i965: disable shadow batches when batch debugging.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/arrayobj.h"
29 #include "main/blend.h"
30 #include "main/context.h"
31 #include "main/condrender.h"
32 #include "main/samplerobj.h"
33 #include "main/state.h"
34 #include "main/enums.h"
35 #include "main/macros.h"
36 #include "main/transformfeedback.h"
37 #include "main/framebuffer.h"
38 #include "main/varray.h"
39 #include "tnl/tnl.h"
40 #include "vbo/vbo.h"
41 #include "swrast/swrast.h"
42 #include "swrast_setup/swrast_setup.h"
43 #include "drivers/common/meta.h"
44 #include "util/bitscan.h"
45 #include "util/bitset.h"
46
47 #include "brw_blorp.h"
48 #include "brw_draw.h"
49 #include "brw_defines.h"
50 #include "compiler/brw_eu_defines.h"
51 #include "brw_context.h"
52 #include "brw_state.h"
53
54 #include "intel_batchbuffer.h"
55 #include "intel_buffers.h"
56 #include "intel_fbo.h"
57 #include "intel_mipmap_tree.h"
58 #include "intel_buffer_objects.h"
59
60 #define FILE_DEBUG_FLAG DEBUG_PRIMS
61
62
63 static const GLenum reduced_prim[GL_POLYGON+1] = {
64 [GL_POINTS] = GL_POINTS,
65 [GL_LINES] = GL_LINES,
66 [GL_LINE_LOOP] = GL_LINES,
67 [GL_LINE_STRIP] = GL_LINES,
68 [GL_TRIANGLES] = GL_TRIANGLES,
69 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
70 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
71 [GL_QUADS] = GL_TRIANGLES,
72 [GL_QUAD_STRIP] = GL_TRIANGLES,
73 [GL_POLYGON] = GL_TRIANGLES
74 };
75
76 /* When the primitive changes, set a state bit and re-validate. Not
77 * the nicest and would rather deal with this by having all the
78 * programs be immune to the active primitive (ie. cope with all
79 * possibilities). That may not be realistic however.
80 */
81 static void
82 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
83 {
84 struct gl_context *ctx = &brw->ctx;
85 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
86
87 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
88
89 /* Slight optimization to avoid the GS program when not needed:
90 */
91 if (prim->mode == GL_QUAD_STRIP &&
92 ctx->Light.ShadeModel != GL_FLAT &&
93 ctx->Polygon.FrontMode == GL_FILL &&
94 ctx->Polygon.BackMode == GL_FILL)
95 hw_prim = _3DPRIM_TRISTRIP;
96
97 if (prim->mode == GL_QUADS && prim->count == 4 &&
98 ctx->Light.ShadeModel != GL_FLAT &&
99 ctx->Polygon.FrontMode == GL_FILL &&
100 ctx->Polygon.BackMode == GL_FILL) {
101 hw_prim = _3DPRIM_TRIFAN;
102 }
103
104 if (hw_prim != brw->primitive) {
105 brw->primitive = hw_prim;
106 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
107
108 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
109 brw->reduced_primitive = reduced_prim[prim->mode];
110 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
111 }
112 }
113 }
114
115 static void
116 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
117 {
118 const struct gl_context *ctx = &brw->ctx;
119 uint32_t hw_prim;
120
121 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
122
123 if (prim->mode == GL_PATCHES) {
124 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
125 } else {
126 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
127 }
128
129 if (hw_prim != brw->primitive) {
130 brw->primitive = hw_prim;
131 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
132 if (prim->mode == GL_PATCHES)
133 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
134 }
135 }
136
137
138 /**
139 * The hardware is capable of removing dangling vertices on its own; however,
140 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
141 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
142 * This function manually trims dangling vertices from a draw call involving
143 * quads so that those dangling vertices won't get drawn when we convert to
144 * trifans/tristrips.
145 */
146 static GLuint
147 trim(GLenum prim, GLuint length)
148 {
149 if (prim == GL_QUAD_STRIP)
150 return length > 3 ? (length - length % 2) : 0;
151 else if (prim == GL_QUADS)
152 return length - length % 4;
153 else
154 return length;
155 }
156
157
158 static void
159 brw_emit_prim(struct brw_context *brw,
160 const struct _mesa_prim *prim,
161 uint32_t hw_prim,
162 bool is_indexed,
163 GLuint num_instances, GLuint base_instance,
164 struct brw_transform_feedback_object *xfb_obj,
165 unsigned stream,
166 bool is_indirect,
167 GLsizeiptr indirect_offset)
168 {
169 const struct gen_device_info *devinfo = &brw->screen->devinfo;
170 int verts_per_instance;
171 int vertex_access_type;
172 int indirect_flag;
173
174 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
175 prim->start, prim->count);
176
177 int start_vertex_location = prim->start;
178 int base_vertex_location = prim->basevertex;
179
180 if (is_indexed) {
181 vertex_access_type = devinfo->gen >= 7 ?
182 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
183 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
184 start_vertex_location += brw->ib.start_vertex_offset;
185 base_vertex_location += brw->vb.start_vertex_bias;
186 } else {
187 vertex_access_type = devinfo->gen >= 7 ?
188 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
189 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
190 start_vertex_location += brw->vb.start_vertex_bias;
191 }
192
193 /* We only need to trim the primitive count on pre-Gen6. */
194 if (devinfo->gen < 6)
195 verts_per_instance = trim(prim->mode, prim->count);
196 else
197 verts_per_instance = prim->count;
198
199 /* If nothing to emit, just return. */
200 if (verts_per_instance == 0 && !is_indirect && !xfb_obj)
201 return;
202
203 /* If we're set to always flush, do it before and after the primitive emit.
204 * We want to catch both missed flushes that hurt instruction/state cache
205 * and missed flushes of the render cache as it heads to other parts of
206 * the besides the draw code.
207 */
208 if (brw->always_flush_cache)
209 brw_emit_mi_flush(brw);
210
211 /* If indirect, emit a bunch of loads from the indirect BO. */
212 if (xfb_obj) {
213 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
214
215 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
216 xfb_obj->prim_count_bo,
217 stream * sizeof(uint32_t));
218 BEGIN_BATCH(9);
219 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
220 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
221 OUT_BATCH(num_instances);
222 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
223 OUT_BATCH(0);
224 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
225 OUT_BATCH(0);
226 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
227 OUT_BATCH(0);
228 ADVANCE_BATCH();
229 } else if (is_indirect) {
230 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
231 struct brw_bo *bo = intel_bufferobj_buffer(brw,
232 intel_buffer_object(indirect_buffer),
233 indirect_offset, 5 * sizeof(GLuint), false);
234
235 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
236
237 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
238 indirect_offset + 0);
239 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
240 indirect_offset + 4);
241
242 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
243 indirect_offset + 8);
244 if (is_indexed) {
245 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
246 indirect_offset + 12);
247 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
248 indirect_offset + 16);
249 } else {
250 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
251 indirect_offset + 12);
252 brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
253 }
254 } else {
255 indirect_flag = 0;
256 }
257
258 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
259
260 if (devinfo->gen >= 7) {
261 const int predicate_enable =
262 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
263 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
264
265 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
266 OUT_BATCH(hw_prim | vertex_access_type);
267 } else {
268 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
269 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
270 vertex_access_type);
271 }
272 OUT_BATCH(verts_per_instance);
273 OUT_BATCH(start_vertex_location);
274 OUT_BATCH(num_instances);
275 OUT_BATCH(base_instance);
276 OUT_BATCH(base_vertex_location);
277 ADVANCE_BATCH();
278
279 if (brw->always_flush_cache)
280 brw_emit_mi_flush(brw);
281 }
282
283
284 static void
285 brw_clear_buffers(struct brw_context *brw)
286 {
287 for (unsigned i = 0; i < brw->vb.nr_buffers; ++i) {
288 brw_bo_unreference(brw->vb.buffers[i].bo);
289 brw->vb.buffers[i].bo = NULL;
290 }
291 brw->vb.nr_buffers = 0;
292
293 for (unsigned i = 0; i < brw->vb.nr_enabled; ++i) {
294 brw->vb.enabled[i]->buffer = -1;
295 }
296 #ifndef NDEBUG
297 for (unsigned i = 0; i < VERT_ATTRIB_MAX; i++) {
298 assert(brw->vb.inputs[i].buffer == -1);
299 }
300 #endif
301 }
302
303
304 static uint8_t get_wa_flags(const struct gl_vertex_format *glformat)
305 {
306 uint8_t wa_flags = 0;
307
308 switch (glformat->Type) {
309 case GL_FIXED:
310 wa_flags = glformat->Size;
311 break;
312
313 case GL_INT_2_10_10_10_REV:
314 wa_flags |= BRW_ATTRIB_WA_SIGN;
315 /* fallthough */
316
317 case GL_UNSIGNED_INT_2_10_10_10_REV:
318 if (glformat->Format == GL_BGRA)
319 wa_flags |= BRW_ATTRIB_WA_BGRA;
320
321 if (glformat->Normalized)
322 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
323 else if (!glformat->Integer)
324 wa_flags |= BRW_ATTRIB_WA_SCALE;
325
326 break;
327 }
328
329 return wa_flags;
330 }
331
332
333 static void
334 brw_merge_inputs(struct brw_context *brw)
335 {
336 const struct gen_device_info *devinfo = &brw->screen->devinfo;
337 const struct gl_context *ctx = &brw->ctx;
338
339 if (devinfo->gen < 8 && !devinfo->is_haswell) {
340 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
341 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
342 */
343 const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO;
344 const uint64_t vs_inputs = ctx->VertexProgram._Current->info.inputs_read;
345 assert((vs_inputs & ~((uint64_t)VERT_BIT_ALL)) == 0);
346
347 unsigned vaomask = vs_inputs & _mesa_draw_array_bits(ctx);
348 while (vaomask) {
349 const gl_vert_attrib i = u_bit_scan(&vaomask);
350 const uint8_t wa_flags =
351 get_wa_flags(_mesa_draw_array_format(vao, i));
352
353 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
354 brw->vb.attrib_wa_flags[i] = wa_flags;
355 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
356 }
357 }
358
359 unsigned currmask = vs_inputs & _mesa_draw_current_bits(ctx);
360 while (currmask) {
361 const gl_vert_attrib i = u_bit_scan(&currmask);
362 const uint8_t wa_flags =
363 get_wa_flags(_mesa_draw_current_format(ctx, i));
364
365 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
366 brw->vb.attrib_wa_flags[i] = wa_flags;
367 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
368 }
369 }
370 }
371 }
372
373 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
374 * or shader image. This causes a self-dependency, where both rendering
375 * and sampling may concurrently read or write the CCS buffer, causing
376 * incorrect pixels.
377 */
378 static bool
379 intel_disable_rb_aux_buffer(struct brw_context *brw,
380 bool *draw_aux_buffer_disabled,
381 struct intel_mipmap_tree *tex_mt,
382 unsigned min_level, unsigned num_levels,
383 const char *usage)
384 {
385 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
386 bool found = false;
387
388 /* We only need to worry about color compression and fast clears. */
389 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
390 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
391 return false;
392
393 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
394 const struct intel_renderbuffer *irb =
395 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
396
397 if (irb && irb->mt->bo == tex_mt->bo &&
398 irb->mt_level >= min_level &&
399 irb->mt_level < min_level + num_levels) {
400 found = draw_aux_buffer_disabled[i] = true;
401 }
402 }
403
404 if (found) {
405 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
406 usage);
407 }
408
409 return found;
410 }
411
412 /** Implement the ASTC 5x5 sampler workaround
413 *
414 * Gen9 sampling hardware has a bug where an ASTC 5x5 compressed surface
415 * cannot live in the sampler cache at the same time as an aux compressed
416 * surface. In order to work around the bug we have to stall rendering with a
417 * CS and pixel scoreboard stall (implicit in the CS stall) and invalidate the
418 * texture cache whenever one of ASTC 5x5 or aux compressed may be in the
419 * sampler cache and we're about to render with something which samples from
420 * the other.
421 *
422 * In the case of a single shader which textures from both ASTC 5x5 and
423 * a texture which is CCS or HiZ compressed, we have to resolve the aux
424 * compressed texture prior to rendering. This second part is handled in
425 * brw_predraw_resolve_inputs() below.
426 *
427 * We have observed this issue to affect CCS and HiZ sampling but whether or
428 * not it also affects MCS is unknown. Because MCS has no concept of a
429 * resolve (and doing one would be stupid expensive), we choose to simply
430 * ignore the possibility and hope for the best.
431 */
432 static void
433 gen9_apply_astc5x5_wa_flush(struct brw_context *brw,
434 enum gen9_astc5x5_wa_tex_type curr_mask)
435 {
436 assert(brw->screen->devinfo.gen == 9);
437
438 if (((brw->gen9_astc5x5_wa_tex_mask & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) &&
439 (curr_mask & GEN9_ASTC5X5_WA_TEX_TYPE_AUX)) ||
440 ((brw->gen9_astc5x5_wa_tex_mask & GEN9_ASTC5X5_WA_TEX_TYPE_AUX) &&
441 (curr_mask & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5))) {
442 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
443 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
444 }
445
446 brw->gen9_astc5x5_wa_tex_mask = curr_mask;
447 }
448
449 static enum gen9_astc5x5_wa_tex_type
450 gen9_astc5x5_wa_bits(mesa_format format, enum isl_aux_usage aux_usage)
451 {
452 if (aux_usage != ISL_AUX_USAGE_NONE &&
453 aux_usage != ISL_AUX_USAGE_MCS)
454 return GEN9_ASTC5X5_WA_TEX_TYPE_AUX;
455
456 if (format == MESA_FORMAT_RGBA_ASTC_5x5 ||
457 format == MESA_FORMAT_SRGB8_ALPHA8_ASTC_5x5)
458 return GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5;
459
460 return 0;
461 }
462
463 /* Helper for the gen9 ASTC 5x5 workaround. This version exists for BLORP's
464 * use-cases where only a single texture is bound.
465 */
466 void
467 gen9_apply_single_tex_astc5x5_wa(struct brw_context *brw,
468 mesa_format format,
469 enum isl_aux_usage aux_usage)
470 {
471 gen9_apply_astc5x5_wa_flush(brw, gen9_astc5x5_wa_bits(format, aux_usage));
472 }
473
474 static void
475 mark_textures_used_for_txf(BITSET_WORD *used_for_txf,
476 const struct gl_program *prog)
477 {
478 if (!prog)
479 return;
480
481 uint32_t mask = prog->info.textures_used_by_txf;
482 while (mask) {
483 int s = u_bit_scan(&mask);
484 BITSET_SET(used_for_txf, prog->SamplerUnits[s]);
485 }
486 }
487
488 /**
489 * \brief Resolve buffers before drawing.
490 *
491 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
492 * enabled depth texture, and flush the render cache for any dirty textures.
493 */
494 void
495 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering,
496 bool *draw_aux_buffer_disabled)
497 {
498 struct gl_context *ctx = &brw->ctx;
499 struct intel_texture_object *tex_obj;
500
501 BITSET_DECLARE(used_for_txf, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
502 memset(used_for_txf, 0, sizeof(used_for_txf));
503 if (rendering) {
504 mark_textures_used_for_txf(used_for_txf, ctx->VertexProgram._Current);
505 mark_textures_used_for_txf(used_for_txf, ctx->TessCtrlProgram._Current);
506 mark_textures_used_for_txf(used_for_txf, ctx->TessEvalProgram._Current);
507 mark_textures_used_for_txf(used_for_txf, ctx->GeometryProgram._Current);
508 mark_textures_used_for_txf(used_for_txf, ctx->FragmentProgram._Current);
509 } else {
510 mark_textures_used_for_txf(used_for_txf, ctx->ComputeProgram._Current);
511 }
512
513 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
514
515 enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits = 0;
516 if (brw->screen->devinfo.gen == 9) {
517 /* In order to properly implement the ASTC 5x5 workaround for an
518 * arbitrary draw or dispatch call, we have to walk the entire list of
519 * textures looking for ASTC 5x5. If there is any ASTC 5x5 in this draw
520 * call, all aux compressed textures must be resolved and have aux
521 * compression disabled while sampling.
522 */
523 for (int i = 0; i <= maxEnabledUnit; i++) {
524 if (!ctx->Texture.Unit[i]._Current)
525 continue;
526 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
527 if (!tex_obj || !tex_obj->mt)
528 continue;
529
530 astc5x5_wa_bits |= gen9_astc5x5_wa_bits(tex_obj->_Format,
531 tex_obj->mt->aux_usage);
532 }
533 gen9_apply_astc5x5_wa_flush(brw, astc5x5_wa_bits);
534 }
535
536 /* Resolve depth buffer and render cache of each enabled texture. */
537 for (int i = 0; i <= maxEnabledUnit; i++) {
538 if (!ctx->Texture.Unit[i]._Current)
539 continue;
540 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
541 if (!tex_obj || !tex_obj->mt)
542 continue;
543
544 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
545 enum isl_format view_format =
546 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
547
548 unsigned min_level, min_layer, num_levels, num_layers;
549 if (tex_obj->base.Immutable) {
550 min_level = tex_obj->base.MinLevel;
551 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
552 min_layer = tex_obj->base.MinLayer;
553 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
554 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
555 } else {
556 min_level = tex_obj->base.BaseLevel;
557 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
558 min_layer = 0;
559 num_layers = INTEL_REMAINING_LAYERS;
560 }
561
562 if (rendering) {
563 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
564 tex_obj->mt, min_level, num_levels,
565 "for sampling");
566 }
567
568 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
569 min_level, num_levels,
570 min_layer, num_layers,
571 astc5x5_wa_bits);
572
573 /* If any programs are using it with texelFetch, we may need to also do
574 * a prepare with an sRGB format to ensure texelFetch works "properly".
575 */
576 if (BITSET_TEST(used_for_txf, i)) {
577 enum isl_format txf_format =
578 translate_tex_format(brw, tex_obj->_Format, GL_DECODE_EXT);
579 if (txf_format != view_format) {
580 intel_miptree_prepare_texture(brw, tex_obj->mt, txf_format,
581 min_level, num_levels,
582 min_layer, num_layers,
583 astc5x5_wa_bits);
584 }
585 }
586
587 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
588
589 if (tex_obj->base.StencilSampling ||
590 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
591 intel_update_r8stencil(brw, tex_obj->mt);
592 }
593
594 if (intel_miptree_has_etc_shadow(brw, tex_obj->mt) &&
595 tex_obj->mt->shadow_needs_update) {
596 intel_miptree_update_etc_shadow_levels(brw, tex_obj->mt);
597 }
598 }
599
600 /* Resolve color for each active shader image. */
601 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
602 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
603
604 if (unlikely(prog && prog->info.num_images)) {
605 for (unsigned j = 0; j < prog->info.num_images; j++) {
606 struct gl_image_unit *u =
607 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
608 tex_obj = intel_texture_object(u->TexObj);
609
610 if (tex_obj && tex_obj->mt) {
611 if (rendering) {
612 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
613 tex_obj->mt, 0, ~0,
614 "as a shader image");
615 }
616
617 intel_miptree_prepare_image(brw, tex_obj->mt);
618
619 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
620 }
621 }
622 }
623 }
624 }
625
626 static void
627 brw_predraw_resolve_framebuffer(struct brw_context *brw,
628 bool *draw_aux_buffer_disabled)
629 {
630 struct gl_context *ctx = &brw->ctx;
631 struct intel_renderbuffer *depth_irb;
632
633 /* Resolve the depth buffer's HiZ buffer. */
634 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
635 if (depth_irb && depth_irb->mt) {
636 intel_miptree_prepare_depth(brw, depth_irb->mt,
637 depth_irb->mt_level,
638 depth_irb->mt_layer,
639 depth_irb->layer_count);
640 }
641
642 /* Resolve color buffers for non-coherent framebuffer fetch. */
643 if (!ctx->Extensions.EXT_shader_framebuffer_fetch &&
644 ctx->FragmentProgram._Current &&
645 ctx->FragmentProgram._Current->info.outputs_read) {
646 const struct gl_framebuffer *fb = ctx->DrawBuffer;
647
648 /* This is only used for non-coherent framebuffer fetch, so we don't
649 * need to worry about CCS_E and can simply pass 'false' below.
650 */
651 assert(brw->screen->devinfo.gen < 9);
652
653 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
654 const struct intel_renderbuffer *irb =
655 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
656
657 if (irb) {
658 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
659 irb->mt_level, 1,
660 irb->mt_layer, irb->layer_count,
661 brw->gen9_astc5x5_wa_tex_mask);
662 }
663 }
664 }
665
666 struct gl_framebuffer *fb = ctx->DrawBuffer;
667 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
668 struct intel_renderbuffer *irb =
669 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
670
671 if (irb == NULL || irb->mt == NULL)
672 continue;
673
674 mesa_format mesa_format =
675 _mesa_get_render_format(ctx, intel_rb_format(irb));
676 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
677 bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
678 enum isl_aux_usage aux_usage =
679 intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
680 blend_enabled,
681 draw_aux_buffer_disabled[i]);
682 if (brw->draw_aux_usage[i] != aux_usage) {
683 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
684 brw->draw_aux_usage[i] = aux_usage;
685 }
686
687 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
688 irb->mt_layer, irb->layer_count,
689 aux_usage);
690
691 brw_cache_flush_for_render(brw, irb->mt->bo,
692 isl_format, aux_usage);
693 }
694 }
695
696 /**
697 * \brief Call this after drawing to mark which buffers need resolving
698 *
699 * If the depth buffer was written to and if it has an accompanying HiZ
700 * buffer, then mark that it needs a depth resolve.
701 *
702 * If the stencil buffer was written to then mark that it may need to be
703 * copied to an R8 texture.
704 *
705 * If the color buffer is a multisample window system buffer, then
706 * mark that it needs a downsample.
707 *
708 * Also mark any render targets which will be textured as needing a render
709 * cache flush.
710 */
711 static void
712 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
713 {
714 struct gl_context *ctx = &brw->ctx;
715 struct gl_framebuffer *fb = ctx->DrawBuffer;
716
717 struct intel_renderbuffer *front_irb = NULL;
718 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
719 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
720 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
721 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
722
723 if (_mesa_is_front_buffer_drawing(fb))
724 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
725
726 if (front_irb)
727 front_irb->need_downsample = true;
728 if (back_irb)
729 back_irb->need_downsample = true;
730 if (depth_irb) {
731 bool depth_written = brw_depth_writes_enabled(brw);
732 if (depth_att->Layered) {
733 intel_miptree_finish_depth(brw, depth_irb->mt,
734 depth_irb->mt_level,
735 depth_irb->mt_layer,
736 depth_irb->layer_count,
737 depth_written);
738 } else {
739 intel_miptree_finish_depth(brw, depth_irb->mt,
740 depth_irb->mt_level,
741 depth_irb->mt_layer, 1,
742 depth_written);
743 }
744 if (depth_written)
745 brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
746 }
747
748 if (stencil_irb && brw->stencil_write_enabled) {
749 struct intel_mipmap_tree *stencil_mt =
750 stencil_irb->mt->stencil_mt != NULL ?
751 stencil_irb->mt->stencil_mt : stencil_irb->mt;
752 brw_depth_cache_add_bo(brw, stencil_mt->bo);
753 intel_miptree_finish_write(brw, stencil_mt, stencil_irb->mt_level,
754 stencil_irb->mt_layer,
755 stencil_irb->layer_count, ISL_AUX_USAGE_NONE);
756 }
757
758 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
759 struct intel_renderbuffer *irb =
760 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
761
762 if (!irb)
763 continue;
764
765 mesa_format mesa_format =
766 _mesa_get_render_format(ctx, intel_rb_format(irb));
767 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
768 enum isl_aux_usage aux_usage = brw->draw_aux_usage[i];
769
770 brw_render_cache_add_bo(brw, irb->mt->bo, isl_format, aux_usage);
771
772 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
773 irb->mt_layer, irb->layer_count,
774 aux_usage);
775 }
776 }
777
778 static void
779 intel_renderbuffer_move_temp_back(struct brw_context *brw,
780 struct intel_renderbuffer *irb)
781 {
782 if (irb->align_wa_mt == NULL)
783 return;
784
785 brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
786
787 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
788 irb->mt,
789 irb->Base.Base.TexImage->Level, irb->mt_layer);
790
791 intel_miptree_reference(&irb->align_wa_mt, NULL);
792
793 /* Finally restore the x,y to correspond to full miptree. */
794 intel_renderbuffer_set_draw_offset(irb);
795
796 /* Make sure render surface state gets re-emitted with updated miptree. */
797 brw->NewGLState |= _NEW_BUFFERS;
798 }
799
800 static void
801 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
802 {
803 struct gl_context *ctx = &brw->ctx;
804 struct gl_framebuffer *fb = ctx->DrawBuffer;
805
806 struct intel_renderbuffer *depth_irb =
807 intel_get_renderbuffer(fb, BUFFER_DEPTH);
808 struct intel_renderbuffer *stencil_irb =
809 intel_get_renderbuffer(fb, BUFFER_STENCIL);
810
811 if (depth_irb && depth_irb->align_wa_mt)
812 intel_renderbuffer_move_temp_back(brw, depth_irb);
813
814 if (stencil_irb && stencil_irb->align_wa_mt)
815 intel_renderbuffer_move_temp_back(brw, stencil_irb);
816
817 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
818 struct intel_renderbuffer *irb =
819 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
820
821 if (!irb || irb->align_wa_mt == NULL)
822 continue;
823
824 intel_renderbuffer_move_temp_back(brw, irb);
825 }
826 }
827
828 static void
829 brw_prepare_drawing(struct gl_context *ctx,
830 const struct _mesa_index_buffer *ib,
831 bool index_bounds_valid,
832 GLuint min_index,
833 GLuint max_index)
834 {
835 struct brw_context *brw = brw_context(ctx);
836
837 if (ctx->NewState)
838 _mesa_update_state(ctx);
839
840 /* We have to validate the textures *before* checking for fallbacks;
841 * otherwise, the software fallback won't be able to rely on the
842 * texture state, the firstLevel and lastLevel fields won't be
843 * set in the intel texture object (they'll both be 0), and the
844 * software fallback will segfault if it attempts to access any
845 * texture level other than level 0.
846 */
847 brw_validate_textures(brw);
848
849 /* Find the highest sampler unit used by each shader program. A bit-count
850 * won't work since ARB programs use the texture unit number as the sampler
851 * index.
852 */
853 brw->wm.base.sampler_count =
854 util_last_bit(ctx->FragmentProgram._Current->info.textures_used);
855 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
856 util_last_bit(ctx->GeometryProgram._Current->info.textures_used) : 0;
857 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
858 util_last_bit(ctx->TessEvalProgram._Current->info.textures_used) : 0;
859 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
860 util_last_bit(ctx->TessCtrlProgram._Current->info.textures_used) : 0;
861 brw->vs.base.sampler_count =
862 util_last_bit(ctx->VertexProgram._Current->info.textures_used);
863
864 intel_prepare_render(brw);
865
866 /* This workaround has to happen outside of brw_upload_render_state()
867 * because it may flush the batchbuffer for a blit, affecting the state
868 * flags.
869 */
870 brw_workaround_depthstencil_alignment(brw, 0);
871
872 /* Resolves must occur after updating renderbuffers, updating context state,
873 * and finalizing textures but before setting up any hardware state for
874 * this draw call.
875 */
876 bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS] = { };
877 brw_predraw_resolve_inputs(brw, true, draw_aux_buffer_disabled);
878 brw_predraw_resolve_framebuffer(brw, draw_aux_buffer_disabled);
879
880 /* Bind all inputs, derive varying and size information:
881 */
882 brw_clear_buffers(brw);
883 brw_merge_inputs(brw);
884
885 brw->ib.ib = ib;
886 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
887
888 brw->vb.index_bounds_valid = index_bounds_valid;
889 brw->vb.min_index = min_index;
890 brw->vb.max_index = max_index;
891 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
892 }
893
894 static void
895 brw_finish_drawing(struct gl_context *ctx)
896 {
897 struct brw_context *brw = brw_context(ctx);
898
899 if (brw->always_flush_batch)
900 intel_batchbuffer_flush(brw);
901
902 brw_program_cache_check_size(brw);
903 brw_postdraw_reconcile_align_wa_slices(brw);
904 brw_postdraw_set_buffers_need_resolve(brw);
905
906 if (brw->draw.draw_params_count_bo) {
907 brw_bo_unreference(brw->draw.draw_params_count_bo);
908 brw->draw.draw_params_count_bo = NULL;
909 }
910
911 if (brw->draw.draw_params_bo) {
912 brw_bo_unreference(brw->draw.draw_params_bo);
913 brw->draw.draw_params_bo = NULL;
914 }
915
916 if (brw->draw.derived_draw_params_bo) {
917 brw_bo_unreference(brw->draw.derived_draw_params_bo);
918 brw->draw.derived_draw_params_bo = NULL;
919 }
920 }
921
922 /**
923 * Implement workarounds for preemption:
924 * - WaDisableMidObjectPreemptionForGSLineStripAdj
925 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
926 * - WaDisableMidObjectPreemptionForLineLoop
927 * - WA#0798
928 */
929 static void
930 gen9_emit_preempt_wa(struct brw_context *brw,
931 const struct _mesa_prim *prim, GLuint num_instances)
932 {
933 bool object_preemption = true;
934 ASSERTED const struct gen_device_info *devinfo = &brw->screen->devinfo;
935
936 /* Only apply these workarounds for gen9 */
937 assert(devinfo->gen == 9);
938
939 /* WaDisableMidObjectPreemptionForGSLineStripAdj
940 *
941 * WA: Disable mid-draw preemption when draw-call is a linestrip_adj and
942 * GS is enabled.
943 */
944 if (brw->primitive == _3DPRIM_LINESTRIP_ADJ && brw->gs.enabled)
945 object_preemption = false;
946
947 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
948 *
949 * TriFan miscompare in Execlist Preemption test. Cut index that is on a
950 * previous context. End the previous, the resume another context with a
951 * tri-fan or polygon, and the vertex count is corrupted. If we prempt
952 * again we will cause corruption.
953 *
954 * WA: Disable mid-draw preemption when draw-call has a tri-fan.
955 */
956 if (brw->primitive == _3DPRIM_TRIFAN)
957 object_preemption = false;
958
959 /* WaDisableMidObjectPreemptionForLineLoop
960 *
961 * VF Stats Counters Missing a vertex when preemption enabled.
962 *
963 * WA: Disable mid-draw preemption when the draw uses a lineloop
964 * topology.
965 */
966 if (brw->primitive == _3DPRIM_LINELOOP)
967 object_preemption = false;
968
969 /* WA#0798
970 *
971 * VF is corrupting GAFS data when preempted on an instance boundary and
972 * replayed with instancing enabled.
973 *
974 * WA: Disable preemption when using instanceing.
975 */
976 if (num_instances > 1)
977 object_preemption = false;
978
979 brw_enable_obj_preemption(brw, object_preemption);
980 }
981
982 /* May fail if out of video memory for texture or vbo upload, or on
983 * fallback conditions.
984 */
985 static void
986 brw_draw_single_prim(struct gl_context *ctx,
987 const struct _mesa_prim *prim,
988 unsigned prim_id,
989 bool is_indexed,
990 GLuint num_instances, GLuint base_instance,
991 struct brw_transform_feedback_object *xfb_obj,
992 unsigned stream,
993 GLsizeiptr indirect_offset)
994 {
995 struct brw_context *brw = brw_context(ctx);
996 const struct gen_device_info *devinfo = &brw->screen->devinfo;
997 bool fail_next;
998 bool is_indirect = brw->draw.draw_indirect_data != NULL;
999
1000 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
1001 * atoms that happen on every draw call.
1002 */
1003 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
1004
1005 /* Flush the batch if the batch/state buffers are nearly full. We can
1006 * grow them if needed, but this is not free, so we'd like to avoid it.
1007 */
1008 intel_batchbuffer_require_space(brw, 1500);
1009 brw_require_statebuffer_space(brw, 2400);
1010 intel_batchbuffer_save_state(brw);
1011 fail_next = intel_batchbuffer_saved_state_is_empty(brw);
1012
1013 if (brw->num_instances != num_instances ||
1014 brw->basevertex != prim->basevertex ||
1015 brw->baseinstance != base_instance) {
1016 brw->num_instances = num_instances;
1017 brw->basevertex = prim->basevertex;
1018 brw->baseinstance = base_instance;
1019 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
1020 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
1021 brw_clear_buffers(brw);
1022 }
1023 }
1024
1025 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
1026 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
1027 * always flag if the shader uses one of the values. For direct draws,
1028 * we only flag if the values change.
1029 */
1030 const int new_firstvertex =
1031 is_indexed ? prim->basevertex : prim->start;
1032 const int new_baseinstance = base_instance;
1033 const struct brw_vs_prog_data *vs_prog_data =
1034 brw_vs_prog_data(brw->vs.base.prog_data);
1035 if (prim_id > 0) {
1036 const bool uses_draw_parameters =
1037 vs_prog_data->uses_firstvertex ||
1038 vs_prog_data->uses_baseinstance;
1039
1040 if ((uses_draw_parameters && is_indirect) ||
1041 (vs_prog_data->uses_firstvertex &&
1042 brw->draw.params.firstvertex != new_firstvertex) ||
1043 (vs_prog_data->uses_baseinstance &&
1044 brw->draw.params.gl_baseinstance != new_baseinstance))
1045 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
1046 }
1047
1048 brw->draw.params.firstvertex = new_firstvertex;
1049 brw->draw.params.gl_baseinstance = new_baseinstance;
1050 brw_bo_unreference(brw->draw.draw_params_bo);
1051
1052 if (is_indirect) {
1053 /* Point draw_params_bo at the indirect buffer. */
1054 brw->draw.draw_params_bo =
1055 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
1056 brw_bo_reference(brw->draw.draw_params_bo);
1057 brw->draw.draw_params_offset =
1058 indirect_offset + (is_indexed ? 12 : 8);
1059 } else {
1060 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
1061 * has to upload gl_BaseVertex and such if they're needed.
1062 */
1063 brw->draw.draw_params_bo = NULL;
1064 brw->draw.draw_params_offset = 0;
1065 }
1066
1067 /* gl_DrawID always needs its own vertex buffer since it's not part of
1068 * the indirect parameter buffer. Same for is_indexed_draw, which shares
1069 * the buffer with gl_DrawID. If the program uses gl_DrawID, we need to
1070 * flag BRW_NEW_VERTICES. For the first iteration, we don't have valid
1071 * vs_prog_data, but we always flag BRW_NEW_VERTICES before the loop.
1072 */
1073 if (prim_id > 0 && vs_prog_data->uses_drawid)
1074 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
1075
1076 brw->draw.derived_params.gl_drawid = prim->draw_id;
1077 brw->draw.derived_params.is_indexed_draw = is_indexed ? ~0 : 0;
1078
1079 brw_bo_unreference(brw->draw.derived_draw_params_bo);
1080 brw->draw.derived_draw_params_bo = NULL;
1081 brw->draw.derived_draw_params_offset = 0;
1082
1083 if (devinfo->gen < 6)
1084 brw_set_prim(brw, prim);
1085 else
1086 gen6_set_prim(brw, prim);
1087
1088 retry:
1089
1090 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
1091 * that the state updated in the loop outside of this block is that in
1092 * *_set_prim or intel_batchbuffer_flush(), which only impacts
1093 * brw->ctx.NewDriverState.
1094 */
1095 if (brw->ctx.NewDriverState) {
1096 brw->batch.no_wrap = true;
1097 brw_upload_render_state(brw);
1098 }
1099
1100 if (devinfo->gen == 9)
1101 gen9_emit_preempt_wa(brw, prim, num_instances);
1102
1103 brw_emit_prim(brw, prim, brw->primitive, is_indexed, num_instances,
1104 base_instance, xfb_obj, stream, is_indirect,
1105 indirect_offset);
1106
1107 brw->batch.no_wrap = false;
1108
1109 if (!brw_batch_has_aperture_space(brw, 0)) {
1110 if (!fail_next) {
1111 intel_batchbuffer_reset_to_saved(brw);
1112 intel_batchbuffer_flush(brw);
1113 fail_next = true;
1114 goto retry;
1115 } else {
1116 int ret = intel_batchbuffer_flush(brw);
1117 WARN_ONCE(ret == -ENOSPC,
1118 "i965: Single primitive emit exceeded "
1119 "available aperture space\n");
1120 }
1121 }
1122
1123 /* Now that we know we haven't run out of aperture space, we can safely
1124 * reset the dirty bits.
1125 */
1126 if (brw->ctx.NewDriverState)
1127 brw_render_state_finished(brw);
1128
1129 return;
1130 }
1131
1132
1133
1134 void
1135 brw_draw_prims(struct gl_context *ctx,
1136 const struct _mesa_prim *prims,
1137 GLuint nr_prims,
1138 const struct _mesa_index_buffer *ib,
1139 GLboolean index_bounds_valid,
1140 GLuint min_index,
1141 GLuint max_index,
1142 GLuint num_instances,
1143 GLuint base_instance,
1144 struct gl_transform_feedback_object *gl_xfb_obj,
1145 unsigned stream)
1146 {
1147 unsigned i;
1148 struct brw_context *brw = brw_context(ctx);
1149 int predicate_state = brw->predicate.state;
1150 struct brw_transform_feedback_object *xfb_obj =
1151 (struct brw_transform_feedback_object *) gl_xfb_obj;
1152
1153 if (!brw_check_conditional_render(brw))
1154 return;
1155
1156 /* Handle primitive restart if needed */
1157 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, num_instances,
1158 base_instance)) {
1159 /* The draw was handled, so we can exit now */
1160 return;
1161 }
1162
1163 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
1164 * won't support all the extensions we support.
1165 */
1166 if (ctx->RenderMode != GL_RENDER) {
1167 perf_debug("%s render mode not supported in hardware\n",
1168 _mesa_enum_to_string(ctx->RenderMode));
1169 _swsetup_Wakeup(ctx);
1170 _tnl_wakeup(ctx);
1171 _tnl_draw(ctx, prims, nr_prims, ib, index_bounds_valid, min_index,
1172 max_index, num_instances, base_instance, NULL, 0);
1173 return;
1174 }
1175
1176 /* If we're going to have to upload any of the user's vertex arrays, then
1177 * get the minimum and maximum of their index buffer so we know what range
1178 * to upload.
1179 */
1180 if (!index_bounds_valid && _mesa_draw_user_array_bits(ctx) != 0) {
1181 perf_debug("Scanning index buffer to compute index buffer bounds. "
1182 "Use glDrawRangeElements() to avoid this.\n");
1183 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
1184 index_bounds_valid = true;
1185 }
1186
1187 brw_prepare_drawing(ctx, ib, index_bounds_valid, min_index, max_index);
1188 /* Try drawing with the hardware, but don't do anything else if we can't
1189 * manage it. swrast doesn't support our featureset, so we can't fall back
1190 * to it.
1191 */
1192
1193 for (i = 0; i < nr_prims; i++) {
1194 /* Implementation of ARB_indirect_parameters via predicates */
1195 if (brw->draw.draw_params_count_bo) {
1196 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
1197
1198 /* Upload the current draw count from the draw parameters buffer to
1199 * MI_PREDICATE_SRC0.
1200 */
1201 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
1202 brw->draw.draw_params_count_bo,
1203 brw->draw.draw_params_count_offset);
1204 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
1205 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
1206 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
1207 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
1208
1209 BEGIN_BATCH(1);
1210 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
1211 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
1212 MI_PREDICATE_COMBINEOP_SET |
1213 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1214 } else {
1215 OUT_BATCH(GEN7_MI_PREDICATE |
1216 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
1217 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1218 }
1219 ADVANCE_BATCH();
1220
1221 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
1222 }
1223
1224 brw_draw_single_prim(ctx, &prims[i], i, ib != NULL, num_instances,
1225 base_instance, xfb_obj, stream,
1226 brw->draw.draw_indirect_offset +
1227 brw->draw.draw_indirect_stride * i);
1228 }
1229
1230 brw_finish_drawing(ctx);
1231 brw->predicate.state = predicate_state;
1232 }
1233
1234 void
1235 brw_draw_indirect_prims(struct gl_context *ctx,
1236 GLuint mode,
1237 struct gl_buffer_object *indirect_data,
1238 GLsizeiptr indirect_offset,
1239 unsigned draw_count,
1240 unsigned stride,
1241 struct gl_buffer_object *indirect_params,
1242 GLsizeiptr indirect_params_offset,
1243 const struct _mesa_index_buffer *ib)
1244 {
1245 struct brw_context *brw = brw_context(ctx);
1246 struct _mesa_prim *prim;
1247 GLsizei i;
1248
1249 prim = calloc(draw_count, sizeof(*prim));
1250 if (prim == NULL) {
1251 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
1252 (draw_count > 1) ? "Multi" : "",
1253 ib ? "Elements" : "Arrays",
1254 indirect_params ? "CountARB" : "");
1255 return;
1256 }
1257
1258 brw->draw.draw_indirect_stride = stride;
1259 brw->draw.draw_indirect_offset = indirect_offset;
1260
1261 prim[0].begin = 1;
1262 prim[draw_count - 1].end = 1;
1263 for (i = 0; i < draw_count; ++i) {
1264 prim[i].mode = mode;
1265 prim[i].draw_id = i;
1266 }
1267
1268 if (indirect_params) {
1269 brw->draw.draw_params_count_bo =
1270 intel_buffer_object(indirect_params)->buffer;
1271 brw_bo_reference(brw->draw.draw_params_count_bo);
1272 brw->draw.draw_params_count_offset = indirect_params_offset;
1273 }
1274
1275 brw->draw.draw_indirect_data = indirect_data;
1276
1277 brw_draw_prims(ctx, prim, draw_count, ib, false, 0, ~0, 0, 0, NULL, 0);
1278
1279 brw->draw.draw_indirect_data = NULL;
1280 free(prim);
1281 }
1282
1283 void
1284 brw_init_draw_functions(struct dd_function_table *functions)
1285 {
1286 /* Register our drawing function:
1287 */
1288 functions->Draw = brw_draw_prims;
1289 functions->DrawIndirect = brw_draw_indirect_prims;
1290 }
1291
1292 void
1293 brw_draw_init(struct brw_context *brw)
1294 {
1295 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1296 brw->vb.inputs[i].buffer = -1;
1297 brw->vb.nr_buffers = 0;
1298 brw->vb.nr_enabled = 0;
1299 }
1300
1301 void
1302 brw_draw_destroy(struct brw_context *brw)
1303 {
1304 unsigned i;
1305
1306 for (i = 0; i < brw->vb.nr_buffers; i++) {
1307 brw_bo_unreference(brw->vb.buffers[i].bo);
1308 brw->vb.buffers[i].bo = NULL;
1309 }
1310 brw->vb.nr_buffers = 0;
1311
1312 for (i = 0; i < brw->vb.nr_enabled; i++) {
1313 brw->vb.enabled[i]->buffer = -1;
1314 }
1315 brw->vb.nr_enabled = 0;
1316
1317 brw_bo_unreference(brw->ib.bo);
1318 brw->ib.bo = NULL;
1319 }