i965: For color clears, only disable writes to components that exist.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <sys/errno.h>
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/condrender.h"
33 #include "main/samplerobj.h"
34 #include "main/state.h"
35 #include "main/enums.h"
36 #include "main/macros.h"
37 #include "main/transformfeedback.h"
38 #include "tnl/tnl.h"
39 #include "vbo/vbo_context.h"
40 #include "swrast/swrast.h"
41 #include "swrast_setup/swrast_setup.h"
42 #include "drivers/common/meta.h"
43
44 #include "brw_blorp.h"
45 #include "brw_draw.h"
46 #include "brw_defines.h"
47 #include "brw_context.h"
48 #include "brw_state.h"
49
50 #include "intel_batchbuffer.h"
51 #include "intel_buffers.h"
52 #include "intel_fbo.h"
53 #include "intel_mipmap_tree.h"
54 #include "intel_regions.h"
55 #include "intel_buffer_objects.h"
56
57 #define FILE_DEBUG_FLAG DEBUG_PRIMS
58
59 const GLuint prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
60 _3DPRIM_POINTLIST,
61 _3DPRIM_LINELIST,
62 _3DPRIM_LINELOOP,
63 _3DPRIM_LINESTRIP,
64 _3DPRIM_TRILIST,
65 _3DPRIM_TRISTRIP,
66 _3DPRIM_TRIFAN,
67 _3DPRIM_QUADLIST,
68 _3DPRIM_QUADSTRIP,
69 _3DPRIM_POLYGON,
70 _3DPRIM_LINELIST_ADJ,
71 _3DPRIM_LINESTRIP_ADJ,
72 _3DPRIM_TRILIST_ADJ,
73 _3DPRIM_TRISTRIP_ADJ,
74 };
75
76
77 static const GLenum reduced_prim[GL_POLYGON+1] = {
78 GL_POINTS,
79 GL_LINES,
80 GL_LINES,
81 GL_LINES,
82 GL_TRIANGLES,
83 GL_TRIANGLES,
84 GL_TRIANGLES,
85 GL_TRIANGLES,
86 GL_TRIANGLES,
87 GL_TRIANGLES
88 };
89
90
91 /* When the primitive changes, set a state bit and re-validate. Not
92 * the nicest and would rather deal with this by having all the
93 * programs be immune to the active primitive (ie. cope with all
94 * possibilities). That may not be realistic however.
95 */
96 static void brw_set_prim(struct brw_context *brw,
97 const struct _mesa_prim *prim)
98 {
99 struct gl_context *ctx = &brw->ctx;
100 uint32_t hw_prim = prim_to_hw_prim[prim->mode];
101
102 DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode));
103
104 /* Slight optimization to avoid the GS program when not needed:
105 */
106 if (prim->mode == GL_QUAD_STRIP &&
107 ctx->Light.ShadeModel != GL_FLAT &&
108 ctx->Polygon.FrontMode == GL_FILL &&
109 ctx->Polygon.BackMode == GL_FILL)
110 hw_prim = _3DPRIM_TRISTRIP;
111
112 if (prim->mode == GL_QUADS && prim->count == 4 &&
113 ctx->Light.ShadeModel != GL_FLAT &&
114 ctx->Polygon.FrontMode == GL_FILL &&
115 ctx->Polygon.BackMode == GL_FILL) {
116 hw_prim = _3DPRIM_TRIFAN;
117 }
118
119 if (hw_prim != brw->primitive) {
120 brw->primitive = hw_prim;
121 brw->state.dirty.brw |= BRW_NEW_PRIMITIVE;
122
123 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
124 brw->reduced_primitive = reduced_prim[prim->mode];
125 brw->state.dirty.brw |= BRW_NEW_REDUCED_PRIMITIVE;
126 }
127 }
128 }
129
130 static void gen6_set_prim(struct brw_context *brw,
131 const struct _mesa_prim *prim)
132 {
133 uint32_t hw_prim;
134
135 DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode));
136
137 hw_prim = prim_to_hw_prim[prim->mode];
138
139 if (hw_prim != brw->primitive) {
140 brw->primitive = hw_prim;
141 brw->state.dirty.brw |= BRW_NEW_PRIMITIVE;
142 }
143 }
144
145
146 /**
147 * The hardware is capable of removing dangling vertices on its own; however,
148 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
149 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
150 * This function manually trims dangling vertices from a draw call involving
151 * quads so that those dangling vertices won't get drawn when we convert to
152 * trifans/tristrips.
153 */
154 static GLuint trim(GLenum prim, GLuint length)
155 {
156 if (prim == GL_QUAD_STRIP)
157 return length > 3 ? (length - length % 2) : 0;
158 else if (prim == GL_QUADS)
159 return length - length % 4;
160 else
161 return length;
162 }
163
164
165 static void brw_emit_prim(struct brw_context *brw,
166 const struct _mesa_prim *prim,
167 uint32_t hw_prim)
168 {
169 int verts_per_instance;
170 int vertex_access_type;
171 int start_vertex_location;
172 int base_vertex_location;
173 int indirect_flag;
174
175 DBG("PRIM: %s %d %d\n", _mesa_lookup_enum_by_nr(prim->mode),
176 prim->start, prim->count);
177
178 start_vertex_location = prim->start;
179 base_vertex_location = prim->basevertex;
180 if (prim->indexed) {
181 vertex_access_type = brw->gen >= 7 ?
182 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
183 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
184 start_vertex_location += brw->ib.start_vertex_offset;
185 base_vertex_location += brw->vb.start_vertex_bias;
186 } else {
187 vertex_access_type = brw->gen >= 7 ?
188 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
189 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
190 start_vertex_location += brw->vb.start_vertex_bias;
191 }
192
193 /* We only need to trim the primitive count on pre-Gen6. */
194 if (brw->gen < 6)
195 verts_per_instance = trim(prim->mode, prim->count);
196 else
197 verts_per_instance = prim->count;
198
199 /* If nothing to emit, just return. */
200 if (verts_per_instance == 0 && !prim->is_indirect)
201 return;
202
203 /* If we're set to always flush, do it before and after the primitive emit.
204 * We want to catch both missed flushes that hurt instruction/state cache
205 * and missed flushes of the render cache as it heads to other parts of
206 * the besides the draw code.
207 */
208 if (brw->always_flush_cache) {
209 intel_batchbuffer_emit_mi_flush(brw);
210 }
211
212 /* If indirect, emit a bunch of loads from the indirect BO. */
213 if (prim->is_indirect) {
214 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
215 drm_intel_bo *bo = intel_bufferobj_buffer(brw,
216 intel_buffer_object(indirect_buffer),
217 prim->indirect_offset, 5 * sizeof(GLuint));
218
219 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
220
221 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
222 I915_GEM_DOMAIN_VERTEX, 0,
223 prim->indirect_offset + 0);
224 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
225 I915_GEM_DOMAIN_VERTEX, 0,
226 prim->indirect_offset + 4);
227
228 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
229 I915_GEM_DOMAIN_VERTEX, 0,
230 prim->indirect_offset + 8);
231 if (prim->indexed) {
232 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
233 I915_GEM_DOMAIN_VERTEX, 0,
234 prim->indirect_offset + 12);
235 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
236 I915_GEM_DOMAIN_VERTEX, 0,
237 prim->indirect_offset + 16);
238 } else {
239 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
240 I915_GEM_DOMAIN_VERTEX, 0,
241 prim->indirect_offset + 12);
242 BEGIN_BATCH(3);
243 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
244 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
245 OUT_BATCH(0);
246 ADVANCE_BATCH();
247 }
248 }
249 else {
250 indirect_flag = 0;
251 }
252
253
254 if (brw->gen >= 7) {
255 BEGIN_BATCH(7);
256 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag);
257 OUT_BATCH(hw_prim | vertex_access_type);
258 } else {
259 BEGIN_BATCH(6);
260 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
261 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
262 vertex_access_type);
263 }
264 OUT_BATCH(verts_per_instance);
265 OUT_BATCH(start_vertex_location);
266 OUT_BATCH(prim->num_instances);
267 OUT_BATCH(prim->base_instance);
268 OUT_BATCH(base_vertex_location);
269 ADVANCE_BATCH();
270
271 /* Only used on Sandybridge; harmless to set elsewhere. */
272 brw->batch.need_workaround_flush = true;
273
274 if (brw->always_flush_cache) {
275 intel_batchbuffer_emit_mi_flush(brw);
276 }
277 }
278
279
280 static void brw_merge_inputs( struct brw_context *brw,
281 const struct gl_client_array *arrays[])
282 {
283 GLuint i;
284
285 for (i = 0; i < brw->vb.nr_buffers; i++) {
286 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
287 brw->vb.buffers[i].bo = NULL;
288 }
289 brw->vb.nr_buffers = 0;
290
291 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
292 brw->vb.inputs[i].buffer = -1;
293 brw->vb.inputs[i].glarray = arrays[i];
294 brw->vb.inputs[i].attrib = (gl_vert_attrib) i;
295 }
296 }
297
298 /*
299 * \brief Resolve buffers before drawing.
300 *
301 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
302 * enabled depth texture, and flush the render cache for any dirty textures.
303 *
304 * (In the future, this will also perform MSAA resolves).
305 */
306 static void
307 brw_predraw_resolve_buffers(struct brw_context *brw)
308 {
309 struct gl_context *ctx = &brw->ctx;
310 struct intel_renderbuffer *depth_irb;
311 struct intel_texture_object *tex_obj;
312
313 /* Resolve the depth buffer's HiZ buffer. */
314 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
315 if (depth_irb)
316 intel_renderbuffer_resolve_hiz(brw, depth_irb);
317
318 /* Resolve depth buffer and render cache of each enabled texture. */
319 for (int i = 0; i < ctx->Const.MaxCombinedTextureImageUnits; i++) {
320 if (!ctx->Texture.Unit[i]._ReallyEnabled)
321 continue;
322 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
323 if (!tex_obj || !tex_obj->mt)
324 continue;
325 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
326 intel_miptree_resolve_color(brw, tex_obj->mt);
327 brw_render_cache_set_check_flush(brw, tex_obj->mt->region->bo);
328 }
329 }
330
331 /**
332 * \brief Call this after drawing to mark which buffers need resolving
333 *
334 * If the depth buffer was written to and if it has an accompanying HiZ
335 * buffer, then mark that it needs a depth resolve.
336 *
337 * If the color buffer is a multisample window system buffer, then
338 * mark that it needs a downsample.
339 *
340 * Also mark any render targets which will be textured as needing a render
341 * cache flush.
342 */
343 static void brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
344 {
345 struct gl_context *ctx = &brw->ctx;
346 struct gl_framebuffer *fb = ctx->DrawBuffer;
347
348 struct intel_renderbuffer *front_irb = NULL;
349 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
350 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
351 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
352 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
353
354 if (brw_is_front_buffer_drawing(fb))
355 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
356
357 if (front_irb)
358 front_irb->need_downsample = true;
359 if (back_irb)
360 back_irb->need_downsample = true;
361 if (depth_irb && ctx->Depth.Mask) {
362 intel_renderbuffer_att_set_needs_depth_resolve(depth_att);
363 brw_render_cache_set_add_bo(brw, depth_irb->mt->region->bo);
364 }
365
366 if (ctx->Extensions.ARB_stencil_texturing &&
367 stencil_irb && ctx->Stencil._WriteEnabled) {
368 brw_render_cache_set_add_bo(brw, stencil_irb->mt->region->bo);
369 }
370
371 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
372 struct intel_renderbuffer *irb =
373 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
374
375 if (irb)
376 brw_render_cache_set_add_bo(brw, irb->mt->region->bo);
377 }
378 }
379
380 /* May fail if out of video memory for texture or vbo upload, or on
381 * fallback conditions.
382 */
383 static bool brw_try_draw_prims( struct gl_context *ctx,
384 const struct gl_client_array *arrays[],
385 const struct _mesa_prim *prims,
386 GLuint nr_prims,
387 const struct _mesa_index_buffer *ib,
388 GLuint min_index,
389 GLuint max_index,
390 struct gl_buffer_object *indirect)
391 {
392 struct brw_context *brw = brw_context(ctx);
393 bool retval = true;
394 GLuint i;
395 bool fail_next = false;
396
397 if (ctx->NewState)
398 _mesa_update_state( ctx );
399
400 /* Find the highest sampler unit used by each shader program. A bit-count
401 * won't work since ARB programs use the texture unit number as the sampler
402 * index.
403 */
404 brw->wm.base.sampler_count =
405 _mesa_fls(ctx->FragmentProgram._Current->Base.SamplersUsed);
406 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
407 _mesa_fls(ctx->GeometryProgram._Current->Base.SamplersUsed) : 0;
408 brw->vs.base.sampler_count =
409 _mesa_fls(ctx->VertexProgram._Current->Base.SamplersUsed);
410
411 /* We have to validate the textures *before* checking for fallbacks;
412 * otherwise, the software fallback won't be able to rely on the
413 * texture state, the firstLevel and lastLevel fields won't be
414 * set in the intel texture object (they'll both be 0), and the
415 * software fallback will segfault if it attempts to access any
416 * texture level other than level 0.
417 */
418 brw_validate_textures( brw );
419
420 intel_prepare_render(brw);
421
422 /* This workaround has to happen outside of brw_upload_state() because it
423 * may flush the batchbuffer for a blit, affecting the state flags.
424 */
425 brw_workaround_depthstencil_alignment(brw, 0);
426
427 /* Resolves must occur after updating renderbuffers, updating context state,
428 * and finalizing textures but before setting up any hardware state for
429 * this draw call.
430 */
431 brw_predraw_resolve_buffers(brw);
432
433 /* Bind all inputs, derive varying and size information:
434 */
435 brw_merge_inputs( brw, arrays );
436
437 brw->ib.ib = ib;
438 brw->state.dirty.brw |= BRW_NEW_INDICES;
439
440 brw->vb.min_index = min_index;
441 brw->vb.max_index = max_index;
442 brw->state.dirty.brw |= BRW_NEW_VERTICES;
443
444 for (i = 0; i < nr_prims; i++) {
445 int estimated_max_prim_size;
446
447 estimated_max_prim_size = 512; /* batchbuffer commands */
448 estimated_max_prim_size += (BRW_MAX_TEX_UNIT *
449 (sizeof(struct brw_sampler_state) +
450 sizeof(struct gen5_sampler_default_color)));
451 estimated_max_prim_size += 1024; /* gen6 VS push constants */
452 estimated_max_prim_size += 1024; /* gen6 WM push constants */
453 estimated_max_prim_size += 512; /* misc. pad */
454
455 /* Flush the batch if it's approaching full, so that we don't wrap while
456 * we've got validated state that needs to be in the same batch as the
457 * primitives.
458 */
459 intel_batchbuffer_require_space(brw, estimated_max_prim_size, RENDER_RING);
460 intel_batchbuffer_save_state(brw);
461
462 if (brw->num_instances != prims[i].num_instances) {
463 brw->num_instances = prims[i].num_instances;
464 brw->state.dirty.brw |= BRW_NEW_VERTICES;
465 brw_merge_inputs(brw, arrays);
466 }
467 if (brw->basevertex != prims[i].basevertex) {
468 brw->basevertex = prims[i].basevertex;
469 brw->state.dirty.brw |= BRW_NEW_VERTICES;
470 brw_merge_inputs(brw, arrays);
471 }
472 if (brw->gen < 6)
473 brw_set_prim(brw, &prims[i]);
474 else
475 gen6_set_prim(brw, &prims[i]);
476
477 retry:
478 /* Note that before the loop, brw->state.dirty.brw was set to != 0, and
479 * that the state updated in the loop outside of this block is that in
480 * *_set_prim or intel_batchbuffer_flush(), which only impacts
481 * brw->state.dirty.brw.
482 */
483 if (brw->state.dirty.brw) {
484 brw->no_batch_wrap = true;
485 brw_upload_state(brw);
486 }
487
488 brw_emit_prim(brw, &prims[i], brw->primitive);
489
490 brw->no_batch_wrap = false;
491
492 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
493 if (!fail_next) {
494 intel_batchbuffer_reset_to_saved(brw);
495 intel_batchbuffer_flush(brw);
496 fail_next = true;
497 goto retry;
498 } else {
499 if (intel_batchbuffer_flush(brw) == -ENOSPC) {
500 static bool warned = false;
501
502 if (!warned) {
503 fprintf(stderr, "i965: Single primitive emit exceeded"
504 "available aperture space\n");
505 warned = true;
506 }
507
508 retval = false;
509 }
510 }
511 }
512
513 /* Now that we know we haven't run out of aperture space, we can safely
514 * reset the dirty bits.
515 */
516 if (brw->state.dirty.brw)
517 brw_clear_dirty_bits(brw);
518 }
519
520 if (brw->always_flush_batch)
521 intel_batchbuffer_flush(brw);
522
523 brw_state_cache_check_size(brw);
524 brw_postdraw_set_buffers_need_resolve(brw);
525
526 return retval;
527 }
528
529 void brw_draw_prims( struct gl_context *ctx,
530 const struct _mesa_prim *prims,
531 GLuint nr_prims,
532 const struct _mesa_index_buffer *ib,
533 GLboolean index_bounds_valid,
534 GLuint min_index,
535 GLuint max_index,
536 struct gl_transform_feedback_object *unused_tfb_object,
537 struct gl_buffer_object *indirect )
538 {
539 struct brw_context *brw = brw_context(ctx);
540 const struct gl_client_array **arrays = ctx->Array._DrawArrays;
541
542 assert(unused_tfb_object == NULL);
543
544 if (!_mesa_check_conditional_render(ctx))
545 return;
546
547 /* Handle primitive restart if needed */
548 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
549 /* The draw was handled, so we can exit now */
550 return;
551 }
552
553 /* If we're going to have to upload any of the user's vertex arrays, then
554 * get the minimum and maximum of their index buffer so we know what range
555 * to upload.
556 */
557 if (!vbo_all_varyings_in_vbos(arrays) && !index_bounds_valid) {
558 perf_debug("Scanning index buffer to compute index buffer bounds. "
559 "Use glDrawRangeElements() to avoid this.\n");
560 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
561 }
562
563 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
564 * won't support all the extensions we support.
565 */
566 if (ctx->RenderMode != GL_RENDER) {
567 perf_debug("%s render mode not supported in hardware\n",
568 _mesa_lookup_enum_by_nr(ctx->RenderMode));
569 _swsetup_Wakeup(ctx);
570 _tnl_wakeup(ctx);
571 _tnl_draw_prims(ctx, arrays, prims, nr_prims, ib, min_index, max_index);
572 return;
573 }
574
575 /* Try drawing with the hardware, but don't do anything else if we can't
576 * manage it. swrast doesn't support our featureset, so we can't fall back
577 * to it.
578 */
579 brw_try_draw_prims(ctx, arrays, prims, nr_prims, ib, min_index, max_index, indirect);
580 }
581
582 void brw_draw_init( struct brw_context *brw )
583 {
584 struct gl_context *ctx = &brw->ctx;
585 struct vbo_context *vbo = vbo_context(ctx);
586 int i;
587
588 /* Register our drawing function:
589 */
590 vbo->draw_prims = brw_draw_prims;
591
592 for (i = 0; i < VERT_ATTRIB_MAX; i++)
593 brw->vb.inputs[i].buffer = -1;
594 brw->vb.nr_buffers = 0;
595 brw->vb.nr_enabled = 0;
596 }
597
598 void brw_draw_destroy( struct brw_context *brw )
599 {
600 int i;
601
602 for (i = 0; i < brw->vb.nr_buffers; i++) {
603 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
604 brw->vb.buffers[i].bo = NULL;
605 }
606 brw->vb.nr_buffers = 0;
607
608 for (i = 0; i < brw->vb.nr_enabled; i++) {
609 brw->vb.enabled[i]->buffer = -1;
610 }
611 brw->vb.nr_enabled = 0;
612
613 drm_intel_bo_unreference(brw->ib.bo);
614 brw->ib.bo = NULL;
615 }