i965: Fix ARB_indirect_parameters logic.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/blend.h"
29 #include "main/context.h"
30 #include "main/condrender.h"
31 #include "main/samplerobj.h"
32 #include "main/state.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35 #include "main/transformfeedback.h"
36 #include "main/framebuffer.h"
37 #include "tnl/tnl.h"
38 #include "vbo/vbo_context.h"
39 #include "swrast/swrast.h"
40 #include "swrast_setup/swrast_setup.h"
41 #include "drivers/common/meta.h"
42 #include "util/bitscan.h"
43
44 #include "brw_blorp.h"
45 #include "brw_draw.h"
46 #include "brw_defines.h"
47 #include "compiler/brw_eu_defines.h"
48 #include "brw_context.h"
49 #include "brw_state.h"
50
51 #include "intel_batchbuffer.h"
52 #include "intel_buffers.h"
53 #include "intel_fbo.h"
54 #include "intel_mipmap_tree.h"
55 #include "intel_buffer_objects.h"
56
57 #define FILE_DEBUG_FLAG DEBUG_PRIMS
58
59
60 static const GLenum reduced_prim[GL_POLYGON+1] = {
61 [GL_POINTS] = GL_POINTS,
62 [GL_LINES] = GL_LINES,
63 [GL_LINE_LOOP] = GL_LINES,
64 [GL_LINE_STRIP] = GL_LINES,
65 [GL_TRIANGLES] = GL_TRIANGLES,
66 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
67 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
68 [GL_QUADS] = GL_TRIANGLES,
69 [GL_QUAD_STRIP] = GL_TRIANGLES,
70 [GL_POLYGON] = GL_TRIANGLES
71 };
72
73 /* When the primitive changes, set a state bit and re-validate. Not
74 * the nicest and would rather deal with this by having all the
75 * programs be immune to the active primitive (ie. cope with all
76 * possibilities). That may not be realistic however.
77 */
78 static void
79 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
80 {
81 struct gl_context *ctx = &brw->ctx;
82 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
83
84 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
85
86 /* Slight optimization to avoid the GS program when not needed:
87 */
88 if (prim->mode == GL_QUAD_STRIP &&
89 ctx->Light.ShadeModel != GL_FLAT &&
90 ctx->Polygon.FrontMode == GL_FILL &&
91 ctx->Polygon.BackMode == GL_FILL)
92 hw_prim = _3DPRIM_TRISTRIP;
93
94 if (prim->mode == GL_QUADS && prim->count == 4 &&
95 ctx->Light.ShadeModel != GL_FLAT &&
96 ctx->Polygon.FrontMode == GL_FILL &&
97 ctx->Polygon.BackMode == GL_FILL) {
98 hw_prim = _3DPRIM_TRIFAN;
99 }
100
101 if (hw_prim != brw->primitive) {
102 brw->primitive = hw_prim;
103 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
104
105 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
106 brw->reduced_primitive = reduced_prim[prim->mode];
107 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
108 }
109 }
110 }
111
112 static void
113 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
114 {
115 const struct gl_context *ctx = &brw->ctx;
116 uint32_t hw_prim;
117
118 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
119
120 if (prim->mode == GL_PATCHES) {
121 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
122 } else {
123 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
124 }
125
126 if (hw_prim != brw->primitive) {
127 brw->primitive = hw_prim;
128 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
129 if (prim->mode == GL_PATCHES)
130 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
131 }
132 }
133
134
135 /**
136 * The hardware is capable of removing dangling vertices on its own; however,
137 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
138 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
139 * This function manually trims dangling vertices from a draw call involving
140 * quads so that those dangling vertices won't get drawn when we convert to
141 * trifans/tristrips.
142 */
143 static GLuint
144 trim(GLenum prim, GLuint length)
145 {
146 if (prim == GL_QUAD_STRIP)
147 return length > 3 ? (length - length % 2) : 0;
148 else if (prim == GL_QUADS)
149 return length - length % 4;
150 else
151 return length;
152 }
153
154
155 static void
156 brw_emit_prim(struct brw_context *brw,
157 const struct _mesa_prim *prim,
158 uint32_t hw_prim,
159 struct brw_transform_feedback_object *xfb_obj,
160 unsigned stream)
161 {
162 const struct gen_device_info *devinfo = &brw->screen->devinfo;
163 int verts_per_instance;
164 int vertex_access_type;
165 int indirect_flag;
166
167 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
168 prim->start, prim->count);
169
170 int start_vertex_location = prim->start;
171 int base_vertex_location = prim->basevertex;
172
173 if (prim->indexed) {
174 vertex_access_type = devinfo->gen >= 7 ?
175 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
176 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
177 start_vertex_location += brw->ib.start_vertex_offset;
178 base_vertex_location += brw->vb.start_vertex_bias;
179 } else {
180 vertex_access_type = devinfo->gen >= 7 ?
181 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
182 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
183 start_vertex_location += brw->vb.start_vertex_bias;
184 }
185
186 /* We only need to trim the primitive count on pre-Gen6. */
187 if (devinfo->gen < 6)
188 verts_per_instance = trim(prim->mode, prim->count);
189 else
190 verts_per_instance = prim->count;
191
192 /* If nothing to emit, just return. */
193 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
194 return;
195
196 /* If we're set to always flush, do it before and after the primitive emit.
197 * We want to catch both missed flushes that hurt instruction/state cache
198 * and missed flushes of the render cache as it heads to other parts of
199 * the besides the draw code.
200 */
201 if (brw->always_flush_cache)
202 brw_emit_mi_flush(brw);
203
204 /* If indirect, emit a bunch of loads from the indirect BO. */
205 if (xfb_obj) {
206 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
207
208 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
209 xfb_obj->prim_count_bo,
210 stream * sizeof(uint32_t));
211 BEGIN_BATCH(9);
212 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
213 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
214 OUT_BATCH(prim->num_instances);
215 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
216 OUT_BATCH(0);
217 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
218 OUT_BATCH(0);
219 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
220 OUT_BATCH(0);
221 ADVANCE_BATCH();
222 } else if (prim->is_indirect) {
223 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
224 struct brw_bo *bo = intel_bufferobj_buffer(brw,
225 intel_buffer_object(indirect_buffer),
226 prim->indirect_offset, 5 * sizeof(GLuint), false);
227
228 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
229
230 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
231 prim->indirect_offset + 0);
232 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
233 prim->indirect_offset + 4);
234
235 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
236 prim->indirect_offset + 8);
237 if (prim->indexed) {
238 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
239 prim->indirect_offset + 12);
240 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
241 prim->indirect_offset + 16);
242 } else {
243 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
244 prim->indirect_offset + 12);
245 BEGIN_BATCH(3);
246 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
247 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
248 OUT_BATCH(0);
249 ADVANCE_BATCH();
250 }
251 } else {
252 indirect_flag = 0;
253 }
254
255 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
256
257 if (devinfo->gen >= 7) {
258 const int predicate_enable =
259 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
260 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
261
262 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
263 OUT_BATCH(hw_prim | vertex_access_type);
264 } else {
265 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
266 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
267 vertex_access_type);
268 }
269 OUT_BATCH(verts_per_instance);
270 OUT_BATCH(start_vertex_location);
271 OUT_BATCH(prim->num_instances);
272 OUT_BATCH(prim->base_instance);
273 OUT_BATCH(base_vertex_location);
274 ADVANCE_BATCH();
275
276 if (brw->always_flush_cache)
277 brw_emit_mi_flush(brw);
278 }
279
280
281 static void
282 brw_merge_inputs(struct brw_context *brw,
283 const struct gl_vertex_array *arrays[])
284 {
285 const struct gen_device_info *devinfo = &brw->screen->devinfo;
286 const struct gl_context *ctx = &brw->ctx;
287 GLuint i;
288
289 for (i = 0; i < brw->vb.nr_buffers; i++) {
290 brw_bo_unreference(brw->vb.buffers[i].bo);
291 brw->vb.buffers[i].bo = NULL;
292 }
293 brw->vb.nr_buffers = 0;
294
295 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
296 brw->vb.inputs[i].buffer = -1;
297 brw->vb.inputs[i].glarray = arrays[i];
298 }
299
300 if (devinfo->gen < 8 && !devinfo->is_haswell) {
301 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
302 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
303 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
304 */
305 while (mask) {
306 uint8_t wa_flags = 0;
307
308 i = u_bit_scan64(&mask);
309
310 switch (brw->vb.inputs[i].glarray->Type) {
311
312 case GL_FIXED:
313 wa_flags = brw->vb.inputs[i].glarray->Size;
314 break;
315
316 case GL_INT_2_10_10_10_REV:
317 wa_flags |= BRW_ATTRIB_WA_SIGN;
318 /* fallthough */
319
320 case GL_UNSIGNED_INT_2_10_10_10_REV:
321 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
322 wa_flags |= BRW_ATTRIB_WA_BGRA;
323
324 if (brw->vb.inputs[i].glarray->Normalized)
325 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
326 else if (!brw->vb.inputs[i].glarray->Integer)
327 wa_flags |= BRW_ATTRIB_WA_SCALE;
328
329 break;
330 }
331
332 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
333 brw->vb.attrib_wa_flags[i] = wa_flags;
334 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
335 }
336 }
337 }
338 }
339
340 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
341 * or shader image. This causes a self-dependency, where both rendering
342 * and sampling may concurrently read or write the CCS buffer, causing
343 * incorrect pixels.
344 */
345 static bool
346 intel_disable_rb_aux_buffer(struct brw_context *brw,
347 struct intel_mipmap_tree *tex_mt,
348 unsigned min_level, unsigned num_levels,
349 const char *usage)
350 {
351 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
352 bool found = false;
353
354 /* We only need to worry about color compression and fast clears. */
355 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
356 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
357 return false;
358
359 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
360 const struct intel_renderbuffer *irb =
361 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
362
363 if (irb && irb->mt->bo == tex_mt->bo &&
364 irb->mt_level >= min_level &&
365 irb->mt_level < min_level + num_levels) {
366 found = brw->draw_aux_buffer_disabled[i] = true;
367 }
368 }
369
370 if (found) {
371 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
372 usage);
373 }
374
375 return found;
376 }
377
378 /**
379 * \brief Resolve buffers before drawing.
380 *
381 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
382 * enabled depth texture, and flush the render cache for any dirty textures.
383 */
384 void
385 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering)
386 {
387 struct gl_context *ctx = &brw->ctx;
388 struct intel_texture_object *tex_obj;
389
390 memset(brw->draw_aux_buffer_disabled, 0,
391 sizeof(brw->draw_aux_buffer_disabled));
392
393 /* Resolve depth buffer and render cache of each enabled texture. */
394 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
395 for (int i = 0; i <= maxEnabledUnit; i++) {
396 if (!ctx->Texture.Unit[i]._Current)
397 continue;
398 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
399 if (!tex_obj || !tex_obj->mt)
400 continue;
401
402 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
403 enum isl_format view_format =
404 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
405
406 unsigned min_level, min_layer, num_levels, num_layers;
407 if (tex_obj->base.Immutable) {
408 min_level = tex_obj->base.MinLevel;
409 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
410 min_layer = tex_obj->base.MinLayer;
411 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
412 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
413 } else {
414 min_level = tex_obj->base.BaseLevel;
415 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
416 min_layer = 0;
417 num_layers = INTEL_REMAINING_LAYERS;
418 }
419
420 const bool disable_aux = rendering &&
421 intel_disable_rb_aux_buffer(brw, tex_obj->mt, min_level, num_levels,
422 "for sampling");
423
424 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
425 min_level, num_levels,
426 min_layer, num_layers,
427 disable_aux);
428
429 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
430
431 if (tex_obj->base.StencilSampling ||
432 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
433 intel_update_r8stencil(brw, tex_obj->mt);
434 }
435 }
436
437 /* Resolve color for each active shader image. */
438 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
439 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
440
441 if (unlikely(prog && prog->info.num_images)) {
442 for (unsigned j = 0; j < prog->info.num_images; j++) {
443 struct gl_image_unit *u =
444 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
445 tex_obj = intel_texture_object(u->TexObj);
446
447 if (tex_obj && tex_obj->mt) {
448 intel_disable_rb_aux_buffer(brw, tex_obj->mt, 0, ~0,
449 "as a shader image");
450
451 intel_miptree_prepare_image(brw, tex_obj->mt);
452
453 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
454 }
455 }
456 }
457 }
458 }
459
460 static void
461 brw_predraw_resolve_framebuffer(struct brw_context *brw)
462 {
463 struct gl_context *ctx = &brw->ctx;
464 struct intel_renderbuffer *depth_irb;
465
466 /* Resolve the depth buffer's HiZ buffer. */
467 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
468 if (depth_irb && depth_irb->mt) {
469 intel_miptree_prepare_depth(brw, depth_irb->mt,
470 depth_irb->mt_level,
471 depth_irb->mt_layer,
472 depth_irb->layer_count);
473 }
474
475 /* Resolve color buffers for non-coherent framebuffer fetch. */
476 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
477 ctx->FragmentProgram._Current &&
478 ctx->FragmentProgram._Current->info.outputs_read) {
479 const struct gl_framebuffer *fb = ctx->DrawBuffer;
480
481 /* This is only used for non-coherent framebuffer fetch, so we don't
482 * need to worry about CCS_E and can simply pass 'false' below.
483 */
484 assert(brw->screen->devinfo.gen < 9);
485
486 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
487 const struct intel_renderbuffer *irb =
488 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
489
490 if (irb) {
491 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
492 irb->mt_level, 1,
493 irb->mt_layer, irb->layer_count,
494 false);
495 }
496 }
497 }
498
499 struct gl_framebuffer *fb = ctx->DrawBuffer;
500 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
501 struct intel_renderbuffer *irb =
502 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
503
504 if (irb == NULL || irb->mt == NULL)
505 continue;
506
507 mesa_format mesa_format =
508 _mesa_get_render_format(ctx, intel_rb_format(irb));
509 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
510
511 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
512 irb->mt_layer, irb->layer_count,
513 isl_format,
514 ctx->Color.BlendEnabled & (1 << i));
515 }
516 }
517
518 /**
519 * \brief Call this after drawing to mark which buffers need resolving
520 *
521 * If the depth buffer was written to and if it has an accompanying HiZ
522 * buffer, then mark that it needs a depth resolve.
523 *
524 * If the color buffer is a multisample window system buffer, then
525 * mark that it needs a downsample.
526 *
527 * Also mark any render targets which will be textured as needing a render
528 * cache flush.
529 */
530 static void
531 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
532 {
533 struct gl_context *ctx = &brw->ctx;
534 struct gl_framebuffer *fb = ctx->DrawBuffer;
535
536 struct intel_renderbuffer *front_irb = NULL;
537 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
538 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
539 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
540 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
541
542 if (_mesa_is_front_buffer_drawing(fb))
543 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
544
545 if (front_irb)
546 front_irb->need_downsample = true;
547 if (back_irb)
548 back_irb->need_downsample = true;
549 if (depth_irb) {
550 bool depth_written = brw_depth_writes_enabled(brw);
551 if (depth_att->Layered) {
552 intel_miptree_finish_depth(brw, depth_irb->mt,
553 depth_irb->mt_level,
554 depth_irb->mt_layer,
555 depth_irb->layer_count,
556 depth_written);
557 } else {
558 intel_miptree_finish_depth(brw, depth_irb->mt,
559 depth_irb->mt_level,
560 depth_irb->mt_layer, 1,
561 depth_written);
562 }
563 if (depth_written)
564 brw_render_cache_set_add_bo(brw, depth_irb->mt->bo);
565 }
566
567 if (ctx->Extensions.ARB_stencil_texturing &&
568 stencil_irb && brw->stencil_write_enabled) {
569 brw_render_cache_set_add_bo(brw, stencil_irb->mt->bo);
570 }
571
572 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
573 struct intel_renderbuffer *irb =
574 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
575
576 if (!irb)
577 continue;
578
579 mesa_format mesa_format =
580 _mesa_get_render_format(ctx, intel_rb_format(irb));
581 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
582
583 brw_render_cache_set_add_bo(brw, irb->mt->bo);
584 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
585 irb->mt_layer, irb->layer_count,
586 isl_format,
587 ctx->Color.BlendEnabled & (1 << i));
588 }
589 }
590
591 static void
592 intel_renderbuffer_move_temp_back(struct brw_context *brw,
593 struct intel_renderbuffer *irb)
594 {
595 if (irb->align_wa_mt == NULL)
596 return;
597
598 brw_render_cache_set_check_flush(brw, irb->align_wa_mt->bo);
599
600 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
601 irb->mt,
602 irb->Base.Base.TexImage->Level, irb->mt_layer);
603
604 intel_miptree_reference(&irb->align_wa_mt, NULL);
605
606 /* Finally restore the x,y to correspond to full miptree. */
607 intel_renderbuffer_set_draw_offset(irb);
608
609 /* Make sure render surface state gets re-emitted with updated miptree. */
610 brw->NewGLState |= _NEW_BUFFERS;
611 }
612
613 static void
614 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
615 {
616 struct gl_context *ctx = &brw->ctx;
617 struct gl_framebuffer *fb = ctx->DrawBuffer;
618
619 struct intel_renderbuffer *depth_irb =
620 intel_get_renderbuffer(fb, BUFFER_DEPTH);
621 struct intel_renderbuffer *stencil_irb =
622 intel_get_renderbuffer(fb, BUFFER_STENCIL);
623
624 if (depth_irb && depth_irb->align_wa_mt)
625 intel_renderbuffer_move_temp_back(brw, depth_irb);
626
627 if (stencil_irb && stencil_irb->align_wa_mt)
628 intel_renderbuffer_move_temp_back(brw, stencil_irb);
629
630 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
631 struct intel_renderbuffer *irb =
632 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
633
634 if (!irb || irb->align_wa_mt == NULL)
635 continue;
636
637 intel_renderbuffer_move_temp_back(brw, irb);
638 }
639 }
640
641 static void
642 brw_prepare_drawing(struct gl_context *ctx,
643 const struct gl_vertex_array *arrays[],
644 const struct _mesa_index_buffer *ib,
645 bool index_bounds_valid,
646 GLuint min_index,
647 GLuint max_index)
648 {
649 struct brw_context *brw = brw_context(ctx);
650
651 if (ctx->NewState)
652 _mesa_update_state(ctx);
653
654 /* We have to validate the textures *before* checking for fallbacks;
655 * otherwise, the software fallback won't be able to rely on the
656 * texture state, the firstLevel and lastLevel fields won't be
657 * set in the intel texture object (they'll both be 0), and the
658 * software fallback will segfault if it attempts to access any
659 * texture level other than level 0.
660 */
661 brw_validate_textures(brw);
662
663 /* Find the highest sampler unit used by each shader program. A bit-count
664 * won't work since ARB programs use the texture unit number as the sampler
665 * index.
666 */
667 brw->wm.base.sampler_count =
668 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
669 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
670 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
671 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
672 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
673 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
674 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
675 brw->vs.base.sampler_count =
676 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
677
678 intel_prepare_render(brw);
679
680 /* This workaround has to happen outside of brw_upload_render_state()
681 * because it may flush the batchbuffer for a blit, affecting the state
682 * flags.
683 */
684 brw_workaround_depthstencil_alignment(brw, 0);
685
686 /* Resolves must occur after updating renderbuffers, updating context state,
687 * and finalizing textures but before setting up any hardware state for
688 * this draw call.
689 */
690 brw_predraw_resolve_inputs(brw, true);
691 brw_predraw_resolve_framebuffer(brw);
692
693 /* Bind all inputs, derive varying and size information:
694 */
695 brw_merge_inputs(brw, arrays);
696
697 brw->ib.ib = ib;
698 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
699
700 brw->vb.index_bounds_valid = index_bounds_valid;
701 brw->vb.min_index = min_index;
702 brw->vb.max_index = max_index;
703 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
704 }
705
706 static void
707 brw_finish_drawing(struct gl_context *ctx)
708 {
709 struct brw_context *brw = brw_context(ctx);
710
711 if (brw->always_flush_batch)
712 intel_batchbuffer_flush(brw);
713
714 brw_program_cache_check_size(brw);
715 brw_postdraw_reconcile_align_wa_slices(brw);
716 brw_postdraw_set_buffers_need_resolve(brw);
717
718 if (brw->draw.draw_params_count_bo) {
719 brw_bo_unreference(brw->draw.draw_params_count_bo);
720 brw->draw.draw_params_count_bo = NULL;
721 }
722 }
723
724 /* May fail if out of video memory for texture or vbo upload, or on
725 * fallback conditions.
726 */
727 static void
728 brw_draw_single_prim(struct gl_context *ctx,
729 const struct gl_vertex_array *arrays[],
730 const struct _mesa_prim *prim,
731 unsigned prim_id,
732 struct brw_transform_feedback_object *xfb_obj,
733 unsigned stream,
734 struct gl_buffer_object *indirect)
735 {
736 struct brw_context *brw = brw_context(ctx);
737 const struct gen_device_info *devinfo = &brw->screen->devinfo;
738 bool fail_next = false;
739
740 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
741 * atoms that happen on every draw call.
742 */
743 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
744
745 /* Flush the batch if the batch/state buffers are nearly full. We can
746 * grow them if needed, but this is not free, so we'd like to avoid it.
747 */
748 intel_batchbuffer_require_space(brw, 1500, RENDER_RING);
749 brw_require_statebuffer_space(brw, 2400);
750 intel_batchbuffer_save_state(brw);
751
752 if (brw->num_instances != prim->num_instances ||
753 brw->basevertex != prim->basevertex ||
754 brw->baseinstance != prim->base_instance) {
755 brw->num_instances = prim->num_instances;
756 brw->basevertex = prim->basevertex;
757 brw->baseinstance = prim->base_instance;
758 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
759 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
760 brw_merge_inputs(brw, arrays);
761 }
762 }
763
764 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
765 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
766 * always flag if the shader uses one of the values. For direct draws,
767 * we only flag if the values change.
768 */
769 const int new_basevertex =
770 prim->indexed ? prim->basevertex : prim->start;
771 const int new_baseinstance = prim->base_instance;
772 const struct brw_vs_prog_data *vs_prog_data =
773 brw_vs_prog_data(brw->vs.base.prog_data);
774 if (prim_id > 0) {
775 const bool uses_draw_parameters =
776 vs_prog_data->uses_basevertex ||
777 vs_prog_data->uses_baseinstance;
778
779 if ((uses_draw_parameters && prim->is_indirect) ||
780 (vs_prog_data->uses_basevertex &&
781 brw->draw.params.gl_basevertex != new_basevertex) ||
782 (vs_prog_data->uses_baseinstance &&
783 brw->draw.params.gl_baseinstance != new_baseinstance))
784 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
785 }
786
787 brw->draw.params.gl_basevertex = new_basevertex;
788 brw->draw.params.gl_baseinstance = new_baseinstance;
789 brw_bo_unreference(brw->draw.draw_params_bo);
790
791 if (prim->is_indirect) {
792 /* Point draw_params_bo at the indirect buffer. */
793 brw->draw.draw_params_bo =
794 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
795 brw_bo_reference(brw->draw.draw_params_bo);
796 brw->draw.draw_params_offset =
797 prim->indirect_offset + (prim->indexed ? 12 : 8);
798 } else {
799 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
800 * has to upload gl_BaseVertex and such if they're needed.
801 */
802 brw->draw.draw_params_bo = NULL;
803 brw->draw.draw_params_offset = 0;
804 }
805
806 /* gl_DrawID always needs its own vertex buffer since it's not part of
807 * the indirect parameter buffer. If the program uses gl_DrawID we need
808 * to flag BRW_NEW_VERTICES. For the first iteration, we don't have
809 * valid vs_prog_data, but we always flag BRW_NEW_VERTICES before
810 * the loop.
811 */
812 brw->draw.gl_drawid = prim->draw_id;
813 brw_bo_unreference(brw->draw.draw_id_bo);
814 brw->draw.draw_id_bo = NULL;
815 if (prim_id > 0 && vs_prog_data->uses_drawid)
816 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
817
818 if (devinfo->gen < 6)
819 brw_set_prim(brw, prim);
820 else
821 gen6_set_prim(brw, prim);
822
823 retry:
824
825 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
826 * that the state updated in the loop outside of this block is that in
827 * *_set_prim or intel_batchbuffer_flush(), which only impacts
828 * brw->ctx.NewDriverState.
829 */
830 if (brw->ctx.NewDriverState) {
831 brw->batch.no_wrap = true;
832 brw_upload_render_state(brw);
833 }
834
835 brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream);
836
837 brw->batch.no_wrap = false;
838
839 if (!brw_batch_has_aperture_space(brw, 0)) {
840 if (!fail_next) {
841 intel_batchbuffer_reset_to_saved(brw);
842 intel_batchbuffer_flush(brw);
843 fail_next = true;
844 goto retry;
845 } else {
846 int ret = intel_batchbuffer_flush(brw);
847 WARN_ONCE(ret == -ENOSPC,
848 "i965: Single primitive emit exceeded "
849 "available aperture space\n");
850 }
851 }
852
853 /* Now that we know we haven't run out of aperture space, we can safely
854 * reset the dirty bits.
855 */
856 if (brw->ctx.NewDriverState)
857 brw_render_state_finished(brw);
858
859 return;
860 }
861
862 void
863 brw_draw_prims(struct gl_context *ctx,
864 const struct _mesa_prim *prims,
865 GLuint nr_prims,
866 const struct _mesa_index_buffer *ib,
867 GLboolean index_bounds_valid,
868 GLuint min_index,
869 GLuint max_index,
870 struct gl_transform_feedback_object *gl_xfb_obj,
871 unsigned stream,
872 struct gl_buffer_object *indirect)
873 {
874 unsigned i;
875 struct brw_context *brw = brw_context(ctx);
876 const struct gl_vertex_array **arrays = ctx->Array._DrawArrays;
877 int predicate_state = brw->predicate.state;
878 struct brw_transform_feedback_object *xfb_obj =
879 (struct brw_transform_feedback_object *) gl_xfb_obj;
880
881 if (!brw_check_conditional_render(brw))
882 return;
883
884 /* Handle primitive restart if needed */
885 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
886 /* The draw was handled, so we can exit now */
887 return;
888 }
889
890 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
891 * won't support all the extensions we support.
892 */
893 if (ctx->RenderMode != GL_RENDER) {
894 perf_debug("%s render mode not supported in hardware\n",
895 _mesa_enum_to_string(ctx->RenderMode));
896 _swsetup_Wakeup(ctx);
897 _tnl_wakeup(ctx);
898 _tnl_draw_prims(ctx, prims, nr_prims, ib,
899 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
900 return;
901 }
902
903 /* If we're going to have to upload any of the user's vertex arrays, then
904 * get the minimum and maximum of their index buffer so we know what range
905 * to upload.
906 */
907 if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
908 perf_debug("Scanning index buffer to compute index buffer bounds. "
909 "Use glDrawRangeElements() to avoid this.\n");
910 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
911 index_bounds_valid = true;
912 }
913
914 brw_prepare_drawing(ctx, arrays, ib, index_bounds_valid, min_index,
915 max_index);
916 /* Try drawing with the hardware, but don't do anything else if we can't
917 * manage it. swrast doesn't support our featureset, so we can't fall back
918 * to it.
919 */
920
921 for (i = 0; i < nr_prims; i++) {
922 /* Implementation of ARB_indirect_parameters via predicates */
923 if (brw->draw.draw_params_count_bo) {
924 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
925
926 /* Upload the current draw count from the draw parameters buffer to
927 * MI_PREDICATE_SRC0.
928 */
929 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
930 brw->draw.draw_params_count_bo,
931 brw->draw.draw_params_count_offset);
932 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
933 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
934 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
935 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
936
937 BEGIN_BATCH(1);
938 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
939 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
940 MI_PREDICATE_COMBINEOP_SET |
941 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
942 } else {
943 OUT_BATCH(GEN7_MI_PREDICATE |
944 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
945 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
946 }
947 ADVANCE_BATCH();
948
949 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
950 }
951
952 brw_draw_single_prim(ctx, arrays, &prims[i], i, xfb_obj, stream,
953 indirect);
954 }
955
956 brw_finish_drawing(ctx);
957 brw->predicate.state = predicate_state;
958 }
959
960 void
961 brw_draw_indirect_prims(struct gl_context *ctx,
962 GLuint mode,
963 struct gl_buffer_object *indirect_data,
964 GLsizeiptr indirect_offset,
965 unsigned draw_count,
966 unsigned stride,
967 struct gl_buffer_object *indirect_params,
968 GLsizeiptr indirect_params_offset,
969 const struct _mesa_index_buffer *ib)
970 {
971 struct brw_context *brw = brw_context(ctx);
972 struct _mesa_prim *prim;
973 GLsizei i;
974
975 prim = calloc(draw_count, sizeof(*prim));
976 if (prim == NULL) {
977 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
978 (draw_count > 1) ? "Multi" : "",
979 ib ? "Elements" : "Arrays",
980 indirect_params ? "CountARB" : "");
981 return;
982 }
983
984 prim[0].begin = 1;
985 prim[draw_count - 1].end = 1;
986 for (i = 0; i < draw_count; ++i, indirect_offset += stride) {
987 prim[i].mode = mode;
988 prim[i].indexed = ib != NULL;
989 prim[i].indirect_offset = indirect_offset;
990 prim[i].is_indirect = 1;
991 prim[i].draw_id = i;
992 }
993
994 if (indirect_params) {
995 brw->draw.draw_params_count_bo =
996 intel_buffer_object(indirect_params)->buffer;
997 brw_bo_reference(brw->draw.draw_params_count_bo);
998 brw->draw.draw_params_count_offset = indirect_params_offset;
999 }
1000
1001 brw_draw_prims(ctx, prim, draw_count,
1002 ib, false, 0, ~0,
1003 NULL, 0,
1004 indirect_data);
1005
1006 free(prim);
1007 }
1008
1009 void
1010 brw_draw_init(struct brw_context *brw)
1011 {
1012 struct gl_context *ctx = &brw->ctx;
1013 struct vbo_context *vbo = vbo_context(ctx);
1014
1015 /* Register our drawing function:
1016 */
1017 vbo->draw_prims = brw_draw_prims;
1018 vbo->draw_indirect_prims = brw_draw_indirect_prims;
1019
1020 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1021 brw->vb.inputs[i].buffer = -1;
1022 brw->vb.nr_buffers = 0;
1023 brw->vb.nr_enabled = 0;
1024 }
1025
1026 void
1027 brw_draw_destroy(struct brw_context *brw)
1028 {
1029 unsigned i;
1030
1031 for (i = 0; i < brw->vb.nr_buffers; i++) {
1032 brw_bo_unreference(brw->vb.buffers[i].bo);
1033 brw->vb.buffers[i].bo = NULL;
1034 }
1035 brw->vb.nr_buffers = 0;
1036
1037 for (i = 0; i < brw->vb.nr_enabled; i++) {
1038 brw->vb.enabled[i]->buffer = -1;
1039 }
1040 brw->vb.nr_enabled = 0;
1041
1042 brw_bo_unreference(brw->ib.bo);
1043 brw->ib.bo = NULL;
1044 }