_begin(struct brw_context *brw);
1047 void brw_emit_query_begin(struct brw_context *brw);
1048 void brw_emit_query_end(struct brw_context *brw);
1049
1050 /*======================================================================
1051 * brw_state_dump.c
1052 */
1053 void brw_debug_batch(struct intel_context *intel);
1054
1055 /*======================================================================
1056 * brw_tex.c
1057 */
1058 void brw_validate_textures( struct brw_context *brw );
1059
1060
1061 /*======================================================================
1062 * brw_program.c
1063 */
1064 void brwInitFragProgFuncs( struct dd_function_table *functions );
1065
1066 int brw_get_scratch_size(int size);
1067 void brw_get_scratch_bo(struct intel_context *intel,
1068 drm_intel_bo **scratch_bo, int size);
1069
1070
1071 /* brw_urb.c
1072 */
1073 void brw_upload_urb_fence(struct brw_context *brw);
1074
1075 /* brw_curbe.c
1076 */
1077 void brw_upload_cs_urb_state(struct brw_context *brw);
1078
1079 /* brw_disasm.c */
1080 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1081
1082 /* brw_vs.c */
1083 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1084
1085 /* brw_wm_surface_state.c */
1086 void brw_init_surface_formats(struct brw_context *brw);
1087 void
1088 brw_update_sol_surface(struct brw_context *brw,
1089 struct gl_buffer_object *buffer_obj,
1090 uint32_t *out_offset, unsigned num_vector_components,
1091 unsigned stride_dwords, unsigned offset_dwords);
1092
1093 /* gen6_sol.c */
1094 void
1095 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1096 struct gl_transform_feedback_object *obj);
1097 void
1098 brw_end_transform_feedback(struct gl_context *ctx,
1099 struct gl_transform_feedback_object *obj);
1100
1101 /* gen7_sol_state.c */
1102 void
1103 gen7_end_transform_feedback(struct gl_context *ctx,
1104 struct gl_transform_feedback_object *obj);
1105
1106
1107
1108 /*======================================================================
1109 * Inline conversion functions. These are better-typed than the
1110 * macros used previously:
1111 */
1112 static INLINE struct brw_context *
1113 brw_context( struct gl_context *ctx )
1114 {
1115 return (struct brw_context *)ctx;
1116 }
1117
1118 static INLINE struct brw_vertex_program *
1119 brw_vertex_program(struct gl_vertex_program *p)
1120 {
1121 return (struct brw_vertex_program *) p;
1122 }
1123
1124 static INLINE const struct brw_vertex_program *
1125 brw_vertex_program_const(const struct gl_vertex_program *p)
1126 {
1127 return (const struct brw_vertex_program *) p;
1128 }
1129
1130 static INLINE struct brw_fragment_program *
1131 brw_fragment_program(struct gl_fragment_program *p)
1132 {
1133 return (struct brw_fragment_program *) p;
1134 }
1135
1136 static INLINE const struct brw_fragment_program *
1137 brw_fragment_program_const(const struct gl_fragment_program *p)
1138 {
1139 return (const struct brw_fragment_program *) p;
1140 }
1141
1142 static inline
1143 float convert_param(enum param_conversion conversion, const float *param)
1144 {
1145 union {
1146 float f;
1147 uint32_t u;
1148 int32_t i;
1149 } fi;
1150
1151 switch (conversion) {
1152 case PARAM_NO_CONVERT:
1153 return *param;
1154 case PARAM_CONVERT_F2I:
1155 fi.i = *param;
1156 return fi.f;
1157 case PARAM_CONVERT_F2U:
1158 fi.u = *param;
1159 return fi.f;
1160 case PARAM_CONVERT_F2B:
1161 if (*param != 0.0)
1162 fi.i = 1;
1163 else
1164 fi.i = 0;
1165 return fi.f;
1166 case PARAM_CONVERT_ZERO:
1167 return 0.0;
1168 default:
1169 return *param;
1170 }
1171 }
1172
1173 /**
1174 * Pre-gen6, the register file of the EUs was shared between threads,
1175 * and each thread used some subset allocated on a 16-register block
1176 * granularity. The unit states wanted these block counts.
1177 */
1178 static inline int
1179 brw_register_blocks(int reg_count)
1180 {
1181 return ALIGN(reg_count, 16) / 16 - 1;
1182 }
1183
1184 static inline uint32_t
1185 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1186 uint32_t prog_offset)
1187 {
1188 struct intel_context *intel = &brw->intel;
1189
1190 if (intel->gen >= 5) {
1191 /* Using state base address. */
1192 return prog_offset;
1193 }
1194
1195 drm_intel_bo_emit_reloc(intel->batch.bo,
1196 state_offset,
1197 brw->cache.bo,
1198 prog_offset,
1199 I915_GEM_DOMAIN_INSTRUCTION, 0);
1200
1201 return brw->cache.bo->offset + prog_offset;
1202 }
1203
1204 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1205
1206 #endif