Merge remote branch 'origin/master' into pipe-video
[mesa.git] / src / mesa / drivers / dri / i965 / brw_curbe.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "program/prog_parameter.h"
39 #include "program/prog_print.h"
40 #include "program/prog_statevars.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_regions.h"
43 #include "brw_context.h"
44 #include "brw_defines.h"
45 #include "brw_state.h"
46 #include "brw_util.h"
47
48
49 /**
50 * Partition the CURBE between the various users of constant values:
51 * Note that vertex and fragment shaders can now fetch constants out
52 * of constant buffers. We no longer allocatea block of the GRF for
53 * constants. That greatly reduces the demand for space in the CURBE.
54 * Some of the comments within are dated...
55 */
56 static void calculate_curbe_offsets( struct brw_context *brw )
57 {
58 struct gl_context *ctx = &brw->intel.ctx;
59 /* CACHE_NEW_WM_PROG */
60 const GLuint nr_fp_regs = (brw->wm.prog_data->nr_params + 15) / 16;
61
62 /* BRW_NEW_VERTEX_PROGRAM */
63 const GLuint nr_vp_regs = (brw->vs.prog_data->nr_params + 15) / 16;
64 GLuint nr_clip_regs = 0;
65 GLuint total_regs;
66
67 /* _NEW_TRANSFORM */
68 if (ctx->Transform.ClipPlanesEnabled) {
69 GLuint nr_planes = 6 + brw_count_bits(ctx->Transform.ClipPlanesEnabled);
70 nr_clip_regs = (nr_planes * 4 + 15) / 16;
71 }
72
73
74 total_regs = nr_fp_regs + nr_vp_regs + nr_clip_regs;
75
76 /* This can happen - what to do? Probably rather than falling
77 * back, the best thing to do is emit programs which code the
78 * constants as immediate values. Could do this either as a static
79 * cap on WM and VS, or adaptively.
80 *
81 * Unfortunately, this is currently dependent on the results of the
82 * program generation process (in the case of wm), so this would
83 * introduce the need to re-generate programs in the event of a
84 * curbe allocation failure.
85 */
86 /* Max size is 32 - just large enough to
87 * hold the 128 parameters allowed by
88 * the fragment and vertex program
89 * api's. It's not clear what happens
90 * when both VP and FP want to use 128
91 * parameters, though.
92 */
93 assert(total_regs <= 32);
94
95 /* Lazy resize:
96 */
97 if (nr_fp_regs > brw->curbe.wm_size ||
98 nr_vp_regs > brw->curbe.vs_size ||
99 nr_clip_regs != brw->curbe.clip_size ||
100 (total_regs < brw->curbe.total_size / 4 &&
101 brw->curbe.total_size > 16)) {
102
103 GLuint reg = 0;
104
105 /* Calculate a new layout:
106 */
107 reg = 0;
108 brw->curbe.wm_start = reg;
109 brw->curbe.wm_size = nr_fp_regs; reg += nr_fp_regs;
110 brw->curbe.clip_start = reg;
111 brw->curbe.clip_size = nr_clip_regs; reg += nr_clip_regs;
112 brw->curbe.vs_start = reg;
113 brw->curbe.vs_size = nr_vp_regs; reg += nr_vp_regs;
114 brw->curbe.total_size = reg;
115
116 if (0)
117 printf("curbe wm %d+%d clip %d+%d vs %d+%d\n",
118 brw->curbe.wm_start,
119 brw->curbe.wm_size,
120 brw->curbe.clip_start,
121 brw->curbe.clip_size,
122 brw->curbe.vs_start,
123 brw->curbe.vs_size );
124
125 brw->state.dirty.brw |= BRW_NEW_CURBE_OFFSETS;
126 }
127 }
128
129
130 const struct brw_tracked_state brw_curbe_offsets = {
131 .dirty = {
132 .mesa = _NEW_TRANSFORM,
133 .brw = BRW_NEW_VERTEX_PROGRAM | BRW_NEW_CONTEXT,
134 .cache = CACHE_NEW_WM_PROG
135 },
136 .prepare = calculate_curbe_offsets
137 };
138
139
140
141
142 /* Define the number of curbes within CS's urb allocation. Multiple
143 * urb entries -> multiple curbes. These will be used by
144 * fixed-function hardware in a double-buffering scheme to avoid a
145 * pipeline stall each time the contents of the curbe is changed.
146 */
147 void brw_upload_cs_urb_state(struct brw_context *brw)
148 {
149 struct intel_context *intel = &brw->intel;
150
151 BEGIN_BATCH(2);
152 /* It appears that this is the state packet for the CS unit, ie. the
153 * urb entries detailed here are housed in the CS range from the
154 * URB_FENCE command.
155 */
156 OUT_BATCH(CMD_CS_URB_STATE << 16 | (2-2));
157
158 /* BRW_NEW_URB_FENCE */
159 if (brw->urb.csize == 0) {
160 OUT_BATCH(0);
161 } else {
162 /* BRW_NEW_URB_FENCE */
163 assert(brw->urb.nr_cs_entries);
164 OUT_BATCH((brw->urb.csize - 1) << 4 | brw->urb.nr_cs_entries);
165 }
166 CACHED_BATCH();
167 }
168
169 static GLfloat fixed_plane[6][4] = {
170 { 0, 0, -1, 1 },
171 { 0, 0, 1, 1 },
172 { 0, -1, 0, 1 },
173 { 0, 1, 0, 1 },
174 {-1, 0, 0, 1 },
175 { 1, 0, 0, 1 }
176 };
177
178 /* Upload a new set of constants. Too much variability to go into the
179 * cache mechanism, but maybe would benefit from a comparison against
180 * the current uploaded set of constants.
181 */
182 static void prepare_constant_buffer(struct brw_context *brw)
183 {
184 struct gl_context *ctx = &brw->intel.ctx;
185 const struct brw_vertex_program *vp =
186 brw_vertex_program_const(brw->vertex_program);
187 const GLuint sz = brw->curbe.total_size;
188 const GLuint bufsz = sz * 16 * sizeof(GLfloat);
189 GLfloat *buf;
190 GLuint i;
191
192 if (sz == 0) {
193 brw->curbe.last_bufsz = 0;
194 return;
195 }
196
197 buf = brw->curbe.next_buf;
198
199 /* fragment shader constants */
200 if (brw->curbe.wm_size) {
201 GLuint offset = brw->curbe.wm_start * 16;
202
203 /* copy float constants */
204 for (i = 0; i < brw->wm.prog_data->nr_params; i++) {
205 buf[offset + i] = convert_param(brw->wm.prog_data->param_convert[i],
206 *brw->wm.prog_data->param[i]);
207 }
208 }
209
210
211 /* The clipplanes are actually delivered to both CLIP and VS units.
212 * VS uses them to calculate the outcode bitmasks.
213 */
214 if (brw->curbe.clip_size) {
215 GLuint offset = brw->curbe.clip_start * 16;
216 GLuint j;
217
218 /* If any planes are going this way, send them all this way:
219 */
220 for (i = 0; i < 6; i++) {
221 buf[offset + i * 4 + 0] = fixed_plane[i][0];
222 buf[offset + i * 4 + 1] = fixed_plane[i][1];
223 buf[offset + i * 4 + 2] = fixed_plane[i][2];
224 buf[offset + i * 4 + 3] = fixed_plane[i][3];
225 }
226
227 /* Clip planes: _NEW_TRANSFORM plus _NEW_PROJECTION to get to
228 * clip-space:
229 */
230 assert(MAX_CLIP_PLANES == 6);
231 for (j = 0; j < MAX_CLIP_PLANES; j++) {
232 if (ctx->Transform.ClipPlanesEnabled & (1<<j)) {
233 buf[offset + i * 4 + 0] = ctx->Transform._ClipUserPlane[j][0];
234 buf[offset + i * 4 + 1] = ctx->Transform._ClipUserPlane[j][1];
235 buf[offset + i * 4 + 2] = ctx->Transform._ClipUserPlane[j][2];
236 buf[offset + i * 4 + 3] = ctx->Transform._ClipUserPlane[j][3];
237 i++;
238 }
239 }
240 }
241
242 /* vertex shader constants */
243 if (brw->curbe.vs_size) {
244 GLuint offset = brw->curbe.vs_start * 16;
245 GLuint nr = brw->vs.prog_data->nr_params / 4;
246
247 /* Load the subset of push constants that will get used when
248 * we also have a pull constant buffer.
249 */
250 for (i = 0; i < vp->program.Base.Parameters->NumParameters; i++) {
251 if (brw->vs.constant_map[i] != -1) {
252 assert(brw->vs.constant_map[i] <= nr);
253 memcpy(buf + offset + brw->vs.constant_map[i] * 4,
254 vp->program.Base.Parameters->ParameterValues[i],
255 4 * sizeof(float));
256 }
257 }
258 }
259
260 if (0) {
261 for (i = 0; i < sz*16; i+=4)
262 printf("curbe %d.%d: %f %f %f %f\n", i/8, i&4,
263 buf[i+0], buf[i+1], buf[i+2], buf[i+3]);
264
265 printf("last_buf %p buf %p sz %d/%d cmp %d\n",
266 brw->curbe.last_buf, buf,
267 bufsz, brw->curbe.last_bufsz,
268 brw->curbe.last_buf ? memcmp(buf, brw->curbe.last_buf, bufsz) : -1);
269 }
270
271 if (brw->curbe.curbe_bo != NULL &&
272 bufsz == brw->curbe.last_bufsz &&
273 memcmp(buf, brw->curbe.last_buf, bufsz) == 0) {
274 /* constants have not changed */
275 } else {
276 /* Update the record of what our last set of constants was. We
277 * don't just flip the pointers because we don't fill in the
278 * data in the padding between the entries.
279 */
280 memcpy(brw->curbe.last_buf, buf, bufsz);
281 brw->curbe.last_bufsz = bufsz;
282
283 if (brw->curbe.curbe_bo != NULL &&
284 brw->curbe.curbe_next_offset + bufsz > brw->curbe.curbe_bo->size)
285 {
286 drm_intel_gem_bo_unmap_gtt(brw->curbe.curbe_bo);
287 drm_intel_bo_unreference(brw->curbe.curbe_bo);
288 brw->curbe.curbe_bo = NULL;
289 }
290
291 if (brw->curbe.curbe_bo == NULL) {
292 /* Allocate a single page for CURBE entries for this batchbuffer.
293 * They're generally around 64b.
294 */
295 brw->curbe.curbe_bo = drm_intel_bo_alloc(brw->intel.bufmgr, "CURBE",
296 4096, 1 << 6);
297 brw->curbe.curbe_next_offset = 0;
298 drm_intel_gem_bo_map_gtt(brw->curbe.curbe_bo);
299 assert(bufsz < 4096);
300 }
301
302 brw->curbe.curbe_offset = brw->curbe.curbe_next_offset;
303 brw->curbe.curbe_next_offset += bufsz;
304 brw->curbe.curbe_next_offset = ALIGN(brw->curbe.curbe_next_offset, 64);
305
306 /* Copy data to the buffer:
307 */
308 memcpy(brw->curbe.curbe_bo->virtual + brw->curbe.curbe_offset,
309 buf,
310 bufsz);
311 }
312
313 brw_add_validated_bo(brw, brw->curbe.curbe_bo);
314
315 /* Because this provokes an action (ie copy the constants into the
316 * URB), it shouldn't be shortcircuited if identical to the
317 * previous time - because eg. the urb destination may have
318 * changed, or the urb contents different to last time.
319 *
320 * Note that the data referred to is actually copied internally,
321 * not just used in place according to passed pointer.
322 *
323 * It appears that the CS unit takes care of using each available
324 * URB entry (Const URB Entry == CURBE) in turn, and issuing
325 * flushes as necessary when doublebuffering of CURBEs isn't
326 * possible.
327 */
328 }
329
330 static void emit_constant_buffer(struct brw_context *brw)
331 {
332 struct intel_context *intel = &brw->intel;
333 GLuint sz = brw->curbe.total_size;
334
335 BEGIN_BATCH(2);
336 if (sz == 0) {
337 OUT_BATCH((CMD_CONST_BUFFER << 16) | (2 - 2));
338 OUT_BATCH(0);
339 } else {
340 OUT_BATCH((CMD_CONST_BUFFER << 16) | (1 << 8) | (2 - 2));
341 OUT_RELOC(brw->curbe.curbe_bo,
342 I915_GEM_DOMAIN_INSTRUCTION, 0,
343 (sz - 1) + brw->curbe.curbe_offset);
344 }
345 ADVANCE_BATCH();
346 }
347
348 /* This tracked state is unique in that the state it monitors varies
349 * dynamically depending on the parameters tracked by the fragment and
350 * vertex programs. This is the template used as a starting point,
351 * each context will maintain a copy of this internally and update as
352 * required.
353 */
354 const struct brw_tracked_state brw_constant_buffer = {
355 .dirty = {
356 .mesa = _NEW_PROGRAM_CONSTANTS,
357 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
358 BRW_NEW_VERTEX_PROGRAM |
359 BRW_NEW_URB_FENCE | /* Implicit - hardware requires this, not used above */
360 BRW_NEW_PSP | /* Implicit - hardware requires this, not used above */
361 BRW_NEW_CURBE_OFFSETS |
362 BRW_NEW_BATCH),
363 .cache = (CACHE_NEW_WM_PROG)
364 },
365 .prepare = prepare_constant_buffer,
366 .emit = emit_constant_buffer,
367 };
368