i965: Workaround the gen9 hw astc5x5 sampler bug
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/arrayobj.h"
29 #include "main/blend.h"
30 #include "main/context.h"
31 #include "main/condrender.h"
32 #include "main/samplerobj.h"
33 #include "main/state.h"
34 #include "main/enums.h"
35 #include "main/macros.h"
36 #include "main/transformfeedback.h"
37 #include "main/framebuffer.h"
38 #include "main/varray.h"
39 #include "tnl/tnl.h"
40 #include "vbo/vbo.h"
41 #include "swrast/swrast.h"
42 #include "swrast_setup/swrast_setup.h"
43 #include "drivers/common/meta.h"
44 #include "util/bitscan.h"
45 #include "util/bitset.h"
46
47 #include "brw_blorp.h"
48 #include "brw_draw.h"
49 #include "brw_defines.h"
50 #include "compiler/brw_eu_defines.h"
51 #include "brw_context.h"
52 #include "brw_state.h"
53
54 #include "intel_batchbuffer.h"
55 #include "intel_buffers.h"
56 #include "intel_fbo.h"
57 #include "intel_mipmap_tree.h"
58 #include "intel_buffer_objects.h"
59
60 #define FILE_DEBUG_FLAG DEBUG_PRIMS
61
62
63 static const GLenum reduced_prim[GL_POLYGON+1] = {
64 [GL_POINTS] = GL_POINTS,
65 [GL_LINES] = GL_LINES,
66 [GL_LINE_LOOP] = GL_LINES,
67 [GL_LINE_STRIP] = GL_LINES,
68 [GL_TRIANGLES] = GL_TRIANGLES,
69 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
70 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
71 [GL_QUADS] = GL_TRIANGLES,
72 [GL_QUAD_STRIP] = GL_TRIANGLES,
73 [GL_POLYGON] = GL_TRIANGLES
74 };
75
76 /* When the primitive changes, set a state bit and re-validate. Not
77 * the nicest and would rather deal with this by having all the
78 * programs be immune to the active primitive (ie. cope with all
79 * possibilities). That may not be realistic however.
80 */
81 static void
82 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
83 {
84 struct gl_context *ctx = &brw->ctx;
85 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
86
87 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
88
89 /* Slight optimization to avoid the GS program when not needed:
90 */
91 if (prim->mode == GL_QUAD_STRIP &&
92 ctx->Light.ShadeModel != GL_FLAT &&
93 ctx->Polygon.FrontMode == GL_FILL &&
94 ctx->Polygon.BackMode == GL_FILL)
95 hw_prim = _3DPRIM_TRISTRIP;
96
97 if (prim->mode == GL_QUADS && prim->count == 4 &&
98 ctx->Light.ShadeModel != GL_FLAT &&
99 ctx->Polygon.FrontMode == GL_FILL &&
100 ctx->Polygon.BackMode == GL_FILL) {
101 hw_prim = _3DPRIM_TRIFAN;
102 }
103
104 if (hw_prim != brw->primitive) {
105 brw->primitive = hw_prim;
106 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
107
108 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
109 brw->reduced_primitive = reduced_prim[prim->mode];
110 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
111 }
112 }
113 }
114
115 static void
116 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
117 {
118 const struct gl_context *ctx = &brw->ctx;
119 uint32_t hw_prim;
120
121 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
122
123 if (prim->mode == GL_PATCHES) {
124 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
125 } else {
126 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
127 }
128
129 if (hw_prim != brw->primitive) {
130 brw->primitive = hw_prim;
131 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
132 if (prim->mode == GL_PATCHES)
133 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
134 }
135 }
136
137
138 /**
139 * The hardware is capable of removing dangling vertices on its own; however,
140 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
141 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
142 * This function manually trims dangling vertices from a draw call involving
143 * quads so that those dangling vertices won't get drawn when we convert to
144 * trifans/tristrips.
145 */
146 static GLuint
147 trim(GLenum prim, GLuint length)
148 {
149 if (prim == GL_QUAD_STRIP)
150 return length > 3 ? (length - length % 2) : 0;
151 else if (prim == GL_QUADS)
152 return length - length % 4;
153 else
154 return length;
155 }
156
157
158 static void
159 brw_emit_prim(struct brw_context *brw,
160 const struct _mesa_prim *prim,
161 uint32_t hw_prim,
162 struct brw_transform_feedback_object *xfb_obj,
163 unsigned stream)
164 {
165 const struct gen_device_info *devinfo = &brw->screen->devinfo;
166 int verts_per_instance;
167 int vertex_access_type;
168 int indirect_flag;
169
170 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
171 prim->start, prim->count);
172
173 int start_vertex_location = prim->start;
174 int base_vertex_location = prim->basevertex;
175
176 if (prim->indexed) {
177 vertex_access_type = devinfo->gen >= 7 ?
178 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
179 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
180 start_vertex_location += brw->ib.start_vertex_offset;
181 base_vertex_location += brw->vb.start_vertex_bias;
182 } else {
183 vertex_access_type = devinfo->gen >= 7 ?
184 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
185 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
186 start_vertex_location += brw->vb.start_vertex_bias;
187 }
188
189 /* We only need to trim the primitive count on pre-Gen6. */
190 if (devinfo->gen < 6)
191 verts_per_instance = trim(prim->mode, prim->count);
192 else
193 verts_per_instance = prim->count;
194
195 /* If nothing to emit, just return. */
196 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
197 return;
198
199 /* If we're set to always flush, do it before and after the primitive emit.
200 * We want to catch both missed flushes that hurt instruction/state cache
201 * and missed flushes of the render cache as it heads to other parts of
202 * the besides the draw code.
203 */
204 if (brw->always_flush_cache)
205 brw_emit_mi_flush(brw);
206
207 /* If indirect, emit a bunch of loads from the indirect BO. */
208 if (xfb_obj) {
209 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
210
211 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
212 xfb_obj->prim_count_bo,
213 stream * sizeof(uint32_t));
214 BEGIN_BATCH(9);
215 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
216 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
217 OUT_BATCH(prim->num_instances);
218 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
219 OUT_BATCH(0);
220 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
221 OUT_BATCH(0);
222 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
223 OUT_BATCH(0);
224 ADVANCE_BATCH();
225 } else if (prim->is_indirect) {
226 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
227 struct brw_bo *bo = intel_bufferobj_buffer(brw,
228 intel_buffer_object(indirect_buffer),
229 prim->indirect_offset, 5 * sizeof(GLuint), false);
230
231 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
232
233 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
234 prim->indirect_offset + 0);
235 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
236 prim->indirect_offset + 4);
237
238 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
239 prim->indirect_offset + 8);
240 if (prim->indexed) {
241 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
242 prim->indirect_offset + 12);
243 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
244 prim->indirect_offset + 16);
245 } else {
246 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
247 prim->indirect_offset + 12);
248 brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
249 }
250 } else {
251 indirect_flag = 0;
252 }
253
254 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
255
256 if (devinfo->gen >= 7) {
257 const int predicate_enable =
258 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
259 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
260
261 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
262 OUT_BATCH(hw_prim | vertex_access_type);
263 } else {
264 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
265 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
266 vertex_access_type);
267 }
268 OUT_BATCH(verts_per_instance);
269 OUT_BATCH(start_vertex_location);
270 OUT_BATCH(prim->num_instances);
271 OUT_BATCH(prim->base_instance);
272 OUT_BATCH(base_vertex_location);
273 ADVANCE_BATCH();
274
275 if (brw->always_flush_cache)
276 brw_emit_mi_flush(brw);
277 }
278
279
280 static void
281 brw_merge_inputs(struct brw_context *brw)
282 {
283 const struct gen_device_info *devinfo = &brw->screen->devinfo;
284 const struct gl_context *ctx = &brw->ctx;
285 GLuint i;
286
287 for (i = 0; i < brw->vb.nr_buffers; i++) {
288 brw_bo_unreference(brw->vb.buffers[i].bo);
289 brw->vb.buffers[i].bo = NULL;
290 }
291 brw->vb.nr_buffers = 0;
292
293 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
294 struct brw_vertex_element *input = &brw->vb.inputs[i];
295 input->buffer = -1;
296 _mesa_draw_attrib_and_binding(ctx, i,
297 &input->glattrib, &input->glbinding);
298 }
299
300 if (devinfo->gen < 8 && !devinfo->is_haswell) {
301 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
302 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
303 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
304 */
305 while (mask) {
306 const struct gl_array_attributes *glattrib;
307 uint8_t wa_flags = 0;
308
309 i = u_bit_scan64(&mask);
310 glattrib = brw->vb.inputs[i].glattrib;
311
312 switch (glattrib->Type) {
313
314 case GL_FIXED:
315 wa_flags = glattrib->Size;
316 break;
317
318 case GL_INT_2_10_10_10_REV:
319 wa_flags |= BRW_ATTRIB_WA_SIGN;
320 /* fallthough */
321
322 case GL_UNSIGNED_INT_2_10_10_10_REV:
323 if (glattrib->Format == GL_BGRA)
324 wa_flags |= BRW_ATTRIB_WA_BGRA;
325
326 if (glattrib->Normalized)
327 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
328 else if (!glattrib->Integer)
329 wa_flags |= BRW_ATTRIB_WA_SCALE;
330
331 break;
332 }
333
334 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
335 brw->vb.attrib_wa_flags[i] = wa_flags;
336 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
337 }
338 }
339 }
340 }
341
342 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
343 * or shader image. This causes a self-dependency, where both rendering
344 * and sampling may concurrently read or write the CCS buffer, causing
345 * incorrect pixels.
346 */
347 static bool
348 intel_disable_rb_aux_buffer(struct brw_context *brw,
349 bool *draw_aux_buffer_disabled,
350 struct intel_mipmap_tree *tex_mt,
351 unsigned min_level, unsigned num_levels,
352 const char *usage)
353 {
354 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
355 bool found = false;
356
357 /* We only need to worry about color compression and fast clears. */
358 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
359 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
360 return false;
361
362 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
363 const struct intel_renderbuffer *irb =
364 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
365
366 if (irb && irb->mt->bo == tex_mt->bo &&
367 irb->mt_level >= min_level &&
368 irb->mt_level < min_level + num_levels) {
369 found = draw_aux_buffer_disabled[i] = true;
370 }
371 }
372
373 if (found) {
374 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
375 usage);
376 }
377
378 return found;
379 }
380
381 /** Implement the ASTC 5x5 sampler workaround
382 *
383 * Gen9 sampling hardware has a bug where an ASTC 5x5 compressed surface
384 * cannot live in the sampler cache at the same time as an aux compressed
385 * surface. In order to work around the bug we have to stall rendering with a
386 * CS and pixel scoreboard stall (implicit in the CS stall) and invalidate the
387 * texture cache whenever one of ASTC 5x5 or aux compressed may be in the
388 * sampler cache and we're about to render with something which samples from
389 * the other.
390 *
391 * In the case of a single shader which textures from both ASTC 5x5 and
392 * a texture which is CCS or HiZ compressed, we have to resolve the aux
393 * compressed texture prior to rendering. This second part is handled in
394 * brw_predraw_resolve_inputs() below.
395 *
396 * We have observed this issue to affect CCS and HiZ sampling but whether or
397 * not it also affects MCS is unknown. Because MCS has no concept of a
398 * resolve (and doing one would be stupid expensive), we choose to simply
399 * ignore the possibility and hope for the best.
400 */
401 static void
402 gen9_apply_astc5x5_wa_flush(struct brw_context *brw,
403 enum gen9_astc5x5_wa_tex_type curr_mask)
404 {
405 assert(brw->screen->devinfo.gen == 9);
406
407 if (((brw->gen9_astc5x5_wa_tex_mask & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) &&
408 (curr_mask & GEN9_ASTC5X5_WA_TEX_TYPE_AUX)) ||
409 ((brw->gen9_astc5x5_wa_tex_mask & GEN9_ASTC5X5_WA_TEX_TYPE_AUX) &&
410 (curr_mask & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5))) {
411 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
412 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
413 }
414
415 brw->gen9_astc5x5_wa_tex_mask = curr_mask;
416 }
417
418 static enum gen9_astc5x5_wa_tex_type
419 gen9_astc5x5_wa_bits(mesa_format format, enum isl_aux_usage aux_usage)
420 {
421 if (aux_usage != ISL_AUX_USAGE_NONE &&
422 aux_usage != ISL_AUX_USAGE_MCS)
423 return GEN9_ASTC5X5_WA_TEX_TYPE_AUX;
424
425 if (format == MESA_FORMAT_RGBA_ASTC_5x5 ||
426 format == MESA_FORMAT_SRGB8_ALPHA8_ASTC_5x5)
427 return GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5;
428
429 return 0;
430 }
431
432 /* Helper for the gen9 ASTC 5x5 workaround. This version exists for BLORP's
433 * use-cases where only a single texture is bound.
434 */
435 void
436 gen9_apply_single_tex_astc5x5_wa(struct brw_context *brw,
437 mesa_format format,
438 enum isl_aux_usage aux_usage)
439 {
440 gen9_apply_astc5x5_wa_flush(brw, gen9_astc5x5_wa_bits(format, aux_usage));
441 }
442
443 static void
444 mark_textures_used_for_txf(BITSET_WORD *used_for_txf,
445 const struct gl_program *prog)
446 {
447 if (!prog)
448 return;
449
450 unsigned mask = prog->SamplersUsed & prog->info.textures_used_by_txf;
451 while (mask) {
452 int s = u_bit_scan(&mask);
453 BITSET_SET(used_for_txf, prog->SamplerUnits[s]);
454 }
455 }
456
457 /**
458 * \brief Resolve buffers before drawing.
459 *
460 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
461 * enabled depth texture, and flush the render cache for any dirty textures.
462 */
463 void
464 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering,
465 bool *draw_aux_buffer_disabled)
466 {
467 struct gl_context *ctx = &brw->ctx;
468 struct intel_texture_object *tex_obj;
469
470 BITSET_DECLARE(used_for_txf, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
471 memset(used_for_txf, 0, sizeof(used_for_txf));
472 if (rendering) {
473 mark_textures_used_for_txf(used_for_txf, ctx->VertexProgram._Current);
474 mark_textures_used_for_txf(used_for_txf, ctx->TessCtrlProgram._Current);
475 mark_textures_used_for_txf(used_for_txf, ctx->TessEvalProgram._Current);
476 mark_textures_used_for_txf(used_for_txf, ctx->GeometryProgram._Current);
477 mark_textures_used_for_txf(used_for_txf, ctx->FragmentProgram._Current);
478 } else {
479 mark_textures_used_for_txf(used_for_txf, ctx->ComputeProgram._Current);
480 }
481
482 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
483
484 enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits = 0;
485 if (brw->screen->devinfo.gen == 9) {
486 /* In order to properly implement the ASTC 5x5 workaround for an
487 * arbitrary draw or dispatch call, we have to walk the entire list of
488 * textures looking for ASTC 5x5. If there is any ASTC 5x5 in this draw
489 * call, all aux compressed textures must be resolved and have aux
490 * compression disabled while sampling.
491 */
492 for (int i = 0; i <= maxEnabledUnit; i++) {
493 if (!ctx->Texture.Unit[i]._Current)
494 continue;
495 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
496 if (!tex_obj || !tex_obj->mt)
497 continue;
498
499 astc5x5_wa_bits |= gen9_astc5x5_wa_bits(tex_obj->_Format,
500 tex_obj->mt->aux_usage);
501 }
502 gen9_apply_astc5x5_wa_flush(brw, astc5x5_wa_bits);
503 }
504
505 /* Resolve depth buffer and render cache of each enabled texture. */
506 for (int i = 0; i <= maxEnabledUnit; i++) {
507 if (!ctx->Texture.Unit[i]._Current)
508 continue;
509 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
510 if (!tex_obj || !tex_obj->mt)
511 continue;
512
513 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
514 enum isl_format view_format =
515 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
516
517 unsigned min_level, min_layer, num_levels, num_layers;
518 if (tex_obj->base.Immutable) {
519 min_level = tex_obj->base.MinLevel;
520 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
521 min_layer = tex_obj->base.MinLayer;
522 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
523 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
524 } else {
525 min_level = tex_obj->base.BaseLevel;
526 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
527 min_layer = 0;
528 num_layers = INTEL_REMAINING_LAYERS;
529 }
530
531 if (rendering) {
532 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
533 tex_obj->mt, min_level, num_levels,
534 "for sampling");
535 }
536
537 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
538 min_level, num_levels,
539 min_layer, num_layers,
540 astc5x5_wa_bits);
541
542 /* If any programs are using it with texelFetch, we may need to also do
543 * a prepare with an sRGB format to ensure texelFetch works "properly".
544 */
545 if (BITSET_TEST(used_for_txf, i)) {
546 enum isl_format txf_format =
547 translate_tex_format(brw, tex_obj->_Format, GL_DECODE_EXT);
548 if (txf_format != view_format) {
549 intel_miptree_prepare_texture(brw, tex_obj->mt, txf_format,
550 min_level, num_levels,
551 min_layer, num_layers,
552 astc5x5_wa_bits);
553 }
554 }
555
556 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
557
558 if (tex_obj->base.StencilSampling ||
559 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
560 intel_update_r8stencil(brw, tex_obj->mt);
561 }
562 }
563
564 /* Resolve color for each active shader image. */
565 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
566 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
567
568 if (unlikely(prog && prog->info.num_images)) {
569 for (unsigned j = 0; j < prog->info.num_images; j++) {
570 struct gl_image_unit *u =
571 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
572 tex_obj = intel_texture_object(u->TexObj);
573
574 if (tex_obj && tex_obj->mt) {
575 if (rendering) {
576 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
577 tex_obj->mt, 0, ~0,
578 "as a shader image");
579 }
580
581 intel_miptree_prepare_image(brw, tex_obj->mt);
582
583 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
584 }
585 }
586 }
587 }
588 }
589
590 static void
591 brw_predraw_resolve_framebuffer(struct brw_context *brw,
592 bool *draw_aux_buffer_disabled)
593 {
594 struct gl_context *ctx = &brw->ctx;
595 struct intel_renderbuffer *depth_irb;
596
597 /* Resolve the depth buffer's HiZ buffer. */
598 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
599 if (depth_irb && depth_irb->mt) {
600 intel_miptree_prepare_depth(brw, depth_irb->mt,
601 depth_irb->mt_level,
602 depth_irb->mt_layer,
603 depth_irb->layer_count);
604 }
605
606 /* Resolve color buffers for non-coherent framebuffer fetch. */
607 if (!ctx->Extensions.EXT_shader_framebuffer_fetch &&
608 ctx->FragmentProgram._Current &&
609 ctx->FragmentProgram._Current->info.outputs_read) {
610 const struct gl_framebuffer *fb = ctx->DrawBuffer;
611
612 /* This is only used for non-coherent framebuffer fetch, so we don't
613 * need to worry about CCS_E and can simply pass 'false' below.
614 */
615 assert(brw->screen->devinfo.gen < 9);
616
617 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
618 const struct intel_renderbuffer *irb =
619 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
620
621 if (irb) {
622 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
623 irb->mt_level, 1,
624 irb->mt_layer, irb->layer_count,
625 brw->gen9_astc5x5_wa_tex_mask);
626 }
627 }
628 }
629
630 struct gl_framebuffer *fb = ctx->DrawBuffer;
631 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
632 struct intel_renderbuffer *irb =
633 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
634
635 if (irb == NULL || irb->mt == NULL)
636 continue;
637
638 mesa_format mesa_format =
639 _mesa_get_render_format(ctx, intel_rb_format(irb));
640 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
641 bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
642 enum isl_aux_usage aux_usage =
643 intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
644 blend_enabled,
645 draw_aux_buffer_disabled[i]);
646 if (brw->draw_aux_usage[i] != aux_usage) {
647 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
648 brw->draw_aux_usage[i] = aux_usage;
649 }
650
651 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
652 irb->mt_layer, irb->layer_count,
653 aux_usage);
654
655 brw_cache_flush_for_render(brw, irb->mt->bo,
656 isl_format, aux_usage);
657 }
658 }
659
660 /**
661 * \brief Call this after drawing to mark which buffers need resolving
662 *
663 * If the depth buffer was written to and if it has an accompanying HiZ
664 * buffer, then mark that it needs a depth resolve.
665 *
666 * If the stencil buffer was written to then mark that it may need to be
667 * copied to an R8 texture.
668 *
669 * If the color buffer is a multisample window system buffer, then
670 * mark that it needs a downsample.
671 *
672 * Also mark any render targets which will be textured as needing a render
673 * cache flush.
674 */
675 static void
676 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
677 {
678 struct gl_context *ctx = &brw->ctx;
679 struct gl_framebuffer *fb = ctx->DrawBuffer;
680
681 struct intel_renderbuffer *front_irb = NULL;
682 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
683 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
684 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
685 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
686
687 if (_mesa_is_front_buffer_drawing(fb))
688 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
689
690 if (front_irb)
691 front_irb->need_downsample = true;
692 if (back_irb)
693 back_irb->need_downsample = true;
694 if (depth_irb) {
695 bool depth_written = brw_depth_writes_enabled(brw);
696 if (depth_att->Layered) {
697 intel_miptree_finish_depth(brw, depth_irb->mt,
698 depth_irb->mt_level,
699 depth_irb->mt_layer,
700 depth_irb->layer_count,
701 depth_written);
702 } else {
703 intel_miptree_finish_depth(brw, depth_irb->mt,
704 depth_irb->mt_level,
705 depth_irb->mt_layer, 1,
706 depth_written);
707 }
708 if (depth_written)
709 brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
710 }
711
712 if (stencil_irb && brw->stencil_write_enabled) {
713 struct intel_mipmap_tree *stencil_mt =
714 stencil_irb->mt->stencil_mt != NULL ?
715 stencil_irb->mt->stencil_mt : stencil_irb->mt;
716 brw_depth_cache_add_bo(brw, stencil_mt->bo);
717 intel_miptree_finish_write(brw, stencil_mt, stencil_irb->mt_level,
718 stencil_irb->mt_layer,
719 stencil_irb->layer_count, ISL_AUX_USAGE_NONE);
720 }
721
722 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
723 struct intel_renderbuffer *irb =
724 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
725
726 if (!irb)
727 continue;
728
729 mesa_format mesa_format =
730 _mesa_get_render_format(ctx, intel_rb_format(irb));
731 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
732 enum isl_aux_usage aux_usage = brw->draw_aux_usage[i];
733
734 brw_render_cache_add_bo(brw, irb->mt->bo, isl_format, aux_usage);
735
736 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
737 irb->mt_layer, irb->layer_count,
738 aux_usage);
739 }
740 }
741
742 static void
743 intel_renderbuffer_move_temp_back(struct brw_context *brw,
744 struct intel_renderbuffer *irb)
745 {
746 if (irb->align_wa_mt == NULL)
747 return;
748
749 brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
750
751 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
752 irb->mt,
753 irb->Base.Base.TexImage->Level, irb->mt_layer);
754
755 intel_miptree_reference(&irb->align_wa_mt, NULL);
756
757 /* Finally restore the x,y to correspond to full miptree. */
758 intel_renderbuffer_set_draw_offset(irb);
759
760 /* Make sure render surface state gets re-emitted with updated miptree. */
761 brw->NewGLState |= _NEW_BUFFERS;
762 }
763
764 static void
765 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
766 {
767 struct gl_context *ctx = &brw->ctx;
768 struct gl_framebuffer *fb = ctx->DrawBuffer;
769
770 struct intel_renderbuffer *depth_irb =
771 intel_get_renderbuffer(fb, BUFFER_DEPTH);
772 struct intel_renderbuffer *stencil_irb =
773 intel_get_renderbuffer(fb, BUFFER_STENCIL);
774
775 if (depth_irb && depth_irb->align_wa_mt)
776 intel_renderbuffer_move_temp_back(brw, depth_irb);
777
778 if (stencil_irb && stencil_irb->align_wa_mt)
779 intel_renderbuffer_move_temp_back(brw, stencil_irb);
780
781 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
782 struct intel_renderbuffer *irb =
783 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
784
785 if (!irb || irb->align_wa_mt == NULL)
786 continue;
787
788 intel_renderbuffer_move_temp_back(brw, irb);
789 }
790 }
791
792 static void
793 brw_prepare_drawing(struct gl_context *ctx,
794 const struct _mesa_index_buffer *ib,
795 bool index_bounds_valid,
796 GLuint min_index,
797 GLuint max_index)
798 {
799 struct brw_context *brw = brw_context(ctx);
800
801 if (ctx->NewState)
802 _mesa_update_state(ctx);
803
804 /* We have to validate the textures *before* checking for fallbacks;
805 * otherwise, the software fallback won't be able to rely on the
806 * texture state, the firstLevel and lastLevel fields won't be
807 * set in the intel texture object (they'll both be 0), and the
808 * software fallback will segfault if it attempts to access any
809 * texture level other than level 0.
810 */
811 brw_validate_textures(brw);
812
813 /* Find the highest sampler unit used by each shader program. A bit-count
814 * won't work since ARB programs use the texture unit number as the sampler
815 * index.
816 */
817 brw->wm.base.sampler_count =
818 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
819 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
820 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
821 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
822 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
823 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
824 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
825 brw->vs.base.sampler_count =
826 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
827
828 intel_prepare_render(brw);
829
830 /* This workaround has to happen outside of brw_upload_render_state()
831 * because it may flush the batchbuffer for a blit, affecting the state
832 * flags.
833 */
834 brw_workaround_depthstencil_alignment(brw, 0);
835
836 /* Resolves must occur after updating renderbuffers, updating context state,
837 * and finalizing textures but before setting up any hardware state for
838 * this draw call.
839 */
840 bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS] = { };
841 brw_predraw_resolve_inputs(brw, true, draw_aux_buffer_disabled);
842 brw_predraw_resolve_framebuffer(brw, draw_aux_buffer_disabled);
843
844 /* Bind all inputs, derive varying and size information:
845 */
846 brw_merge_inputs(brw);
847
848 brw->ib.ib = ib;
849 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
850
851 brw->vb.index_bounds_valid = index_bounds_valid;
852 brw->vb.min_index = min_index;
853 brw->vb.max_index = max_index;
854 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
855 }
856
857 static void
858 brw_finish_drawing(struct gl_context *ctx)
859 {
860 struct brw_context *brw = brw_context(ctx);
861
862 if (brw->always_flush_batch)
863 intel_batchbuffer_flush(brw);
864
865 brw_program_cache_check_size(brw);
866 brw_postdraw_reconcile_align_wa_slices(brw);
867 brw_postdraw_set_buffers_need_resolve(brw);
868
869 if (brw->draw.draw_params_count_bo) {
870 brw_bo_unreference(brw->draw.draw_params_count_bo);
871 brw->draw.draw_params_count_bo = NULL;
872 }
873 }
874
875 /* May fail if out of video memory for texture or vbo upload, or on
876 * fallback conditions.
877 */
878 static void
879 brw_draw_single_prim(struct gl_context *ctx,
880 const struct _mesa_prim *prim,
881 unsigned prim_id,
882 struct brw_transform_feedback_object *xfb_obj,
883 unsigned stream,
884 struct gl_buffer_object *indirect)
885 {
886 struct brw_context *brw = brw_context(ctx);
887 const struct gen_device_info *devinfo = &brw->screen->devinfo;
888 bool fail_next = false;
889
890 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
891 * atoms that happen on every draw call.
892 */
893 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
894
895 /* Flush the batch if the batch/state buffers are nearly full. We can
896 * grow them if needed, but this is not free, so we'd like to avoid it.
897 */
898 intel_batchbuffer_require_space(brw, 1500);
899 brw_require_statebuffer_space(brw, 2400);
900 intel_batchbuffer_save_state(brw);
901
902 if (brw->num_instances != prim->num_instances ||
903 brw->basevertex != prim->basevertex ||
904 brw->baseinstance != prim->base_instance) {
905 brw->num_instances = prim->num_instances;
906 brw->basevertex = prim->basevertex;
907 brw->baseinstance = prim->base_instance;
908 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
909 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
910 brw_merge_inputs(brw);
911 }
912 }
913
914 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
915 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
916 * always flag if the shader uses one of the values. For direct draws,
917 * we only flag if the values change.
918 */
919 const int new_firstvertex =
920 prim->indexed ? prim->basevertex : prim->start;
921 const int new_baseinstance = prim->base_instance;
922 const struct brw_vs_prog_data *vs_prog_data =
923 brw_vs_prog_data(brw->vs.base.prog_data);
924 if (prim_id > 0) {
925 const bool uses_draw_parameters =
926 vs_prog_data->uses_firstvertex ||
927 vs_prog_data->uses_baseinstance;
928
929 if ((uses_draw_parameters && prim->is_indirect) ||
930 (vs_prog_data->uses_firstvertex &&
931 brw->draw.params.firstvertex != new_firstvertex) ||
932 (vs_prog_data->uses_baseinstance &&
933 brw->draw.params.gl_baseinstance != new_baseinstance))
934 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
935 }
936
937 brw->draw.params.firstvertex = new_firstvertex;
938 brw->draw.params.gl_baseinstance = new_baseinstance;
939 brw_bo_unreference(brw->draw.draw_params_bo);
940
941 if (prim->is_indirect) {
942 /* Point draw_params_bo at the indirect buffer. */
943 brw->draw.draw_params_bo =
944 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
945 brw_bo_reference(brw->draw.draw_params_bo);
946 brw->draw.draw_params_offset =
947 prim->indirect_offset + (prim->indexed ? 12 : 8);
948 } else {
949 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
950 * has to upload gl_BaseVertex and such if they're needed.
951 */
952 brw->draw.draw_params_bo = NULL;
953 brw->draw.draw_params_offset = 0;
954 }
955
956 /* gl_DrawID always needs its own vertex buffer since it's not part of
957 * the indirect parameter buffer. Same for is_indexed_draw, which shares
958 * the buffer with gl_DrawID. If the program uses gl_DrawID, we need to
959 * flag BRW_NEW_VERTICES. For the first iteration, we don't have valid
960 * vs_prog_data, but we always flag BRW_NEW_VERTICES before the loop.
961 */
962 if (prim_id > 0 && vs_prog_data->uses_drawid)
963 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
964
965 brw->draw.derived_params.gl_drawid = prim->draw_id;
966 brw->draw.derived_params.is_indexed_draw = prim->indexed ? ~0 : 0;
967
968 brw_bo_unreference(brw->draw.derived_draw_params_bo);
969 brw->draw.derived_draw_params_bo = NULL;
970 brw->draw.derived_draw_params_offset = 0;
971
972 if (devinfo->gen < 6)
973 brw_set_prim(brw, prim);
974 else
975 gen6_set_prim(brw, prim);
976
977 retry:
978
979 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
980 * that the state updated in the loop outside of this block is that in
981 * *_set_prim or intel_batchbuffer_flush(), which only impacts
982 * brw->ctx.NewDriverState.
983 */
984 if (brw->ctx.NewDriverState) {
985 brw->batch.no_wrap = true;
986 brw_upload_render_state(brw);
987 }
988
989 brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream);
990
991 brw->batch.no_wrap = false;
992
993 if (!brw_batch_has_aperture_space(brw, 0)) {
994 if (!fail_next) {
995 intel_batchbuffer_reset_to_saved(brw);
996 intel_batchbuffer_flush(brw);
997 fail_next = true;
998 goto retry;
999 } else {
1000 int ret = intel_batchbuffer_flush(brw);
1001 WARN_ONCE(ret == -ENOSPC,
1002 "i965: Single primitive emit exceeded "
1003 "available aperture space\n");
1004 }
1005 }
1006
1007 /* Now that we know we haven't run out of aperture space, we can safely
1008 * reset the dirty bits.
1009 */
1010 if (brw->ctx.NewDriverState)
1011 brw_render_state_finished(brw);
1012
1013 return;
1014 }
1015
1016
1017
1018 void
1019 brw_draw_prims(struct gl_context *ctx,
1020 const struct _mesa_prim *prims,
1021 GLuint nr_prims,
1022 const struct _mesa_index_buffer *ib,
1023 GLboolean index_bounds_valid,
1024 GLuint min_index,
1025 GLuint max_index,
1026 struct gl_transform_feedback_object *gl_xfb_obj,
1027 unsigned stream,
1028 struct gl_buffer_object *indirect)
1029 {
1030 unsigned i;
1031 struct brw_context *brw = brw_context(ctx);
1032 int predicate_state = brw->predicate.state;
1033 struct brw_transform_feedback_object *xfb_obj =
1034 (struct brw_transform_feedback_object *) gl_xfb_obj;
1035
1036 if (!brw_check_conditional_render(brw))
1037 return;
1038
1039 /* Handle primitive restart if needed */
1040 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
1041 /* The draw was handled, so we can exit now */
1042 return;
1043 }
1044
1045 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
1046 * won't support all the extensions we support.
1047 */
1048 if (ctx->RenderMode != GL_RENDER) {
1049 perf_debug("%s render mode not supported in hardware\n",
1050 _mesa_enum_to_string(ctx->RenderMode));
1051 _swsetup_Wakeup(ctx);
1052 _tnl_wakeup(ctx);
1053 _tnl_draw(ctx, prims, nr_prims, ib,
1054 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
1055 return;
1056 }
1057
1058 /* If we're going to have to upload any of the user's vertex arrays, then
1059 * get the minimum and maximum of their index buffer so we know what range
1060 * to upload.
1061 */
1062 if (!index_bounds_valid && _mesa_draw_user_array_bits(ctx) != 0) {
1063 perf_debug("Scanning index buffer to compute index buffer bounds. "
1064 "Use glDrawRangeElements() to avoid this.\n");
1065 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
1066 index_bounds_valid = true;
1067 }
1068
1069 brw_prepare_drawing(ctx, ib, index_bounds_valid, min_index, max_index);
1070 /* Try drawing with the hardware, but don't do anything else if we can't
1071 * manage it. swrast doesn't support our featureset, so we can't fall back
1072 * to it.
1073 */
1074
1075 for (i = 0; i < nr_prims; i++) {
1076 /* Implementation of ARB_indirect_parameters via predicates */
1077 if (brw->draw.draw_params_count_bo) {
1078 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
1079
1080 /* Upload the current draw count from the draw parameters buffer to
1081 * MI_PREDICATE_SRC0.
1082 */
1083 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
1084 brw->draw.draw_params_count_bo,
1085 brw->draw.draw_params_count_offset);
1086 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
1087 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
1088 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
1089 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
1090
1091 BEGIN_BATCH(1);
1092 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
1093 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
1094 MI_PREDICATE_COMBINEOP_SET |
1095 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1096 } else {
1097 OUT_BATCH(GEN7_MI_PREDICATE |
1098 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
1099 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1100 }
1101 ADVANCE_BATCH();
1102
1103 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
1104 }
1105
1106 brw_draw_single_prim(ctx, &prims[i], i, xfb_obj, stream, indirect);
1107 }
1108
1109 brw_finish_drawing(ctx);
1110 brw->predicate.state = predicate_state;
1111 }
1112
1113 void
1114 brw_draw_indirect_prims(struct gl_context *ctx,
1115 GLuint mode,
1116 struct gl_buffer_object *indirect_data,
1117 GLsizeiptr indirect_offset,
1118 unsigned draw_count,
1119 unsigned stride,
1120 struct gl_buffer_object *indirect_params,
1121 GLsizeiptr indirect_params_offset,
1122 const struct _mesa_index_buffer *ib)
1123 {
1124 struct brw_context *brw = brw_context(ctx);
1125 struct _mesa_prim *prim;
1126 GLsizei i;
1127
1128 prim = calloc(draw_count, sizeof(*prim));
1129 if (prim == NULL) {
1130 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
1131 (draw_count > 1) ? "Multi" : "",
1132 ib ? "Elements" : "Arrays",
1133 indirect_params ? "CountARB" : "");
1134 return;
1135 }
1136
1137 prim[0].begin = 1;
1138 prim[draw_count - 1].end = 1;
1139 for (i = 0; i < draw_count; ++i, indirect_offset += stride) {
1140 prim[i].mode = mode;
1141 prim[i].indexed = ib != NULL;
1142 prim[i].indirect_offset = indirect_offset;
1143 prim[i].is_indirect = 1;
1144 prim[i].draw_id = i;
1145 }
1146
1147 if (indirect_params) {
1148 brw->draw.draw_params_count_bo =
1149 intel_buffer_object(indirect_params)->buffer;
1150 brw_bo_reference(brw->draw.draw_params_count_bo);
1151 brw->draw.draw_params_count_offset = indirect_params_offset;
1152 }
1153
1154 brw_draw_prims(ctx, prim, draw_count,
1155 ib, false, 0, ~0,
1156 NULL, 0,
1157 indirect_data);
1158
1159 free(prim);
1160 }
1161
1162 void
1163 brw_init_draw_functions(struct dd_function_table *functions)
1164 {
1165 /* Register our drawing function:
1166 */
1167 functions->Draw = brw_draw_prims;
1168 functions->DrawIndirect = brw_draw_indirect_prims;
1169 }
1170
1171 void
1172 brw_draw_init(struct brw_context *brw)
1173 {
1174 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1175 brw->vb.inputs[i].buffer = -1;
1176 brw->vb.nr_buffers = 0;
1177 brw->vb.nr_enabled = 0;
1178 }
1179
1180 void
1181 brw_draw_destroy(struct brw_context *brw)
1182 {
1183 unsigned i;
1184
1185 for (i = 0; i < brw->vb.nr_buffers; i++) {
1186 brw_bo_unreference(brw->vb.buffers[i].bo);
1187 brw->vb.buffers[i].bo = NULL;
1188 }
1189 brw->vb.nr_buffers = 0;
1190
1191 for (i = 0; i < brw->vb.nr_enabled; i++) {
1192 brw->vb.enabled[i]->buffer = -1;
1193 }
1194 brw->vb.nr_enabled = 0;
1195
1196 brw_bo_unreference(brw->ib.bo);
1197 brw->ib.bo = NULL;
1198 }