5f52404bd6e0f2b17ada2ccdee71ea34fe7f859e
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/blend.h"
29 #include "main/context.h"
30 #include "main/condrender.h"
31 #include "main/samplerobj.h"
32 #include "main/state.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35 #include "main/transformfeedback.h"
36 #include "main/framebuffer.h"
37 #include "main/varray.h"
38 #include "tnl/tnl.h"
39 #include "vbo/vbo.h"
40 #include "swrast/swrast.h"
41 #include "swrast_setup/swrast_setup.h"
42 #include "drivers/common/meta.h"
43 #include "util/bitscan.h"
44 #include "util/bitset.h"
45
46 #include "brw_blorp.h"
47 #include "brw_draw.h"
48 #include "brw_defines.h"
49 #include "compiler/brw_eu_defines.h"
50 #include "brw_context.h"
51 #include "brw_state.h"
52
53 #include "intel_batchbuffer.h"
54 #include "intel_buffers.h"
55 #include "intel_fbo.h"
56 #include "intel_mipmap_tree.h"
57 #include "intel_buffer_objects.h"
58
59 #define FILE_DEBUG_FLAG DEBUG_PRIMS
60
61
62 static const GLenum reduced_prim[GL_POLYGON+1] = {
63 [GL_POINTS] = GL_POINTS,
64 [GL_LINES] = GL_LINES,
65 [GL_LINE_LOOP] = GL_LINES,
66 [GL_LINE_STRIP] = GL_LINES,
67 [GL_TRIANGLES] = GL_TRIANGLES,
68 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
69 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
70 [GL_QUADS] = GL_TRIANGLES,
71 [GL_QUAD_STRIP] = GL_TRIANGLES,
72 [GL_POLYGON] = GL_TRIANGLES
73 };
74
75 /* When the primitive changes, set a state bit and re-validate. Not
76 * the nicest and would rather deal with this by having all the
77 * programs be immune to the active primitive (ie. cope with all
78 * possibilities). That may not be realistic however.
79 */
80 static void
81 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
82 {
83 struct gl_context *ctx = &brw->ctx;
84 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
85
86 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
87
88 /* Slight optimization to avoid the GS program when not needed:
89 */
90 if (prim->mode == GL_QUAD_STRIP &&
91 ctx->Light.ShadeModel != GL_FLAT &&
92 ctx->Polygon.FrontMode == GL_FILL &&
93 ctx->Polygon.BackMode == GL_FILL)
94 hw_prim = _3DPRIM_TRISTRIP;
95
96 if (prim->mode == GL_QUADS && prim->count == 4 &&
97 ctx->Light.ShadeModel != GL_FLAT &&
98 ctx->Polygon.FrontMode == GL_FILL &&
99 ctx->Polygon.BackMode == GL_FILL) {
100 hw_prim = _3DPRIM_TRIFAN;
101 }
102
103 if (hw_prim != brw->primitive) {
104 brw->primitive = hw_prim;
105 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
106
107 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
108 brw->reduced_primitive = reduced_prim[prim->mode];
109 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
110 }
111 }
112 }
113
114 static void
115 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
116 {
117 const struct gl_context *ctx = &brw->ctx;
118 uint32_t hw_prim;
119
120 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
121
122 if (prim->mode == GL_PATCHES) {
123 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
124 } else {
125 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
126 }
127
128 if (hw_prim != brw->primitive) {
129 brw->primitive = hw_prim;
130 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
131 if (prim->mode == GL_PATCHES)
132 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
133 }
134 }
135
136
137 /**
138 * The hardware is capable of removing dangling vertices on its own; however,
139 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
140 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
141 * This function manually trims dangling vertices from a draw call involving
142 * quads so that those dangling vertices won't get drawn when we convert to
143 * trifans/tristrips.
144 */
145 static GLuint
146 trim(GLenum prim, GLuint length)
147 {
148 if (prim == GL_QUAD_STRIP)
149 return length > 3 ? (length - length % 2) : 0;
150 else if (prim == GL_QUADS)
151 return length - length % 4;
152 else
153 return length;
154 }
155
156
157 static void
158 brw_emit_prim(struct brw_context *brw,
159 const struct _mesa_prim *prim,
160 uint32_t hw_prim,
161 struct brw_transform_feedback_object *xfb_obj,
162 unsigned stream)
163 {
164 const struct gen_device_info *devinfo = &brw->screen->devinfo;
165 int verts_per_instance;
166 int vertex_access_type;
167 int indirect_flag;
168
169 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
170 prim->start, prim->count);
171
172 int start_vertex_location = prim->start;
173 int base_vertex_location = prim->basevertex;
174
175 if (prim->indexed) {
176 vertex_access_type = devinfo->gen >= 7 ?
177 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
178 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
179 start_vertex_location += brw->ib.start_vertex_offset;
180 base_vertex_location += brw->vb.start_vertex_bias;
181 } else {
182 vertex_access_type = devinfo->gen >= 7 ?
183 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
184 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
185 start_vertex_location += brw->vb.start_vertex_bias;
186 }
187
188 /* We only need to trim the primitive count on pre-Gen6. */
189 if (devinfo->gen < 6)
190 verts_per_instance = trim(prim->mode, prim->count);
191 else
192 verts_per_instance = prim->count;
193
194 /* If nothing to emit, just return. */
195 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
196 return;
197
198 /* If we're set to always flush, do it before and after the primitive emit.
199 * We want to catch both missed flushes that hurt instruction/state cache
200 * and missed flushes of the render cache as it heads to other parts of
201 * the besides the draw code.
202 */
203 if (brw->always_flush_cache)
204 brw_emit_mi_flush(brw);
205
206 /* If indirect, emit a bunch of loads from the indirect BO. */
207 if (xfb_obj) {
208 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
209
210 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
211 xfb_obj->prim_count_bo,
212 stream * sizeof(uint32_t));
213 BEGIN_BATCH(9);
214 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
215 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
216 OUT_BATCH(prim->num_instances);
217 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
218 OUT_BATCH(0);
219 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
220 OUT_BATCH(0);
221 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
222 OUT_BATCH(0);
223 ADVANCE_BATCH();
224 } else if (prim->is_indirect) {
225 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
226 struct brw_bo *bo = intel_bufferobj_buffer(brw,
227 intel_buffer_object(indirect_buffer),
228 prim->indirect_offset, 5 * sizeof(GLuint), false);
229
230 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
231
232 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
233 prim->indirect_offset + 0);
234 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
235 prim->indirect_offset + 4);
236
237 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
238 prim->indirect_offset + 8);
239 if (prim->indexed) {
240 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
241 prim->indirect_offset + 12);
242 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
243 prim->indirect_offset + 16);
244 } else {
245 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
246 prim->indirect_offset + 12);
247 brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
248 }
249 } else {
250 indirect_flag = 0;
251 }
252
253 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
254
255 if (devinfo->gen >= 7) {
256 const int predicate_enable =
257 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
258 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
259
260 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
261 OUT_BATCH(hw_prim | vertex_access_type);
262 } else {
263 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
264 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
265 vertex_access_type);
266 }
267 OUT_BATCH(verts_per_instance);
268 OUT_BATCH(start_vertex_location);
269 OUT_BATCH(prim->num_instances);
270 OUT_BATCH(prim->base_instance);
271 OUT_BATCH(base_vertex_location);
272 ADVANCE_BATCH();
273
274 if (brw->always_flush_cache)
275 brw_emit_mi_flush(brw);
276 }
277
278
279 static void
280 brw_merge_inputs(struct brw_context *brw,
281 const struct gl_vertex_array *arrays)
282 {
283 const struct gen_device_info *devinfo = &brw->screen->devinfo;
284 const struct gl_context *ctx = &brw->ctx;
285 GLuint i;
286
287 for (i = 0; i < brw->vb.nr_buffers; i++) {
288 brw_bo_unreference(brw->vb.buffers[i].bo);
289 brw->vb.buffers[i].bo = NULL;
290 }
291 brw->vb.nr_buffers = 0;
292
293 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
294 brw->vb.inputs[i].buffer = -1;
295 brw->vb.inputs[i].glarray = &arrays[i];
296 }
297
298 if (devinfo->gen < 8 && !devinfo->is_haswell) {
299 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
300 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
301 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
302 */
303 while (mask) {
304 const struct gl_array_attributes *glattrib;
305 uint8_t wa_flags = 0;
306
307 i = u_bit_scan64(&mask);
308 glattrib = brw->vb.inputs[i].glarray->VertexAttrib;
309
310 switch (glattrib->Type) {
311
312 case GL_FIXED:
313 wa_flags = glattrib->Size;
314 break;
315
316 case GL_INT_2_10_10_10_REV:
317 wa_flags |= BRW_ATTRIB_WA_SIGN;
318 /* fallthough */
319
320 case GL_UNSIGNED_INT_2_10_10_10_REV:
321 if (glattrib->Format == GL_BGRA)
322 wa_flags |= BRW_ATTRIB_WA_BGRA;
323
324 if (glattrib->Normalized)
325 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
326 else if (!glattrib->Integer)
327 wa_flags |= BRW_ATTRIB_WA_SCALE;
328
329 break;
330 }
331
332 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
333 brw->vb.attrib_wa_flags[i] = wa_flags;
334 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
335 }
336 }
337 }
338 }
339
340 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
341 * or shader image. This causes a self-dependency, where both rendering
342 * and sampling may concurrently read or write the CCS buffer, causing
343 * incorrect pixels.
344 */
345 static bool
346 intel_disable_rb_aux_buffer(struct brw_context *brw,
347 bool *draw_aux_buffer_disabled,
348 struct intel_mipmap_tree *tex_mt,
349 unsigned min_level, unsigned num_levels,
350 const char *usage)
351 {
352 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
353 bool found = false;
354
355 /* We only need to worry about color compression and fast clears. */
356 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
357 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
358 return false;
359
360 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
361 const struct intel_renderbuffer *irb =
362 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
363
364 if (irb && irb->mt->bo == tex_mt->bo &&
365 irb->mt_level >= min_level &&
366 irb->mt_level < min_level + num_levels) {
367 found = draw_aux_buffer_disabled[i] = true;
368 }
369 }
370
371 if (found) {
372 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
373 usage);
374 }
375
376 return found;
377 }
378
379 static void
380 mark_textures_used_for_txf(BITSET_WORD *used_for_txf,
381 const struct gl_program *prog)
382 {
383 if (!prog)
384 return;
385
386 unsigned mask = prog->SamplersUsed & prog->info.textures_used_by_txf;
387 while (mask) {
388 int s = u_bit_scan(&mask);
389 BITSET_SET(used_for_txf, prog->SamplerUnits[s]);
390 }
391 }
392
393 /**
394 * \brief Resolve buffers before drawing.
395 *
396 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
397 * enabled depth texture, and flush the render cache for any dirty textures.
398 */
399 void
400 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering,
401 bool *draw_aux_buffer_disabled)
402 {
403 struct gl_context *ctx = &brw->ctx;
404 struct intel_texture_object *tex_obj;
405
406 BITSET_DECLARE(used_for_txf, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
407 memset(used_for_txf, 0, sizeof(used_for_txf));
408 if (rendering) {
409 mark_textures_used_for_txf(used_for_txf, ctx->VertexProgram._Current);
410 mark_textures_used_for_txf(used_for_txf, ctx->TessCtrlProgram._Current);
411 mark_textures_used_for_txf(used_for_txf, ctx->TessEvalProgram._Current);
412 mark_textures_used_for_txf(used_for_txf, ctx->GeometryProgram._Current);
413 mark_textures_used_for_txf(used_for_txf, ctx->FragmentProgram._Current);
414 } else {
415 mark_textures_used_for_txf(used_for_txf, ctx->ComputeProgram._Current);
416 }
417
418 /* Resolve depth buffer and render cache of each enabled texture. */
419 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
420 for (int i = 0; i <= maxEnabledUnit; i++) {
421 if (!ctx->Texture.Unit[i]._Current)
422 continue;
423 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
424 if (!tex_obj || !tex_obj->mt)
425 continue;
426
427 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
428 enum isl_format view_format =
429 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
430
431 unsigned min_level, min_layer, num_levels, num_layers;
432 if (tex_obj->base.Immutable) {
433 min_level = tex_obj->base.MinLevel;
434 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
435 min_layer = tex_obj->base.MinLayer;
436 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
437 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
438 } else {
439 min_level = tex_obj->base.BaseLevel;
440 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
441 min_layer = 0;
442 num_layers = INTEL_REMAINING_LAYERS;
443 }
444
445 if (rendering) {
446 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
447 tex_obj->mt, min_level, num_levels,
448 "for sampling");
449 }
450
451 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
452 min_level, num_levels,
453 min_layer, num_layers);
454
455 /* If any programs are using it with texelFetch, we may need to also do
456 * a prepare with an sRGB format to ensure texelFetch works "properly".
457 */
458 if (BITSET_TEST(used_for_txf, i)) {
459 enum isl_format txf_format =
460 translate_tex_format(brw, tex_obj->_Format, GL_DECODE_EXT);
461 if (txf_format != view_format) {
462 intel_miptree_prepare_texture(brw, tex_obj->mt, txf_format,
463 min_level, num_levels,
464 min_layer, num_layers);
465 }
466 }
467
468 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
469
470 if (tex_obj->base.StencilSampling ||
471 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
472 intel_update_r8stencil(brw, tex_obj->mt);
473 }
474 }
475
476 /* Resolve color for each active shader image. */
477 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
478 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
479
480 if (unlikely(prog && prog->info.num_images)) {
481 for (unsigned j = 0; j < prog->info.num_images; j++) {
482 struct gl_image_unit *u =
483 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
484 tex_obj = intel_texture_object(u->TexObj);
485
486 if (tex_obj && tex_obj->mt) {
487 if (rendering) {
488 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
489 tex_obj->mt, 0, ~0,
490 "as a shader image");
491 }
492
493 intel_miptree_prepare_image(brw, tex_obj->mt);
494
495 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
496 }
497 }
498 }
499 }
500 }
501
502 static void
503 brw_predraw_resolve_framebuffer(struct brw_context *brw,
504 bool *draw_aux_buffer_disabled)
505 {
506 struct gl_context *ctx = &brw->ctx;
507 struct intel_renderbuffer *depth_irb;
508
509 /* Resolve the depth buffer's HiZ buffer. */
510 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
511 if (depth_irb && depth_irb->mt) {
512 intel_miptree_prepare_depth(brw, depth_irb->mt,
513 depth_irb->mt_level,
514 depth_irb->mt_layer,
515 depth_irb->layer_count);
516 }
517
518 /* Resolve color buffers for non-coherent framebuffer fetch. */
519 if (!ctx->Extensions.EXT_shader_framebuffer_fetch &&
520 ctx->FragmentProgram._Current &&
521 ctx->FragmentProgram._Current->info.outputs_read) {
522 const struct gl_framebuffer *fb = ctx->DrawBuffer;
523
524 /* This is only used for non-coherent framebuffer fetch, so we don't
525 * need to worry about CCS_E and can simply pass 'false' below.
526 */
527 assert(brw->screen->devinfo.gen < 9);
528
529 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
530 const struct intel_renderbuffer *irb =
531 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
532
533 if (irb) {
534 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
535 irb->mt_level, 1,
536 irb->mt_layer, irb->layer_count);
537 }
538 }
539 }
540
541 struct gl_framebuffer *fb = ctx->DrawBuffer;
542 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
543 struct intel_renderbuffer *irb =
544 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
545
546 if (irb == NULL || irb->mt == NULL)
547 continue;
548
549 mesa_format mesa_format =
550 _mesa_get_render_format(ctx, intel_rb_format(irb));
551 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
552 bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
553 enum isl_aux_usage aux_usage =
554 intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
555 blend_enabled,
556 draw_aux_buffer_disabled[i]);
557 if (brw->draw_aux_usage[i] != aux_usage) {
558 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
559 brw->draw_aux_usage[i] = aux_usage;
560 }
561
562 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
563 irb->mt_layer, irb->layer_count,
564 aux_usage);
565
566 brw_cache_flush_for_render(brw, irb->mt->bo,
567 isl_format, aux_usage);
568 }
569 }
570
571 /**
572 * \brief Call this after drawing to mark which buffers need resolving
573 *
574 * If the depth buffer was written to and if it has an accompanying HiZ
575 * buffer, then mark that it needs a depth resolve.
576 *
577 * If the color buffer is a multisample window system buffer, then
578 * mark that it needs a downsample.
579 *
580 * Also mark any render targets which will be textured as needing a render
581 * cache flush.
582 */
583 static void
584 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
585 {
586 struct gl_context *ctx = &brw->ctx;
587 struct gl_framebuffer *fb = ctx->DrawBuffer;
588
589 struct intel_renderbuffer *front_irb = NULL;
590 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
591 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
592 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
593 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
594
595 if (_mesa_is_front_buffer_drawing(fb))
596 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
597
598 if (front_irb)
599 front_irb->need_downsample = true;
600 if (back_irb)
601 back_irb->need_downsample = true;
602 if (depth_irb) {
603 bool depth_written = brw_depth_writes_enabled(brw);
604 if (depth_att->Layered) {
605 intel_miptree_finish_depth(brw, depth_irb->mt,
606 depth_irb->mt_level,
607 depth_irb->mt_layer,
608 depth_irb->layer_count,
609 depth_written);
610 } else {
611 intel_miptree_finish_depth(brw, depth_irb->mt,
612 depth_irb->mt_level,
613 depth_irb->mt_layer, 1,
614 depth_written);
615 }
616 if (depth_written)
617 brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
618 }
619
620 if (stencil_irb && brw->stencil_write_enabled)
621 brw_depth_cache_add_bo(brw, stencil_irb->mt->bo);
622
623 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
624 struct intel_renderbuffer *irb =
625 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
626
627 if (!irb)
628 continue;
629
630 mesa_format mesa_format =
631 _mesa_get_render_format(ctx, intel_rb_format(irb));
632 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
633 enum isl_aux_usage aux_usage = brw->draw_aux_usage[i];
634
635 brw_render_cache_add_bo(brw, irb->mt->bo, isl_format, aux_usage);
636
637 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
638 irb->mt_layer, irb->layer_count,
639 aux_usage);
640 }
641 }
642
643 static void
644 intel_renderbuffer_move_temp_back(struct brw_context *brw,
645 struct intel_renderbuffer *irb)
646 {
647 if (irb->align_wa_mt == NULL)
648 return;
649
650 brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
651
652 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
653 irb->mt,
654 irb->Base.Base.TexImage->Level, irb->mt_layer);
655
656 intel_miptree_reference(&irb->align_wa_mt, NULL);
657
658 /* Finally restore the x,y to correspond to full miptree. */
659 intel_renderbuffer_set_draw_offset(irb);
660
661 /* Make sure render surface state gets re-emitted with updated miptree. */
662 brw->NewGLState |= _NEW_BUFFERS;
663 }
664
665 static void
666 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
667 {
668 struct gl_context *ctx = &brw->ctx;
669 struct gl_framebuffer *fb = ctx->DrawBuffer;
670
671 struct intel_renderbuffer *depth_irb =
672 intel_get_renderbuffer(fb, BUFFER_DEPTH);
673 struct intel_renderbuffer *stencil_irb =
674 intel_get_renderbuffer(fb, BUFFER_STENCIL);
675
676 if (depth_irb && depth_irb->align_wa_mt)
677 intel_renderbuffer_move_temp_back(brw, depth_irb);
678
679 if (stencil_irb && stencil_irb->align_wa_mt)
680 intel_renderbuffer_move_temp_back(brw, stencil_irb);
681
682 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
683 struct intel_renderbuffer *irb =
684 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
685
686 if (!irb || irb->align_wa_mt == NULL)
687 continue;
688
689 intel_renderbuffer_move_temp_back(brw, irb);
690 }
691 }
692
693 static void
694 brw_prepare_drawing(struct gl_context *ctx,
695 const struct gl_vertex_array *arrays,
696 const struct _mesa_index_buffer *ib,
697 bool index_bounds_valid,
698 GLuint min_index,
699 GLuint max_index)
700 {
701 struct brw_context *brw = brw_context(ctx);
702
703 if (ctx->NewState)
704 _mesa_update_state(ctx);
705
706 /* We have to validate the textures *before* checking for fallbacks;
707 * otherwise, the software fallback won't be able to rely on the
708 * texture state, the firstLevel and lastLevel fields won't be
709 * set in the intel texture object (they'll both be 0), and the
710 * software fallback will segfault if it attempts to access any
711 * texture level other than level 0.
712 */
713 brw_validate_textures(brw);
714
715 /* Find the highest sampler unit used by each shader program. A bit-count
716 * won't work since ARB programs use the texture unit number as the sampler
717 * index.
718 */
719 brw->wm.base.sampler_count =
720 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
721 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
722 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
723 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
724 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
725 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
726 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
727 brw->vs.base.sampler_count =
728 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
729
730 intel_prepare_render(brw);
731
732 /* This workaround has to happen outside of brw_upload_render_state()
733 * because it may flush the batchbuffer for a blit, affecting the state
734 * flags.
735 */
736 brw_workaround_depthstencil_alignment(brw, 0);
737
738 /* Resolves must occur after updating renderbuffers, updating context state,
739 * and finalizing textures but before setting up any hardware state for
740 * this draw call.
741 */
742 bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS] = { };
743 brw_predraw_resolve_inputs(brw, true, draw_aux_buffer_disabled);
744 brw_predraw_resolve_framebuffer(brw, draw_aux_buffer_disabled);
745
746 /* Bind all inputs, derive varying and size information:
747 */
748 brw_merge_inputs(brw, arrays);
749
750 brw->ib.ib = ib;
751 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
752
753 brw->vb.index_bounds_valid = index_bounds_valid;
754 brw->vb.min_index = min_index;
755 brw->vb.max_index = max_index;
756 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
757 }
758
759 static void
760 brw_finish_drawing(struct gl_context *ctx)
761 {
762 struct brw_context *brw = brw_context(ctx);
763
764 if (brw->always_flush_batch)
765 intel_batchbuffer_flush(brw);
766
767 brw_program_cache_check_size(brw);
768 brw_postdraw_reconcile_align_wa_slices(brw);
769 brw_postdraw_set_buffers_need_resolve(brw);
770
771 if (brw->draw.draw_params_count_bo) {
772 brw_bo_unreference(brw->draw.draw_params_count_bo);
773 brw->draw.draw_params_count_bo = NULL;
774 }
775 }
776
777 /* May fail if out of video memory for texture or vbo upload, or on
778 * fallback conditions.
779 */
780 static void
781 brw_draw_single_prim(struct gl_context *ctx,
782 const struct gl_vertex_array *arrays,
783 const struct _mesa_prim *prim,
784 unsigned prim_id,
785 struct brw_transform_feedback_object *xfb_obj,
786 unsigned stream,
787 struct gl_buffer_object *indirect)
788 {
789 struct brw_context *brw = brw_context(ctx);
790 const struct gen_device_info *devinfo = &brw->screen->devinfo;
791 bool fail_next = false;
792
793 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
794 * atoms that happen on every draw call.
795 */
796 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
797
798 /* Flush the batch if the batch/state buffers are nearly full. We can
799 * grow them if needed, but this is not free, so we'd like to avoid it.
800 */
801 intel_batchbuffer_require_space(brw, 1500, RENDER_RING);
802 brw_require_statebuffer_space(brw, 2400);
803 intel_batchbuffer_save_state(brw);
804
805 if (brw->num_instances != prim->num_instances ||
806 brw->basevertex != prim->basevertex ||
807 brw->baseinstance != prim->base_instance) {
808 brw->num_instances = prim->num_instances;
809 brw->basevertex = prim->basevertex;
810 brw->baseinstance = prim->base_instance;
811 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
812 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
813 brw_merge_inputs(brw, arrays);
814 }
815 }
816
817 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
818 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
819 * always flag if the shader uses one of the values. For direct draws,
820 * we only flag if the values change.
821 */
822 const int new_basevertex =
823 prim->indexed ? prim->basevertex : prim->start;
824 const int new_baseinstance = prim->base_instance;
825 const struct brw_vs_prog_data *vs_prog_data =
826 brw_vs_prog_data(brw->vs.base.prog_data);
827 if (prim_id > 0) {
828 const bool uses_draw_parameters =
829 vs_prog_data->uses_basevertex ||
830 vs_prog_data->uses_baseinstance;
831
832 if ((uses_draw_parameters && prim->is_indirect) ||
833 (vs_prog_data->uses_basevertex &&
834 brw->draw.params.gl_basevertex != new_basevertex) ||
835 (vs_prog_data->uses_baseinstance &&
836 brw->draw.params.gl_baseinstance != new_baseinstance))
837 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
838 }
839
840 brw->draw.params.gl_basevertex = new_basevertex;
841 brw->draw.params.gl_baseinstance = new_baseinstance;
842 brw_bo_unreference(brw->draw.draw_params_bo);
843
844 if (prim->is_indirect) {
845 /* Point draw_params_bo at the indirect buffer. */
846 brw->draw.draw_params_bo =
847 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
848 brw_bo_reference(brw->draw.draw_params_bo);
849 brw->draw.draw_params_offset =
850 prim->indirect_offset + (prim->indexed ? 12 : 8);
851 } else {
852 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
853 * has to upload gl_BaseVertex and such if they're needed.
854 */
855 brw->draw.draw_params_bo = NULL;
856 brw->draw.draw_params_offset = 0;
857 }
858
859 /* gl_DrawID always needs its own vertex buffer since it's not part of
860 * the indirect parameter buffer. If the program uses gl_DrawID we need
861 * to flag BRW_NEW_VERTICES. For the first iteration, we don't have
862 * valid vs_prog_data, but we always flag BRW_NEW_VERTICES before
863 * the loop.
864 */
865 brw->draw.gl_drawid = prim->draw_id;
866 brw_bo_unreference(brw->draw.draw_id_bo);
867 brw->draw.draw_id_bo = NULL;
868 if (prim_id > 0 && vs_prog_data->uses_drawid)
869 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
870
871 if (devinfo->gen < 6)
872 brw_set_prim(brw, prim);
873 else
874 gen6_set_prim(brw, prim);
875
876 retry:
877
878 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
879 * that the state updated in the loop outside of this block is that in
880 * *_set_prim or intel_batchbuffer_flush(), which only impacts
881 * brw->ctx.NewDriverState.
882 */
883 if (brw->ctx.NewDriverState) {
884 brw->batch.no_wrap = true;
885 brw_upload_render_state(brw);
886 }
887
888 brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream);
889
890 brw->batch.no_wrap = false;
891
892 if (!brw_batch_has_aperture_space(brw, 0)) {
893 if (!fail_next) {
894 intel_batchbuffer_reset_to_saved(brw);
895 intel_batchbuffer_flush(brw);
896 fail_next = true;
897 goto retry;
898 } else {
899 int ret = intel_batchbuffer_flush(brw);
900 WARN_ONCE(ret == -ENOSPC,
901 "i965: Single primitive emit exceeded "
902 "available aperture space\n");
903 }
904 }
905
906 /* Now that we know we haven't run out of aperture space, we can safely
907 * reset the dirty bits.
908 */
909 if (brw->ctx.NewDriverState)
910 brw_render_state_finished(brw);
911
912 return;
913 }
914
915
916 static bool
917 all_varyings_in_vbos(const struct gl_vertex_array *arrays)
918 {
919 GLuint i;
920
921 for (i = 0; i < VERT_ATTRIB_MAX; i++)
922 if (arrays[i].BufferBinding->Stride &&
923 arrays[i].BufferBinding->BufferObj->Name == 0)
924 return false;
925
926 return true;
927 }
928
929
930
931 void
932 brw_draw_prims(struct gl_context *ctx,
933 const struct _mesa_prim *prims,
934 GLuint nr_prims,
935 const struct _mesa_index_buffer *ib,
936 GLboolean index_bounds_valid,
937 GLuint min_index,
938 GLuint max_index,
939 struct gl_transform_feedback_object *gl_xfb_obj,
940 unsigned stream,
941 struct gl_buffer_object *indirect)
942 {
943 unsigned i;
944 struct brw_context *brw = brw_context(ctx);
945 const struct gl_vertex_array *arrays;
946 int predicate_state = brw->predicate.state;
947 struct brw_transform_feedback_object *xfb_obj =
948 (struct brw_transform_feedback_object *) gl_xfb_obj;
949
950 /* The initial pushdown of the inputs array into the drivers */
951 _mesa_set_drawing_arrays(ctx, brw->vb.draw_arrays.inputs);
952 arrays = ctx->Array._DrawArrays;
953 _vbo_update_inputs(ctx, &brw->vb.draw_arrays);
954
955 if (!brw_check_conditional_render(brw))
956 return;
957
958 /* Handle primitive restart if needed */
959 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
960 /* The draw was handled, so we can exit now */
961 return;
962 }
963
964 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
965 * won't support all the extensions we support.
966 */
967 if (ctx->RenderMode != GL_RENDER) {
968 perf_debug("%s render mode not supported in hardware\n",
969 _mesa_enum_to_string(ctx->RenderMode));
970 _swsetup_Wakeup(ctx);
971 _tnl_wakeup(ctx);
972 _tnl_draw_prims(ctx, prims, nr_prims, ib,
973 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
974 return;
975 }
976
977 /* If we're going to have to upload any of the user's vertex arrays, then
978 * get the minimum and maximum of their index buffer so we know what range
979 * to upload.
980 */
981 if (!index_bounds_valid && !all_varyings_in_vbos(arrays)) {
982 perf_debug("Scanning index buffer to compute index buffer bounds. "
983 "Use glDrawRangeElements() to avoid this.\n");
984 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
985 index_bounds_valid = true;
986 }
987
988 brw_prepare_drawing(ctx, arrays, ib, index_bounds_valid, min_index,
989 max_index);
990 /* Try drawing with the hardware, but don't do anything else if we can't
991 * manage it. swrast doesn't support our featureset, so we can't fall back
992 * to it.
993 */
994
995 for (i = 0; i < nr_prims; i++) {
996 /* Implementation of ARB_indirect_parameters via predicates */
997 if (brw->draw.draw_params_count_bo) {
998 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
999
1000 /* Upload the current draw count from the draw parameters buffer to
1001 * MI_PREDICATE_SRC0.
1002 */
1003 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
1004 brw->draw.draw_params_count_bo,
1005 brw->draw.draw_params_count_offset);
1006 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
1007 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
1008 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
1009 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
1010
1011 BEGIN_BATCH(1);
1012 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
1013 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
1014 MI_PREDICATE_COMBINEOP_SET |
1015 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1016 } else {
1017 OUT_BATCH(GEN7_MI_PREDICATE |
1018 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
1019 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1020 }
1021 ADVANCE_BATCH();
1022
1023 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
1024 }
1025
1026 brw_draw_single_prim(ctx, arrays, &prims[i], i, xfb_obj, stream,
1027 indirect);
1028 }
1029
1030 brw_finish_drawing(ctx);
1031 brw->predicate.state = predicate_state;
1032 }
1033
1034 void
1035 brw_draw_indirect_prims(struct gl_context *ctx,
1036 GLuint mode,
1037 struct gl_buffer_object *indirect_data,
1038 GLsizeiptr indirect_offset,
1039 unsigned draw_count,
1040 unsigned stride,
1041 struct gl_buffer_object *indirect_params,
1042 GLsizeiptr indirect_params_offset,
1043 const struct _mesa_index_buffer *ib)
1044 {
1045 struct brw_context *brw = brw_context(ctx);
1046 struct _mesa_prim *prim;
1047 GLsizei i;
1048
1049 prim = calloc(draw_count, sizeof(*prim));
1050 if (prim == NULL) {
1051 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
1052 (draw_count > 1) ? "Multi" : "",
1053 ib ? "Elements" : "Arrays",
1054 indirect_params ? "CountARB" : "");
1055 return;
1056 }
1057
1058 prim[0].begin = 1;
1059 prim[draw_count - 1].end = 1;
1060 for (i = 0; i < draw_count; ++i, indirect_offset += stride) {
1061 prim[i].mode = mode;
1062 prim[i].indexed = ib != NULL;
1063 prim[i].indirect_offset = indirect_offset;
1064 prim[i].is_indirect = 1;
1065 prim[i].draw_id = i;
1066 }
1067
1068 if (indirect_params) {
1069 brw->draw.draw_params_count_bo =
1070 intel_buffer_object(indirect_params)->buffer;
1071 brw_bo_reference(brw->draw.draw_params_count_bo);
1072 brw->draw.draw_params_count_offset = indirect_params_offset;
1073 }
1074
1075 brw_draw_prims(ctx, prim, draw_count,
1076 ib, false, 0, ~0,
1077 NULL, 0,
1078 indirect_data);
1079
1080 free(prim);
1081 }
1082
1083 void
1084 brw_init_draw_functions(struct dd_function_table *functions)
1085 {
1086 /* Register our drawing function:
1087 */
1088 functions->Draw = brw_draw_prims;
1089 functions->DrawIndirect = brw_draw_indirect_prims;
1090 }
1091
1092 void
1093 brw_draw_init(struct brw_context *brw)
1094 {
1095 /* Keep our list of gl_vertex_array inputs */
1096 _vbo_init_inputs(&brw->vb.draw_arrays);
1097
1098 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1099 brw->vb.inputs[i].buffer = -1;
1100 brw->vb.nr_buffers = 0;
1101 brw->vb.nr_enabled = 0;
1102 }
1103
1104 void
1105 brw_draw_destroy(struct brw_context *brw)
1106 {
1107 unsigned i;
1108
1109 for (i = 0; i < brw->vb.nr_buffers; i++) {
1110 brw_bo_unreference(brw->vb.buffers[i].bo);
1111 brw->vb.buffers[i].bo = NULL;
1112 }
1113 brw->vb.nr_buffers = 0;
1114
1115 for (i = 0; i < brw->vb.nr_enabled; i++) {
1116 brw->vb.enabled[i]->buffer = -1;
1117 }
1118 brw->vb.nr_enabled = 0;
1119
1120 brw_bo_unreference(brw->ib.bo);
1121 brw->ib.bo = NULL;
1122 }