i965: Call brw_cache_flush_for_render in predraw_resolve_framebuffer
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/blend.h"
29 #include "main/context.h"
30 #include "main/condrender.h"
31 #include "main/samplerobj.h"
32 #include "main/state.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35 #include "main/transformfeedback.h"
36 #include "main/framebuffer.h"
37 #include "tnl/tnl.h"
38 #include "vbo/vbo_context.h"
39 #include "swrast/swrast.h"
40 #include "swrast_setup/swrast_setup.h"
41 #include "drivers/common/meta.h"
42 #include "util/bitscan.h"
43
44 #include "brw_blorp.h"
45 #include "brw_draw.h"
46 #include "brw_defines.h"
47 #include "compiler/brw_eu_defines.h"
48 #include "brw_context.h"
49 #include "brw_state.h"
50
51 #include "intel_batchbuffer.h"
52 #include "intel_buffers.h"
53 #include "intel_fbo.h"
54 #include "intel_mipmap_tree.h"
55 #include "intel_buffer_objects.h"
56
57 #define FILE_DEBUG_FLAG DEBUG_PRIMS
58
59
60 static const GLenum reduced_prim[GL_POLYGON+1] = {
61 [GL_POINTS] = GL_POINTS,
62 [GL_LINES] = GL_LINES,
63 [GL_LINE_LOOP] = GL_LINES,
64 [GL_LINE_STRIP] = GL_LINES,
65 [GL_TRIANGLES] = GL_TRIANGLES,
66 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
67 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
68 [GL_QUADS] = GL_TRIANGLES,
69 [GL_QUAD_STRIP] = GL_TRIANGLES,
70 [GL_POLYGON] = GL_TRIANGLES
71 };
72
73 /* When the primitive changes, set a state bit and re-validate. Not
74 * the nicest and would rather deal with this by having all the
75 * programs be immune to the active primitive (ie. cope with all
76 * possibilities). That may not be realistic however.
77 */
78 static void
79 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
80 {
81 struct gl_context *ctx = &brw->ctx;
82 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
83
84 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
85
86 /* Slight optimization to avoid the GS program when not needed:
87 */
88 if (prim->mode == GL_QUAD_STRIP &&
89 ctx->Light.ShadeModel != GL_FLAT &&
90 ctx->Polygon.FrontMode == GL_FILL &&
91 ctx->Polygon.BackMode == GL_FILL)
92 hw_prim = _3DPRIM_TRISTRIP;
93
94 if (prim->mode == GL_QUADS && prim->count == 4 &&
95 ctx->Light.ShadeModel != GL_FLAT &&
96 ctx->Polygon.FrontMode == GL_FILL &&
97 ctx->Polygon.BackMode == GL_FILL) {
98 hw_prim = _3DPRIM_TRIFAN;
99 }
100
101 if (hw_prim != brw->primitive) {
102 brw->primitive = hw_prim;
103 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
104
105 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
106 brw->reduced_primitive = reduced_prim[prim->mode];
107 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
108 }
109 }
110 }
111
112 static void
113 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
114 {
115 const struct gl_context *ctx = &brw->ctx;
116 uint32_t hw_prim;
117
118 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
119
120 if (prim->mode == GL_PATCHES) {
121 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
122 } else {
123 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
124 }
125
126 if (hw_prim != brw->primitive) {
127 brw->primitive = hw_prim;
128 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
129 if (prim->mode == GL_PATCHES)
130 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
131 }
132 }
133
134
135 /**
136 * The hardware is capable of removing dangling vertices on its own; however,
137 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
138 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
139 * This function manually trims dangling vertices from a draw call involving
140 * quads so that those dangling vertices won't get drawn when we convert to
141 * trifans/tristrips.
142 */
143 static GLuint
144 trim(GLenum prim, GLuint length)
145 {
146 if (prim == GL_QUAD_STRIP)
147 return length > 3 ? (length - length % 2) : 0;
148 else if (prim == GL_QUADS)
149 return length - length % 4;
150 else
151 return length;
152 }
153
154
155 static void
156 brw_emit_prim(struct brw_context *brw,
157 const struct _mesa_prim *prim,
158 uint32_t hw_prim,
159 struct brw_transform_feedback_object *xfb_obj,
160 unsigned stream)
161 {
162 const struct gen_device_info *devinfo = &brw->screen->devinfo;
163 int verts_per_instance;
164 int vertex_access_type;
165 int indirect_flag;
166
167 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
168 prim->start, prim->count);
169
170 int start_vertex_location = prim->start;
171 int base_vertex_location = prim->basevertex;
172
173 if (prim->indexed) {
174 vertex_access_type = devinfo->gen >= 7 ?
175 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
176 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
177 start_vertex_location += brw->ib.start_vertex_offset;
178 base_vertex_location += brw->vb.start_vertex_bias;
179 } else {
180 vertex_access_type = devinfo->gen >= 7 ?
181 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
182 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
183 start_vertex_location += brw->vb.start_vertex_bias;
184 }
185
186 /* We only need to trim the primitive count on pre-Gen6. */
187 if (devinfo->gen < 6)
188 verts_per_instance = trim(prim->mode, prim->count);
189 else
190 verts_per_instance = prim->count;
191
192 /* If nothing to emit, just return. */
193 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
194 return;
195
196 /* If we're set to always flush, do it before and after the primitive emit.
197 * We want to catch both missed flushes that hurt instruction/state cache
198 * and missed flushes of the render cache as it heads to other parts of
199 * the besides the draw code.
200 */
201 if (brw->always_flush_cache)
202 brw_emit_mi_flush(brw);
203
204 /* If indirect, emit a bunch of loads from the indirect BO. */
205 if (xfb_obj) {
206 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
207
208 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
209 xfb_obj->prim_count_bo,
210 stream * sizeof(uint32_t));
211 BEGIN_BATCH(9);
212 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
213 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
214 OUT_BATCH(prim->num_instances);
215 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
216 OUT_BATCH(0);
217 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
218 OUT_BATCH(0);
219 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
220 OUT_BATCH(0);
221 ADVANCE_BATCH();
222 } else if (prim->is_indirect) {
223 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
224 struct brw_bo *bo = intel_bufferobj_buffer(brw,
225 intel_buffer_object(indirect_buffer),
226 prim->indirect_offset, 5 * sizeof(GLuint), false);
227
228 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
229
230 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
231 prim->indirect_offset + 0);
232 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
233 prim->indirect_offset + 4);
234
235 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
236 prim->indirect_offset + 8);
237 if (prim->indexed) {
238 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
239 prim->indirect_offset + 12);
240 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
241 prim->indirect_offset + 16);
242 } else {
243 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
244 prim->indirect_offset + 12);
245 brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
246 }
247 } else {
248 indirect_flag = 0;
249 }
250
251 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
252
253 if (devinfo->gen >= 7) {
254 const int predicate_enable =
255 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
256 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
257
258 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
259 OUT_BATCH(hw_prim | vertex_access_type);
260 } else {
261 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
262 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
263 vertex_access_type);
264 }
265 OUT_BATCH(verts_per_instance);
266 OUT_BATCH(start_vertex_location);
267 OUT_BATCH(prim->num_instances);
268 OUT_BATCH(prim->base_instance);
269 OUT_BATCH(base_vertex_location);
270 ADVANCE_BATCH();
271
272 if (brw->always_flush_cache)
273 brw_emit_mi_flush(brw);
274 }
275
276
277 static void
278 brw_merge_inputs(struct brw_context *brw,
279 const struct gl_vertex_array *arrays[])
280 {
281 const struct gen_device_info *devinfo = &brw->screen->devinfo;
282 const struct gl_context *ctx = &brw->ctx;
283 GLuint i;
284
285 for (i = 0; i < brw->vb.nr_buffers; i++) {
286 brw_bo_unreference(brw->vb.buffers[i].bo);
287 brw->vb.buffers[i].bo = NULL;
288 }
289 brw->vb.nr_buffers = 0;
290
291 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
292 brw->vb.inputs[i].buffer = -1;
293 brw->vb.inputs[i].glarray = arrays[i];
294 }
295
296 if (devinfo->gen < 8 && !devinfo->is_haswell) {
297 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
298 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
299 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
300 */
301 while (mask) {
302 uint8_t wa_flags = 0;
303
304 i = u_bit_scan64(&mask);
305
306 switch (brw->vb.inputs[i].glarray->Type) {
307
308 case GL_FIXED:
309 wa_flags = brw->vb.inputs[i].glarray->Size;
310 break;
311
312 case GL_INT_2_10_10_10_REV:
313 wa_flags |= BRW_ATTRIB_WA_SIGN;
314 /* fallthough */
315
316 case GL_UNSIGNED_INT_2_10_10_10_REV:
317 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
318 wa_flags |= BRW_ATTRIB_WA_BGRA;
319
320 if (brw->vb.inputs[i].glarray->Normalized)
321 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
322 else if (!brw->vb.inputs[i].glarray->Integer)
323 wa_flags |= BRW_ATTRIB_WA_SCALE;
324
325 break;
326 }
327
328 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
329 brw->vb.attrib_wa_flags[i] = wa_flags;
330 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
331 }
332 }
333 }
334 }
335
336 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
337 * or shader image. This causes a self-dependency, where both rendering
338 * and sampling may concurrently read or write the CCS buffer, causing
339 * incorrect pixels.
340 */
341 static bool
342 intel_disable_rb_aux_buffer(struct brw_context *brw,
343 struct intel_mipmap_tree *tex_mt,
344 unsigned min_level, unsigned num_levels,
345 const char *usage)
346 {
347 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
348 bool found = false;
349
350 /* We only need to worry about color compression and fast clears. */
351 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
352 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
353 return false;
354
355 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
356 const struct intel_renderbuffer *irb =
357 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
358
359 if (irb && irb->mt->bo == tex_mt->bo &&
360 irb->mt_level >= min_level &&
361 irb->mt_level < min_level + num_levels) {
362 found = brw->draw_aux_buffer_disabled[i] = true;
363 }
364 }
365
366 if (found) {
367 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
368 usage);
369 }
370
371 return found;
372 }
373
374 /**
375 * \brief Resolve buffers before drawing.
376 *
377 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
378 * enabled depth texture, and flush the render cache for any dirty textures.
379 */
380 void
381 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering)
382 {
383 struct gl_context *ctx = &brw->ctx;
384 struct intel_texture_object *tex_obj;
385
386 memset(brw->draw_aux_buffer_disabled, 0,
387 sizeof(brw->draw_aux_buffer_disabled));
388
389 /* Resolve depth buffer and render cache of each enabled texture. */
390 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
391 for (int i = 0; i <= maxEnabledUnit; i++) {
392 if (!ctx->Texture.Unit[i]._Current)
393 continue;
394 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
395 if (!tex_obj || !tex_obj->mt)
396 continue;
397
398 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
399 enum isl_format view_format =
400 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
401
402 unsigned min_level, min_layer, num_levels, num_layers;
403 if (tex_obj->base.Immutable) {
404 min_level = tex_obj->base.MinLevel;
405 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
406 min_layer = tex_obj->base.MinLayer;
407 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
408 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
409 } else {
410 min_level = tex_obj->base.BaseLevel;
411 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
412 min_layer = 0;
413 num_layers = INTEL_REMAINING_LAYERS;
414 }
415
416 const bool disable_aux = rendering &&
417 intel_disable_rb_aux_buffer(brw, tex_obj->mt, min_level, num_levels,
418 "for sampling");
419
420 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
421 min_level, num_levels,
422 min_layer, num_layers,
423 disable_aux);
424
425 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
426
427 if (tex_obj->base.StencilSampling ||
428 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
429 intel_update_r8stencil(brw, tex_obj->mt);
430 }
431 }
432
433 /* Resolve color for each active shader image. */
434 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
435 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
436
437 if (unlikely(prog && prog->info.num_images)) {
438 for (unsigned j = 0; j < prog->info.num_images; j++) {
439 struct gl_image_unit *u =
440 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
441 tex_obj = intel_texture_object(u->TexObj);
442
443 if (tex_obj && tex_obj->mt) {
444 intel_disable_rb_aux_buffer(brw, tex_obj->mt, 0, ~0,
445 "as a shader image");
446
447 intel_miptree_prepare_image(brw, tex_obj->mt);
448
449 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
450 }
451 }
452 }
453 }
454 }
455
456 static void
457 brw_predraw_resolve_framebuffer(struct brw_context *brw)
458 {
459 struct gl_context *ctx = &brw->ctx;
460 struct intel_renderbuffer *depth_irb;
461
462 /* Resolve the depth buffer's HiZ buffer. */
463 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
464 if (depth_irb && depth_irb->mt) {
465 intel_miptree_prepare_depth(brw, depth_irb->mt,
466 depth_irb->mt_level,
467 depth_irb->mt_layer,
468 depth_irb->layer_count);
469 }
470
471 /* Resolve color buffers for non-coherent framebuffer fetch. */
472 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
473 ctx->FragmentProgram._Current &&
474 ctx->FragmentProgram._Current->info.outputs_read) {
475 const struct gl_framebuffer *fb = ctx->DrawBuffer;
476
477 /* This is only used for non-coherent framebuffer fetch, so we don't
478 * need to worry about CCS_E and can simply pass 'false' below.
479 */
480 assert(brw->screen->devinfo.gen < 9);
481
482 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
483 const struct intel_renderbuffer *irb =
484 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
485
486 if (irb) {
487 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
488 irb->mt_level, 1,
489 irb->mt_layer, irb->layer_count,
490 false);
491 }
492 }
493 }
494
495 struct gl_framebuffer *fb = ctx->DrawBuffer;
496 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
497 struct intel_renderbuffer *irb =
498 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
499
500 if (irb == NULL || irb->mt == NULL)
501 continue;
502
503 mesa_format mesa_format =
504 _mesa_get_render_format(ctx, intel_rb_format(irb));
505 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
506
507 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
508 irb->mt_layer, irb->layer_count,
509 isl_format,
510 ctx->Color.BlendEnabled & (1 << i));
511
512 brw_cache_flush_for_render(brw, irb->mt->bo);
513 }
514 }
515
516 /**
517 * \brief Call this after drawing to mark which buffers need resolving
518 *
519 * If the depth buffer was written to and if it has an accompanying HiZ
520 * buffer, then mark that it needs a depth resolve.
521 *
522 * If the color buffer is a multisample window system buffer, then
523 * mark that it needs a downsample.
524 *
525 * Also mark any render targets which will be textured as needing a render
526 * cache flush.
527 */
528 static void
529 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
530 {
531 struct gl_context *ctx = &brw->ctx;
532 struct gl_framebuffer *fb = ctx->DrawBuffer;
533
534 struct intel_renderbuffer *front_irb = NULL;
535 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
536 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
537 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
538 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
539
540 if (_mesa_is_front_buffer_drawing(fb))
541 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
542
543 if (front_irb)
544 front_irb->need_downsample = true;
545 if (back_irb)
546 back_irb->need_downsample = true;
547 if (depth_irb) {
548 bool depth_written = brw_depth_writes_enabled(brw);
549 if (depth_att->Layered) {
550 intel_miptree_finish_depth(brw, depth_irb->mt,
551 depth_irb->mt_level,
552 depth_irb->mt_layer,
553 depth_irb->layer_count,
554 depth_written);
555 } else {
556 intel_miptree_finish_depth(brw, depth_irb->mt,
557 depth_irb->mt_level,
558 depth_irb->mt_layer, 1,
559 depth_written);
560 }
561 if (depth_written)
562 brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
563 }
564
565 if (stencil_irb && brw->stencil_write_enabled)
566 brw_depth_cache_add_bo(brw, stencil_irb->mt->bo);
567
568 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
569 struct intel_renderbuffer *irb =
570 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
571
572 if (!irb)
573 continue;
574
575 mesa_format mesa_format =
576 _mesa_get_render_format(ctx, intel_rb_format(irb));
577 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
578
579 brw_render_cache_add_bo(brw, irb->mt->bo);
580 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
581 irb->mt_layer, irb->layer_count,
582 isl_format,
583 ctx->Color.BlendEnabled & (1 << i));
584 }
585 }
586
587 static void
588 intel_renderbuffer_move_temp_back(struct brw_context *brw,
589 struct intel_renderbuffer *irb)
590 {
591 if (irb->align_wa_mt == NULL)
592 return;
593
594 brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
595
596 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
597 irb->mt,
598 irb->Base.Base.TexImage->Level, irb->mt_layer);
599
600 intel_miptree_reference(&irb->align_wa_mt, NULL);
601
602 /* Finally restore the x,y to correspond to full miptree. */
603 intel_renderbuffer_set_draw_offset(irb);
604
605 /* Make sure render surface state gets re-emitted with updated miptree. */
606 brw->NewGLState |= _NEW_BUFFERS;
607 }
608
609 static void
610 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
611 {
612 struct gl_context *ctx = &brw->ctx;
613 struct gl_framebuffer *fb = ctx->DrawBuffer;
614
615 struct intel_renderbuffer *depth_irb =
616 intel_get_renderbuffer(fb, BUFFER_DEPTH);
617 struct intel_renderbuffer *stencil_irb =
618 intel_get_renderbuffer(fb, BUFFER_STENCIL);
619
620 if (depth_irb && depth_irb->align_wa_mt)
621 intel_renderbuffer_move_temp_back(brw, depth_irb);
622
623 if (stencil_irb && stencil_irb->align_wa_mt)
624 intel_renderbuffer_move_temp_back(brw, stencil_irb);
625
626 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
627 struct intel_renderbuffer *irb =
628 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
629
630 if (!irb || irb->align_wa_mt == NULL)
631 continue;
632
633 intel_renderbuffer_move_temp_back(brw, irb);
634 }
635 }
636
637 static void
638 brw_prepare_drawing(struct gl_context *ctx,
639 const struct gl_vertex_array *arrays[],
640 const struct _mesa_index_buffer *ib,
641 bool index_bounds_valid,
642 GLuint min_index,
643 GLuint max_index)
644 {
645 struct brw_context *brw = brw_context(ctx);
646
647 if (ctx->NewState)
648 _mesa_update_state(ctx);
649
650 /* We have to validate the textures *before* checking for fallbacks;
651 * otherwise, the software fallback won't be able to rely on the
652 * texture state, the firstLevel and lastLevel fields won't be
653 * set in the intel texture object (they'll both be 0), and the
654 * software fallback will segfault if it attempts to access any
655 * texture level other than level 0.
656 */
657 brw_validate_textures(brw);
658
659 /* Find the highest sampler unit used by each shader program. A bit-count
660 * won't work since ARB programs use the texture unit number as the sampler
661 * index.
662 */
663 brw->wm.base.sampler_count =
664 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
665 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
666 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
667 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
668 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
669 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
670 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
671 brw->vs.base.sampler_count =
672 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
673
674 intel_prepare_render(brw);
675
676 /* This workaround has to happen outside of brw_upload_render_state()
677 * because it may flush the batchbuffer for a blit, affecting the state
678 * flags.
679 */
680 brw_workaround_depthstencil_alignment(brw, 0);
681
682 /* Resolves must occur after updating renderbuffers, updating context state,
683 * and finalizing textures but before setting up any hardware state for
684 * this draw call.
685 */
686 brw_predraw_resolve_inputs(brw, true);
687 brw_predraw_resolve_framebuffer(brw);
688
689 /* Bind all inputs, derive varying and size information:
690 */
691 brw_merge_inputs(brw, arrays);
692
693 brw->ib.ib = ib;
694 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
695
696 brw->vb.index_bounds_valid = index_bounds_valid;
697 brw->vb.min_index = min_index;
698 brw->vb.max_index = max_index;
699 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
700 }
701
702 static void
703 brw_finish_drawing(struct gl_context *ctx)
704 {
705 struct brw_context *brw = brw_context(ctx);
706
707 if (brw->always_flush_batch)
708 intel_batchbuffer_flush(brw);
709
710 brw_program_cache_check_size(brw);
711 brw_postdraw_reconcile_align_wa_slices(brw);
712 brw_postdraw_set_buffers_need_resolve(brw);
713
714 if (brw->draw.draw_params_count_bo) {
715 brw_bo_unreference(brw->draw.draw_params_count_bo);
716 brw->draw.draw_params_count_bo = NULL;
717 }
718 }
719
720 /* May fail if out of video memory for texture or vbo upload, or on
721 * fallback conditions.
722 */
723 static void
724 brw_draw_single_prim(struct gl_context *ctx,
725 const struct gl_vertex_array *arrays[],
726 const struct _mesa_prim *prim,
727 unsigned prim_id,
728 struct brw_transform_feedback_object *xfb_obj,
729 unsigned stream,
730 struct gl_buffer_object *indirect)
731 {
732 struct brw_context *brw = brw_context(ctx);
733 const struct gen_device_info *devinfo = &brw->screen->devinfo;
734 bool fail_next = false;
735
736 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
737 * atoms that happen on every draw call.
738 */
739 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
740
741 /* Flush the batch if the batch/state buffers are nearly full. We can
742 * grow them if needed, but this is not free, so we'd like to avoid it.
743 */
744 intel_batchbuffer_require_space(brw, 1500, RENDER_RING);
745 brw_require_statebuffer_space(brw, 2400);
746 intel_batchbuffer_save_state(brw);
747
748 if (brw->num_instances != prim->num_instances ||
749 brw->basevertex != prim->basevertex ||
750 brw->baseinstance != prim->base_instance) {
751 brw->num_instances = prim->num_instances;
752 brw->basevertex = prim->basevertex;
753 brw->baseinstance = prim->base_instance;
754 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
755 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
756 brw_merge_inputs(brw, arrays);
757 }
758 }
759
760 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
761 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
762 * always flag if the shader uses one of the values. For direct draws,
763 * we only flag if the values change.
764 */
765 const int new_basevertex =
766 prim->indexed ? prim->basevertex : prim->start;
767 const int new_baseinstance = prim->base_instance;
768 const struct brw_vs_prog_data *vs_prog_data =
769 brw_vs_prog_data(brw->vs.base.prog_data);
770 if (prim_id > 0) {
771 const bool uses_draw_parameters =
772 vs_prog_data->uses_basevertex ||
773 vs_prog_data->uses_baseinstance;
774
775 if ((uses_draw_parameters && prim->is_indirect) ||
776 (vs_prog_data->uses_basevertex &&
777 brw->draw.params.gl_basevertex != new_basevertex) ||
778 (vs_prog_data->uses_baseinstance &&
779 brw->draw.params.gl_baseinstance != new_baseinstance))
780 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
781 }
782
783 brw->draw.params.gl_basevertex = new_basevertex;
784 brw->draw.params.gl_baseinstance = new_baseinstance;
785 brw_bo_unreference(brw->draw.draw_params_bo);
786
787 if (prim->is_indirect) {
788 /* Point draw_params_bo at the indirect buffer. */
789 brw->draw.draw_params_bo =
790 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
791 brw_bo_reference(brw->draw.draw_params_bo);
792 brw->draw.draw_params_offset =
793 prim->indirect_offset + (prim->indexed ? 12 : 8);
794 } else {
795 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
796 * has to upload gl_BaseVertex and such if they're needed.
797 */
798 brw->draw.draw_params_bo = NULL;
799 brw->draw.draw_params_offset = 0;
800 }
801
802 /* gl_DrawID always needs its own vertex buffer since it's not part of
803 * the indirect parameter buffer. If the program uses gl_DrawID we need
804 * to flag BRW_NEW_VERTICES. For the first iteration, we don't have
805 * valid vs_prog_data, but we always flag BRW_NEW_VERTICES before
806 * the loop.
807 */
808 brw->draw.gl_drawid = prim->draw_id;
809 brw_bo_unreference(brw->draw.draw_id_bo);
810 brw->draw.draw_id_bo = NULL;
811 if (prim_id > 0 && vs_prog_data->uses_drawid)
812 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
813
814 if (devinfo->gen < 6)
815 brw_set_prim(brw, prim);
816 else
817 gen6_set_prim(brw, prim);
818
819 retry:
820
821 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
822 * that the state updated in the loop outside of this block is that in
823 * *_set_prim or intel_batchbuffer_flush(), which only impacts
824 * brw->ctx.NewDriverState.
825 */
826 if (brw->ctx.NewDriverState) {
827 brw->batch.no_wrap = true;
828 brw_upload_render_state(brw);
829 }
830
831 brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream);
832
833 brw->batch.no_wrap = false;
834
835 if (!brw_batch_has_aperture_space(brw, 0)) {
836 if (!fail_next) {
837 intel_batchbuffer_reset_to_saved(brw);
838 intel_batchbuffer_flush(brw);
839 fail_next = true;
840 goto retry;
841 } else {
842 int ret = intel_batchbuffer_flush(brw);
843 WARN_ONCE(ret == -ENOSPC,
844 "i965: Single primitive emit exceeded "
845 "available aperture space\n");
846 }
847 }
848
849 /* Now that we know we haven't run out of aperture space, we can safely
850 * reset the dirty bits.
851 */
852 if (brw->ctx.NewDriverState)
853 brw_render_state_finished(brw);
854
855 return;
856 }
857
858 void
859 brw_draw_prims(struct gl_context *ctx,
860 const struct _mesa_prim *prims,
861 GLuint nr_prims,
862 const struct _mesa_index_buffer *ib,
863 GLboolean index_bounds_valid,
864 GLuint min_index,
865 GLuint max_index,
866 struct gl_transform_feedback_object *gl_xfb_obj,
867 unsigned stream,
868 struct gl_buffer_object *indirect)
869 {
870 unsigned i;
871 struct brw_context *brw = brw_context(ctx);
872 const struct gl_vertex_array **arrays = ctx->Array._DrawArrays;
873 int predicate_state = brw->predicate.state;
874 struct brw_transform_feedback_object *xfb_obj =
875 (struct brw_transform_feedback_object *) gl_xfb_obj;
876
877 if (!brw_check_conditional_render(brw))
878 return;
879
880 /* Handle primitive restart if needed */
881 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
882 /* The draw was handled, so we can exit now */
883 return;
884 }
885
886 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
887 * won't support all the extensions we support.
888 */
889 if (ctx->RenderMode != GL_RENDER) {
890 perf_debug("%s render mode not supported in hardware\n",
891 _mesa_enum_to_string(ctx->RenderMode));
892 _swsetup_Wakeup(ctx);
893 _tnl_wakeup(ctx);
894 _tnl_draw_prims(ctx, prims, nr_prims, ib,
895 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
896 return;
897 }
898
899 /* If we're going to have to upload any of the user's vertex arrays, then
900 * get the minimum and maximum of their index buffer so we know what range
901 * to upload.
902 */
903 if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
904 perf_debug("Scanning index buffer to compute index buffer bounds. "
905 "Use glDrawRangeElements() to avoid this.\n");
906 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
907 index_bounds_valid = true;
908 }
909
910 brw_prepare_drawing(ctx, arrays, ib, index_bounds_valid, min_index,
911 max_index);
912 /* Try drawing with the hardware, but don't do anything else if we can't
913 * manage it. swrast doesn't support our featureset, so we can't fall back
914 * to it.
915 */
916
917 for (i = 0; i < nr_prims; i++) {
918 /* Implementation of ARB_indirect_parameters via predicates */
919 if (brw->draw.draw_params_count_bo) {
920 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
921
922 /* Upload the current draw count from the draw parameters buffer to
923 * MI_PREDICATE_SRC0.
924 */
925 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
926 brw->draw.draw_params_count_bo,
927 brw->draw.draw_params_count_offset);
928 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
929 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
930 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
931 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
932
933 BEGIN_BATCH(1);
934 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
935 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
936 MI_PREDICATE_COMBINEOP_SET |
937 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
938 } else {
939 OUT_BATCH(GEN7_MI_PREDICATE |
940 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
941 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
942 }
943 ADVANCE_BATCH();
944
945 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
946 }
947
948 brw_draw_single_prim(ctx, arrays, &prims[i], i, xfb_obj, stream,
949 indirect);
950 }
951
952 brw_finish_drawing(ctx);
953 brw->predicate.state = predicate_state;
954 }
955
956 void
957 brw_draw_indirect_prims(struct gl_context *ctx,
958 GLuint mode,
959 struct gl_buffer_object *indirect_data,
960 GLsizeiptr indirect_offset,
961 unsigned draw_count,
962 unsigned stride,
963 struct gl_buffer_object *indirect_params,
964 GLsizeiptr indirect_params_offset,
965 const struct _mesa_index_buffer *ib)
966 {
967 struct brw_context *brw = brw_context(ctx);
968 struct _mesa_prim *prim;
969 GLsizei i;
970
971 prim = calloc(draw_count, sizeof(*prim));
972 if (prim == NULL) {
973 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
974 (draw_count > 1) ? "Multi" : "",
975 ib ? "Elements" : "Arrays",
976 indirect_params ? "CountARB" : "");
977 return;
978 }
979
980 prim[0].begin = 1;
981 prim[draw_count - 1].end = 1;
982 for (i = 0; i < draw_count; ++i, indirect_offset += stride) {
983 prim[i].mode = mode;
984 prim[i].indexed = ib != NULL;
985 prim[i].indirect_offset = indirect_offset;
986 prim[i].is_indirect = 1;
987 prim[i].draw_id = i;
988 }
989
990 if (indirect_params) {
991 brw->draw.draw_params_count_bo =
992 intel_buffer_object(indirect_params)->buffer;
993 brw_bo_reference(brw->draw.draw_params_count_bo);
994 brw->draw.draw_params_count_offset = indirect_params_offset;
995 }
996
997 brw_draw_prims(ctx, prim, draw_count,
998 ib, false, 0, ~0,
999 NULL, 0,
1000 indirect_data);
1001
1002 free(prim);
1003 }
1004
1005 void
1006 brw_draw_init(struct brw_context *brw)
1007 {
1008 struct gl_context *ctx = &brw->ctx;
1009 struct vbo_context *vbo = vbo_context(ctx);
1010
1011 /* Register our drawing function:
1012 */
1013 vbo->draw_prims = brw_draw_prims;
1014 vbo->draw_indirect_prims = brw_draw_indirect_prims;
1015
1016 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1017 brw->vb.inputs[i].buffer = -1;
1018 brw->vb.nr_buffers = 0;
1019 brw->vb.nr_enabled = 0;
1020 }
1021
1022 void
1023 brw_draw_destroy(struct brw_context *brw)
1024 {
1025 unsigned i;
1026
1027 for (i = 0; i < brw->vb.nr_buffers; i++) {
1028 brw_bo_unreference(brw->vb.buffers[i].bo);
1029 brw->vb.buffers[i].bo = NULL;
1030 }
1031 brw->vb.nr_buffers = 0;
1032
1033 for (i = 0; i < brw->vb.nr_enabled; i++) {
1034 brw->vb.enabled[i]->buffer = -1;
1035 }
1036 brw->vb.nr_enabled = 0;
1037
1038 brw_bo_unreference(brw->ib.bo);
1039 brw->ib.bo = NULL;
1040 }