glsl: move to compiler/
[mesa.git] / src / mesa / drivers / dri / i965 / brw_curbe.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32 /** @file brw_curbe.c
33 *
34 * Push constant handling for gen4/5.
35 *
36 * Push constants are constant values (such as GLSL uniforms) that are
37 * pre-loaded into a shader stage's register space at thread spawn time. On
38 * gen4 and gen5, we create a blob in memory containing all the push constants
39 * for all the stages in order. At CMD_CONST_BUFFER time that blob is loaded
40 * into URB space as a constant URB entry (CURBE) so that it can be accessed
41 * quickly at thread setup time. Each individual fixed function unit's state
42 * (brw_vs_state.c for example) tells the hardware which subset of the CURBE
43 * it wants in its register space, and we calculate those areas here under the
44 * BRW_NEW_CURBE_OFFSETS state flag. The brw_urb.c allocation will control
45 * how many CURBEs can be loaded into the hardware at once before a pipeline
46 * stall occurs at CMD_CONST_BUFFER time.
47 *
48 * On gen6+, constant handling becomes a much simpler set of per-unit state.
49 * See gen6_upload_vec4_push_constants() in gen6_vs_state.c for that code.
50 */
51
52
53 #include "main/context.h"
54 #include "main/macros.h"
55 #include "main/enums.h"
56 #include "program/prog_parameter.h"
57 #include "program/prog_print.h"
58 #include "program/prog_statevars.h"
59 #include "intel_batchbuffer.h"
60 #include "intel_buffer_objects.h"
61 #include "brw_context.h"
62 #include "brw_defines.h"
63 #include "brw_state.h"
64 #include "brw_util.h"
65
66
67 /**
68 * Partition the CURBE between the various users of constant values.
69 *
70 * If the users all fit within the previous allocatation, we avoid changing
71 * the layout because that means reuploading all unit state and uploading new
72 * constant buffers.
73 */
74 static void calculate_curbe_offsets( struct brw_context *brw )
75 {
76 struct gl_context *ctx = &brw->ctx;
77 /* BRW_NEW_FS_PROG_DATA */
78 const GLuint nr_fp_regs = (brw->wm.prog_data->base.nr_params + 15) / 16;
79
80 /* BRW_NEW_VS_PROG_DATA */
81 const GLuint nr_vp_regs = (brw->vs.prog_data->base.base.nr_params + 15) / 16;
82 GLuint nr_clip_regs = 0;
83 GLuint total_regs;
84
85 /* _NEW_TRANSFORM */
86 if (ctx->Transform.ClipPlanesEnabled) {
87 GLuint nr_planes = 6 + _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
88 nr_clip_regs = (nr_planes * 4 + 15) / 16;
89 }
90
91
92 total_regs = nr_fp_regs + nr_vp_regs + nr_clip_regs;
93
94 /* The CURBE allocation size is limited to 32 512-bit units (128 EU
95 * registers, or 1024 floats). See CS_URB_STATE in the gen4 or gen5
96 * (volume 1, part 1) PRMs.
97 *
98 * Note that in brw_fs.cpp we're only loading up to 16 EU registers of
99 * values as push constants before spilling to pull constants, and in
100 * brw_vec4.cpp we're loading up to 32 registers of push constants. An EU
101 * register is 1/2 of one of these URB entry units, so that leaves us 16 EU
102 * regs for clip.
103 */
104 assert(total_regs <= 32);
105
106 /* Lazy resize:
107 */
108 if (nr_fp_regs > brw->curbe.wm_size ||
109 nr_vp_regs > brw->curbe.vs_size ||
110 nr_clip_regs != brw->curbe.clip_size ||
111 (total_regs < brw->curbe.total_size / 4 &&
112 brw->curbe.total_size > 16)) {
113
114 GLuint reg = 0;
115
116 /* Calculate a new layout:
117 */
118 reg = 0;
119 brw->curbe.wm_start = reg;
120 brw->curbe.wm_size = nr_fp_regs; reg += nr_fp_regs;
121 brw->curbe.clip_start = reg;
122 brw->curbe.clip_size = nr_clip_regs; reg += nr_clip_regs;
123 brw->curbe.vs_start = reg;
124 brw->curbe.vs_size = nr_vp_regs; reg += nr_vp_regs;
125 brw->curbe.total_size = reg;
126
127 if (0)
128 fprintf(stderr, "curbe wm %d+%d clip %d+%d vs %d+%d\n",
129 brw->curbe.wm_start,
130 brw->curbe.wm_size,
131 brw->curbe.clip_start,
132 brw->curbe.clip_size,
133 brw->curbe.vs_start,
134 brw->curbe.vs_size );
135
136 brw->ctx.NewDriverState |= BRW_NEW_CURBE_OFFSETS;
137 }
138 }
139
140
141 const struct brw_tracked_state brw_curbe_offsets = {
142 .dirty = {
143 .mesa = _NEW_TRANSFORM,
144 .brw = BRW_NEW_CONTEXT |
145 BRW_NEW_FS_PROG_DATA |
146 BRW_NEW_VS_PROG_DATA,
147 },
148 .emit = calculate_curbe_offsets
149 };
150
151
152
153
154 /** Uploads the CS_URB_STATE packet.
155 *
156 * Just like brw_vs_state.c and brw_wm_state.c define a URB entry size and
157 * number of entries for their stages, constant buffers do so using this state
158 * packet. Having multiple CURBEs in the URB at the same time allows the
159 * hardware to avoid a pipeline stall between primitives using different
160 * constant buffer contents.
161 */
162 void brw_upload_cs_urb_state(struct brw_context *brw)
163 {
164 BEGIN_BATCH(2);
165 OUT_BATCH(CMD_CS_URB_STATE << 16 | (2-2));
166
167 /* BRW_NEW_URB_FENCE */
168 if (brw->urb.csize == 0) {
169 OUT_BATCH(0);
170 } else {
171 /* BRW_NEW_URB_FENCE */
172 assert(brw->urb.nr_cs_entries);
173 OUT_BATCH((brw->urb.csize - 1) << 4 | brw->urb.nr_cs_entries);
174 }
175 ADVANCE_BATCH();
176 }
177
178 static const GLfloat fixed_plane[6][4] = {
179 { 0, 0, -1, 1 },
180 { 0, 0, 1, 1 },
181 { 0, -1, 0, 1 },
182 { 0, 1, 0, 1 },
183 {-1, 0, 0, 1 },
184 { 1, 0, 0, 1 }
185 };
186
187 /**
188 * Gathers together all the uniform values into a block of memory to be
189 * uploaded into the CURBE, then emits the state packet telling the hardware
190 * the new location.
191 */
192 static void
193 brw_upload_constant_buffer(struct brw_context *brw)
194 {
195 struct gl_context *ctx = &brw->ctx;
196 /* BRW_NEW_CURBE_OFFSETS */
197 const GLuint sz = brw->curbe.total_size;
198 const GLuint bufsz = sz * 16 * sizeof(GLfloat);
199 gl_constant_value *buf;
200 GLuint i;
201 gl_clip_plane *clip_planes;
202
203 if (sz == 0) {
204 goto emit;
205 }
206
207 buf = intel_upload_space(brw, bufsz, 64,
208 &brw->curbe.curbe_bo, &brw->curbe.curbe_offset);
209
210 STATIC_ASSERT(sizeof(gl_constant_value) == sizeof(float));
211
212 /* fragment shader constants */
213 if (brw->curbe.wm_size) {
214 _mesa_load_state_parameters(ctx, brw->fragment_program->Base.Parameters);
215
216 /* BRW_NEW_CURBE_OFFSETS */
217 GLuint offset = brw->curbe.wm_start * 16;
218
219 /* BRW_NEW_FS_PROG_DATA | _NEW_PROGRAM_CONSTANTS: copy uniform values */
220 for (i = 0; i < brw->wm.prog_data->base.nr_params; i++) {
221 buf[offset + i] = *brw->wm.prog_data->base.param[i];
222 }
223 }
224
225 /* clipper constants */
226 if (brw->curbe.clip_size) {
227 GLuint offset = brw->curbe.clip_start * 16;
228 GLuint j;
229
230 /* If any planes are going this way, send them all this way:
231 */
232 for (i = 0; i < 6; i++) {
233 buf[offset + i * 4 + 0].f = fixed_plane[i][0];
234 buf[offset + i * 4 + 1].f = fixed_plane[i][1];
235 buf[offset + i * 4 + 2].f = fixed_plane[i][2];
236 buf[offset + i * 4 + 3].f = fixed_plane[i][3];
237 }
238
239 /* Clip planes: _NEW_TRANSFORM plus _NEW_PROJECTION to get to
240 * clip-space:
241 */
242 clip_planes = brw_select_clip_planes(ctx);
243 for (j = 0; j < MAX_CLIP_PLANES; j++) {
244 if (ctx->Transform.ClipPlanesEnabled & (1<<j)) {
245 buf[offset + i * 4 + 0].f = clip_planes[j][0];
246 buf[offset + i * 4 + 1].f = clip_planes[j][1];
247 buf[offset + i * 4 + 2].f = clip_planes[j][2];
248 buf[offset + i * 4 + 3].f = clip_planes[j][3];
249 i++;
250 }
251 }
252 }
253
254 /* vertex shader constants */
255 if (brw->curbe.vs_size) {
256 _mesa_load_state_parameters(ctx, brw->vertex_program->Base.Parameters);
257
258 GLuint offset = brw->curbe.vs_start * 16;
259
260 /* BRW_NEW_VS_PROG_DATA | _NEW_PROGRAM_CONSTANTS: copy uniform values */
261 for (i = 0; i < brw->vs.prog_data->base.base.nr_params; i++) {
262 buf[offset + i] = *brw->vs.prog_data->base.base.param[i];
263 }
264 }
265
266 if (0) {
267 for (i = 0; i < sz*16; i+=4)
268 fprintf(stderr, "curbe %d.%d: %f %f %f %f\n", i/8, i&4,
269 buf[i+0].f, buf[i+1].f, buf[i+2].f, buf[i+3].f);
270 }
271
272 /* Because this provokes an action (ie copy the constants into the
273 * URB), it shouldn't be shortcircuited if identical to the
274 * previous time - because eg. the urb destination may have
275 * changed, or the urb contents different to last time.
276 *
277 * Note that the data referred to is actually copied internally,
278 * not just used in place according to passed pointer.
279 *
280 * It appears that the CS unit takes care of using each available
281 * URB entry (Const URB Entry == CURBE) in turn, and issuing
282 * flushes as necessary when doublebuffering of CURBEs isn't
283 * possible.
284 */
285
286 emit:
287 /* BRW_NEW_URB_FENCE: From the gen4 PRM, volume 1, section 3.9.8
288 * (CONSTANT_BUFFER (CURBE Load)):
289 *
290 * "Modifying the CS URB allocation via URB_FENCE invalidates any
291 * previous CURBE entries. Therefore software must subsequently
292 * [re]issue a CONSTANT_BUFFER command before CURBE data can be used
293 * in the pipeline."
294 */
295 BEGIN_BATCH(2);
296 if (brw->curbe.total_size == 0) {
297 OUT_BATCH((CMD_CONST_BUFFER << 16) | (2 - 2));
298 OUT_BATCH(0);
299 } else {
300 OUT_BATCH((CMD_CONST_BUFFER << 16) | (1 << 8) | (2 - 2));
301 OUT_RELOC(brw->curbe.curbe_bo,
302 I915_GEM_DOMAIN_INSTRUCTION, 0,
303 (brw->curbe.total_size - 1) + brw->curbe.curbe_offset);
304 }
305 ADVANCE_BATCH();
306
307 /* Work around a Broadwater/Crestline depth interpolator bug. The
308 * following sequence will cause GPU hangs:
309 *
310 * 1. Change state so that all depth related fields in CC_STATE are
311 * disabled, and in WM_STATE, only "PS Use Source Depth" is enabled.
312 * 2. Emit a CONSTANT_BUFFER packet.
313 * 3. Draw via 3DPRIMITIVE.
314 *
315 * The recommended workaround is to emit a non-pipelined state change after
316 * emitting CONSTANT_BUFFER, in order to drain the windowizer pipeline.
317 *
318 * We arbitrarily choose 3DSTATE_GLOBAL_DEPTH_CLAMP_OFFSET (as it's small),
319 * and always emit it when "PS Use Source Depth" is set. We could be more
320 * precise, but the additional complexity is probably not worth it.
321 *
322 * BRW_NEW_FRAGMENT_PROGRAM
323 */
324 if (brw->gen == 4 && !brw->is_g4x &&
325 (brw->fragment_program->Base.InputsRead & (1 << VARYING_SLOT_POS))) {
326 BEGIN_BATCH(2);
327 OUT_BATCH(_3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP << 16 | (2 - 2));
328 OUT_BATCH(0);
329 ADVANCE_BATCH();
330 }
331 }
332
333 const struct brw_tracked_state brw_constant_buffer = {
334 .dirty = {
335 .mesa = _NEW_PROGRAM_CONSTANTS,
336 .brw = BRW_NEW_BATCH |
337 BRW_NEW_CURBE_OFFSETS |
338 BRW_NEW_FRAGMENT_PROGRAM |
339 BRW_NEW_FS_PROG_DATA |
340 BRW_NEW_PSP | /* Implicit - hardware requires this, not used above */
341 BRW_NEW_URB_FENCE |
342 BRW_NEW_VS_PROG_DATA,
343 },
344 .emit = brw_upload_constant_buffer,
345 };
346