i965: Implement all_varyings_in_vbos in terms of Array._DrawVAO.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/arrayobj.h"
29 #include "main/blend.h"
30 #include "main/context.h"
31 #include "main/condrender.h"
32 #include "main/samplerobj.h"
33 #include "main/state.h"
34 #include "main/enums.h"
35 #include "main/macros.h"
36 #include "main/transformfeedback.h"
37 #include "main/framebuffer.h"
38 #include "main/varray.h"
39 #include "tnl/tnl.h"
40 #include "vbo/vbo.h"
41 #include "swrast/swrast.h"
42 #include "swrast_setup/swrast_setup.h"
43 #include "drivers/common/meta.h"
44 #include "util/bitscan.h"
45 #include "util/bitset.h"
46
47 #include "brw_blorp.h"
48 #include "brw_draw.h"
49 #include "brw_defines.h"
50 #include "compiler/brw_eu_defines.h"
51 #include "brw_context.h"
52 #include "brw_state.h"
53
54 #include "intel_batchbuffer.h"
55 #include "intel_buffers.h"
56 #include "intel_fbo.h"
57 #include "intel_mipmap_tree.h"
58 #include "intel_buffer_objects.h"
59
60 #define FILE_DEBUG_FLAG DEBUG_PRIMS
61
62
63 static const GLenum reduced_prim[GL_POLYGON+1] = {
64 [GL_POINTS] = GL_POINTS,
65 [GL_LINES] = GL_LINES,
66 [GL_LINE_LOOP] = GL_LINES,
67 [GL_LINE_STRIP] = GL_LINES,
68 [GL_TRIANGLES] = GL_TRIANGLES,
69 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
70 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
71 [GL_QUADS] = GL_TRIANGLES,
72 [GL_QUAD_STRIP] = GL_TRIANGLES,
73 [GL_POLYGON] = GL_TRIANGLES
74 };
75
76 /* When the primitive changes, set a state bit and re-validate. Not
77 * the nicest and would rather deal with this by having all the
78 * programs be immune to the active primitive (ie. cope with all
79 * possibilities). That may not be realistic however.
80 */
81 static void
82 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
83 {
84 struct gl_context *ctx = &brw->ctx;
85 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
86
87 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
88
89 /* Slight optimization to avoid the GS program when not needed:
90 */
91 if (prim->mode == GL_QUAD_STRIP &&
92 ctx->Light.ShadeModel != GL_FLAT &&
93 ctx->Polygon.FrontMode == GL_FILL &&
94 ctx->Polygon.BackMode == GL_FILL)
95 hw_prim = _3DPRIM_TRISTRIP;
96
97 if (prim->mode == GL_QUADS && prim->count == 4 &&
98 ctx->Light.ShadeModel != GL_FLAT &&
99 ctx->Polygon.FrontMode == GL_FILL &&
100 ctx->Polygon.BackMode == GL_FILL) {
101 hw_prim = _3DPRIM_TRIFAN;
102 }
103
104 if (hw_prim != brw->primitive) {
105 brw->primitive = hw_prim;
106 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
107
108 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
109 brw->reduced_primitive = reduced_prim[prim->mode];
110 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
111 }
112 }
113 }
114
115 static void
116 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
117 {
118 const struct gl_context *ctx = &brw->ctx;
119 uint32_t hw_prim;
120
121 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
122
123 if (prim->mode == GL_PATCHES) {
124 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
125 } else {
126 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
127 }
128
129 if (hw_prim != brw->primitive) {
130 brw->primitive = hw_prim;
131 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
132 if (prim->mode == GL_PATCHES)
133 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
134 }
135 }
136
137
138 /**
139 * The hardware is capable of removing dangling vertices on its own; however,
140 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
141 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
142 * This function manually trims dangling vertices from a draw call involving
143 * quads so that those dangling vertices won't get drawn when we convert to
144 * trifans/tristrips.
145 */
146 static GLuint
147 trim(GLenum prim, GLuint length)
148 {
149 if (prim == GL_QUAD_STRIP)
150 return length > 3 ? (length - length % 2) : 0;
151 else if (prim == GL_QUADS)
152 return length - length % 4;
153 else
154 return length;
155 }
156
157
158 static void
159 brw_emit_prim(struct brw_context *brw,
160 const struct _mesa_prim *prim,
161 uint32_t hw_prim,
162 struct brw_transform_feedback_object *xfb_obj,
163 unsigned stream)
164 {
165 const struct gen_device_info *devinfo = &brw->screen->devinfo;
166 int verts_per_instance;
167 int vertex_access_type;
168 int indirect_flag;
169
170 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
171 prim->start, prim->count);
172
173 int start_vertex_location = prim->start;
174 int base_vertex_location = prim->basevertex;
175
176 if (prim->indexed) {
177 vertex_access_type = devinfo->gen >= 7 ?
178 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
179 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
180 start_vertex_location += brw->ib.start_vertex_offset;
181 base_vertex_location += brw->vb.start_vertex_bias;
182 } else {
183 vertex_access_type = devinfo->gen >= 7 ?
184 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
185 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
186 start_vertex_location += brw->vb.start_vertex_bias;
187 }
188
189 /* We only need to trim the primitive count on pre-Gen6. */
190 if (devinfo->gen < 6)
191 verts_per_instance = trim(prim->mode, prim->count);
192 else
193 verts_per_instance = prim->count;
194
195 /* If nothing to emit, just return. */
196 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
197 return;
198
199 /* If we're set to always flush, do it before and after the primitive emit.
200 * We want to catch both missed flushes that hurt instruction/state cache
201 * and missed flushes of the render cache as it heads to other parts of
202 * the besides the draw code.
203 */
204 if (brw->always_flush_cache)
205 brw_emit_mi_flush(brw);
206
207 /* If indirect, emit a bunch of loads from the indirect BO. */
208 if (xfb_obj) {
209 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
210
211 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
212 xfb_obj->prim_count_bo,
213 stream * sizeof(uint32_t));
214 BEGIN_BATCH(9);
215 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
216 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
217 OUT_BATCH(prim->num_instances);
218 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
219 OUT_BATCH(0);
220 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
221 OUT_BATCH(0);
222 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
223 OUT_BATCH(0);
224 ADVANCE_BATCH();
225 } else if (prim->is_indirect) {
226 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
227 struct brw_bo *bo = intel_bufferobj_buffer(brw,
228 intel_buffer_object(indirect_buffer),
229 prim->indirect_offset, 5 * sizeof(GLuint), false);
230
231 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
232
233 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
234 prim->indirect_offset + 0);
235 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
236 prim->indirect_offset + 4);
237
238 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
239 prim->indirect_offset + 8);
240 if (prim->indexed) {
241 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
242 prim->indirect_offset + 12);
243 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
244 prim->indirect_offset + 16);
245 } else {
246 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
247 prim->indirect_offset + 12);
248 brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
249 }
250 } else {
251 indirect_flag = 0;
252 }
253
254 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
255
256 if (devinfo->gen >= 7) {
257 const int predicate_enable =
258 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
259 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
260
261 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
262 OUT_BATCH(hw_prim | vertex_access_type);
263 } else {
264 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
265 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
266 vertex_access_type);
267 }
268 OUT_BATCH(verts_per_instance);
269 OUT_BATCH(start_vertex_location);
270 OUT_BATCH(prim->num_instances);
271 OUT_BATCH(prim->base_instance);
272 OUT_BATCH(base_vertex_location);
273 ADVANCE_BATCH();
274
275 if (brw->always_flush_cache)
276 brw_emit_mi_flush(brw);
277 }
278
279
280 static void
281 brw_merge_inputs(struct brw_context *brw,
282 const struct gl_vertex_array *arrays)
283 {
284 const struct gen_device_info *devinfo = &brw->screen->devinfo;
285 const struct gl_context *ctx = &brw->ctx;
286 GLuint i;
287
288 for (i = 0; i < brw->vb.nr_buffers; i++) {
289 brw_bo_unreference(brw->vb.buffers[i].bo);
290 brw->vb.buffers[i].bo = NULL;
291 }
292 brw->vb.nr_buffers = 0;
293
294 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
295 brw->vb.inputs[i].buffer = -1;
296 brw->vb.inputs[i].glarray = &arrays[i];
297 }
298
299 if (devinfo->gen < 8 && !devinfo->is_haswell) {
300 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
301 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
302 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
303 */
304 while (mask) {
305 const struct gl_array_attributes *glattrib;
306 uint8_t wa_flags = 0;
307
308 i = u_bit_scan64(&mask);
309 glattrib = brw->vb.inputs[i].glarray->VertexAttrib;
310
311 switch (glattrib->Type) {
312
313 case GL_FIXED:
314 wa_flags = glattrib->Size;
315 break;
316
317 case GL_INT_2_10_10_10_REV:
318 wa_flags |= BRW_ATTRIB_WA_SIGN;
319 /* fallthough */
320
321 case GL_UNSIGNED_INT_2_10_10_10_REV:
322 if (glattrib->Format == GL_BGRA)
323 wa_flags |= BRW_ATTRIB_WA_BGRA;
324
325 if (glattrib->Normalized)
326 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
327 else if (!glattrib->Integer)
328 wa_flags |= BRW_ATTRIB_WA_SCALE;
329
330 break;
331 }
332
333 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
334 brw->vb.attrib_wa_flags[i] = wa_flags;
335 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
336 }
337 }
338 }
339 }
340
341 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
342 * or shader image. This causes a self-dependency, where both rendering
343 * and sampling may concurrently read or write the CCS buffer, causing
344 * incorrect pixels.
345 */
346 static bool
347 intel_disable_rb_aux_buffer(struct brw_context *brw,
348 bool *draw_aux_buffer_disabled,
349 struct intel_mipmap_tree *tex_mt,
350 unsigned min_level, unsigned num_levels,
351 const char *usage)
352 {
353 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
354 bool found = false;
355
356 /* We only need to worry about color compression and fast clears. */
357 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
358 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
359 return false;
360
361 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
362 const struct intel_renderbuffer *irb =
363 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
364
365 if (irb && irb->mt->bo == tex_mt->bo &&
366 irb->mt_level >= min_level &&
367 irb->mt_level < min_level + num_levels) {
368 found = draw_aux_buffer_disabled[i] = true;
369 }
370 }
371
372 if (found) {
373 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
374 usage);
375 }
376
377 return found;
378 }
379
380 static void
381 mark_textures_used_for_txf(BITSET_WORD *used_for_txf,
382 const struct gl_program *prog)
383 {
384 if (!prog)
385 return;
386
387 unsigned mask = prog->SamplersUsed & prog->info.textures_used_by_txf;
388 while (mask) {
389 int s = u_bit_scan(&mask);
390 BITSET_SET(used_for_txf, prog->SamplerUnits[s]);
391 }
392 }
393
394 /**
395 * \brief Resolve buffers before drawing.
396 *
397 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
398 * enabled depth texture, and flush the render cache for any dirty textures.
399 */
400 void
401 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering,
402 bool *draw_aux_buffer_disabled)
403 {
404 struct gl_context *ctx = &brw->ctx;
405 struct intel_texture_object *tex_obj;
406
407 BITSET_DECLARE(used_for_txf, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
408 memset(used_for_txf, 0, sizeof(used_for_txf));
409 if (rendering) {
410 mark_textures_used_for_txf(used_for_txf, ctx->VertexProgram._Current);
411 mark_textures_used_for_txf(used_for_txf, ctx->TessCtrlProgram._Current);
412 mark_textures_used_for_txf(used_for_txf, ctx->TessEvalProgram._Current);
413 mark_textures_used_for_txf(used_for_txf, ctx->GeometryProgram._Current);
414 mark_textures_used_for_txf(used_for_txf, ctx->FragmentProgram._Current);
415 } else {
416 mark_textures_used_for_txf(used_for_txf, ctx->ComputeProgram._Current);
417 }
418
419 /* Resolve depth buffer and render cache of each enabled texture. */
420 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
421 for (int i = 0; i <= maxEnabledUnit; i++) {
422 if (!ctx->Texture.Unit[i]._Current)
423 continue;
424 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
425 if (!tex_obj || !tex_obj->mt)
426 continue;
427
428 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
429 enum isl_format view_format =
430 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
431
432 unsigned min_level, min_layer, num_levels, num_layers;
433 if (tex_obj->base.Immutable) {
434 min_level = tex_obj->base.MinLevel;
435 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
436 min_layer = tex_obj->base.MinLayer;
437 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
438 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
439 } else {
440 min_level = tex_obj->base.BaseLevel;
441 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
442 min_layer = 0;
443 num_layers = INTEL_REMAINING_LAYERS;
444 }
445
446 if (rendering) {
447 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
448 tex_obj->mt, min_level, num_levels,
449 "for sampling");
450 }
451
452 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
453 min_level, num_levels,
454 min_layer, num_layers);
455
456 /* If any programs are using it with texelFetch, we may need to also do
457 * a prepare with an sRGB format to ensure texelFetch works "properly".
458 */
459 if (BITSET_TEST(used_for_txf, i)) {
460 enum isl_format txf_format =
461 translate_tex_format(brw, tex_obj->_Format, GL_DECODE_EXT);
462 if (txf_format != view_format) {
463 intel_miptree_prepare_texture(brw, tex_obj->mt, txf_format,
464 min_level, num_levels,
465 min_layer, num_layers);
466 }
467 }
468
469 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
470
471 if (tex_obj->base.StencilSampling ||
472 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
473 intel_update_r8stencil(brw, tex_obj->mt);
474 }
475 }
476
477 /* Resolve color for each active shader image. */
478 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
479 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
480
481 if (unlikely(prog && prog->info.num_images)) {
482 for (unsigned j = 0; j < prog->info.num_images; j++) {
483 struct gl_image_unit *u =
484 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
485 tex_obj = intel_texture_object(u->TexObj);
486
487 if (tex_obj && tex_obj->mt) {
488 if (rendering) {
489 intel_disable_rb_aux_buffer(brw, draw_aux_buffer_disabled,
490 tex_obj->mt, 0, ~0,
491 "as a shader image");
492 }
493
494 intel_miptree_prepare_image(brw, tex_obj->mt);
495
496 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
497 }
498 }
499 }
500 }
501 }
502
503 static void
504 brw_predraw_resolve_framebuffer(struct brw_context *brw,
505 bool *draw_aux_buffer_disabled)
506 {
507 struct gl_context *ctx = &brw->ctx;
508 struct intel_renderbuffer *depth_irb;
509
510 /* Resolve the depth buffer's HiZ buffer. */
511 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
512 if (depth_irb && depth_irb->mt) {
513 intel_miptree_prepare_depth(brw, depth_irb->mt,
514 depth_irb->mt_level,
515 depth_irb->mt_layer,
516 depth_irb->layer_count);
517 }
518
519 /* Resolve color buffers for non-coherent framebuffer fetch. */
520 if (!ctx->Extensions.EXT_shader_framebuffer_fetch &&
521 ctx->FragmentProgram._Current &&
522 ctx->FragmentProgram._Current->info.outputs_read) {
523 const struct gl_framebuffer *fb = ctx->DrawBuffer;
524
525 /* This is only used for non-coherent framebuffer fetch, so we don't
526 * need to worry about CCS_E and can simply pass 'false' below.
527 */
528 assert(brw->screen->devinfo.gen < 9);
529
530 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
531 const struct intel_renderbuffer *irb =
532 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
533
534 if (irb) {
535 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
536 irb->mt_level, 1,
537 irb->mt_layer, irb->layer_count);
538 }
539 }
540 }
541
542 struct gl_framebuffer *fb = ctx->DrawBuffer;
543 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
544 struct intel_renderbuffer *irb =
545 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
546
547 if (irb == NULL || irb->mt == NULL)
548 continue;
549
550 mesa_format mesa_format =
551 _mesa_get_render_format(ctx, intel_rb_format(irb));
552 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
553 bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
554 enum isl_aux_usage aux_usage =
555 intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
556 blend_enabled,
557 draw_aux_buffer_disabled[i]);
558 if (brw->draw_aux_usage[i] != aux_usage) {
559 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
560 brw->draw_aux_usage[i] = aux_usage;
561 }
562
563 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
564 irb->mt_layer, irb->layer_count,
565 aux_usage);
566
567 brw_cache_flush_for_render(brw, irb->mt->bo,
568 isl_format, aux_usage);
569 }
570 }
571
572 /**
573 * \brief Call this after drawing to mark which buffers need resolving
574 *
575 * If the depth buffer was written to and if it has an accompanying HiZ
576 * buffer, then mark that it needs a depth resolve.
577 *
578 * If the color buffer is a multisample window system buffer, then
579 * mark that it needs a downsample.
580 *
581 * Also mark any render targets which will be textured as needing a render
582 * cache flush.
583 */
584 static void
585 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
586 {
587 struct gl_context *ctx = &brw->ctx;
588 struct gl_framebuffer *fb = ctx->DrawBuffer;
589
590 struct intel_renderbuffer *front_irb = NULL;
591 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
592 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
593 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
594 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
595
596 if (_mesa_is_front_buffer_drawing(fb))
597 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
598
599 if (front_irb)
600 front_irb->need_downsample = true;
601 if (back_irb)
602 back_irb->need_downsample = true;
603 if (depth_irb) {
604 bool depth_written = brw_depth_writes_enabled(brw);
605 if (depth_att->Layered) {
606 intel_miptree_finish_depth(brw, depth_irb->mt,
607 depth_irb->mt_level,
608 depth_irb->mt_layer,
609 depth_irb->layer_count,
610 depth_written);
611 } else {
612 intel_miptree_finish_depth(brw, depth_irb->mt,
613 depth_irb->mt_level,
614 depth_irb->mt_layer, 1,
615 depth_written);
616 }
617 if (depth_written)
618 brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
619 }
620
621 if (stencil_irb && brw->stencil_write_enabled)
622 brw_depth_cache_add_bo(brw, stencil_irb->mt->bo);
623
624 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
625 struct intel_renderbuffer *irb =
626 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
627
628 if (!irb)
629 continue;
630
631 mesa_format mesa_format =
632 _mesa_get_render_format(ctx, intel_rb_format(irb));
633 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
634 enum isl_aux_usage aux_usage = brw->draw_aux_usage[i];
635
636 brw_render_cache_add_bo(brw, irb->mt->bo, isl_format, aux_usage);
637
638 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
639 irb->mt_layer, irb->layer_count,
640 aux_usage);
641 }
642 }
643
644 static void
645 intel_renderbuffer_move_temp_back(struct brw_context *brw,
646 struct intel_renderbuffer *irb)
647 {
648 if (irb->align_wa_mt == NULL)
649 return;
650
651 brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
652
653 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
654 irb->mt,
655 irb->Base.Base.TexImage->Level, irb->mt_layer);
656
657 intel_miptree_reference(&irb->align_wa_mt, NULL);
658
659 /* Finally restore the x,y to correspond to full miptree. */
660 intel_renderbuffer_set_draw_offset(irb);
661
662 /* Make sure render surface state gets re-emitted with updated miptree. */
663 brw->NewGLState |= _NEW_BUFFERS;
664 }
665
666 static void
667 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
668 {
669 struct gl_context *ctx = &brw->ctx;
670 struct gl_framebuffer *fb = ctx->DrawBuffer;
671
672 struct intel_renderbuffer *depth_irb =
673 intel_get_renderbuffer(fb, BUFFER_DEPTH);
674 struct intel_renderbuffer *stencil_irb =
675 intel_get_renderbuffer(fb, BUFFER_STENCIL);
676
677 if (depth_irb && depth_irb->align_wa_mt)
678 intel_renderbuffer_move_temp_back(brw, depth_irb);
679
680 if (stencil_irb && stencil_irb->align_wa_mt)
681 intel_renderbuffer_move_temp_back(brw, stencil_irb);
682
683 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
684 struct intel_renderbuffer *irb =
685 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
686
687 if (!irb || irb->align_wa_mt == NULL)
688 continue;
689
690 intel_renderbuffer_move_temp_back(brw, irb);
691 }
692 }
693
694 static void
695 brw_prepare_drawing(struct gl_context *ctx,
696 const struct gl_vertex_array *arrays,
697 const struct _mesa_index_buffer *ib,
698 bool index_bounds_valid,
699 GLuint min_index,
700 GLuint max_index)
701 {
702 struct brw_context *brw = brw_context(ctx);
703
704 if (ctx->NewState)
705 _mesa_update_state(ctx);
706
707 /* We have to validate the textures *before* checking for fallbacks;
708 * otherwise, the software fallback won't be able to rely on the
709 * texture state, the firstLevel and lastLevel fields won't be
710 * set in the intel texture object (they'll both be 0), and the
711 * software fallback will segfault if it attempts to access any
712 * texture level other than level 0.
713 */
714 brw_validate_textures(brw);
715
716 /* Find the highest sampler unit used by each shader program. A bit-count
717 * won't work since ARB programs use the texture unit number as the sampler
718 * index.
719 */
720 brw->wm.base.sampler_count =
721 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
722 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
723 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
724 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
725 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
726 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
727 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
728 brw->vs.base.sampler_count =
729 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
730
731 intel_prepare_render(brw);
732
733 /* This workaround has to happen outside of brw_upload_render_state()
734 * because it may flush the batchbuffer for a blit, affecting the state
735 * flags.
736 */
737 brw_workaround_depthstencil_alignment(brw, 0);
738
739 /* Resolves must occur after updating renderbuffers, updating context state,
740 * and finalizing textures but before setting up any hardware state for
741 * this draw call.
742 */
743 bool draw_aux_buffer_disabled[MAX_DRAW_BUFFERS] = { };
744 brw_predraw_resolve_inputs(brw, true, draw_aux_buffer_disabled);
745 brw_predraw_resolve_framebuffer(brw, draw_aux_buffer_disabled);
746
747 /* Bind all inputs, derive varying and size information:
748 */
749 brw_merge_inputs(brw, arrays);
750
751 brw->ib.ib = ib;
752 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
753
754 brw->vb.index_bounds_valid = index_bounds_valid;
755 brw->vb.min_index = min_index;
756 brw->vb.max_index = max_index;
757 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
758 }
759
760 static void
761 brw_finish_drawing(struct gl_context *ctx)
762 {
763 struct brw_context *brw = brw_context(ctx);
764
765 if (brw->always_flush_batch)
766 intel_batchbuffer_flush(brw);
767
768 brw_program_cache_check_size(brw);
769 brw_postdraw_reconcile_align_wa_slices(brw);
770 brw_postdraw_set_buffers_need_resolve(brw);
771
772 if (brw->draw.draw_params_count_bo) {
773 brw_bo_unreference(brw->draw.draw_params_count_bo);
774 brw->draw.draw_params_count_bo = NULL;
775 }
776 }
777
778 /* May fail if out of video memory for texture or vbo upload, or on
779 * fallback conditions.
780 */
781 static void
782 brw_draw_single_prim(struct gl_context *ctx,
783 const struct gl_vertex_array *arrays,
784 const struct _mesa_prim *prim,
785 unsigned prim_id,
786 struct brw_transform_feedback_object *xfb_obj,
787 unsigned stream,
788 struct gl_buffer_object *indirect)
789 {
790 struct brw_context *brw = brw_context(ctx);
791 const struct gen_device_info *devinfo = &brw->screen->devinfo;
792 bool fail_next = false;
793
794 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
795 * atoms that happen on every draw call.
796 */
797 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
798
799 /* Flush the batch if the batch/state buffers are nearly full. We can
800 * grow them if needed, but this is not free, so we'd like to avoid it.
801 */
802 intel_batchbuffer_require_space(brw, 1500, RENDER_RING);
803 brw_require_statebuffer_space(brw, 2400);
804 intel_batchbuffer_save_state(brw);
805
806 if (brw->num_instances != prim->num_instances ||
807 brw->basevertex != prim->basevertex ||
808 brw->baseinstance != prim->base_instance) {
809 brw->num_instances = prim->num_instances;
810 brw->basevertex = prim->basevertex;
811 brw->baseinstance = prim->base_instance;
812 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
813 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
814 brw_merge_inputs(brw, arrays);
815 }
816 }
817
818 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
819 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
820 * always flag if the shader uses one of the values. For direct draws,
821 * we only flag if the values change.
822 */
823 const int new_firstvertex =
824 prim->indexed ? prim->basevertex : prim->start;
825 const int new_baseinstance = prim->base_instance;
826 const struct brw_vs_prog_data *vs_prog_data =
827 brw_vs_prog_data(brw->vs.base.prog_data);
828 if (prim_id > 0) {
829 const bool uses_draw_parameters =
830 vs_prog_data->uses_firstvertex ||
831 vs_prog_data->uses_baseinstance;
832
833 if ((uses_draw_parameters && prim->is_indirect) ||
834 (vs_prog_data->uses_firstvertex &&
835 brw->draw.params.firstvertex != new_firstvertex) ||
836 (vs_prog_data->uses_baseinstance &&
837 brw->draw.params.gl_baseinstance != new_baseinstance))
838 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
839 }
840
841 brw->draw.params.firstvertex = new_firstvertex;
842 brw->draw.params.gl_baseinstance = new_baseinstance;
843 brw_bo_unreference(brw->draw.draw_params_bo);
844
845 if (prim->is_indirect) {
846 /* Point draw_params_bo at the indirect buffer. */
847 brw->draw.draw_params_bo =
848 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
849 brw_bo_reference(brw->draw.draw_params_bo);
850 brw->draw.draw_params_offset =
851 prim->indirect_offset + (prim->indexed ? 12 : 8);
852 } else {
853 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
854 * has to upload gl_BaseVertex and such if they're needed.
855 */
856 brw->draw.draw_params_bo = NULL;
857 brw->draw.draw_params_offset = 0;
858 }
859
860 /* gl_DrawID always needs its own vertex buffer since it's not part of
861 * the indirect parameter buffer. Same for is_indexed_draw, which shares
862 * the buffer with gl_DrawID. If the program uses gl_DrawID, we need to
863 * flag BRW_NEW_VERTICES. For the first iteration, we don't have valid
864 * vs_prog_data, but we always flag BRW_NEW_VERTICES before the loop.
865 */
866 if (prim_id > 0 && vs_prog_data->uses_drawid)
867 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
868
869 brw->draw.derived_params.gl_drawid = prim->draw_id;
870 brw->draw.derived_params.is_indexed_draw = prim->indexed ? ~0 : 0;
871
872 brw_bo_unreference(brw->draw.derived_draw_params_bo);
873 brw->draw.derived_draw_params_bo = NULL;
874 brw->draw.derived_draw_params_offset = 0;
875
876 if (devinfo->gen < 6)
877 brw_set_prim(brw, prim);
878 else
879 gen6_set_prim(brw, prim);
880
881 retry:
882
883 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
884 * that the state updated in the loop outside of this block is that in
885 * *_set_prim or intel_batchbuffer_flush(), which only impacts
886 * brw->ctx.NewDriverState.
887 */
888 if (brw->ctx.NewDriverState) {
889 brw->batch.no_wrap = true;
890 brw_upload_render_state(brw);
891 }
892
893 brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream);
894
895 brw->batch.no_wrap = false;
896
897 if (!brw_batch_has_aperture_space(brw, 0)) {
898 if (!fail_next) {
899 intel_batchbuffer_reset_to_saved(brw);
900 intel_batchbuffer_flush(brw);
901 fail_next = true;
902 goto retry;
903 } else {
904 int ret = intel_batchbuffer_flush(brw);
905 WARN_ONCE(ret == -ENOSPC,
906 "i965: Single primitive emit exceeded "
907 "available aperture space\n");
908 }
909 }
910
911 /* Now that we know we haven't run out of aperture space, we can safely
912 * reset the dirty bits.
913 */
914 if (brw->ctx.NewDriverState)
915 brw_render_state_finished(brw);
916
917 return;
918 }
919
920
921
922 void
923 brw_draw_prims(struct gl_context *ctx,
924 const struct _mesa_prim *prims,
925 GLuint nr_prims,
926 const struct _mesa_index_buffer *ib,
927 GLboolean index_bounds_valid,
928 GLuint min_index,
929 GLuint max_index,
930 struct gl_transform_feedback_object *gl_xfb_obj,
931 unsigned stream,
932 struct gl_buffer_object *indirect)
933 {
934 unsigned i;
935 struct brw_context *brw = brw_context(ctx);
936 const struct gl_vertex_array *arrays;
937 int predicate_state = brw->predicate.state;
938 struct brw_transform_feedback_object *xfb_obj =
939 (struct brw_transform_feedback_object *) gl_xfb_obj;
940
941 /* The initial pushdown of the inputs array into the drivers */
942 _mesa_set_drawing_arrays(ctx, brw->vb.draw_arrays.inputs);
943 arrays = ctx->Array._DrawArrays;
944 _vbo_update_inputs(ctx, &brw->vb.draw_arrays);
945
946 if (!brw_check_conditional_render(brw))
947 return;
948
949 /* Handle primitive restart if needed */
950 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
951 /* The draw was handled, so we can exit now */
952 return;
953 }
954
955 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
956 * won't support all the extensions we support.
957 */
958 if (ctx->RenderMode != GL_RENDER) {
959 perf_debug("%s render mode not supported in hardware\n",
960 _mesa_enum_to_string(ctx->RenderMode));
961 _swsetup_Wakeup(ctx);
962 _tnl_wakeup(ctx);
963 _tnl_draw(ctx, prims, nr_prims, ib,
964 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
965 return;
966 }
967
968 /* If we're going to have to upload any of the user's vertex arrays, then
969 * get the minimum and maximum of their index buffer so we know what range
970 * to upload.
971 */
972 if (!index_bounds_valid && _mesa_draw_user_array_bits(ctx) != 0) {
973 perf_debug("Scanning index buffer to compute index buffer bounds. "
974 "Use glDrawRangeElements() to avoid this.\n");
975 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
976 index_bounds_valid = true;
977 }
978
979 brw_prepare_drawing(ctx, arrays, ib, index_bounds_valid, min_index,
980 max_index);
981 /* Try drawing with the hardware, but don't do anything else if we can't
982 * manage it. swrast doesn't support our featureset, so we can't fall back
983 * to it.
984 */
985
986 for (i = 0; i < nr_prims; i++) {
987 /* Implementation of ARB_indirect_parameters via predicates */
988 if (brw->draw.draw_params_count_bo) {
989 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
990
991 /* Upload the current draw count from the draw parameters buffer to
992 * MI_PREDICATE_SRC0.
993 */
994 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
995 brw->draw.draw_params_count_bo,
996 brw->draw.draw_params_count_offset);
997 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
998 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
999 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
1000 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
1001
1002 BEGIN_BATCH(1);
1003 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
1004 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
1005 MI_PREDICATE_COMBINEOP_SET |
1006 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1007 } else {
1008 OUT_BATCH(GEN7_MI_PREDICATE |
1009 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
1010 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
1011 }
1012 ADVANCE_BATCH();
1013
1014 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
1015 }
1016
1017 brw_draw_single_prim(ctx, arrays, &prims[i], i, xfb_obj, stream,
1018 indirect);
1019 }
1020
1021 brw_finish_drawing(ctx);
1022 brw->predicate.state = predicate_state;
1023 }
1024
1025 void
1026 brw_draw_indirect_prims(struct gl_context *ctx,
1027 GLuint mode,
1028 struct gl_buffer_object *indirect_data,
1029 GLsizeiptr indirect_offset,
1030 unsigned draw_count,
1031 unsigned stride,
1032 struct gl_buffer_object *indirect_params,
1033 GLsizeiptr indirect_params_offset,
1034 const struct _mesa_index_buffer *ib)
1035 {
1036 struct brw_context *brw = brw_context(ctx);
1037 struct _mesa_prim *prim;
1038 GLsizei i;
1039
1040 prim = calloc(draw_count, sizeof(*prim));
1041 if (prim == NULL) {
1042 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
1043 (draw_count > 1) ? "Multi" : "",
1044 ib ? "Elements" : "Arrays",
1045 indirect_params ? "CountARB" : "");
1046 return;
1047 }
1048
1049 prim[0].begin = 1;
1050 prim[draw_count - 1].end = 1;
1051 for (i = 0; i < draw_count; ++i, indirect_offset += stride) {
1052 prim[i].mode = mode;
1053 prim[i].indexed = ib != NULL;
1054 prim[i].indirect_offset = indirect_offset;
1055 prim[i].is_indirect = 1;
1056 prim[i].draw_id = i;
1057 }
1058
1059 if (indirect_params) {
1060 brw->draw.draw_params_count_bo =
1061 intel_buffer_object(indirect_params)->buffer;
1062 brw_bo_reference(brw->draw.draw_params_count_bo);
1063 brw->draw.draw_params_count_offset = indirect_params_offset;
1064 }
1065
1066 brw_draw_prims(ctx, prim, draw_count,
1067 ib, false, 0, ~0,
1068 NULL, 0,
1069 indirect_data);
1070
1071 free(prim);
1072 }
1073
1074 void
1075 brw_init_draw_functions(struct dd_function_table *functions)
1076 {
1077 /* Register our drawing function:
1078 */
1079 functions->Draw = brw_draw_prims;
1080 functions->DrawIndirect = brw_draw_indirect_prims;
1081 }
1082
1083 void
1084 brw_draw_init(struct brw_context *brw)
1085 {
1086 /* Keep our list of gl_vertex_array inputs */
1087 _vbo_init_inputs(&brw->vb.draw_arrays);
1088
1089 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1090 brw->vb.inputs[i].buffer = -1;
1091 brw->vb.nr_buffers = 0;
1092 brw->vb.nr_enabled = 0;
1093 }
1094
1095 void
1096 brw_draw_destroy(struct brw_context *brw)
1097 {
1098 unsigned i;
1099
1100 for (i = 0; i < brw->vb.nr_buffers; i++) {
1101 brw_bo_unreference(brw->vb.buffers[i].bo);
1102 brw->vb.buffers[i].bo = NULL;
1103 }
1104 brw->vb.nr_buffers = 0;
1105
1106 for (i = 0; i < brw->vb.nr_enabled; i++) {
1107 brw->vb.enabled[i]->buffer = -1;
1108 }
1109 brw->vb.nr_enabled = 0;
1110
1111 brw_bo_unreference(brw->ib.bo);
1112 brw->ib.bo = NULL;
1113 }