i965/gs: Allocate URB space for use by GS.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include "intel_context.h"
37 #include "brw_structs.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 /* Glossary:
46 *
47 * URB - uniform resource buffer. A mid-sized buffer which is
48 * partitioned between the fixed function units and used for passing
49 * values (vertices, primitives, constants) between them.
50 *
51 * CURBE - constant URB entry. An urb region (entry) used to hold
52 * constant values which the fixed function units can be instructed to
53 * preload into the GRF when spawning a thread.
54 *
55 * VUE - vertex URB entry. An urb entry holding a vertex and usually
56 * a vertex header. The header contains control information and
57 * things like primitive type, Begin/end flags and clip codes.
58 *
59 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
60 * unit holding rasterization and interpolation parameters.
61 *
62 * GRF - general register file. One of several register files
63 * addressable by programmed threads. The inputs (r0, payload, curbe,
64 * urb) of the thread are preloaded to this area before the thread is
65 * spawned. The registers are individually 8 dwords wide and suitable
66 * for general usage. Registers holding thread input values are not
67 * special and may be overwritten.
68 *
69 * MRF - message register file. Threads communicate (and terminate)
70 * by sending messages. Message parameters are placed in contiguous
71 * MRF registers. All program output is via these messages. URB
72 * entries are populated by sending a message to the shared URB
73 * function containing the new data, together with a control word,
74 * often an unmodified copy of R0.
75 *
76 * R0 - GRF register 0. Typically holds control information used when
77 * sending messages to other threads.
78 *
79 * EU or GEN4 EU: The name of the programmable subsystem of the
80 * i965 hardware. Threads are executed by the EU, the registers
81 * described above are part of the EU architecture.
82 *
83 * Fixed function units:
84 *
85 * CS - Command streamer. Notional first unit, little software
86 * interaction. Holds the URB entries used for constant data, ie the
87 * CURBEs.
88 *
89 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
90 * this unit is responsible for pulling vertices out of vertex buffers
91 * in vram and injecting them into the processing pipe as VUEs. If
92 * enabled, it first passes them to a VS thread which is a good place
93 * for the driver to implement any active vertex shader.
94 *
95 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
96 * enabled, incoming strips etc are passed to GS threads in individual
97 * line/triangle/point units. The GS thread may perform arbitary
98 * computation and emit whatever primtives with whatever vertices it
99 * chooses. This makes GS an excellent place to implement GL's
100 * unfilled polygon modes, though of course it is capable of much
101 * more. Additionally, GS is used to translate away primitives not
102 * handled by latter units, including Quads and Lineloops.
103 *
104 * CS - Clipper. Mesa's clipping algorithms are imported to run on
105 * this unit. The fixed function part performs cliptesting against
106 * the 6 fixed clipplanes and makes descisions on whether or not the
107 * incoming primitive needs to be passed to a thread for clipping.
108 * User clip planes are handled via cooperation with the VS thread.
109 *
110 * SF - Strips Fans or Setup: Triangles are prepared for
111 * rasterization. Interpolation coefficients are calculated.
112 * Flatshading and two-side lighting usually performed here.
113 *
114 * WM - Windower. Interpolation of vertex attributes performed here.
115 * Fragment shader implemented here. SIMD aspects of EU taken full
116 * advantage of, as pixels are processed in blocks of 16.
117 *
118 * CC - Color Calculator. No EU threads associated with this unit.
119 * Handles blending and (presumably) depth and stencil testing.
120 */
121
122
123 #define BRW_MAX_CURBE (32*16)
124
125 struct brw_context;
126 struct brw_instruction;
127 struct brw_vs_prog_key;
128 struct brw_vec4_prog_key;
129 struct brw_wm_prog_key;
130 struct brw_wm_prog_data;
131
132 enum brw_state_id {
133 BRW_STATE_URB_FENCE,
134 BRW_STATE_FRAGMENT_PROGRAM,
135 BRW_STATE_GEOMETRY_PROGRAM,
136 BRW_STATE_VERTEX_PROGRAM,
137 BRW_STATE_CURBE_OFFSETS,
138 BRW_STATE_REDUCED_PRIMITIVE,
139 BRW_STATE_PRIMITIVE,
140 BRW_STATE_CONTEXT,
141 BRW_STATE_PSP,
142 BRW_STATE_SURFACES,
143 BRW_STATE_VS_BINDING_TABLE,
144 BRW_STATE_GS_BINDING_TABLE,
145 BRW_STATE_PS_BINDING_TABLE,
146 BRW_STATE_INDICES,
147 BRW_STATE_VERTICES,
148 BRW_STATE_BATCH,
149 BRW_STATE_INDEX_BUFFER,
150 BRW_STATE_VS_CONSTBUF,
151 BRW_STATE_PROGRAM_CACHE,
152 BRW_STATE_STATE_BASE_ADDRESS,
153 BRW_STATE_VUE_MAP_VS,
154 BRW_STATE_VUE_MAP_GEOM_OUT,
155 BRW_STATE_TRANSFORM_FEEDBACK,
156 BRW_STATE_RASTERIZER_DISCARD,
157 BRW_STATE_STATS_WM,
158 BRW_STATE_UNIFORM_BUFFER,
159 BRW_STATE_META_IN_PROGRESS,
160 BRW_STATE_INTERPOLATION_MAP,
161 BRW_NUM_STATE_BITS
162 };
163
164 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
165 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
166 #define BRW_NEW_GEOMETRY_PROGRAM (1 << BRW_STATE_GEOMETRY_PROGRAM)
167 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
168 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
169 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
170 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
171 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
172 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
173 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
174 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
175 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
176 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
177 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
178 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
179 /**
180 * Used for any batch entry with a relocated pointer that will be used
181 * by any 3D rendering.
182 */
183 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
184 /** \see brw.state.depth_region */
185 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
186 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
187 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
188 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
189 #define BRW_NEW_VUE_MAP_VS (1 << BRW_STATE_VUE_MAP_VS)
190 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
191 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
192 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
193 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
194 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
195 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
196 #define BRW_NEW_INTERPOLATION_MAP (1 << BRW_STATE_INTERPOLATION_MAP)
197
198 struct brw_state_flags {
199 /** State update flags signalled by mesa internals */
200 GLuint mesa;
201 /**
202 * State update flags signalled as the result of brw_tracked_state updates
203 */
204 GLuint brw;
205 /** State update flags signalled by brw_state_cache.c searches */
206 GLuint cache;
207 };
208
209 #define AUB_TRACE_TYPE_MASK 0x0000ff00
210 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
211 #define AUB_TRACE_TYPE_BATCH (1 << 8)
212 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
213 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
214 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
215 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
216 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
217 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
218 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
219 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
220 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
221 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
222
223 /**
224 * state_struct_type enum values are encoded with the top 16 bits representing
225 * the type to be delivered to the .aub file, and the bottom 16 bits
226 * representing the subtype. This macro performs the encoding.
227 */
228 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
229
230 enum state_struct_type {
231 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
232 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
233 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
234 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
235 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
236 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
237 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
238 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
239 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
240 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
241 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
242 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
243 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
244
245 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
246 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
247 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
248
249 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
250 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
251 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
252 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
253 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
254 };
255
256 /**
257 * Decode a state_struct_type value to determine the type that should be
258 * stored in the .aub file.
259 */
260 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
261 {
262 return (ss_type & 0xFFFF0000) >> 16;
263 }
264
265 /**
266 * Decode a state_struct_type value to determine the subtype that should be
267 * stored in the .aub file.
268 */
269 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
270 {
271 return ss_type & 0xFFFF;
272 }
273
274 /** Subclass of Mesa vertex program */
275 struct brw_vertex_program {
276 struct gl_vertex_program program;
277 GLuint id;
278 };
279
280
281 /** Subclass of Mesa geometry program */
282 struct brw_geometry_program {
283 struct gl_geometry_program program;
284 unsigned id; /**< serial no. to identify geom progs, never re-used */
285 };
286
287
288 /** Subclass of Mesa fragment program */
289 struct brw_fragment_program {
290 struct gl_fragment_program program;
291 GLuint id; /**< serial no. to identify frag progs, never re-used */
292 };
293
294 struct brw_shader {
295 struct gl_shader base;
296
297 bool compiled_once;
298
299 /** Shader IR transformed for native compile, at link time. */
300 struct exec_list *ir;
301 };
302
303 /* Data about a particular attempt to compile a program. Note that
304 * there can be many of these, each in a different GL state
305 * corresponding to a different brw_wm_prog_key struct, with different
306 * compiled programs.
307 *
308 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
309 * struct!
310 */
311 struct brw_wm_prog_data {
312 GLuint curb_read_length;
313 GLuint urb_read_length;
314
315 GLuint first_curbe_grf;
316 GLuint first_curbe_grf_16;
317 GLuint reg_blocks;
318 GLuint reg_blocks_16;
319 GLuint total_scratch;
320
321 unsigned binding_table_size;
322
323 GLuint nr_params; /**< number of float params/constants */
324 GLuint nr_pull_params;
325 bool dual_src_blend;
326 int dispatch_width;
327 uint32_t prog_offset_16;
328
329 /**
330 * Mask of which interpolation modes are required by the fragment shader.
331 * Used in hardware setup on gen6+.
332 */
333 uint32_t barycentric_interp_modes;
334
335 /* Pointers to tracked values (only valid once
336 * _mesa_load_state_parameters has been called at runtime).
337 *
338 * These must be the last fields of the struct (see
339 * brw_wm_prog_data_compare()).
340 */
341 const float **param;
342 const float **pull_param;
343 };
344
345 /**
346 * Enum representing the i965-specific vertex results that don't correspond
347 * exactly to any element of gl_varying_slot. The values of this enum are
348 * assigned such that they don't conflict with gl_varying_slot.
349 */
350 typedef enum
351 {
352 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
353 BRW_VARYING_SLOT_PAD,
354 /**
355 * Technically this is not a varying but just a placeholder that
356 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
357 * builtin variable to be compiled correctly. see compile_sf_prog() for
358 * more info.
359 */
360 BRW_VARYING_SLOT_PNTC,
361 BRW_VARYING_SLOT_COUNT
362 } brw_varying_slot;
363
364
365 /**
366 * Data structure recording the relationship between the gl_varying_slot enum
367 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
368 * single octaword within the VUE (128 bits).
369 *
370 * Note that each BRW register contains 256 bits (2 octawords), so when
371 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
372 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
373 * in a vertex shader), each register corresponds to a single VUE slot, since
374 * it contains data for two separate vertices.
375 */
376 struct brw_vue_map {
377 /**
378 * Bitfield representing all varying slots that are (a) stored in this VUE
379 * map, and (b) actually written by the shader. Does not include any of
380 * the additional varying slots defined in brw_varying_slot.
381 */
382 GLbitfield64 slots_valid;
383
384 /**
385 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
386 * not stored in a slot (because they are not written, or because
387 * additional processing is applied before storing them in the VUE), the
388 * value is -1.
389 */
390 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
391
392 /**
393 * Map from VUE slot to gl_varying_slot value. For slots that do not
394 * directly correspond to a gl_varying_slot, the value comes from
395 * brw_varying_slot.
396 *
397 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
398 * simplifies code that uses the value stored in slot_to_varying to
399 * create a bit mask).
400 */
401 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
402
403 /**
404 * Total number of VUE slots in use
405 */
406 int num_slots;
407 };
408
409 /**
410 * Convert a VUE slot number into a byte offset within the VUE.
411 */
412 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
413 {
414 return 16*slot;
415 }
416
417 /**
418 * Convert a vertex output (brw_varying_slot) into a byte offset within the
419 * VUE.
420 */
421 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
422 GLuint varying)
423 {
424 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
425 }
426
427 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
428 GLbitfield64 slots_valid, bool userclip_active);
429
430
431 /*
432 * Mapping of VUE map slots to interpolation modes.
433 */
434 struct interpolation_mode_map {
435 unsigned char mode[BRW_VARYING_SLOT_COUNT];
436 };
437
438 static inline bool brw_any_flat_varyings(struct interpolation_mode_map *map)
439 {
440 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
441 if (map->mode[i] == INTERP_QUALIFIER_FLAT)
442 return true;
443
444 return false;
445 }
446
447 static inline bool brw_any_noperspective_varyings(struct interpolation_mode_map *map)
448 {
449 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
450 if (map->mode[i] == INTERP_QUALIFIER_NOPERSPECTIVE)
451 return true;
452
453 return false;
454 }
455
456
457 struct brw_sf_prog_data {
458 GLuint urb_read_length;
459 GLuint total_grf;
460
461 /* Each vertex may have upto 12 attributes, 4 components each,
462 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
463 * rows.
464 *
465 * Actually we use 4 for each, so call it 12 rows.
466 */
467 GLuint urb_entry_size;
468 };
469
470 struct brw_clip_prog_data {
471 GLuint curb_read_length; /* user planes? */
472 GLuint clip_mode;
473 GLuint urb_read_length;
474 GLuint total_grf;
475 };
476
477 struct brw_ff_gs_prog_data {
478 GLuint urb_read_length;
479 GLuint total_grf;
480
481 /**
482 * Gen6 transform feedback: Amount by which the streaming vertex buffer
483 * indices should be incremented each time the GS is invoked.
484 */
485 unsigned svbi_postincrement_value;
486 };
487
488
489 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
490 * this struct!
491 */
492 struct brw_vec4_prog_data {
493 struct brw_vue_map vue_map;
494
495 /**
496 * Register where the thread expects to find input data from the URB
497 * (typically uniforms, followed by per-vertex inputs).
498 */
499 unsigned dispatch_grf_start_reg;
500
501 GLuint curb_read_length;
502 GLuint urb_read_length;
503 GLuint total_grf;
504 GLuint nr_params; /**< number of float params/constants */
505 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
506 GLuint total_scratch;
507
508 /* Used for calculating urb partitions. In the VS, this is the size of the
509 * URB entry used for both input and output to the thread. In the GS, this
510 * is the size of the URB entry used for output.
511 */
512 GLuint urb_entry_size;
513
514 unsigned binding_table_size;
515
516 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
517 const float **param;
518 const float **pull_param;
519 };
520
521
522 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
523 * struct!
524 */
525 struct brw_vs_prog_data {
526 struct brw_vec4_prog_data base;
527
528 GLbitfield64 inputs_read;
529
530 bool uses_vertexid;
531 };
532
533
534 /* Note: brw_gs_prog_data_compare() must be updated when adding fields to
535 * this struct!
536 */
537 struct brw_gs_prog_data
538 {
539 struct brw_vec4_prog_data base;
540
541 /**
542 * Size of an output vertex, measured in HWORDS (32 bytes).
543 */
544 unsigned output_vertex_size_hwords;
545
546 unsigned output_topology;
547 };
548
549 /** Number of texture sampler units */
550 #define BRW_MAX_TEX_UNIT 16
551
552 /** Max number of render targets in a shader */
553 #define BRW_MAX_DRAW_BUFFERS 8
554
555 /**
556 * Max number of binding table entries used for stream output.
557 *
558 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
559 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
560 *
561 * On Gen6, the size of transform feedback data is limited not by the number
562 * of components but by the number of binding table entries we set aside. We
563 * use one binding table entry for a float, one entry for a vector, and one
564 * entry per matrix column. Since the only way we can communicate our
565 * transform feedback capabilities to the client is via
566 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
567 * worst case, in which all the varyings are floats, so we use up one binding
568 * table entry per component. Therefore we need to set aside at least 64
569 * binding table entries for use by transform feedback.
570 *
571 * Note: since we don't currently pack varyings, it is currently impossible
572 * for the client to actually use up all of these binding table entries--if
573 * all of their varyings were floats, they would run out of varying slots and
574 * fail to link. But that's a bug, so it seems prudent to go ahead and
575 * allocate the number of binding table entries we will need once the bug is
576 * fixed.
577 */
578 #define BRW_MAX_SOL_BINDINGS 64
579
580 /** Maximum number of actual buffers used for stream output */
581 #define BRW_MAX_SOL_BUFFERS 4
582
583 #define BRW_MAX_WM_UBOS 12
584 #define BRW_MAX_VS_UBOS 12
585
586 /**
587 * Helpers to create Surface Binding Table indexes for draw buffers,
588 * textures, and constant buffers.
589 *
590 * Shader threads access surfaces via numeric handles, rather than directly
591 * using pointers. The binding table maps these numeric handles to the
592 * address of the actual buffer.
593 *
594 * For example, a shader might ask to sample from "surface 7." In this case,
595 * bind[7] would contain a pointer to a texture.
596 *
597 * Currently, our WM binding tables are (arbitrarily) programmed as follows:
598 *
599 * +-------------------------------+
600 * | 0 | Draw buffer 0 |
601 * | . | . |
602 * | : | : |
603 * | 7 | Draw buffer 7 |
604 * |-----|-------------------------|
605 * | 8 | WM Pull Constant Buffer |
606 * |-----|-------------------------|
607 * | 9 | Texture 0 |
608 * | . | . |
609 * | : | : |
610 * | 24 | Texture 15 |
611 * |-----|-------------------------|
612 * | 25 | UBO 0 |
613 * | . | . |
614 * | : | : |
615 * | 36 | UBO 11 |
616 * +-------------------------------+
617 *
618 * Our VS (and Gen7 GS) binding tables are programmed as follows:
619 *
620 * +-----+-------------------------+
621 * | 0 | Pull Constant Buffer |
622 * +-----+-------------------------+
623 * | 1 | Texture 0 |
624 * | . | . |
625 * | : | : |
626 * | 16 | Texture 15 |
627 * +-----+-------------------------+
628 * | 17 | UBO 0 |
629 * | . | . |
630 * | : | : |
631 * | 28 | UBO 11 |
632 * +-------------------------------+
633 *
634 * Our (gen6) GS binding tables are programmed as follows:
635 *
636 * +-----+-------------------------+
637 * | 0 | SOL Binding 0 |
638 * | . | . |
639 * | : | : |
640 * | 63 | SOL Binding 63 |
641 * +-----+-------------------------+
642 */
643 #define SURF_INDEX_DRAW(d) (d)
644 #define SURF_INDEX_FRAG_CONST_BUFFER (BRW_MAX_DRAW_BUFFERS + 1)
645 #define SURF_INDEX_TEXTURE(t) (BRW_MAX_DRAW_BUFFERS + 2 + (t))
646 #define SURF_INDEX_WM_UBO(u) (SURF_INDEX_TEXTURE(BRW_MAX_TEX_UNIT) + u)
647 #define SURF_INDEX_WM_SHADER_TIME (SURF_INDEX_WM_UBO(12))
648 /** Maximum size of the binding table. */
649 #define BRW_MAX_WM_SURFACES (SURF_INDEX_WM_SHADER_TIME + 1)
650
651 #define SURF_INDEX_VEC4_CONST_BUFFER (0)
652 #define SURF_INDEX_VEC4_TEXTURE(t) (SURF_INDEX_VEC4_CONST_BUFFER + 1 + (t))
653 #define SURF_INDEX_VEC4_UBO(u) (SURF_INDEX_VEC4_TEXTURE(BRW_MAX_TEX_UNIT) + u)
654 #define SURF_INDEX_VEC4_SHADER_TIME (SURF_INDEX_VEC4_UBO(12))
655 #define BRW_MAX_VEC4_SURFACES (SURF_INDEX_VEC4_SHADER_TIME + 1)
656
657 #define SURF_INDEX_GEN6_SOL_BINDING(t) (t)
658 #define BRW_MAX_GEN6_GS_SURFACES SURF_INDEX_GEN6_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
659
660 /**
661 * Stride in bytes between shader_time entries.
662 *
663 * We separate entries by a cacheline to reduce traffic between EUs writing to
664 * different entries.
665 */
666 #define SHADER_TIME_STRIDE 64
667
668 enum brw_cache_id {
669 BRW_CC_VP,
670 BRW_CC_UNIT,
671 BRW_WM_PROG,
672 BRW_BLORP_BLIT_PROG,
673 BRW_BLORP_CONST_COLOR_PROG,
674 BRW_SAMPLER,
675 BRW_WM_UNIT,
676 BRW_SF_PROG,
677 BRW_SF_VP,
678 BRW_SF_UNIT, /* scissor state on gen6 */
679 BRW_VS_UNIT,
680 BRW_VS_PROG,
681 BRW_FF_GS_UNIT,
682 BRW_FF_GS_PROG,
683 BRW_GS_PROG,
684 BRW_CLIP_VP,
685 BRW_CLIP_UNIT,
686 BRW_CLIP_PROG,
687
688 BRW_MAX_CACHE
689 };
690
691 struct brw_cache_item {
692 /**
693 * Effectively part of the key, cache_id identifies what kind of state
694 * buffer is involved, and also which brw->state.dirty.cache flag should
695 * be set when this cache item is chosen.
696 */
697 enum brw_cache_id cache_id;
698 /** 32-bit hash of the key data */
699 GLuint hash;
700 GLuint key_size; /* for variable-sized keys */
701 GLuint aux_size;
702 const void *key;
703
704 uint32_t offset;
705 uint32_t size;
706
707 struct brw_cache_item *next;
708 };
709
710
711 typedef bool (*cache_aux_compare_func)(const void *a, const void *b,
712 int aux_size, const void *key);
713 typedef void (*cache_aux_free_func)(const void *aux);
714
715 struct brw_cache {
716 struct brw_context *brw;
717
718 struct brw_cache_item **items;
719 drm_intel_bo *bo;
720 GLuint size, n_items;
721
722 uint32_t next_offset;
723 bool bo_used_by_gpu;
724
725 /**
726 * Optional functions used in determining whether the prog_data for a new
727 * cache item matches an existing cache item (in case there's relevant data
728 * outside of the prog_data). If NULL, a plain memcmp is done.
729 */
730 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
731 /** Optional functions for freeing other pointers attached to a prog_data. */
732 cache_aux_free_func aux_free[BRW_MAX_CACHE];
733 };
734
735
736 /* Considered adding a member to this struct to document which flags
737 * an update might raise so that ordering of the state atoms can be
738 * checked or derived at runtime. Dropped the idea in favor of having
739 * a debug mode where the state is monitored for flags which are
740 * raised that have already been tested against.
741 */
742 struct brw_tracked_state {
743 struct brw_state_flags dirty;
744 void (*emit)( struct brw_context *brw );
745 };
746
747 enum shader_time_shader_type {
748 ST_NONE,
749 ST_VS,
750 ST_VS_WRITTEN,
751 ST_VS_RESET,
752 ST_FS8,
753 ST_FS8_WRITTEN,
754 ST_FS8_RESET,
755 ST_FS16,
756 ST_FS16_WRITTEN,
757 ST_FS16_RESET,
758 };
759
760 /* Flags for brw->state.cache.
761 */
762 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
763 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
764 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
765 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
766 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
767 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
768 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
769 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
770 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
771 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
772 #define CACHE_NEW_FF_GS_UNIT (1<<BRW_FF_GS_UNIT)
773 #define CACHE_NEW_FF_GS_PROG (1<<BRW_FF_GS_PROG)
774 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
775 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
776 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
777 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
778
779 struct brw_cached_batch_item {
780 struct header *header;
781 GLuint sz;
782 struct brw_cached_batch_item *next;
783 };
784
785
786
787 /* Protect against a future where VERT_ATTRIB_MAX > 32. Wouldn't life
788 * be easier if C allowed arrays of packed elements?
789 */
790 #define ATTRIB_BIT_DWORDS ((VERT_ATTRIB_MAX+31)/32)
791
792 struct brw_vertex_buffer {
793 /** Buffer object containing the uploaded vertex data */
794 drm_intel_bo *bo;
795 uint32_t offset;
796 /** Byte stride between elements in the uploaded array */
797 GLuint stride;
798 GLuint step_rate;
799 };
800 struct brw_vertex_element {
801 const struct gl_client_array *glarray;
802
803 int buffer;
804
805 /** The corresponding Mesa vertex attribute */
806 gl_vert_attrib attrib;
807 /** Offset of the first element within the buffer object */
808 unsigned int offset;
809 };
810
811 struct brw_query_object {
812 struct gl_query_object Base;
813
814 /** Last query BO associated with this query. */
815 drm_intel_bo *bo;
816
817 /** Last index in bo with query data for this object. */
818 int last_index;
819 };
820
821
822 /**
823 * Data shared between brw_context::vs and brw_context::gs
824 */
825 struct brw_stage_state
826 {
827 drm_intel_bo *scratch_bo;
828 drm_intel_bo *const_bo;
829 /** Offset in the program cache to the program */
830 uint32_t prog_offset;
831 uint32_t state_offset;
832
833 uint32_t push_const_offset; /* Offset in the batchbuffer */
834 int push_const_size; /* in 256-bit register increments */
835
836 uint32_t bind_bo_offset;
837 uint32_t surf_offset[BRW_MAX_VEC4_SURFACES];
838
839 /** SAMPLER_STATE count and table offset */
840 uint32_t sampler_count;
841 uint32_t sampler_offset;
842
843 /** Offsets in the batch to sampler default colors (texture border color) */
844 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
845 };
846
847
848 /**
849 * brw_context is derived from gl_context.
850 */
851 struct brw_context
852 {
853 struct gl_context ctx; /**< base class, must be first field */
854
855 struct
856 {
857 void (*destroy) (struct brw_context * brw);
858 void (*finish_batch) (struct brw_context * brw);
859 void (*new_batch) (struct brw_context * brw);
860
861 void (*update_texture_surface)(struct gl_context *ctx,
862 unsigned unit,
863 uint32_t *binding_table,
864 unsigned surf_index);
865 void (*update_renderbuffer_surface)(struct brw_context *brw,
866 struct gl_renderbuffer *rb,
867 bool layered,
868 unsigned unit);
869 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
870 unsigned unit);
871 void (*create_constant_surface)(struct brw_context *brw,
872 drm_intel_bo *bo,
873 uint32_t offset,
874 uint32_t size,
875 uint32_t *out_offset,
876 bool dword_pitch);
877
878 /** Upload a SAMPLER_STATE table. */
879 void (*upload_sampler_state_table)(struct brw_context *brw,
880 struct gl_program *prog,
881 uint32_t sampler_count,
882 uint32_t *sst_offset,
883 uint32_t *sdc_offset);
884
885 /**
886 * Send the appropriate state packets to configure depth, stencil, and
887 * HiZ buffers (i965+ only)
888 */
889 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
890 struct intel_mipmap_tree *depth_mt,
891 uint32_t depth_offset,
892 uint32_t depthbuffer_format,
893 uint32_t depth_surface_type,
894 struct intel_mipmap_tree *stencil_mt,
895 bool hiz, bool separate_stencil,
896 uint32_t width, uint32_t height,
897 uint32_t tile_x, uint32_t tile_y);
898
899 } vtbl;
900
901 dri_bufmgr *bufmgr;
902
903 drm_intel_context *hw_ctx;
904
905 struct intel_batchbuffer batch;
906 bool no_batch_wrap;
907
908 struct {
909 drm_intel_bo *bo;
910 GLuint offset;
911 uint32_t buffer_len;
912 uint32_t buffer_offset;
913 char buffer[4096];
914 } upload;
915
916 /**
917 * Set if rendering has occured to the drawable's front buffer.
918 *
919 * This is used in the DRI2 case to detect that glFlush should also copy
920 * the contents of the fake front buffer to the real front buffer.
921 */
922 bool front_buffer_dirty;
923
924 /**
925 * Track whether front-buffer rendering is currently enabled
926 *
927 * A separate flag is used to track this in order to support MRT more
928 * easily.
929 */
930 bool is_front_buffer_rendering;
931
932 /**
933 * Track whether front-buffer is the current read target.
934 *
935 * This is closely associated with is_front_buffer_rendering, but may
936 * be set separately. The DRI2 fake front buffer must be referenced
937 * either way.
938 */
939 bool is_front_buffer_reading;
940
941 /** Framerate throttling: @{ */
942 drm_intel_bo *first_post_swapbuffers_batch;
943 bool need_throttle;
944 /** @} */
945
946 GLuint stats_wm;
947
948 /**
949 * drirc options:
950 * @{
951 */
952 bool no_rast;
953 bool always_flush_batch;
954 bool always_flush_cache;
955 bool disable_throttling;
956 bool precompile;
957
958 driOptionCache optionCache;
959 /** @} */
960
961 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
962
963 GLenum reduced_primitive;
964
965 /**
966 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
967 * variable is set, this is the flag indicating to do expensive work that
968 * might lead to a perf_debug() call.
969 */
970 bool perf_debug;
971
972 uint32_t max_gtt_map_object_size;
973
974 bool emit_state_always;
975
976 int gen;
977 int gt;
978
979 bool is_g4x;
980 bool is_baytrail;
981 bool is_haswell;
982
983 bool has_hiz;
984 bool has_separate_stencil;
985 bool must_use_separate_stencil;
986 bool has_llc;
987 bool has_swizzling;
988 bool has_surface_tile_offset;
989 bool has_compr4;
990 bool has_negative_rhw_bug;
991 bool has_aa_line_parameters;
992 bool has_pln;
993
994 /**
995 * Some versions of Gen hardware don't do centroid interpolation correctly
996 * on unlit pixels, causing incorrect values for derivatives near triangle
997 * edges. Enabling this flag causes the fragment shader to use
998 * non-centroid interpolation for unlit pixels, at the expense of two extra
999 * fragment shader instructions.
1000 */
1001 bool needs_unlit_centroid_workaround;
1002
1003 GLuint NewGLState;
1004 struct {
1005 struct brw_state_flags dirty;
1006 } state;
1007
1008 struct brw_cache cache;
1009 struct brw_cached_batch_item *cached_batch_items;
1010
1011 /* Whether a meta-operation is in progress. */
1012 bool meta_in_progress;
1013
1014 struct {
1015 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
1016 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
1017
1018 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
1019 GLuint nr_enabled;
1020 GLuint nr_buffers;
1021
1022 /* Summary of size and varying of active arrays, so we can check
1023 * for changes to this state:
1024 */
1025 unsigned int min_index, max_index;
1026
1027 /* Offset from start of vertex buffer so we can avoid redefining
1028 * the same VB packed over and over again.
1029 */
1030 unsigned int start_vertex_bias;
1031 } vb;
1032
1033 struct {
1034 /**
1035 * Index buffer for this draw_prims call.
1036 *
1037 * Updates are signaled by BRW_NEW_INDICES.
1038 */
1039 const struct _mesa_index_buffer *ib;
1040
1041 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
1042 drm_intel_bo *bo;
1043 GLuint type;
1044
1045 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
1046 * avoid re-uploading the IB packet over and over if we're actually
1047 * referencing the same index buffer.
1048 */
1049 unsigned int start_vertex_offset;
1050 } ib;
1051
1052 /* Active vertex program:
1053 */
1054 const struct gl_vertex_program *vertex_program;
1055 const struct gl_geometry_program *geometry_program;
1056 const struct gl_fragment_program *fragment_program;
1057
1058 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
1059 uint32_t CMD_VF_STATISTICS;
1060 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
1061 uint32_t CMD_PIPELINE_SELECT;
1062
1063 /**
1064 * Platform specific constants containing the maximum number of threads
1065 * for each pipeline stage.
1066 */
1067 int max_vs_threads;
1068 int max_gs_threads;
1069 int max_wm_threads;
1070
1071 /* BRW_NEW_URB_ALLOCATIONS:
1072 */
1073 struct {
1074 GLuint vsize; /* vertex size plus header in urb registers */
1075 GLuint csize; /* constant buffer size in urb registers */
1076 GLuint sfsize; /* setup data size in urb registers */
1077
1078 bool constrained;
1079
1080 GLuint max_vs_entries; /* Maximum number of VS entries */
1081 GLuint max_gs_entries; /* Maximum number of GS entries */
1082
1083 GLuint nr_vs_entries;
1084 GLuint nr_gs_entries;
1085 GLuint nr_clip_entries;
1086 GLuint nr_sf_entries;
1087 GLuint nr_cs_entries;
1088
1089 GLuint vs_start;
1090 GLuint gs_start;
1091 GLuint clip_start;
1092 GLuint sf_start;
1093 GLuint cs_start;
1094 GLuint size; /* Hardware URB size, in KB. */
1095
1096 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
1097 * URB space for the GS.
1098 */
1099 bool gen6_gs_previously_active;
1100 } urb;
1101
1102
1103 /* BRW_NEW_CURBE_OFFSETS:
1104 */
1105 struct {
1106 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1107 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1108 GLuint clip_start;
1109 GLuint clip_size;
1110 GLuint vs_start;
1111 GLuint vs_size;
1112 GLuint total_size;
1113
1114 drm_intel_bo *curbe_bo;
1115 /** Offset within curbe_bo of space for current curbe entry */
1116 GLuint curbe_offset;
1117 /** Offset within curbe_bo of space for next curbe entry */
1118 GLuint curbe_next_offset;
1119
1120 /**
1121 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
1122 * in brw_curbe.c with the same set of constant data to be uploaded,
1123 * so we'd rather not upload new constants in that case (it can cause
1124 * a pipeline bubble since only up to 4 can be pipelined at a time).
1125 */
1126 GLfloat *last_buf;
1127 /**
1128 * Allocation for where to calculate the next set of CURBEs.
1129 * It's a hot enough path that malloc/free of that data matters.
1130 */
1131 GLfloat *next_buf;
1132 GLuint last_bufsz;
1133 } curbe;
1134
1135 /**
1136 * Layout of vertex data exiting the vertex shader.
1137 *
1138 * BRW_NEW_VUE_MAP_VS is flagged when this VUE map changes.
1139 */
1140 struct brw_vue_map vue_map_vs;
1141
1142 /**
1143 * Layout of vertex data exiting the geometry portion of the pipleine.
1144 * This comes from the geometry shader if one exists, otherwise from the
1145 * vertex shader.
1146 *
1147 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1148 */
1149 struct brw_vue_map vue_map_geom_out;
1150
1151 /**
1152 * Data structures used by all vec4 program compiles (not specific to any
1153 * particular program).
1154 */
1155 struct {
1156 struct ra_regs *regs;
1157
1158 /**
1159 * Array of the ra classes for the unaligned contiguous register
1160 * block sizes used.
1161 */
1162 int *classes;
1163
1164 /**
1165 * Mapping for register-allocated objects in *regs to the first
1166 * GRF for that object.
1167 */
1168 uint8_t *ra_reg_to_grf;
1169 } vec4;
1170
1171 struct {
1172 struct brw_stage_state base;
1173 struct brw_vs_prog_data *prog_data;
1174 } vs;
1175
1176 struct {
1177 struct brw_stage_state base;
1178 struct brw_gs_prog_data *prog_data;
1179 } gs;
1180
1181 struct {
1182 struct brw_ff_gs_prog_data *prog_data;
1183
1184 bool prog_active;
1185 /** Offset in the program cache to the CLIP program pre-gen6 */
1186 uint32_t prog_offset;
1187 uint32_t state_offset;
1188
1189 uint32_t bind_bo_offset;
1190 uint32_t surf_offset[BRW_MAX_GEN6_GS_SURFACES];
1191 } ff_gs;
1192
1193 struct {
1194 struct brw_clip_prog_data *prog_data;
1195
1196 /** Offset in the program cache to the CLIP program pre-gen6 */
1197 uint32_t prog_offset;
1198
1199 /* Offset in the batch to the CLIP state on pre-gen6. */
1200 uint32_t state_offset;
1201
1202 /* As of gen6, this is the offset in the batch to the CLIP VP,
1203 * instead of vp_bo.
1204 */
1205 uint32_t vp_offset;
1206 } clip;
1207
1208
1209 struct {
1210 struct brw_sf_prog_data *prog_data;
1211
1212 /** Offset in the program cache to the CLIP program pre-gen6 */
1213 uint32_t prog_offset;
1214 uint32_t state_offset;
1215 uint32_t vp_offset;
1216 } sf;
1217
1218 struct {
1219 struct brw_wm_prog_data *prog_data;
1220
1221 GLuint render_surf;
1222
1223 drm_intel_bo *scratch_bo;
1224
1225 /**
1226 * Buffer object used in place of multisampled null render targets on
1227 * Gen6. See brw_update_null_renderbuffer_surface().
1228 */
1229 drm_intel_bo *multisampled_null_render_target_bo;
1230
1231 /** Offset in the program cache to the WM program */
1232 uint32_t prog_offset;
1233
1234 uint32_t state_offset; /* offset in batchbuffer to pre-gen6 WM state */
1235
1236 drm_intel_bo *const_bo; /* pull constant buffer. */
1237 /**
1238 * This is offset in the batch to the push constants on gen6.
1239 *
1240 * Pre-gen6, push constants live in the CURBE.
1241 */
1242 uint32_t push_const_offset;
1243
1244 /** Binding table of pointers to surf_bo entries */
1245 uint32_t bind_bo_offset;
1246 uint32_t surf_offset[BRW_MAX_WM_SURFACES];
1247
1248 /** SAMPLER_STATE count and table offset */
1249 uint32_t sampler_count;
1250 uint32_t sampler_offset;
1251
1252 /** Offsets in the batch to sampler default colors (texture border color)
1253 */
1254 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
1255
1256 struct {
1257 struct ra_regs *regs;
1258
1259 /** Array of the ra classes for the unaligned contiguous
1260 * register block sizes used.
1261 */
1262 int *classes;
1263
1264 /**
1265 * Mapping for register-allocated objects in *regs to the first
1266 * GRF for that object.
1267 */
1268 uint8_t *ra_reg_to_grf;
1269
1270 /**
1271 * ra class for the aligned pairs we use for PLN, which doesn't
1272 * appear in *classes.
1273 */
1274 int aligned_pairs_class;
1275 } reg_sets[2];
1276 } wm;
1277
1278
1279 struct {
1280 uint32_t state_offset;
1281 uint32_t blend_state_offset;
1282 uint32_t depth_stencil_state_offset;
1283 uint32_t vp_offset;
1284 } cc;
1285
1286 struct {
1287 struct brw_query_object *obj;
1288 bool begin_emitted;
1289 } query;
1290
1291 int num_atoms;
1292 const struct brw_tracked_state **atoms;
1293
1294 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1295 struct {
1296 uint32_t offset;
1297 uint32_t size;
1298 enum state_struct_type type;
1299 } *state_batch_list;
1300 int state_batch_count;
1301
1302 uint32_t render_target_format[MESA_FORMAT_COUNT];
1303 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1304
1305 /* Interpolation modes, one byte per vue slot.
1306 * Used Gen4/5 by the clip|sf|wm stages. Ignored on Gen6+.
1307 */
1308 struct interpolation_mode_map interpolation_mode;
1309
1310 /* PrimitiveRestart */
1311 struct {
1312 bool in_progress;
1313 bool enable_cut_index;
1314 } prim_restart;
1315
1316 /** Computed depth/stencil/hiz state from the current attached
1317 * renderbuffers, valid only during the drawing state upload loop after
1318 * brw_workaround_depthstencil_alignment().
1319 */
1320 struct {
1321 struct intel_mipmap_tree *depth_mt;
1322 struct intel_mipmap_tree *stencil_mt;
1323
1324 /* Inter-tile (page-aligned) byte offsets. */
1325 uint32_t depth_offset, hiz_offset, stencil_offset;
1326 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1327 uint32_t tile_x, tile_y;
1328 } depthstencil;
1329
1330 uint32_t num_instances;
1331 int basevertex;
1332
1333 struct {
1334 drm_intel_bo *bo;
1335 struct gl_shader_program **shader_programs;
1336 struct gl_program **programs;
1337 enum shader_time_shader_type *types;
1338 uint64_t *cumulative;
1339 int num_entries;
1340 int max_entries;
1341 double report_time;
1342 } shader_time;
1343
1344 __DRIcontext *driContext;
1345 struct intel_screen *intelScreen;
1346 void (*saved_viewport)(struct gl_context *ctx,
1347 GLint x, GLint y, GLsizei width, GLsizei height);
1348 };
1349
1350 /*======================================================================
1351 * brw_vtbl.c
1352 */
1353 void brwInitVtbl( struct brw_context *brw );
1354
1355 /*======================================================================
1356 * brw_context.c
1357 */
1358 bool brwCreateContext(int api,
1359 const struct gl_config *mesaVis,
1360 __DRIcontext *driContextPriv,
1361 unsigned major_version,
1362 unsigned minor_version,
1363 uint32_t flags,
1364 unsigned *error,
1365 void *sharedContextPrivate);
1366
1367 /*======================================================================
1368 * brw_misc_state.c
1369 */
1370 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1371 uint32_t depth_level,
1372 uint32_t depth_layer,
1373 struct intel_mipmap_tree *stencil_mt,
1374 uint32_t *out_tile_mask_x,
1375 uint32_t *out_tile_mask_y);
1376 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1377 GLbitfield clear_mask);
1378
1379 /* brw_object_purgeable.c */
1380 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1381
1382 /*======================================================================
1383 * brw_queryobj.c
1384 */
1385 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1386 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1387 void brw_emit_query_begin(struct brw_context *brw);
1388 void brw_emit_query_end(struct brw_context *brw);
1389
1390 /** gen6_queryobj.c */
1391 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1392
1393 /*======================================================================
1394 * brw_state_dump.c
1395 */
1396 void brw_debug_batch(struct brw_context *brw);
1397 void brw_annotate_aub(struct brw_context *brw);
1398
1399 /*======================================================================
1400 * brw_tex.c
1401 */
1402 void brw_validate_textures( struct brw_context *brw );
1403
1404
1405 /*======================================================================
1406 * brw_program.c
1407 */
1408 void brwInitFragProgFuncs( struct dd_function_table *functions );
1409
1410 int brw_get_scratch_size(int size);
1411 void brw_get_scratch_bo(struct brw_context *brw,
1412 drm_intel_bo **scratch_bo, int size);
1413 void brw_init_shader_time(struct brw_context *brw);
1414 int brw_get_shader_time_index(struct brw_context *brw,
1415 struct gl_shader_program *shader_prog,
1416 struct gl_program *prog,
1417 enum shader_time_shader_type type);
1418 void brw_collect_and_report_shader_time(struct brw_context *brw);
1419 void brw_destroy_shader_time(struct brw_context *brw);
1420
1421 /* brw_urb.c
1422 */
1423 void brw_upload_urb_fence(struct brw_context *brw);
1424
1425 /* brw_curbe.c
1426 */
1427 void brw_upload_cs_urb_state(struct brw_context *brw);
1428
1429 /* brw_fs_reg_allocate.cpp
1430 */
1431 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1432
1433 /* brw_vec4_reg_allocate.cpp */
1434 void brw_vec4_alloc_reg_set(struct brw_context *brw);
1435
1436 /* brw_disasm.c */
1437 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1438
1439 /* brw_vs.c */
1440 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1441
1442 /* brw_draw_upload.c */
1443 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1444 const struct gl_client_array *glarray);
1445 unsigned brw_get_index_type(GLenum type);
1446
1447 /* brw_wm_surface_state.c */
1448 void brw_init_surface_formats(struct brw_context *brw);
1449 void
1450 brw_update_sol_surface(struct brw_context *brw,
1451 struct gl_buffer_object *buffer_obj,
1452 uint32_t *out_offset, unsigned num_vector_components,
1453 unsigned stride_dwords, unsigned offset_dwords);
1454 void brw_upload_ubo_surfaces(struct brw_context *brw,
1455 struct gl_shader *shader,
1456 uint32_t *surf_offsets);
1457
1458 /* brw_surface_formats.c */
1459 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1460 bool brw_render_target_supported(struct brw_context *brw,
1461 struct gl_renderbuffer *rb);
1462
1463 /* gen6_sol.c */
1464 void
1465 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1466 struct gl_transform_feedback_object *obj);
1467 void
1468 brw_end_transform_feedback(struct gl_context *ctx,
1469 struct gl_transform_feedback_object *obj);
1470
1471 /* gen7_sol_state.c */
1472 void
1473 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1474 struct gl_transform_feedback_object *obj);
1475 void
1476 gen7_end_transform_feedback(struct gl_context *ctx,
1477 struct gl_transform_feedback_object *obj);
1478
1479 /* brw_blorp_blit.cpp */
1480 GLbitfield
1481 brw_blorp_framebuffer(struct brw_context *brw,
1482 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1483 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1484 GLbitfield mask, GLenum filter);
1485
1486 bool
1487 brw_blorp_copytexsubimage(struct brw_context *brw,
1488 struct gl_renderbuffer *src_rb,
1489 struct gl_texture_image *dst_image,
1490 int slice,
1491 int srcX0, int srcY0,
1492 int dstX0, int dstY0,
1493 int width, int height);
1494
1495 /* gen6_multisample_state.c */
1496 void
1497 gen6_emit_3dstate_multisample(struct brw_context *brw,
1498 unsigned num_samples);
1499 void
1500 gen6_emit_3dstate_sample_mask(struct brw_context *brw,
1501 unsigned num_samples, float coverage,
1502 bool coverage_invert, unsigned sample_mask);
1503 void
1504 gen6_get_sample_position(struct gl_context *ctx,
1505 struct gl_framebuffer *fb,
1506 GLuint index,
1507 GLfloat *result);
1508
1509 /* gen7_urb.c */
1510 void
1511 gen7_allocate_push_constants(struct brw_context *brw);
1512
1513 void
1514 gen7_emit_urb_state(struct brw_context *brw,
1515 unsigned nr_vs_entries, unsigned vs_size,
1516 unsigned vs_start, unsigned nr_gs_entries,
1517 unsigned gs_size, unsigned gs_start);
1518
1519
1520
1521 /*======================================================================
1522 * Inline conversion functions. These are better-typed than the
1523 * macros used previously:
1524 */
1525 static INLINE struct brw_context *
1526 brw_context( struct gl_context *ctx )
1527 {
1528 return (struct brw_context *)ctx;
1529 }
1530
1531 static INLINE struct brw_vertex_program *
1532 brw_vertex_program(struct gl_vertex_program *p)
1533 {
1534 return (struct brw_vertex_program *) p;
1535 }
1536
1537 static INLINE const struct brw_vertex_program *
1538 brw_vertex_program_const(const struct gl_vertex_program *p)
1539 {
1540 return (const struct brw_vertex_program *) p;
1541 }
1542
1543 static INLINE struct brw_fragment_program *
1544 brw_fragment_program(struct gl_fragment_program *p)
1545 {
1546 return (struct brw_fragment_program *) p;
1547 }
1548
1549 static INLINE const struct brw_fragment_program *
1550 brw_fragment_program_const(const struct gl_fragment_program *p)
1551 {
1552 return (const struct brw_fragment_program *) p;
1553 }
1554
1555 /**
1556 * Pre-gen6, the register file of the EUs was shared between threads,
1557 * and each thread used some subset allocated on a 16-register block
1558 * granularity. The unit states wanted these block counts.
1559 */
1560 static inline int
1561 brw_register_blocks(int reg_count)
1562 {
1563 return ALIGN(reg_count, 16) / 16 - 1;
1564 }
1565
1566 static inline uint32_t
1567 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1568 uint32_t prog_offset)
1569 {
1570 if (brw->gen >= 5) {
1571 /* Using state base address. */
1572 return prog_offset;
1573 }
1574
1575 drm_intel_bo_emit_reloc(brw->batch.bo,
1576 state_offset,
1577 brw->cache.bo,
1578 prog_offset,
1579 I915_GEM_DOMAIN_INSTRUCTION, 0);
1580
1581 return brw->cache.bo->offset + prog_offset;
1582 }
1583
1584 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1585 bool brw_lower_texture_gradients(struct brw_context *brw,
1586 struct exec_list *instructions);
1587
1588 struct opcode_desc {
1589 char *name;
1590 int nsrc;
1591 int ndst;
1592 };
1593
1594 extern const struct opcode_desc opcode_descs[128];
1595
1596 void
1597 brw_emit_depthbuffer(struct brw_context *brw);
1598
1599 void
1600 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1601 struct intel_mipmap_tree *depth_mt,
1602 uint32_t depth_offset, uint32_t depthbuffer_format,
1603 uint32_t depth_surface_type,
1604 struct intel_mipmap_tree *stencil_mt,
1605 bool hiz, bool separate_stencil,
1606 uint32_t width, uint32_t height,
1607 uint32_t tile_x, uint32_t tile_y);
1608
1609 void
1610 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1611 struct intel_mipmap_tree *depth_mt,
1612 uint32_t depth_offset, uint32_t depthbuffer_format,
1613 uint32_t depth_surface_type,
1614 struct intel_mipmap_tree *stencil_mt,
1615 bool hiz, bool separate_stencil,
1616 uint32_t width, uint32_t height,
1617 uint32_t tile_x, uint32_t tile_y);
1618
1619 extern const GLuint prim_to_hw_prim[GL_POLYGON+1];
1620
1621 void
1622 brw_setup_vec4_key_clip_info(struct brw_context *brw,
1623 struct brw_vec4_prog_key *key,
1624 bool program_uses_clip_distance);
1625
1626 #ifdef __cplusplus
1627 }
1628 #endif
1629
1630 #endif