Merge branch 'mesa_7_5_branch'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <stdlib.h>
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/state.h"
33 #include "main/api_validate.h"
34 #include "main/enums.h"
35
36 #include "brw_draw.h"
37 #include "brw_defines.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40 #include "brw_fallback.h"
41
42 #include "intel_batchbuffer.h"
43 #include "intel_buffer_objects.h"
44 #include "intel_tex.h"
45
46 static GLuint double_types[5] = {
47 0,
48 BRW_SURFACEFORMAT_R64_FLOAT,
49 BRW_SURFACEFORMAT_R64G64_FLOAT,
50 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
51 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
52 };
53
54 static GLuint float_types[5] = {
55 0,
56 BRW_SURFACEFORMAT_R32_FLOAT,
57 BRW_SURFACEFORMAT_R32G32_FLOAT,
58 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
59 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
60 };
61
62 static GLuint uint_types_norm[5] = {
63 0,
64 BRW_SURFACEFORMAT_R32_UNORM,
65 BRW_SURFACEFORMAT_R32G32_UNORM,
66 BRW_SURFACEFORMAT_R32G32B32_UNORM,
67 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
68 };
69
70 static GLuint uint_types_scale[5] = {
71 0,
72 BRW_SURFACEFORMAT_R32_USCALED,
73 BRW_SURFACEFORMAT_R32G32_USCALED,
74 BRW_SURFACEFORMAT_R32G32B32_USCALED,
75 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
76 };
77
78 static GLuint int_types_norm[5] = {
79 0,
80 BRW_SURFACEFORMAT_R32_SNORM,
81 BRW_SURFACEFORMAT_R32G32_SNORM,
82 BRW_SURFACEFORMAT_R32G32B32_SNORM,
83 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
84 };
85
86 static GLuint int_types_scale[5] = {
87 0,
88 BRW_SURFACEFORMAT_R32_SSCALED,
89 BRW_SURFACEFORMAT_R32G32_SSCALED,
90 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
91 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
92 };
93
94 static GLuint ushort_types_norm[5] = {
95 0,
96 BRW_SURFACEFORMAT_R16_UNORM,
97 BRW_SURFACEFORMAT_R16G16_UNORM,
98 BRW_SURFACEFORMAT_R16G16B16_UNORM,
99 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
100 };
101
102 static GLuint ushort_types_scale[5] = {
103 0,
104 BRW_SURFACEFORMAT_R16_USCALED,
105 BRW_SURFACEFORMAT_R16G16_USCALED,
106 BRW_SURFACEFORMAT_R16G16B16_USCALED,
107 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
108 };
109
110 static GLuint short_types_norm[5] = {
111 0,
112 BRW_SURFACEFORMAT_R16_SNORM,
113 BRW_SURFACEFORMAT_R16G16_SNORM,
114 BRW_SURFACEFORMAT_R16G16B16_SNORM,
115 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
116 };
117
118 static GLuint short_types_scale[5] = {
119 0,
120 BRW_SURFACEFORMAT_R16_SSCALED,
121 BRW_SURFACEFORMAT_R16G16_SSCALED,
122 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
123 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
124 };
125
126 static GLuint ubyte_types_norm[5] = {
127 0,
128 BRW_SURFACEFORMAT_R8_UNORM,
129 BRW_SURFACEFORMAT_R8G8_UNORM,
130 BRW_SURFACEFORMAT_R8G8B8_UNORM,
131 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
132 };
133
134 static GLuint ubyte_types_scale[5] = {
135 0,
136 BRW_SURFACEFORMAT_R8_USCALED,
137 BRW_SURFACEFORMAT_R8G8_USCALED,
138 BRW_SURFACEFORMAT_R8G8B8_USCALED,
139 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
140 };
141
142 static GLuint byte_types_norm[5] = {
143 0,
144 BRW_SURFACEFORMAT_R8_SNORM,
145 BRW_SURFACEFORMAT_R8G8_SNORM,
146 BRW_SURFACEFORMAT_R8G8B8_SNORM,
147 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
148 };
149
150 static GLuint byte_types_scale[5] = {
151 0,
152 BRW_SURFACEFORMAT_R8_SSCALED,
153 BRW_SURFACEFORMAT_R8G8_SSCALED,
154 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
155 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
156 };
157
158
159 /**
160 * Given vertex array type/size/format/normalized info, return
161 * the appopriate hardware surface type.
162 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
163 */
164 static GLuint get_surface_type( GLenum type, GLuint size,
165 GLenum format, GLboolean normalized )
166 {
167 if (INTEL_DEBUG & DEBUG_VERTS)
168 _mesa_printf("type %s size %d normalized %d\n",
169 _mesa_lookup_enum_by_nr(type), size, normalized);
170
171 if (normalized) {
172 switch (type) {
173 case GL_DOUBLE: return double_types[size];
174 case GL_FLOAT: return float_types[size];
175 case GL_INT: return int_types_norm[size];
176 case GL_SHORT: return short_types_norm[size];
177 case GL_BYTE: return byte_types_norm[size];
178 case GL_UNSIGNED_INT: return uint_types_norm[size];
179 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
180 case GL_UNSIGNED_BYTE:
181 if (format == GL_BGRA) {
182 /* See GL_EXT_vertex_array_bgra */
183 assert(size == 4);
184 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
185 }
186 else {
187 return ubyte_types_norm[size];
188 }
189 default: assert(0); return 0;
190 }
191 }
192 else {
193 assert(format == GL_RGBA); /* sanity check */
194 switch (type) {
195 case GL_DOUBLE: return double_types[size];
196 case GL_FLOAT: return float_types[size];
197 case GL_INT: return int_types_scale[size];
198 case GL_SHORT: return short_types_scale[size];
199 case GL_BYTE: return byte_types_scale[size];
200 case GL_UNSIGNED_INT: return uint_types_scale[size];
201 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
202 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
203 default: assert(0); return 0;
204 }
205 }
206 }
207
208
209 static GLuint get_size( GLenum type )
210 {
211 switch (type) {
212 case GL_DOUBLE: return sizeof(GLdouble);
213 case GL_FLOAT: return sizeof(GLfloat);
214 case GL_INT: return sizeof(GLint);
215 case GL_SHORT: return sizeof(GLshort);
216 case GL_BYTE: return sizeof(GLbyte);
217 case GL_UNSIGNED_INT: return sizeof(GLuint);
218 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
219 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
220 default: return 0;
221 }
222 }
223
224 static GLuint get_index_type(GLenum type)
225 {
226 switch (type) {
227 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
228 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
229 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
230 default: assert(0); return 0;
231 }
232 }
233
234 static void wrap_buffers( struct brw_context *brw,
235 GLuint size )
236 {
237 if (size < BRW_UPLOAD_INIT_SIZE)
238 size = BRW_UPLOAD_INIT_SIZE;
239
240 brw->vb.upload.offset = 0;
241
242 if (brw->vb.upload.bo != NULL)
243 dri_bo_unreference(brw->vb.upload.bo);
244 brw->vb.upload.bo = dri_bo_alloc(brw->intel.bufmgr, "temporary VBO",
245 size, 1);
246
247 /* Set the internal VBO\ to no-backing-store. We only use them as a
248 * temporary within a brw_try_draw_prims while the lock is held.
249 */
250 /* DON'T DO THIS AS IF WE HAVE TO RE-ORG MEMORY WE NEED SOMEWHERE WITH
251 FAKE TO PUSH THIS STUFF */
252 // if (!brw->intel.ttm)
253 // dri_bo_fake_disable_backing_store(brw->vb.upload.bo, NULL, NULL);
254 }
255
256 static void get_space( struct brw_context *brw,
257 GLuint size,
258 dri_bo **bo_return,
259 GLuint *offset_return )
260 {
261 size = ALIGN(size, 64);
262
263 if (brw->vb.upload.bo == NULL ||
264 brw->vb.upload.offset + size > brw->vb.upload.bo->size) {
265 wrap_buffers(brw, size);
266 }
267
268 assert(*bo_return == NULL);
269 dri_bo_reference(brw->vb.upload.bo);
270 *bo_return = brw->vb.upload.bo;
271 *offset_return = brw->vb.upload.offset;
272 brw->vb.upload.offset += size;
273 }
274
275 static void
276 copy_array_to_vbo_array( struct brw_context *brw,
277 struct brw_vertex_element *element,
278 GLuint dst_stride)
279 {
280 struct intel_context *intel = &brw->intel;
281 GLuint size = element->count * dst_stride;
282
283 get_space(brw, size, &element->bo, &element->offset);
284
285 if (element->glarray->StrideB == 0) {
286 assert(element->count == 1);
287 element->stride = 0;
288 } else {
289 element->stride = dst_stride;
290 }
291
292 if (dst_stride == element->glarray->StrideB) {
293 if (intel->intelScreen->kernel_exec_fencing) {
294 drm_intel_gem_bo_map_gtt(element->bo);
295 memcpy((char *)element->bo->virtual + element->offset,
296 element->glarray->Ptr, size);
297 drm_intel_gem_bo_unmap_gtt(element->bo);
298 } else {
299 dri_bo_subdata(element->bo,
300 element->offset,
301 size,
302 element->glarray->Ptr);
303 }
304 } else {
305 char *dest;
306 const unsigned char *src = element->glarray->Ptr;
307 int i;
308
309 if (intel->intelScreen->kernel_exec_fencing) {
310 drm_intel_gem_bo_map_gtt(element->bo);
311 dest = element->bo->virtual;
312 dest += element->offset;
313
314 for (i = 0; i < element->count; i++) {
315 memcpy(dest, src, dst_stride);
316 src += element->glarray->StrideB;
317 dest += dst_stride;
318 }
319
320 drm_intel_gem_bo_unmap_gtt(element->bo);
321 } else {
322 void *data;
323
324 data = _mesa_malloc(dst_stride * element->count);
325 dest = data;
326 for (i = 0; i < element->count; i++) {
327 memcpy(dest, src, dst_stride);
328 src += element->glarray->StrideB;
329 dest += dst_stride;
330 }
331
332 dri_bo_subdata(element->bo,
333 element->offset,
334 size,
335 data);
336
337 _mesa_free(data);
338 }
339 }
340 }
341
342 static void brw_prepare_vertices(struct brw_context *brw)
343 {
344 GLcontext *ctx = &brw->intel.ctx;
345 struct intel_context *intel = intel_context(ctx);
346 GLbitfield vs_inputs = brw->vs.prog_data->inputs_read;
347 GLuint i;
348 const unsigned char *ptr = NULL;
349 GLuint interleave = 0;
350 unsigned int min_index = brw->vb.min_index;
351 unsigned int max_index = brw->vb.max_index;
352
353 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
354 GLuint nr_enabled = 0;
355
356 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
357 GLuint nr_uploads = 0;
358
359 /* First build an array of pointers to ve's in vb.inputs_read
360 */
361 if (0)
362 _mesa_printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
363
364 /* Accumulate the list of enabled arrays. */
365 while (vs_inputs) {
366 GLuint i = _mesa_ffsll(vs_inputs) - 1;
367 struct brw_vertex_element *input = &brw->vb.inputs[i];
368
369 vs_inputs &= ~(1 << i);
370 enabled[nr_enabled++] = input;
371 }
372
373 /* XXX: In the rare cases where this happens we fallback all
374 * the way to software rasterization, although a tnl fallback
375 * would be sufficient. I don't know of *any* real world
376 * cases with > 17 vertex attributes enabled, so it probably
377 * isn't an issue at this point.
378 */
379 if (nr_enabled >= BRW_VEP_MAX) {
380 intel->Fallback = 1;
381 return;
382 }
383
384 for (i = 0; i < nr_enabled; i++) {
385 struct brw_vertex_element *input = enabled[i];
386
387 input->element_size = get_size(input->glarray->Type) * input->glarray->Size;
388 input->count = input->glarray->StrideB ? max_index + 1 - min_index : 1;
389
390 if (input->glarray->BufferObj->Name != 0) {
391 struct intel_buffer_object *intel_buffer =
392 intel_buffer_object(input->glarray->BufferObj);
393
394 /* Named buffer object: Just reference its contents directly. */
395 dri_bo_unreference(input->bo);
396 input->bo = intel_bufferobj_buffer(intel, intel_buffer,
397 INTEL_READ);
398 dri_bo_reference(input->bo);
399 input->offset = (unsigned long)input->glarray->Ptr;
400 input->stride = input->glarray->StrideB;
401 } else {
402 if (input->bo != NULL) {
403 /* Already-uploaded vertex data is present from a previous
404 * prepare_vertices, but we had to re-validate state due to
405 * check_aperture failing and a new batch being produced.
406 */
407 continue;
408 }
409
410 /* Queue the buffer object up to be uploaded in the next pass,
411 * when we've decided if we're doing interleaved or not.
412 */
413 if (i == 0) {
414 /* Position array not properly enabled:
415 */
416 if (input->glarray->StrideB == 0) {
417 intel->Fallback = 1;
418 return;
419 }
420
421 interleave = input->glarray->StrideB;
422 ptr = input->glarray->Ptr;
423 }
424 else if (interleave != input->glarray->StrideB ||
425 (const unsigned char *)input->glarray->Ptr - ptr < 0 ||
426 (const unsigned char *)input->glarray->Ptr - ptr > interleave)
427 {
428 interleave = 0;
429 }
430
431 upload[nr_uploads++] = input;
432
433 /* We rebase drawing to start at element zero only when
434 * varyings are not in vbos, which means we can end up
435 * uploading non-varying arrays (stride != 0) when min_index
436 * is zero. This doesn't matter as the amount to upload is
437 * the same for these arrays whether the draw call is rebased
438 * or not - we just have to upload the one element.
439 */
440 assert(min_index == 0 || input->glarray->StrideB == 0);
441 }
442 }
443
444 /* Handle any arrays to be uploaded. */
445 if (nr_uploads > 1 && interleave && interleave <= 256) {
446 /* All uploads are interleaved, so upload the arrays together as
447 * interleaved. First, upload the contents and set up upload[0].
448 */
449 copy_array_to_vbo_array(brw, upload[0], interleave);
450
451 for (i = 1; i < nr_uploads; i++) {
452 /* Then, just point upload[i] at upload[0]'s buffer. */
453 upload[i]->stride = interleave;
454 upload[i]->offset = upload[0]->offset +
455 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
456 upload[i]->bo = upload[0]->bo;
457 dri_bo_reference(upload[i]->bo);
458 }
459 }
460 else {
461 /* Upload non-interleaved arrays */
462 for (i = 0; i < nr_uploads; i++) {
463 copy_array_to_vbo_array(brw, upload[i], upload[i]->element_size);
464 }
465 }
466
467 brw_prepare_query_begin(brw);
468
469 for (i = 0; i < nr_enabled; i++) {
470 struct brw_vertex_element *input = enabled[i];
471
472 brw_add_validated_bo(brw, input->bo);
473 }
474 }
475
476 static void brw_emit_vertices(struct brw_context *brw)
477 {
478 GLcontext *ctx = &brw->intel.ctx;
479 struct intel_context *intel = intel_context(ctx);
480 GLbitfield vs_inputs = brw->vs.prog_data->inputs_read;
481 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
482 GLuint i;
483 GLuint nr_enabled = 0;
484
485 /* Accumulate the list of enabled arrays. */
486 while (vs_inputs) {
487 i = _mesa_ffsll(vs_inputs) - 1;
488 struct brw_vertex_element *input = &brw->vb.inputs[i];
489
490 vs_inputs &= ~(1 << i);
491 enabled[nr_enabled++] = input;
492 }
493
494 brw_emit_query_begin(brw);
495
496 /* Now emit VB and VEP state packets.
497 *
498 * This still defines a hardware VB for each input, even if they
499 * are interleaved or from the same VBO. TBD if this makes a
500 * performance difference.
501 */
502 BEGIN_BATCH(1 + nr_enabled * 4, IGNORE_CLIPRECTS);
503 OUT_BATCH((CMD_VERTEX_BUFFER << 16) |
504 ((1 + nr_enabled * 4) - 2));
505
506 for (i = 0; i < nr_enabled; i++) {
507 struct brw_vertex_element *input = enabled[i];
508
509 OUT_BATCH((i << BRW_VB0_INDEX_SHIFT) |
510 BRW_VB0_ACCESS_VERTEXDATA |
511 (input->stride << BRW_VB0_PITCH_SHIFT));
512 OUT_RELOC(input->bo,
513 I915_GEM_DOMAIN_VERTEX, 0,
514 input->offset);
515 OUT_BATCH(brw->vb.max_index);
516 OUT_BATCH(0); /* Instance data step rate */
517 }
518 ADVANCE_BATCH();
519
520 BEGIN_BATCH(1 + nr_enabled * 2, IGNORE_CLIPRECTS);
521 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | ((1 + nr_enabled * 2) - 2));
522 for (i = 0; i < nr_enabled; i++) {
523 struct brw_vertex_element *input = enabled[i];
524 uint32_t format = get_surface_type(input->glarray->Type,
525 input->glarray->Size,
526 input->glarray->Format,
527 input->glarray->Normalized);
528 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
529 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
530 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
531 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
532
533 switch (input->glarray->Size) {
534 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
535 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
536 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
537 case 3: comp3 = BRW_VE1_COMPONENT_STORE_1_FLT;
538 break;
539 }
540
541 OUT_BATCH((i << BRW_VE0_INDEX_SHIFT) |
542 BRW_VE0_VALID |
543 (format << BRW_VE0_FORMAT_SHIFT) |
544 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
545 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
546 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
547 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
548 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
549 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
550 }
551 ADVANCE_BATCH();
552 }
553
554 const struct brw_tracked_state brw_vertices = {
555 .dirty = {
556 .mesa = 0,
557 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
558 .cache = 0,
559 },
560 .prepare = brw_prepare_vertices,
561 .emit = brw_emit_vertices,
562 };
563
564 static void brw_prepare_indices(struct brw_context *brw)
565 {
566 GLcontext *ctx = &brw->intel.ctx;
567 struct intel_context *intel = &brw->intel;
568 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
569 GLuint ib_size;
570 dri_bo *bo = NULL;
571 struct gl_buffer_object *bufferobj;
572 GLuint offset;
573
574 if (index_buffer == NULL)
575 return;
576
577 ib_size = get_size(index_buffer->type) * index_buffer->count;
578 bufferobj = index_buffer->obj;;
579
580 /* Turn into a proper VBO:
581 */
582 if (!bufferobj->Name) {
583
584 /* Get new bufferobj, offset:
585 */
586 get_space(brw, ib_size, &bo, &offset);
587
588 /* Straight upload
589 */
590 if (intel->intelScreen->kernel_exec_fencing) {
591 drm_intel_gem_bo_map_gtt(bo);
592 memcpy((char *)bo->virtual + offset, index_buffer->ptr, ib_size);
593 drm_intel_gem_bo_unmap_gtt(bo);
594 } else {
595 dri_bo_subdata(bo, offset, ib_size, index_buffer->ptr);
596 }
597 } else {
598 offset = (GLuint) (unsigned long) index_buffer->ptr;
599
600 /* If the index buffer isn't aligned to its element size, we have to
601 * rebase it into a temporary.
602 */
603 if ((get_size(index_buffer->type) - 1) & offset) {
604 GLubyte *map = ctx->Driver.MapBuffer(ctx,
605 GL_ELEMENT_ARRAY_BUFFER_ARB,
606 GL_DYNAMIC_DRAW_ARB,
607 bufferobj);
608 map += offset;
609
610 get_space(brw, ib_size, &bo, &offset);
611
612 dri_bo_subdata(bo, offset, ib_size, map);
613
614 ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, bufferobj);
615 } else {
616 bo = intel_bufferobj_buffer(intel, intel_buffer_object(bufferobj),
617 INTEL_READ);
618 dri_bo_reference(bo);
619 }
620 }
621
622 dri_bo_unreference(brw->ib.bo);
623 brw->ib.bo = bo;
624 brw->ib.offset = offset;
625
626 brw_add_validated_bo(brw, brw->ib.bo);
627 }
628
629 static void brw_emit_indices(struct brw_context *brw)
630 {
631 struct intel_context *intel = &brw->intel;
632 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
633 GLuint ib_size;
634
635 if (index_buffer == NULL)
636 return;
637
638 ib_size = get_size(index_buffer->type) * index_buffer->count;
639
640 /* Emit the indexbuffer packet:
641 */
642 {
643 struct brw_indexbuffer ib;
644
645 memset(&ib, 0, sizeof(ib));
646
647 ib.header.bits.opcode = CMD_INDEX_BUFFER;
648 ib.header.bits.length = sizeof(ib)/4 - 2;
649 ib.header.bits.index_format = get_index_type(index_buffer->type);
650 ib.header.bits.cut_index_enable = 0;
651
652
653 BEGIN_BATCH(4, IGNORE_CLIPRECTS);
654 OUT_BATCH( ib.header.dword );
655 OUT_RELOC(brw->ib.bo,
656 I915_GEM_DOMAIN_VERTEX, 0,
657 brw->ib.offset);
658 OUT_RELOC(brw->ib.bo,
659 I915_GEM_DOMAIN_VERTEX, 0,
660 brw->ib.offset + ib_size);
661 OUT_BATCH( 0 );
662 ADVANCE_BATCH();
663 }
664 }
665
666 const struct brw_tracked_state brw_indices = {
667 .dirty = {
668 .mesa = 0,
669 .brw = BRW_NEW_BATCH | BRW_NEW_INDICES,
670 .cache = 0,
671 },
672 .prepare = brw_prepare_indices,
673 .emit = brw_emit_indices,
674 };