i965: use vbo_set_[indirect]_draw_func()
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/blend.h"
29 #include "main/context.h"
30 #include "main/condrender.h"
31 #include "main/samplerobj.h"
32 #include "main/state.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35 #include "main/transformfeedback.h"
36 #include "main/framebuffer.h"
37 #include "tnl/tnl.h"
38 #include "vbo/vbo_context.h"
39 #include "swrast/swrast.h"
40 #include "swrast_setup/swrast_setup.h"
41 #include "drivers/common/meta.h"
42 #include "util/bitscan.h"
43 #include "util/bitset.h"
44
45 #include "brw_blorp.h"
46 #include "brw_draw.h"
47 #include "brw_defines.h"
48 #include "compiler/brw_eu_defines.h"
49 #include "brw_context.h"
50 #include "brw_state.h"
51
52 #include "intel_batchbuffer.h"
53 #include "intel_buffers.h"
54 #include "intel_fbo.h"
55 #include "intel_mipmap_tree.h"
56 #include "intel_buffer_objects.h"
57
58 #define FILE_DEBUG_FLAG DEBUG_PRIMS
59
60
61 static const GLenum reduced_prim[GL_POLYGON+1] = {
62 [GL_POINTS] = GL_POINTS,
63 [GL_LINES] = GL_LINES,
64 [GL_LINE_LOOP] = GL_LINES,
65 [GL_LINE_STRIP] = GL_LINES,
66 [GL_TRIANGLES] = GL_TRIANGLES,
67 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
68 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
69 [GL_QUADS] = GL_TRIANGLES,
70 [GL_QUAD_STRIP] = GL_TRIANGLES,
71 [GL_POLYGON] = GL_TRIANGLES
72 };
73
74 /* When the primitive changes, set a state bit and re-validate. Not
75 * the nicest and would rather deal with this by having all the
76 * programs be immune to the active primitive (ie. cope with all
77 * possibilities). That may not be realistic however.
78 */
79 static void
80 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
81 {
82 struct gl_context *ctx = &brw->ctx;
83 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
84
85 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
86
87 /* Slight optimization to avoid the GS program when not needed:
88 */
89 if (prim->mode == GL_QUAD_STRIP &&
90 ctx->Light.ShadeModel != GL_FLAT &&
91 ctx->Polygon.FrontMode == GL_FILL &&
92 ctx->Polygon.BackMode == GL_FILL)
93 hw_prim = _3DPRIM_TRISTRIP;
94
95 if (prim->mode == GL_QUADS && prim->count == 4 &&
96 ctx->Light.ShadeModel != GL_FLAT &&
97 ctx->Polygon.FrontMode == GL_FILL &&
98 ctx->Polygon.BackMode == GL_FILL) {
99 hw_prim = _3DPRIM_TRIFAN;
100 }
101
102 if (hw_prim != brw->primitive) {
103 brw->primitive = hw_prim;
104 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
105
106 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
107 brw->reduced_primitive = reduced_prim[prim->mode];
108 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
109 }
110 }
111 }
112
113 static void
114 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
115 {
116 const struct gl_context *ctx = &brw->ctx;
117 uint32_t hw_prim;
118
119 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
120
121 if (prim->mode == GL_PATCHES) {
122 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
123 } else {
124 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
125 }
126
127 if (hw_prim != brw->primitive) {
128 brw->primitive = hw_prim;
129 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
130 if (prim->mode == GL_PATCHES)
131 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
132 }
133 }
134
135
136 /**
137 * The hardware is capable of removing dangling vertices on its own; however,
138 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
139 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
140 * This function manually trims dangling vertices from a draw call involving
141 * quads so that those dangling vertices won't get drawn when we convert to
142 * trifans/tristrips.
143 */
144 static GLuint
145 trim(GLenum prim, GLuint length)
146 {
147 if (prim == GL_QUAD_STRIP)
148 return length > 3 ? (length - length % 2) : 0;
149 else if (prim == GL_QUADS)
150 return length - length % 4;
151 else
152 return length;
153 }
154
155
156 static void
157 brw_emit_prim(struct brw_context *brw,
158 const struct _mesa_prim *prim,
159 uint32_t hw_prim,
160 struct brw_transform_feedback_object *xfb_obj,
161 unsigned stream)
162 {
163 const struct gen_device_info *devinfo = &brw->screen->devinfo;
164 int verts_per_instance;
165 int vertex_access_type;
166 int indirect_flag;
167
168 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
169 prim->start, prim->count);
170
171 int start_vertex_location = prim->start;
172 int base_vertex_location = prim->basevertex;
173
174 if (prim->indexed) {
175 vertex_access_type = devinfo->gen >= 7 ?
176 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
177 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
178 start_vertex_location += brw->ib.start_vertex_offset;
179 base_vertex_location += brw->vb.start_vertex_bias;
180 } else {
181 vertex_access_type = devinfo->gen >= 7 ?
182 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
183 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
184 start_vertex_location += brw->vb.start_vertex_bias;
185 }
186
187 /* We only need to trim the primitive count on pre-Gen6. */
188 if (devinfo->gen < 6)
189 verts_per_instance = trim(prim->mode, prim->count);
190 else
191 verts_per_instance = prim->count;
192
193 /* If nothing to emit, just return. */
194 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
195 return;
196
197 /* If we're set to always flush, do it before and after the primitive emit.
198 * We want to catch both missed flushes that hurt instruction/state cache
199 * and missed flushes of the render cache as it heads to other parts of
200 * the besides the draw code.
201 */
202 if (brw->always_flush_cache)
203 brw_emit_mi_flush(brw);
204
205 /* If indirect, emit a bunch of loads from the indirect BO. */
206 if (xfb_obj) {
207 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
208
209 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
210 xfb_obj->prim_count_bo,
211 stream * sizeof(uint32_t));
212 BEGIN_BATCH(9);
213 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
214 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
215 OUT_BATCH(prim->num_instances);
216 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
217 OUT_BATCH(0);
218 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
219 OUT_BATCH(0);
220 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
221 OUT_BATCH(0);
222 ADVANCE_BATCH();
223 } else if (prim->is_indirect) {
224 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
225 struct brw_bo *bo = intel_bufferobj_buffer(brw,
226 intel_buffer_object(indirect_buffer),
227 prim->indirect_offset, 5 * sizeof(GLuint), false);
228
229 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
230
231 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
232 prim->indirect_offset + 0);
233 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
234 prim->indirect_offset + 4);
235
236 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
237 prim->indirect_offset + 8);
238 if (prim->indexed) {
239 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
240 prim->indirect_offset + 12);
241 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
242 prim->indirect_offset + 16);
243 } else {
244 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
245 prim->indirect_offset + 12);
246 brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0);
247 }
248 } else {
249 indirect_flag = 0;
250 }
251
252 BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6);
253
254 if (devinfo->gen >= 7) {
255 const int predicate_enable =
256 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
257 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
258
259 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
260 OUT_BATCH(hw_prim | vertex_access_type);
261 } else {
262 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
263 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
264 vertex_access_type);
265 }
266 OUT_BATCH(verts_per_instance);
267 OUT_BATCH(start_vertex_location);
268 OUT_BATCH(prim->num_instances);
269 OUT_BATCH(prim->base_instance);
270 OUT_BATCH(base_vertex_location);
271 ADVANCE_BATCH();
272
273 if (brw->always_flush_cache)
274 brw_emit_mi_flush(brw);
275 }
276
277
278 static void
279 brw_merge_inputs(struct brw_context *brw,
280 const struct gl_vertex_array *arrays[])
281 {
282 const struct gen_device_info *devinfo = &brw->screen->devinfo;
283 const struct gl_context *ctx = &brw->ctx;
284 GLuint i;
285
286 for (i = 0; i < brw->vb.nr_buffers; i++) {
287 brw_bo_unreference(brw->vb.buffers[i].bo);
288 brw->vb.buffers[i].bo = NULL;
289 }
290 brw->vb.nr_buffers = 0;
291
292 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
293 brw->vb.inputs[i].buffer = -1;
294 brw->vb.inputs[i].glarray = arrays[i];
295 }
296
297 if (devinfo->gen < 8 && !devinfo->is_haswell) {
298 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
299 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
300 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
301 */
302 while (mask) {
303 uint8_t wa_flags = 0;
304
305 i = u_bit_scan64(&mask);
306
307 switch (brw->vb.inputs[i].glarray->Type) {
308
309 case GL_FIXED:
310 wa_flags = brw->vb.inputs[i].glarray->Size;
311 break;
312
313 case GL_INT_2_10_10_10_REV:
314 wa_flags |= BRW_ATTRIB_WA_SIGN;
315 /* fallthough */
316
317 case GL_UNSIGNED_INT_2_10_10_10_REV:
318 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
319 wa_flags |= BRW_ATTRIB_WA_BGRA;
320
321 if (brw->vb.inputs[i].glarray->Normalized)
322 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
323 else if (!brw->vb.inputs[i].glarray->Integer)
324 wa_flags |= BRW_ATTRIB_WA_SCALE;
325
326 break;
327 }
328
329 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
330 brw->vb.attrib_wa_flags[i] = wa_flags;
331 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
332 }
333 }
334 }
335 }
336
337 /* Disable auxiliary buffers if a renderbuffer is also bound as a texture
338 * or shader image. This causes a self-dependency, where both rendering
339 * and sampling may concurrently read or write the CCS buffer, causing
340 * incorrect pixels.
341 */
342 static bool
343 intel_disable_rb_aux_buffer(struct brw_context *brw,
344 struct intel_mipmap_tree *tex_mt,
345 unsigned min_level, unsigned num_levels,
346 const char *usage)
347 {
348 const struct gl_framebuffer *fb = brw->ctx.DrawBuffer;
349 bool found = false;
350
351 /* We only need to worry about color compression and fast clears. */
352 if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
353 tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E)
354 return false;
355
356 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
357 const struct intel_renderbuffer *irb =
358 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
359
360 if (irb && irb->mt->bo == tex_mt->bo &&
361 irb->mt_level >= min_level &&
362 irb->mt_level < min_level + num_levels) {
363 found = brw->draw_aux_buffer_disabled[i] = true;
364 }
365 }
366
367 if (found) {
368 perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n",
369 usage);
370 }
371
372 return found;
373 }
374
375 static void
376 mark_textures_used_for_txf(BITSET_WORD *used_for_txf,
377 const struct gl_program *prog)
378 {
379 if (!prog)
380 return;
381
382 unsigned mask = prog->SamplersUsed & prog->info.textures_used_by_txf;
383 while (mask) {
384 int s = u_bit_scan(&mask);
385 BITSET_SET(used_for_txf, prog->SamplerUnits[s]);
386 }
387 }
388
389 /**
390 * \brief Resolve buffers before drawing.
391 *
392 * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each
393 * enabled depth texture, and flush the render cache for any dirty textures.
394 */
395 void
396 brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering)
397 {
398 struct gl_context *ctx = &brw->ctx;
399 struct intel_texture_object *tex_obj;
400
401 memset(brw->draw_aux_buffer_disabled, 0,
402 sizeof(brw->draw_aux_buffer_disabled));
403
404 BITSET_DECLARE(used_for_txf, MAX_COMBINED_TEXTURE_IMAGE_UNITS);
405 memset(used_for_txf, 0, sizeof(used_for_txf));
406 if (rendering) {
407 mark_textures_used_for_txf(used_for_txf, ctx->VertexProgram._Current);
408 mark_textures_used_for_txf(used_for_txf, ctx->TessCtrlProgram._Current);
409 mark_textures_used_for_txf(used_for_txf, ctx->TessEvalProgram._Current);
410 mark_textures_used_for_txf(used_for_txf, ctx->GeometryProgram._Current);
411 mark_textures_used_for_txf(used_for_txf, ctx->FragmentProgram._Current);
412 } else {
413 mark_textures_used_for_txf(used_for_txf, ctx->ComputeProgram._Current);
414 }
415
416 /* Resolve depth buffer and render cache of each enabled texture. */
417 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
418 for (int i = 0; i <= maxEnabledUnit; i++) {
419 if (!ctx->Texture.Unit[i]._Current)
420 continue;
421 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
422 if (!tex_obj || !tex_obj->mt)
423 continue;
424
425 struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i);
426 enum isl_format view_format =
427 translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode);
428
429 unsigned min_level, min_layer, num_levels, num_layers;
430 if (tex_obj->base.Immutable) {
431 min_level = tex_obj->base.MinLevel;
432 num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1);
433 min_layer = tex_obj->base.MinLayer;
434 num_layers = tex_obj->base.Target != GL_TEXTURE_3D ?
435 tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS;
436 } else {
437 min_level = tex_obj->base.BaseLevel;
438 num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1;
439 min_layer = 0;
440 num_layers = INTEL_REMAINING_LAYERS;
441 }
442
443 const bool disable_aux = rendering &&
444 intel_disable_rb_aux_buffer(brw, tex_obj->mt, min_level, num_levels,
445 "for sampling");
446
447 intel_miptree_prepare_texture(brw, tex_obj->mt, view_format,
448 min_level, num_levels,
449 min_layer, num_layers,
450 disable_aux);
451
452 /* If any programs are using it with texelFetch, we may need to also do
453 * a prepare with an sRGB format to ensure texelFetch works "properly".
454 */
455 if (BITSET_TEST(used_for_txf, i)) {
456 enum isl_format txf_format =
457 translate_tex_format(brw, tex_obj->_Format, GL_DECODE_EXT);
458 if (txf_format != view_format) {
459 intel_miptree_prepare_texture(brw, tex_obj->mt, txf_format,
460 min_level, num_levels,
461 min_layer, num_layers,
462 disable_aux);
463 }
464 }
465
466 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
467
468 if (tex_obj->base.StencilSampling ||
469 tex_obj->mt->format == MESA_FORMAT_S_UINT8) {
470 intel_update_r8stencil(brw, tex_obj->mt);
471 }
472 }
473
474 /* Resolve color for each active shader image. */
475 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
476 const struct gl_program *prog = ctx->_Shader->CurrentProgram[i];
477
478 if (unlikely(prog && prog->info.num_images)) {
479 for (unsigned j = 0; j < prog->info.num_images; j++) {
480 struct gl_image_unit *u =
481 &ctx->ImageUnits[prog->sh.ImageUnits[j]];
482 tex_obj = intel_texture_object(u->TexObj);
483
484 if (tex_obj && tex_obj->mt) {
485 if (rendering) {
486 intel_disable_rb_aux_buffer(brw, tex_obj->mt, 0, ~0,
487 "as a shader image");
488 }
489
490 intel_miptree_prepare_image(brw, tex_obj->mt);
491
492 brw_cache_flush_for_read(brw, tex_obj->mt->bo);
493 }
494 }
495 }
496 }
497 }
498
499 static void
500 brw_predraw_resolve_framebuffer(struct brw_context *brw)
501 {
502 struct gl_context *ctx = &brw->ctx;
503 struct intel_renderbuffer *depth_irb;
504
505 /* Resolve the depth buffer's HiZ buffer. */
506 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
507 if (depth_irb && depth_irb->mt) {
508 intel_miptree_prepare_depth(brw, depth_irb->mt,
509 depth_irb->mt_level,
510 depth_irb->mt_layer,
511 depth_irb->layer_count);
512 }
513
514 /* Resolve color buffers for non-coherent framebuffer fetch. */
515 if (!ctx->Extensions.MESA_shader_framebuffer_fetch &&
516 ctx->FragmentProgram._Current &&
517 ctx->FragmentProgram._Current->info.outputs_read) {
518 const struct gl_framebuffer *fb = ctx->DrawBuffer;
519
520 /* This is only used for non-coherent framebuffer fetch, so we don't
521 * need to worry about CCS_E and can simply pass 'false' below.
522 */
523 assert(brw->screen->devinfo.gen < 9);
524
525 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
526 const struct intel_renderbuffer *irb =
527 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
528
529 if (irb) {
530 intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format,
531 irb->mt_level, 1,
532 irb->mt_layer, irb->layer_count,
533 false);
534 }
535 }
536 }
537
538 struct gl_framebuffer *fb = ctx->DrawBuffer;
539 for (int i = 0; i < fb->_NumColorDrawBuffers; i++) {
540 struct intel_renderbuffer *irb =
541 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
542
543 if (irb == NULL || irb->mt == NULL)
544 continue;
545
546 mesa_format mesa_format =
547 _mesa_get_render_format(ctx, intel_rb_format(irb));
548 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
549 bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
550 enum isl_aux_usage aux_usage =
551 intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
552 blend_enabled);
553
554 intel_miptree_prepare_render(brw, irb->mt, irb->mt_level,
555 irb->mt_layer, irb->layer_count,
556 isl_format, blend_enabled);
557
558 brw_cache_flush_for_render(brw, irb->mt->bo,
559 isl_format, aux_usage);
560 }
561 }
562
563 /**
564 * \brief Call this after drawing to mark which buffers need resolving
565 *
566 * If the depth buffer was written to and if it has an accompanying HiZ
567 * buffer, then mark that it needs a depth resolve.
568 *
569 * If the color buffer is a multisample window system buffer, then
570 * mark that it needs a downsample.
571 *
572 * Also mark any render targets which will be textured as needing a render
573 * cache flush.
574 */
575 static void
576 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
577 {
578 struct gl_context *ctx = &brw->ctx;
579 struct gl_framebuffer *fb = ctx->DrawBuffer;
580
581 struct intel_renderbuffer *front_irb = NULL;
582 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
583 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
584 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
585 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
586
587 if (_mesa_is_front_buffer_drawing(fb))
588 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
589
590 if (front_irb)
591 front_irb->need_downsample = true;
592 if (back_irb)
593 back_irb->need_downsample = true;
594 if (depth_irb) {
595 bool depth_written = brw_depth_writes_enabled(brw);
596 if (depth_att->Layered) {
597 intel_miptree_finish_depth(brw, depth_irb->mt,
598 depth_irb->mt_level,
599 depth_irb->mt_layer,
600 depth_irb->layer_count,
601 depth_written);
602 } else {
603 intel_miptree_finish_depth(brw, depth_irb->mt,
604 depth_irb->mt_level,
605 depth_irb->mt_layer, 1,
606 depth_written);
607 }
608 if (depth_written)
609 brw_depth_cache_add_bo(brw, depth_irb->mt->bo);
610 }
611
612 if (stencil_irb && brw->stencil_write_enabled)
613 brw_depth_cache_add_bo(brw, stencil_irb->mt->bo);
614
615 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
616 struct intel_renderbuffer *irb =
617 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
618
619 if (!irb)
620 continue;
621
622 mesa_format mesa_format =
623 _mesa_get_render_format(ctx, intel_rb_format(irb));
624 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
625 bool blend_enabled = ctx->Color.BlendEnabled & (1 << i);
626 enum isl_aux_usage aux_usage =
627 intel_miptree_render_aux_usage(brw, irb->mt, isl_format,
628 blend_enabled);
629
630 brw_render_cache_add_bo(brw, irb->mt->bo, isl_format, aux_usage);
631
632 intel_miptree_finish_render(brw, irb->mt, irb->mt_level,
633 irb->mt_layer, irb->layer_count,
634 isl_format, blend_enabled);
635 }
636 }
637
638 static void
639 intel_renderbuffer_move_temp_back(struct brw_context *brw,
640 struct intel_renderbuffer *irb)
641 {
642 if (irb->align_wa_mt == NULL)
643 return;
644
645 brw_cache_flush_for_read(brw, irb->align_wa_mt->bo);
646
647 intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0,
648 irb->mt,
649 irb->Base.Base.TexImage->Level, irb->mt_layer);
650
651 intel_miptree_reference(&irb->align_wa_mt, NULL);
652
653 /* Finally restore the x,y to correspond to full miptree. */
654 intel_renderbuffer_set_draw_offset(irb);
655
656 /* Make sure render surface state gets re-emitted with updated miptree. */
657 brw->NewGLState |= _NEW_BUFFERS;
658 }
659
660 static void
661 brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw)
662 {
663 struct gl_context *ctx = &brw->ctx;
664 struct gl_framebuffer *fb = ctx->DrawBuffer;
665
666 struct intel_renderbuffer *depth_irb =
667 intel_get_renderbuffer(fb, BUFFER_DEPTH);
668 struct intel_renderbuffer *stencil_irb =
669 intel_get_renderbuffer(fb, BUFFER_STENCIL);
670
671 if (depth_irb && depth_irb->align_wa_mt)
672 intel_renderbuffer_move_temp_back(brw, depth_irb);
673
674 if (stencil_irb && stencil_irb->align_wa_mt)
675 intel_renderbuffer_move_temp_back(brw, stencil_irb);
676
677 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
678 struct intel_renderbuffer *irb =
679 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
680
681 if (!irb || irb->align_wa_mt == NULL)
682 continue;
683
684 intel_renderbuffer_move_temp_back(brw, irb);
685 }
686 }
687
688 static void
689 brw_prepare_drawing(struct gl_context *ctx,
690 const struct gl_vertex_array *arrays[],
691 const struct _mesa_index_buffer *ib,
692 bool index_bounds_valid,
693 GLuint min_index,
694 GLuint max_index)
695 {
696 struct brw_context *brw = brw_context(ctx);
697
698 if (ctx->NewState)
699 _mesa_update_state(ctx);
700
701 /* We have to validate the textures *before* checking for fallbacks;
702 * otherwise, the software fallback won't be able to rely on the
703 * texture state, the firstLevel and lastLevel fields won't be
704 * set in the intel texture object (they'll both be 0), and the
705 * software fallback will segfault if it attempts to access any
706 * texture level other than level 0.
707 */
708 brw_validate_textures(brw);
709
710 /* Find the highest sampler unit used by each shader program. A bit-count
711 * won't work since ARB programs use the texture unit number as the sampler
712 * index.
713 */
714 brw->wm.base.sampler_count =
715 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
716 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
717 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
718 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
719 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
720 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
721 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
722 brw->vs.base.sampler_count =
723 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
724
725 intel_prepare_render(brw);
726
727 /* This workaround has to happen outside of brw_upload_render_state()
728 * because it may flush the batchbuffer for a blit, affecting the state
729 * flags.
730 */
731 brw_workaround_depthstencil_alignment(brw, 0);
732
733 /* Resolves must occur after updating renderbuffers, updating context state,
734 * and finalizing textures but before setting up any hardware state for
735 * this draw call.
736 */
737 brw_predraw_resolve_inputs(brw, true);
738 brw_predraw_resolve_framebuffer(brw);
739
740 /* Bind all inputs, derive varying and size information:
741 */
742 brw_merge_inputs(brw, arrays);
743
744 brw->ib.ib = ib;
745 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
746
747 brw->vb.index_bounds_valid = index_bounds_valid;
748 brw->vb.min_index = min_index;
749 brw->vb.max_index = max_index;
750 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
751 }
752
753 static void
754 brw_finish_drawing(struct gl_context *ctx)
755 {
756 struct brw_context *brw = brw_context(ctx);
757
758 if (brw->always_flush_batch)
759 intel_batchbuffer_flush(brw);
760
761 brw_program_cache_check_size(brw);
762 brw_postdraw_reconcile_align_wa_slices(brw);
763 brw_postdraw_set_buffers_need_resolve(brw);
764
765 if (brw->draw.draw_params_count_bo) {
766 brw_bo_unreference(brw->draw.draw_params_count_bo);
767 brw->draw.draw_params_count_bo = NULL;
768 }
769 }
770
771 /* May fail if out of video memory for texture or vbo upload, or on
772 * fallback conditions.
773 */
774 static void
775 brw_draw_single_prim(struct gl_context *ctx,
776 const struct gl_vertex_array *arrays[],
777 const struct _mesa_prim *prim,
778 unsigned prim_id,
779 struct brw_transform_feedback_object *xfb_obj,
780 unsigned stream,
781 struct gl_buffer_object *indirect)
782 {
783 struct brw_context *brw = brw_context(ctx);
784 const struct gen_device_info *devinfo = &brw->screen->devinfo;
785 bool fail_next = false;
786
787 /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have
788 * atoms that happen on every draw call.
789 */
790 brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL;
791
792 /* Flush the batch if the batch/state buffers are nearly full. We can
793 * grow them if needed, but this is not free, so we'd like to avoid it.
794 */
795 intel_batchbuffer_require_space(brw, 1500, RENDER_RING);
796 brw_require_statebuffer_space(brw, 2400);
797 intel_batchbuffer_save_state(brw);
798
799 if (brw->num_instances != prim->num_instances ||
800 brw->basevertex != prim->basevertex ||
801 brw->baseinstance != prim->base_instance) {
802 brw->num_instances = prim->num_instances;
803 brw->basevertex = prim->basevertex;
804 brw->baseinstance = prim->base_instance;
805 if (prim_id > 0) { /* For i == 0 we just did this before the loop */
806 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
807 brw_merge_inputs(brw, arrays);
808 }
809 }
810
811 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
812 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
813 * always flag if the shader uses one of the values. For direct draws,
814 * we only flag if the values change.
815 */
816 const int new_basevertex =
817 prim->indexed ? prim->basevertex : prim->start;
818 const int new_baseinstance = prim->base_instance;
819 const struct brw_vs_prog_data *vs_prog_data =
820 brw_vs_prog_data(brw->vs.base.prog_data);
821 if (prim_id > 0) {
822 const bool uses_draw_parameters =
823 vs_prog_data->uses_basevertex ||
824 vs_prog_data->uses_baseinstance;
825
826 if ((uses_draw_parameters && prim->is_indirect) ||
827 (vs_prog_data->uses_basevertex &&
828 brw->draw.params.gl_basevertex != new_basevertex) ||
829 (vs_prog_data->uses_baseinstance &&
830 brw->draw.params.gl_baseinstance != new_baseinstance))
831 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
832 }
833
834 brw->draw.params.gl_basevertex = new_basevertex;
835 brw->draw.params.gl_baseinstance = new_baseinstance;
836 brw_bo_unreference(brw->draw.draw_params_bo);
837
838 if (prim->is_indirect) {
839 /* Point draw_params_bo at the indirect buffer. */
840 brw->draw.draw_params_bo =
841 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
842 brw_bo_reference(brw->draw.draw_params_bo);
843 brw->draw.draw_params_offset =
844 prim->indirect_offset + (prim->indexed ? 12 : 8);
845 } else {
846 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
847 * has to upload gl_BaseVertex and such if they're needed.
848 */
849 brw->draw.draw_params_bo = NULL;
850 brw->draw.draw_params_offset = 0;
851 }
852
853 /* gl_DrawID always needs its own vertex buffer since it's not part of
854 * the indirect parameter buffer. If the program uses gl_DrawID we need
855 * to flag BRW_NEW_VERTICES. For the first iteration, we don't have
856 * valid vs_prog_data, but we always flag BRW_NEW_VERTICES before
857 * the loop.
858 */
859 brw->draw.gl_drawid = prim->draw_id;
860 brw_bo_unreference(brw->draw.draw_id_bo);
861 brw->draw.draw_id_bo = NULL;
862 if (prim_id > 0 && vs_prog_data->uses_drawid)
863 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
864
865 if (devinfo->gen < 6)
866 brw_set_prim(brw, prim);
867 else
868 gen6_set_prim(brw, prim);
869
870 retry:
871
872 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
873 * that the state updated in the loop outside of this block is that in
874 * *_set_prim or intel_batchbuffer_flush(), which only impacts
875 * brw->ctx.NewDriverState.
876 */
877 if (brw->ctx.NewDriverState) {
878 brw->batch.no_wrap = true;
879 brw_upload_render_state(brw);
880 }
881
882 brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream);
883
884 brw->batch.no_wrap = false;
885
886 if (!brw_batch_has_aperture_space(brw, 0)) {
887 if (!fail_next) {
888 intel_batchbuffer_reset_to_saved(brw);
889 intel_batchbuffer_flush(brw);
890 fail_next = true;
891 goto retry;
892 } else {
893 int ret = intel_batchbuffer_flush(brw);
894 WARN_ONCE(ret == -ENOSPC,
895 "i965: Single primitive emit exceeded "
896 "available aperture space\n");
897 }
898 }
899
900 /* Now that we know we haven't run out of aperture space, we can safely
901 * reset the dirty bits.
902 */
903 if (brw->ctx.NewDriverState)
904 brw_render_state_finished(brw);
905
906 return;
907 }
908
909 void
910 brw_draw_prims(struct gl_context *ctx,
911 const struct _mesa_prim *prims,
912 GLuint nr_prims,
913 const struct _mesa_index_buffer *ib,
914 GLboolean index_bounds_valid,
915 GLuint min_index,
916 GLuint max_index,
917 struct gl_transform_feedback_object *gl_xfb_obj,
918 unsigned stream,
919 struct gl_buffer_object *indirect)
920 {
921 unsigned i;
922 struct brw_context *brw = brw_context(ctx);
923 const struct gl_vertex_array **arrays = ctx->Array._DrawArrays;
924 int predicate_state = brw->predicate.state;
925 struct brw_transform_feedback_object *xfb_obj =
926 (struct brw_transform_feedback_object *) gl_xfb_obj;
927
928 if (!brw_check_conditional_render(brw))
929 return;
930
931 /* Handle primitive restart if needed */
932 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
933 /* The draw was handled, so we can exit now */
934 return;
935 }
936
937 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
938 * won't support all the extensions we support.
939 */
940 if (ctx->RenderMode != GL_RENDER) {
941 perf_debug("%s render mode not supported in hardware\n",
942 _mesa_enum_to_string(ctx->RenderMode));
943 _swsetup_Wakeup(ctx);
944 _tnl_wakeup(ctx);
945 _tnl_draw_prims(ctx, prims, nr_prims, ib,
946 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
947 return;
948 }
949
950 /* If we're going to have to upload any of the user's vertex arrays, then
951 * get the minimum and maximum of their index buffer so we know what range
952 * to upload.
953 */
954 if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
955 perf_debug("Scanning index buffer to compute index buffer bounds. "
956 "Use glDrawRangeElements() to avoid this.\n");
957 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
958 index_bounds_valid = true;
959 }
960
961 brw_prepare_drawing(ctx, arrays, ib, index_bounds_valid, min_index,
962 max_index);
963 /* Try drawing with the hardware, but don't do anything else if we can't
964 * manage it. swrast doesn't support our featureset, so we can't fall back
965 * to it.
966 */
967
968 for (i = 0; i < nr_prims; i++) {
969 /* Implementation of ARB_indirect_parameters via predicates */
970 if (brw->draw.draw_params_count_bo) {
971 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE);
972
973 /* Upload the current draw count from the draw parameters buffer to
974 * MI_PREDICATE_SRC0.
975 */
976 brw_load_register_mem(brw, MI_PREDICATE_SRC0,
977 brw->draw.draw_params_count_bo,
978 brw->draw.draw_params_count_offset);
979 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
980 brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0);
981 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
982 brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id);
983
984 BEGIN_BATCH(1);
985 if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) {
986 OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
987 MI_PREDICATE_COMBINEOP_SET |
988 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
989 } else {
990 OUT_BATCH(GEN7_MI_PREDICATE |
991 MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR |
992 MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
993 }
994 ADVANCE_BATCH();
995
996 brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT;
997 }
998
999 brw_draw_single_prim(ctx, arrays, &prims[i], i, xfb_obj, stream,
1000 indirect);
1001 }
1002
1003 brw_finish_drawing(ctx);
1004 brw->predicate.state = predicate_state;
1005 }
1006
1007 void
1008 brw_draw_indirect_prims(struct gl_context *ctx,
1009 GLuint mode,
1010 struct gl_buffer_object *indirect_data,
1011 GLsizeiptr indirect_offset,
1012 unsigned draw_count,
1013 unsigned stride,
1014 struct gl_buffer_object *indirect_params,
1015 GLsizeiptr indirect_params_offset,
1016 const struct _mesa_index_buffer *ib)
1017 {
1018 struct brw_context *brw = brw_context(ctx);
1019 struct _mesa_prim *prim;
1020 GLsizei i;
1021
1022 prim = calloc(draw_count, sizeof(*prim));
1023 if (prim == NULL) {
1024 _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s",
1025 (draw_count > 1) ? "Multi" : "",
1026 ib ? "Elements" : "Arrays",
1027 indirect_params ? "CountARB" : "");
1028 return;
1029 }
1030
1031 prim[0].begin = 1;
1032 prim[draw_count - 1].end = 1;
1033 for (i = 0; i < draw_count; ++i, indirect_offset += stride) {
1034 prim[i].mode = mode;
1035 prim[i].indexed = ib != NULL;
1036 prim[i].indirect_offset = indirect_offset;
1037 prim[i].is_indirect = 1;
1038 prim[i].draw_id = i;
1039 }
1040
1041 if (indirect_params) {
1042 brw->draw.draw_params_count_bo =
1043 intel_buffer_object(indirect_params)->buffer;
1044 brw_bo_reference(brw->draw.draw_params_count_bo);
1045 brw->draw.draw_params_count_offset = indirect_params_offset;
1046 }
1047
1048 brw_draw_prims(ctx, prim, draw_count,
1049 ib, false, 0, ~0,
1050 NULL, 0,
1051 indirect_data);
1052
1053 free(prim);
1054 }
1055
1056 void
1057 brw_draw_init(struct brw_context *brw)
1058 {
1059 struct gl_context *ctx = &brw->ctx;
1060
1061 /* Register our drawing function:
1062 */
1063 vbo_set_draw_func(ctx, brw_draw_prims);
1064 vbo_set_indirect_draw_func(ctx, brw_draw_indirect_prims);
1065
1066 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
1067 brw->vb.inputs[i].buffer = -1;
1068 brw->vb.nr_buffers = 0;
1069 brw->vb.nr_enabled = 0;
1070 }
1071
1072 void
1073 brw_draw_destroy(struct brw_context *brw)
1074 {
1075 unsigned i;
1076
1077 for (i = 0; i < brw->vb.nr_buffers; i++) {
1078 brw_bo_unreference(brw->vb.buffers[i].bo);
1079 brw->vb.buffers[i].bo = NULL;
1080 }
1081 brw->vb.nr_buffers = 0;
1082
1083 for (i = 0; i < brw->vb.nr_enabled; i++) {
1084 brw->vb.enabled[i]->buffer = -1;
1085 }
1086 brw->vb.nr_enabled = 0;
1087
1088 brw_bo_unreference(brw->ib.bo);
1089 brw->ib.bo = NULL;
1090 }