05a685af3dab53315944836084a020c8c8b97a40
[mesa.git] / src / mesa / drivers / dri / i965 / brw_curbe.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "shader/prog_parameter.h"
39 #include "shader/prog_print.h"
40 #include "shader/prog_statevars.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_regions.h"
43 #include "brw_context.h"
44 #include "brw_defines.h"
45 #include "brw_state.h"
46 #include "brw_util.h"
47
48
49 /**
50 * Partition the CURBE between the various users of constant values:
51 * Note that vertex and fragment shaders can now fetch constants out
52 * of constant buffers. We no longer allocatea block of the GRF for
53 * constants. That greatly reduces the demand for space in the CURBE.
54 * Some of the comments within are dated...
55 */
56 static void calculate_curbe_offsets( struct brw_context *brw )
57 {
58 GLcontext *ctx = &brw->intel.ctx;
59 /* CACHE_NEW_WM_PROG */
60 const GLuint nr_fp_regs = (brw->wm.prog_data->nr_params + 15) / 16;
61
62 /* BRW_NEW_VERTEX_PROGRAM */
63 const GLuint nr_vp_regs = (brw->vs.prog_data->nr_params + 15) / 16;
64 GLuint nr_clip_regs = 0;
65 GLuint total_regs;
66
67 /* _NEW_TRANSFORM */
68 if (ctx->Transform.ClipPlanesEnabled) {
69 GLuint nr_planes = 6 + brw_count_bits(ctx->Transform.ClipPlanesEnabled);
70 nr_clip_regs = (nr_planes * 4 + 15) / 16;
71 }
72
73
74 total_regs = nr_fp_regs + nr_vp_regs + nr_clip_regs;
75
76 /* This can happen - what to do? Probably rather than falling
77 * back, the best thing to do is emit programs which code the
78 * constants as immediate values. Could do this either as a static
79 * cap on WM and VS, or adaptively.
80 *
81 * Unfortunately, this is currently dependent on the results of the
82 * program generation process (in the case of wm), so this would
83 * introduce the need to re-generate programs in the event of a
84 * curbe allocation failure.
85 */
86 /* Max size is 32 - just large enough to
87 * hold the 128 parameters allowed by
88 * the fragment and vertex program
89 * api's. It's not clear what happens
90 * when both VP and FP want to use 128
91 * parameters, though.
92 */
93 assert(total_regs <= 32);
94
95 /* Lazy resize:
96 */
97 if (nr_fp_regs > brw->curbe.wm_size ||
98 nr_vp_regs > brw->curbe.vs_size ||
99 nr_clip_regs != brw->curbe.clip_size ||
100 (total_regs < brw->curbe.total_size / 4 &&
101 brw->curbe.total_size > 16)) {
102
103 GLuint reg = 0;
104
105 /* Calculate a new layout:
106 */
107 reg = 0;
108 brw->curbe.wm_start = reg;
109 brw->curbe.wm_size = nr_fp_regs; reg += nr_fp_regs;
110 brw->curbe.clip_start = reg;
111 brw->curbe.clip_size = nr_clip_regs; reg += nr_clip_regs;
112 brw->curbe.vs_start = reg;
113 brw->curbe.vs_size = nr_vp_regs; reg += nr_vp_regs;
114 brw->curbe.total_size = reg;
115
116 if (0)
117 _mesa_printf("curbe wm %d+%d clip %d+%d vs %d+%d\n",
118 brw->curbe.wm_start,
119 brw->curbe.wm_size,
120 brw->curbe.clip_start,
121 brw->curbe.clip_size,
122 brw->curbe.vs_start,
123 brw->curbe.vs_size );
124
125 brw->state.dirty.brw |= BRW_NEW_CURBE_OFFSETS;
126 }
127 }
128
129
130 const struct brw_tracked_state brw_curbe_offsets = {
131 .dirty = {
132 .mesa = _NEW_TRANSFORM,
133 .brw = BRW_NEW_VERTEX_PROGRAM,
134 .cache = CACHE_NEW_WM_PROG
135 },
136 .prepare = calculate_curbe_offsets
137 };
138
139
140
141
142 /* Define the number of curbes within CS's urb allocation. Multiple
143 * urb entries -> multiple curbes. These will be used by
144 * fixed-function hardware in a double-buffering scheme to avoid a
145 * pipeline stall each time the contents of the curbe is changed.
146 */
147 void brw_upload_cs_urb_state(struct brw_context *brw)
148 {
149 struct brw_cs_urb_state cs_urb;
150 memset(&cs_urb, 0, sizeof(cs_urb));
151
152 /* It appears that this is the state packet for the CS unit, ie. the
153 * urb entries detailed here are housed in the CS range from the
154 * URB_FENCE command.
155 */
156 cs_urb.header.opcode = CMD_CS_URB_STATE;
157 cs_urb.header.length = sizeof(cs_urb)/4 - 2;
158
159 /* BRW_NEW_URB_FENCE */
160 cs_urb.bits0.nr_urb_entries = brw->urb.nr_cs_entries;
161 cs_urb.bits0.urb_entry_size = brw->urb.csize - 1;
162
163 assert(brw->urb.nr_cs_entries);
164 BRW_CACHED_BATCH_STRUCT(brw, &cs_urb);
165 }
166
167 static GLfloat fixed_plane[6][4] = {
168 { 0, 0, -1, 1 },
169 { 0, 0, 1, 1 },
170 { 0, -1, 0, 1 },
171 { 0, 1, 0, 1 },
172 {-1, 0, 0, 1 },
173 { 1, 0, 0, 1 }
174 };
175
176 /* Upload a new set of constants. Too much variability to go into the
177 * cache mechanism, but maybe would benefit from a comparison against
178 * the current uploaded set of constants.
179 */
180 static void prepare_constant_buffer(struct brw_context *brw)
181 {
182 GLcontext *ctx = &brw->intel.ctx;
183 const struct brw_vertex_program *vp =
184 brw_vertex_program_const(brw->vertex_program);
185 const struct brw_fragment_program *fp =
186 brw_fragment_program_const(brw->fragment_program);
187 const GLuint sz = brw->curbe.total_size;
188 const GLuint bufsz = sz * 16 * sizeof(GLfloat);
189 GLfloat *buf;
190 GLuint i;
191
192 if (sz == 0) {
193 if (brw->curbe.last_buf) {
194 free(brw->curbe.last_buf);
195 brw->curbe.last_buf = NULL;
196 brw->curbe.last_bufsz = 0;
197 }
198 return;
199 }
200
201 buf = (GLfloat *) _mesa_calloc(bufsz);
202
203 /* fragment shader constants */
204 if (brw->curbe.wm_size) {
205 GLuint offset = brw->curbe.wm_start * 16;
206
207 _mesa_load_state_parameters(ctx, fp->program.Base.Parameters);
208
209 /* copy float constants */
210 for (i = 0; i < brw->wm.prog_data->nr_params; i++)
211 buf[offset + i] = *brw->wm.prog_data->param[i];
212 }
213
214
215 /* The clipplanes are actually delivered to both CLIP and VS units.
216 * VS uses them to calculate the outcode bitmasks.
217 */
218 if (brw->curbe.clip_size) {
219 GLuint offset = brw->curbe.clip_start * 16;
220 GLuint j;
221
222 /* If any planes are going this way, send them all this way:
223 */
224 for (i = 0; i < 6; i++) {
225 buf[offset + i * 4 + 0] = fixed_plane[i][0];
226 buf[offset + i * 4 + 1] = fixed_plane[i][1];
227 buf[offset + i * 4 + 2] = fixed_plane[i][2];
228 buf[offset + i * 4 + 3] = fixed_plane[i][3];
229 }
230
231 /* Clip planes: _NEW_TRANSFORM plus _NEW_PROJECTION to get to
232 * clip-space:
233 */
234 assert(MAX_CLIP_PLANES == 6);
235 for (j = 0; j < MAX_CLIP_PLANES; j++) {
236 if (ctx->Transform.ClipPlanesEnabled & (1<<j)) {
237 buf[offset + i * 4 + 0] = ctx->Transform._ClipUserPlane[j][0];
238 buf[offset + i * 4 + 1] = ctx->Transform._ClipUserPlane[j][1];
239 buf[offset + i * 4 + 2] = ctx->Transform._ClipUserPlane[j][2];
240 buf[offset + i * 4 + 3] = ctx->Transform._ClipUserPlane[j][3];
241 i++;
242 }
243 }
244 }
245
246 /* vertex shader constants */
247 if (brw->curbe.vs_size) {
248 GLuint offset = brw->curbe.vs_start * 16;
249 GLuint nr = brw->vs.prog_data->nr_params / 4;
250
251 _mesa_load_state_parameters(ctx, vp->program.Base.Parameters);
252
253 /* XXX just use a memcpy here */
254 for (i = 0; i < nr; i++) {
255 const GLfloat *value = vp->program.Base.Parameters->ParameterValues[i];
256 buf[offset + i * 4 + 0] = value[0];
257 buf[offset + i * 4 + 1] = value[1];
258 buf[offset + i * 4 + 2] = value[2];
259 buf[offset + i * 4 + 3] = value[3];
260 }
261 }
262
263 if (0) {
264 for (i = 0; i < sz*16; i+=4)
265 _mesa_printf("curbe %d.%d: %f %f %f %f\n", i/8, i&4,
266 buf[i+0], buf[i+1], buf[i+2], buf[i+3]);
267
268 _mesa_printf("last_buf %p buf %p sz %d/%d cmp %d\n",
269 brw->curbe.last_buf, buf,
270 bufsz, brw->curbe.last_bufsz,
271 brw->curbe.last_buf ? memcmp(buf, brw->curbe.last_buf, bufsz) : -1);
272 }
273
274 if (brw->curbe.curbe_bo != NULL &&
275 brw->curbe.last_buf &&
276 bufsz == brw->curbe.last_bufsz &&
277 memcmp(buf, brw->curbe.last_buf, bufsz) == 0) {
278 /* constants have not changed */
279 _mesa_free(buf);
280 }
281 else {
282 /* constants have changed */
283 if (brw->curbe.last_buf)
284 _mesa_free(brw->curbe.last_buf);
285
286 brw->curbe.last_buf = buf;
287 brw->curbe.last_bufsz = bufsz;
288
289 if (brw->curbe.curbe_bo != NULL &&
290 (brw->curbe.need_new_bo ||
291 brw->curbe.curbe_next_offset + bufsz > brw->curbe.curbe_bo->size))
292 {
293 dri_bo_unreference(brw->curbe.curbe_bo);
294 brw->curbe.curbe_bo = NULL;
295 }
296
297 if (brw->curbe.curbe_bo == NULL) {
298 /* Allocate a single page for CURBE entries for this batchbuffer.
299 * They're generally around 64b.
300 */
301 brw->curbe.curbe_bo = dri_bo_alloc(brw->intel.bufmgr, "CURBE",
302 4096, 1 << 6);
303 brw->curbe.curbe_next_offset = 0;
304 }
305
306 brw->curbe.curbe_offset = brw->curbe.curbe_next_offset;
307 brw->curbe.curbe_next_offset += bufsz;
308 brw->curbe.curbe_next_offset = ALIGN(brw->curbe.curbe_next_offset, 64);
309
310 /* Copy data to the buffer:
311 */
312 dri_bo_subdata(brw->curbe.curbe_bo, brw->curbe.curbe_offset, bufsz, buf);
313 }
314
315 brw_add_validated_bo(brw, brw->curbe.curbe_bo);
316
317 /* Because this provokes an action (ie copy the constants into the
318 * URB), it shouldn't be shortcircuited if identical to the
319 * previous time - because eg. the urb destination may have
320 * changed, or the urb contents different to last time.
321 *
322 * Note that the data referred to is actually copied internally,
323 * not just used in place according to passed pointer.
324 *
325 * It appears that the CS unit takes care of using each available
326 * URB entry (Const URB Entry == CURBE) in turn, and issuing
327 * flushes as necessary when doublebuffering of CURBEs isn't
328 * possible.
329 */
330 }
331
332
333 /**
334 * Copy Mesa program parameters into given constant buffer.
335 */
336 static void
337 update_constant_buffer(struct brw_context *brw,
338 const struct gl_program_parameter_list *params,
339 dri_bo *const_buffer)
340 {
341 struct intel_context *intel = &brw->intel;
342 const int size = params->NumParameters * 4 * sizeof(GLfloat);
343
344 /* copy Mesa program constants into the buffer */
345 if (const_buffer && size > 0) {
346
347 assert(const_buffer);
348 assert(const_buffer->size >= size);
349
350 if (intel->intelScreen->kernel_exec_fencing) {
351 drm_intel_gem_bo_map_gtt(const_buffer);
352 memcpy(const_buffer->virtual, params->ParameterValues, size);
353 drm_intel_gem_bo_unmap_gtt(const_buffer);
354 }
355 else {
356 dri_bo_subdata(const_buffer, 0, size, params->ParameterValues);
357 }
358
359 if (0) {
360 _mesa_print_parameter_list(params);
361 }
362 }
363 }
364
365
366 /** Copy current vertex program's parameters into the constant buffer */
367 static void
368 update_vertex_constant_buffer(struct brw_context *brw)
369 {
370 struct brw_vertex_program *vp =
371 (struct brw_vertex_program *) brw->vertex_program;
372 if (0) {
373 printf("update VS constants in buffer %p vp = %p\n", vp->const_buffer, vp);
374 printf("program %u\n", vp->program.Base.Id);
375 }
376 if (vp->use_const_buffer)
377 update_constant_buffer(brw, vp->program.Base.Parameters, vp->const_buffer);
378 }
379
380
381 /** Copy current fragment program's parameters into the constant buffer */
382 static void
383 update_fragment_constant_buffer(struct brw_context *brw)
384 {
385 struct brw_fragment_program *fp =
386 (struct brw_fragment_program *) brw->fragment_program;
387 if (0) {
388 printf("update WM constants in buffer %p\n", fp->const_buffer);
389 printf("program %u\n", fp->program.Base.Id);
390 }
391 if (fp->use_const_buffer)
392 update_constant_buffer(brw, fp->program.Base.Parameters, fp->const_buffer);
393 }
394
395
396 static void emit_constant_buffer(struct brw_context *brw)
397 {
398 struct intel_context *intel = &brw->intel;
399 GLuint sz = brw->curbe.total_size;
400
401 update_vertex_constant_buffer(brw);
402 update_fragment_constant_buffer(brw);
403
404 BEGIN_BATCH(2, IGNORE_CLIPRECTS);
405 if (sz == 0) {
406 OUT_BATCH((CMD_CONST_BUFFER << 16) | (2 - 2));
407 OUT_BATCH(0);
408 } else {
409 OUT_BATCH((CMD_CONST_BUFFER << 16) | (1 << 8) | (2 - 2));
410 OUT_RELOC(brw->curbe.curbe_bo,
411 I915_GEM_DOMAIN_INSTRUCTION, 0,
412 (sz - 1) + brw->curbe.curbe_offset);
413 }
414 ADVANCE_BATCH();
415 }
416
417 /* This tracked state is unique in that the state it monitors varies
418 * dynamically depending on the parameters tracked by the fragment and
419 * vertex programs. This is the template used as a starting point,
420 * each context will maintain a copy of this internally and update as
421 * required.
422 */
423 const struct brw_tracked_state brw_constant_buffer = {
424 .dirty = {
425 .mesa = _NEW_PROGRAM_CONSTANTS,
426 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
427 BRW_NEW_VERTEX_PROGRAM |
428 BRW_NEW_URB_FENCE | /* Implicit - hardware requires this, not used above */
429 BRW_NEW_PSP | /* Implicit - hardware requires this, not used above */
430 BRW_NEW_CURBE_OFFSETS |
431 BRW_NEW_BATCH),
432 .cache = (CACHE_NEW_WM_PROG)
433 },
434 .prepare = prepare_constant_buffer,
435 .emit = emit_constant_buffer,
436 };
437