i965: Return NONE from brw_swap_cmod on unknown input.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <sys/errno.h>
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/condrender.h"
33 #include "main/samplerobj.h"
34 #include "main/state.h"
35 #include "main/enums.h"
36 #include "main/macros.h"
37 #include "main/transformfeedback.h"
38 #include "tnl/tnl.h"
39 #include "vbo/vbo_context.h"
40 #include "swrast/swrast.h"
41 #include "swrast_setup/swrast_setup.h"
42 #include "drivers/common/meta.h"
43
44 #include "brw_blorp.h"
45 #include "brw_draw.h"
46 #include "brw_defines.h"
47 #include "brw_context.h"
48 #include "brw_state.h"
49
50 #include "intel_batchbuffer.h"
51 #include "intel_buffers.h"
52 #include "intel_fbo.h"
53 #include "intel_mipmap_tree.h"
54 #include "intel_buffer_objects.h"
55
56 #define FILE_DEBUG_FLAG DEBUG_PRIMS
57
58 const GLuint prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
59 _3DPRIM_POINTLIST,
60 _3DPRIM_LINELIST,
61 _3DPRIM_LINELOOP,
62 _3DPRIM_LINESTRIP,
63 _3DPRIM_TRILIST,
64 _3DPRIM_TRISTRIP,
65 _3DPRIM_TRIFAN,
66 _3DPRIM_QUADLIST,
67 _3DPRIM_QUADSTRIP,
68 _3DPRIM_POLYGON,
69 _3DPRIM_LINELIST_ADJ,
70 _3DPRIM_LINESTRIP_ADJ,
71 _3DPRIM_TRILIST_ADJ,
72 _3DPRIM_TRISTRIP_ADJ,
73 };
74
75
76 static const GLenum reduced_prim[GL_POLYGON+1] = {
77 GL_POINTS,
78 GL_LINES,
79 GL_LINES,
80 GL_LINES,
81 GL_TRIANGLES,
82 GL_TRIANGLES,
83 GL_TRIANGLES,
84 GL_TRIANGLES,
85 GL_TRIANGLES,
86 GL_TRIANGLES
87 };
88
89
90 /* When the primitive changes, set a state bit and re-validate. Not
91 * the nicest and would rather deal with this by having all the
92 * programs be immune to the active primitive (ie. cope with all
93 * possibilities). That may not be realistic however.
94 */
95 static void brw_set_prim(struct brw_context *brw,
96 const struct _mesa_prim *prim)
97 {
98 struct gl_context *ctx = &brw->ctx;
99 uint32_t hw_prim = prim_to_hw_prim[prim->mode];
100
101 DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode));
102
103 /* Slight optimization to avoid the GS program when not needed:
104 */
105 if (prim->mode == GL_QUAD_STRIP &&
106 ctx->Light.ShadeModel != GL_FLAT &&
107 ctx->Polygon.FrontMode == GL_FILL &&
108 ctx->Polygon.BackMode == GL_FILL)
109 hw_prim = _3DPRIM_TRISTRIP;
110
111 if (prim->mode == GL_QUADS && prim->count == 4 &&
112 ctx->Light.ShadeModel != GL_FLAT &&
113 ctx->Polygon.FrontMode == GL_FILL &&
114 ctx->Polygon.BackMode == GL_FILL) {
115 hw_prim = _3DPRIM_TRIFAN;
116 }
117
118 if (hw_prim != brw->primitive) {
119 brw->primitive = hw_prim;
120 brw->state.dirty.brw |= BRW_NEW_PRIMITIVE;
121
122 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
123 brw->reduced_primitive = reduced_prim[prim->mode];
124 brw->state.dirty.brw |= BRW_NEW_REDUCED_PRIMITIVE;
125 }
126 }
127 }
128
129 static void gen6_set_prim(struct brw_context *brw,
130 const struct _mesa_prim *prim)
131 {
132 uint32_t hw_prim;
133
134 DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode));
135
136 hw_prim = prim_to_hw_prim[prim->mode];
137
138 if (hw_prim != brw->primitive) {
139 brw->primitive = hw_prim;
140 brw->state.dirty.brw |= BRW_NEW_PRIMITIVE;
141 }
142 }
143
144
145 /**
146 * The hardware is capable of removing dangling vertices on its own; however,
147 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
148 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
149 * This function manually trims dangling vertices from a draw call involving
150 * quads so that those dangling vertices won't get drawn when we convert to
151 * trifans/tristrips.
152 */
153 static GLuint trim(GLenum prim, GLuint length)
154 {
155 if (prim == GL_QUAD_STRIP)
156 return length > 3 ? (length - length % 2) : 0;
157 else if (prim == GL_QUADS)
158 return length - length % 4;
159 else
160 return length;
161 }
162
163
164 static void brw_emit_prim(struct brw_context *brw,
165 const struct _mesa_prim *prim,
166 uint32_t hw_prim)
167 {
168 int verts_per_instance;
169 int vertex_access_type;
170 int start_vertex_location;
171 int base_vertex_location;
172 int indirect_flag;
173
174 DBG("PRIM: %s %d %d\n", _mesa_lookup_enum_by_nr(prim->mode),
175 prim->start, prim->count);
176
177 start_vertex_location = prim->start;
178 base_vertex_location = prim->basevertex;
179 if (prim->indexed) {
180 vertex_access_type = brw->gen >= 7 ?
181 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
182 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
183 start_vertex_location += brw->ib.start_vertex_offset;
184 base_vertex_location += brw->vb.start_vertex_bias;
185 } else {
186 vertex_access_type = brw->gen >= 7 ?
187 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
188 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
189 start_vertex_location += brw->vb.start_vertex_bias;
190 }
191
192 /* We only need to trim the primitive count on pre-Gen6. */
193 if (brw->gen < 6)
194 verts_per_instance = trim(prim->mode, prim->count);
195 else
196 verts_per_instance = prim->count;
197
198 /* If nothing to emit, just return. */
199 if (verts_per_instance == 0 && !prim->is_indirect)
200 return;
201
202 /* If we're set to always flush, do it before and after the primitive emit.
203 * We want to catch both missed flushes that hurt instruction/state cache
204 * and missed flushes of the render cache as it heads to other parts of
205 * the besides the draw code.
206 */
207 if (brw->always_flush_cache) {
208 intel_batchbuffer_emit_mi_flush(brw);
209 }
210
211 /* If indirect, emit a bunch of loads from the indirect BO. */
212 if (prim->is_indirect) {
213 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
214 drm_intel_bo *bo = intel_bufferobj_buffer(brw,
215 intel_buffer_object(indirect_buffer),
216 prim->indirect_offset, 5 * sizeof(GLuint));
217
218 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
219
220 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
221 I915_GEM_DOMAIN_VERTEX, 0,
222 prim->indirect_offset + 0);
223 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
224 I915_GEM_DOMAIN_VERTEX, 0,
225 prim->indirect_offset + 4);
226
227 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
228 I915_GEM_DOMAIN_VERTEX, 0,
229 prim->indirect_offset + 8);
230 if (prim->indexed) {
231 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
232 I915_GEM_DOMAIN_VERTEX, 0,
233 prim->indirect_offset + 12);
234 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
235 I915_GEM_DOMAIN_VERTEX, 0,
236 prim->indirect_offset + 16);
237 } else {
238 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
239 I915_GEM_DOMAIN_VERTEX, 0,
240 prim->indirect_offset + 12);
241 BEGIN_BATCH(3);
242 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
243 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
244 OUT_BATCH(0);
245 ADVANCE_BATCH();
246 }
247 }
248 else {
249 indirect_flag = 0;
250 }
251
252
253 if (brw->gen >= 7) {
254 BEGIN_BATCH(7);
255 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag);
256 OUT_BATCH(hw_prim | vertex_access_type);
257 } else {
258 BEGIN_BATCH(6);
259 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
260 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
261 vertex_access_type);
262 }
263 OUT_BATCH(verts_per_instance);
264 OUT_BATCH(start_vertex_location);
265 OUT_BATCH(prim->num_instances);
266 OUT_BATCH(prim->base_instance);
267 OUT_BATCH(base_vertex_location);
268 ADVANCE_BATCH();
269
270 /* Only used on Sandybridge; harmless to set elsewhere. */
271 brw->batch.need_workaround_flush = true;
272
273 if (brw->always_flush_cache) {
274 intel_batchbuffer_emit_mi_flush(brw);
275 }
276 }
277
278
279 static void brw_merge_inputs( struct brw_context *brw,
280 const struct gl_client_array *arrays[])
281 {
282 GLuint i;
283
284 for (i = 0; i < brw->vb.nr_buffers; i++) {
285 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
286 brw->vb.buffers[i].bo = NULL;
287 }
288 brw->vb.nr_buffers = 0;
289
290 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
291 brw->vb.inputs[i].buffer = -1;
292 brw->vb.inputs[i].glarray = arrays[i];
293 }
294 }
295
296 /*
297 * \brief Resolve buffers before drawing.
298 *
299 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
300 * enabled depth texture, and flush the render cache for any dirty textures.
301 *
302 * (In the future, this will also perform MSAA resolves).
303 */
304 static void
305 brw_predraw_resolve_buffers(struct brw_context *brw)
306 {
307 struct gl_context *ctx = &brw->ctx;
308 struct intel_renderbuffer *depth_irb;
309 struct intel_texture_object *tex_obj;
310
311 /* Resolve the depth buffer's HiZ buffer. */
312 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
313 if (depth_irb)
314 intel_renderbuffer_resolve_hiz(brw, depth_irb);
315
316 /* Resolve depth buffer and render cache of each enabled texture. */
317 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
318 for (int i = 0; i <= maxEnabledUnit; i++) {
319 if (!ctx->Texture.Unit[i]._Current)
320 continue;
321 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
322 if (!tex_obj || !tex_obj->mt)
323 continue;
324 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
325 intel_miptree_resolve_color(brw, tex_obj->mt);
326 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
327 }
328 }
329
330 /**
331 * \brief Call this after drawing to mark which buffers need resolving
332 *
333 * If the depth buffer was written to and if it has an accompanying HiZ
334 * buffer, then mark that it needs a depth resolve.
335 *
336 * If the color buffer is a multisample window system buffer, then
337 * mark that it needs a downsample.
338 *
339 * Also mark any render targets which will be textured as needing a render
340 * cache flush.
341 */
342 static void brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
343 {
344 struct gl_context *ctx = &brw->ctx;
345 struct gl_framebuffer *fb = ctx->DrawBuffer;
346
347 struct intel_renderbuffer *front_irb = NULL;
348 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
349 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
350 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
351 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
352
353 if (brw_is_front_buffer_drawing(fb))
354 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
355
356 if (front_irb)
357 front_irb->need_downsample = true;
358 if (back_irb)
359 back_irb->need_downsample = true;
360 if (depth_irb && ctx->Depth.Mask) {
361 intel_renderbuffer_att_set_needs_depth_resolve(depth_att);
362 brw_render_cache_set_add_bo(brw, depth_irb->mt->bo);
363 }
364
365 if (ctx->Extensions.ARB_stencil_texturing &&
366 stencil_irb && ctx->Stencil._WriteEnabled) {
367 brw_render_cache_set_add_bo(brw, stencil_irb->mt->bo);
368 }
369
370 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
371 struct intel_renderbuffer *irb =
372 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
373
374 if (irb)
375 brw_render_cache_set_add_bo(brw, irb->mt->bo);
376 }
377 }
378
379 /* May fail if out of video memory for texture or vbo upload, or on
380 * fallback conditions.
381 */
382 static bool brw_try_draw_prims( struct gl_context *ctx,
383 const struct gl_client_array *arrays[],
384 const struct _mesa_prim *prims,
385 GLuint nr_prims,
386 const struct _mesa_index_buffer *ib,
387 GLuint min_index,
388 GLuint max_index,
389 struct gl_buffer_object *indirect)
390 {
391 struct brw_context *brw = brw_context(ctx);
392 bool retval = true;
393 GLuint i;
394 bool fail_next = false;
395
396 if (ctx->NewState)
397 _mesa_update_state( ctx );
398
399 /* Find the highest sampler unit used by each shader program. A bit-count
400 * won't work since ARB programs use the texture unit number as the sampler
401 * index.
402 */
403 brw->wm.base.sampler_count =
404 _mesa_fls(ctx->FragmentProgram._Current->Base.SamplersUsed);
405 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
406 _mesa_fls(ctx->GeometryProgram._Current->Base.SamplersUsed) : 0;
407 brw->vs.base.sampler_count =
408 _mesa_fls(ctx->VertexProgram._Current->Base.SamplersUsed);
409
410 /* We have to validate the textures *before* checking for fallbacks;
411 * otherwise, the software fallback won't be able to rely on the
412 * texture state, the firstLevel and lastLevel fields won't be
413 * set in the intel texture object (they'll both be 0), and the
414 * software fallback will segfault if it attempts to access any
415 * texture level other than level 0.
416 */
417 brw_validate_textures( brw );
418
419 intel_prepare_render(brw);
420
421 /* This workaround has to happen outside of brw_upload_state() because it
422 * may flush the batchbuffer for a blit, affecting the state flags.
423 */
424 brw_workaround_depthstencil_alignment(brw, 0);
425
426 /* Resolves must occur after updating renderbuffers, updating context state,
427 * and finalizing textures but before setting up any hardware state for
428 * this draw call.
429 */
430 brw_predraw_resolve_buffers(brw);
431
432 /* Bind all inputs, derive varying and size information:
433 */
434 brw_merge_inputs( brw, arrays );
435
436 brw->ib.ib = ib;
437 brw->state.dirty.brw |= BRW_NEW_INDICES;
438
439 brw->vb.min_index = min_index;
440 brw->vb.max_index = max_index;
441 brw->state.dirty.brw |= BRW_NEW_VERTICES;
442
443 for (i = 0; i < nr_prims; i++) {
444 int estimated_max_prim_size;
445 const int sampler_state_size = 16;
446
447 estimated_max_prim_size = 512; /* batchbuffer commands */
448 estimated_max_prim_size += BRW_MAX_TEX_UNIT *
449 (sampler_state_size + sizeof(struct gen5_sampler_default_color));
450 estimated_max_prim_size += 1024; /* gen6 VS push constants */
451 estimated_max_prim_size += 1024; /* gen6 WM push constants */
452 estimated_max_prim_size += 512; /* misc. pad */
453
454 /* Flush the batch if it's approaching full, so that we don't wrap while
455 * we've got validated state that needs to be in the same batch as the
456 * primitives.
457 */
458 intel_batchbuffer_require_space(brw, estimated_max_prim_size, RENDER_RING);
459 intel_batchbuffer_save_state(brw);
460
461 if (brw->num_instances != prims[i].num_instances ||
462 brw->basevertex != prims[i].basevertex) {
463 brw->num_instances = prims[i].num_instances;
464 brw->basevertex = prims[i].basevertex;
465 if (i > 0) { /* For i == 0 we just did this before the loop */
466 brw->state.dirty.brw |= BRW_NEW_VERTICES;
467 brw_merge_inputs(brw, arrays);
468 }
469 }
470 if (brw->gen < 6)
471 brw_set_prim(brw, &prims[i]);
472 else
473 gen6_set_prim(brw, &prims[i]);
474
475 retry:
476 /* Note that before the loop, brw->state.dirty.brw was set to != 0, and
477 * that the state updated in the loop outside of this block is that in
478 * *_set_prim or intel_batchbuffer_flush(), which only impacts
479 * brw->state.dirty.brw.
480 */
481 if (brw->state.dirty.brw) {
482 brw->no_batch_wrap = true;
483 brw_upload_state(brw);
484 }
485
486 brw_emit_prim(brw, &prims[i], brw->primitive);
487
488 brw->no_batch_wrap = false;
489
490 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
491 if (!fail_next) {
492 intel_batchbuffer_reset_to_saved(brw);
493 intel_batchbuffer_flush(brw);
494 fail_next = true;
495 goto retry;
496 } else {
497 if (intel_batchbuffer_flush(brw) == -ENOSPC) {
498 static bool warned = false;
499
500 if (!warned) {
501 fprintf(stderr, "i965: Single primitive emit exceeded"
502 "available aperture space\n");
503 warned = true;
504 }
505
506 retval = false;
507 }
508 }
509 }
510
511 /* Now that we know we haven't run out of aperture space, we can safely
512 * reset the dirty bits.
513 */
514 if (brw->state.dirty.brw)
515 brw_clear_dirty_bits(brw);
516 }
517
518 if (brw->always_flush_batch)
519 intel_batchbuffer_flush(brw);
520
521 brw_state_cache_check_size(brw);
522 brw_postdraw_set_buffers_need_resolve(brw);
523
524 return retval;
525 }
526
527 void brw_draw_prims( struct gl_context *ctx,
528 const struct _mesa_prim *prims,
529 GLuint nr_prims,
530 const struct _mesa_index_buffer *ib,
531 GLboolean index_bounds_valid,
532 GLuint min_index,
533 GLuint max_index,
534 struct gl_transform_feedback_object *unused_tfb_object,
535 struct gl_buffer_object *indirect )
536 {
537 struct brw_context *brw = brw_context(ctx);
538 const struct gl_client_array **arrays = ctx->Array._DrawArrays;
539
540 assert(unused_tfb_object == NULL);
541
542 if (ctx->Query.CondRenderQuery) {
543 perf_debug("Conditional rendering is implemented in software and may "
544 "stall. This should be fixed in the driver.\n");
545 }
546
547 if (!_mesa_check_conditional_render(ctx))
548 return;
549
550 /* Handle primitive restart if needed */
551 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
552 /* The draw was handled, so we can exit now */
553 return;
554 }
555
556 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
557 * won't support all the extensions we support.
558 */
559 if (ctx->RenderMode != GL_RENDER) {
560 perf_debug("%s render mode not supported in hardware\n",
561 _mesa_lookup_enum_by_nr(ctx->RenderMode));
562 _swsetup_Wakeup(ctx);
563 _tnl_wakeup(ctx);
564 _tnl_draw_prims(ctx, prims, nr_prims, ib,
565 index_bounds_valid, min_index, max_index, NULL, NULL);
566 return;
567 }
568
569 /* If we're going to have to upload any of the user's vertex arrays, then
570 * get the minimum and maximum of their index buffer so we know what range
571 * to upload.
572 */
573 if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
574 perf_debug("Scanning index buffer to compute index buffer bounds. "
575 "Use glDrawRangeElements() to avoid this.\n");
576 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
577 }
578
579 /* Try drawing with the hardware, but don't do anything else if we can't
580 * manage it. swrast doesn't support our featureset, so we can't fall back
581 * to it.
582 */
583 brw_try_draw_prims(ctx, arrays, prims, nr_prims, ib, min_index, max_index, indirect);
584 }
585
586 void brw_draw_init( struct brw_context *brw )
587 {
588 struct gl_context *ctx = &brw->ctx;
589 struct vbo_context *vbo = vbo_context(ctx);
590 int i;
591
592 /* Register our drawing function:
593 */
594 vbo->draw_prims = brw_draw_prims;
595
596 for (i = 0; i < VERT_ATTRIB_MAX; i++)
597 brw->vb.inputs[i].buffer = -1;
598 brw->vb.nr_buffers = 0;
599 brw->vb.nr_enabled = 0;
600 }
601
602 void brw_draw_destroy( struct brw_context *brw )
603 {
604 int i;
605
606 for (i = 0; i < brw->vb.nr_buffers; i++) {
607 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
608 brw->vb.buffers[i].bo = NULL;
609 }
610 brw->vb.nr_buffers = 0;
611
612 for (i = 0; i < brw->vb.nr_enabled; i++) {
613 brw->vb.enabled[i]->buffer = -1;
614 }
615 brw->vb.nr_enabled = 0;
616
617 drm_intel_bo_unreference(brw->ib.bo);
618 brw->ib.bo = NULL;
619 }