9c41c5358a3abd9f10b1b3756fcaddbd6e67183f
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #undef NDEBUG
29
30 #include "main/glheader.h"
31 #include "main/bufferobj.h"
32 #include "main/context.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35
36 #include "brw_draw.h"
37 #include "brw_defines.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "intel_batchbuffer.h"
42 #include "intel_buffer_objects.h"
43
44 static GLuint double_types[5] = {
45 0,
46 BRW_SURFACEFORMAT_R64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
49 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
50 };
51
52 static GLuint float_types[5] = {
53 0,
54 BRW_SURFACEFORMAT_R32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
57 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
58 };
59
60 static GLuint half_float_types[5] = {
61 0,
62 BRW_SURFACEFORMAT_R16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
65 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
66 };
67
68 static GLuint uint_types_direct[5] = {
69 0,
70 BRW_SURFACEFORMAT_R32_UINT,
71 BRW_SURFACEFORMAT_R32G32_UINT,
72 BRW_SURFACEFORMAT_R32G32B32_UINT,
73 BRW_SURFACEFORMAT_R32G32B32A32_UINT
74 };
75
76 static GLuint uint_types_norm[5] = {
77 0,
78 BRW_SURFACEFORMAT_R32_UNORM,
79 BRW_SURFACEFORMAT_R32G32_UNORM,
80 BRW_SURFACEFORMAT_R32G32B32_UNORM,
81 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
82 };
83
84 static GLuint uint_types_scale[5] = {
85 0,
86 BRW_SURFACEFORMAT_R32_USCALED,
87 BRW_SURFACEFORMAT_R32G32_USCALED,
88 BRW_SURFACEFORMAT_R32G32B32_USCALED,
89 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
90 };
91
92 static GLuint int_types_direct[5] = {
93 0,
94 BRW_SURFACEFORMAT_R32_SINT,
95 BRW_SURFACEFORMAT_R32G32_SINT,
96 BRW_SURFACEFORMAT_R32G32B32_SINT,
97 BRW_SURFACEFORMAT_R32G32B32A32_SINT
98 };
99
100 static GLuint int_types_norm[5] = {
101 0,
102 BRW_SURFACEFORMAT_R32_SNORM,
103 BRW_SURFACEFORMAT_R32G32_SNORM,
104 BRW_SURFACEFORMAT_R32G32B32_SNORM,
105 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
106 };
107
108 static GLuint int_types_scale[5] = {
109 0,
110 BRW_SURFACEFORMAT_R32_SSCALED,
111 BRW_SURFACEFORMAT_R32G32_SSCALED,
112 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
113 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
114 };
115
116 static GLuint ushort_types_direct[5] = {
117 0,
118 BRW_SURFACEFORMAT_R16_UINT,
119 BRW_SURFACEFORMAT_R16G16_UINT,
120 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
121 BRW_SURFACEFORMAT_R16G16B16A16_UINT
122 };
123
124 static GLuint ushort_types_norm[5] = {
125 0,
126 BRW_SURFACEFORMAT_R16_UNORM,
127 BRW_SURFACEFORMAT_R16G16_UNORM,
128 BRW_SURFACEFORMAT_R16G16B16_UNORM,
129 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
130 };
131
132 static GLuint ushort_types_scale[5] = {
133 0,
134 BRW_SURFACEFORMAT_R16_USCALED,
135 BRW_SURFACEFORMAT_R16G16_USCALED,
136 BRW_SURFACEFORMAT_R16G16B16_USCALED,
137 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
138 };
139
140 static GLuint short_types_direct[5] = {
141 0,
142 BRW_SURFACEFORMAT_R16_SINT,
143 BRW_SURFACEFORMAT_R16G16_SINT,
144 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
145 BRW_SURFACEFORMAT_R16G16B16A16_SINT
146 };
147
148 static GLuint short_types_norm[5] = {
149 0,
150 BRW_SURFACEFORMAT_R16_SNORM,
151 BRW_SURFACEFORMAT_R16G16_SNORM,
152 BRW_SURFACEFORMAT_R16G16B16_SNORM,
153 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
154 };
155
156 static GLuint short_types_scale[5] = {
157 0,
158 BRW_SURFACEFORMAT_R16_SSCALED,
159 BRW_SURFACEFORMAT_R16G16_SSCALED,
160 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
161 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
162 };
163
164 static GLuint ubyte_types_direct[5] = {
165 0,
166 BRW_SURFACEFORMAT_R8_UINT,
167 BRW_SURFACEFORMAT_R8G8_UINT,
168 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
169 BRW_SURFACEFORMAT_R8G8B8A8_UINT
170 };
171
172 static GLuint ubyte_types_norm[5] = {
173 0,
174 BRW_SURFACEFORMAT_R8_UNORM,
175 BRW_SURFACEFORMAT_R8G8_UNORM,
176 BRW_SURFACEFORMAT_R8G8B8_UNORM,
177 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
178 };
179
180 static GLuint ubyte_types_scale[5] = {
181 0,
182 BRW_SURFACEFORMAT_R8_USCALED,
183 BRW_SURFACEFORMAT_R8G8_USCALED,
184 BRW_SURFACEFORMAT_R8G8B8_USCALED,
185 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
186 };
187
188 static GLuint byte_types_direct[5] = {
189 0,
190 BRW_SURFACEFORMAT_R8_SINT,
191 BRW_SURFACEFORMAT_R8G8_SINT,
192 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
193 BRW_SURFACEFORMAT_R8G8B8A8_SINT
194 };
195
196 static GLuint byte_types_norm[5] = {
197 0,
198 BRW_SURFACEFORMAT_R8_SNORM,
199 BRW_SURFACEFORMAT_R8G8_SNORM,
200 BRW_SURFACEFORMAT_R8G8B8_SNORM,
201 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
202 };
203
204 static GLuint byte_types_scale[5] = {
205 0,
206 BRW_SURFACEFORMAT_R8_SSCALED,
207 BRW_SURFACEFORMAT_R8G8_SSCALED,
208 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
209 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
210 };
211
212
213 /**
214 * Given vertex array type/size/format/normalized info, return
215 * the appopriate hardware surface type.
216 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
217 */
218 static GLuint get_surface_type( GLenum type, GLuint size,
219 GLenum format, bool normalized, bool integer )
220 {
221 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
222 printf("type %s size %d normalized %d\n",
223 _mesa_lookup_enum_by_nr(type), size, normalized);
224
225 if (integer) {
226 assert(format == GL_RGBA); /* sanity check */
227 switch (type) {
228 case GL_INT: return int_types_direct[size];
229 case GL_SHORT: return short_types_direct[size];
230 case GL_BYTE: return byte_types_direct[size];
231 case GL_UNSIGNED_INT: return uint_types_direct[size];
232 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
233 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
234 default: assert(0); return 0;
235 }
236 } else if (normalized) {
237 switch (type) {
238 case GL_DOUBLE: return double_types[size];
239 case GL_FLOAT: return float_types[size];
240 case GL_HALF_FLOAT: return half_float_types[size];
241 case GL_INT: return int_types_norm[size];
242 case GL_SHORT: return short_types_norm[size];
243 case GL_BYTE: return byte_types_norm[size];
244 case GL_UNSIGNED_INT: return uint_types_norm[size];
245 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
246 case GL_UNSIGNED_BYTE:
247 if (format == GL_BGRA) {
248 /* See GL_EXT_vertex_array_bgra */
249 assert(size == 4);
250 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
251 }
252 else {
253 return ubyte_types_norm[size];
254 }
255 default: assert(0); return 0;
256 }
257 }
258 else {
259 assert(format == GL_RGBA); /* sanity check */
260 switch (type) {
261 case GL_DOUBLE: return double_types[size];
262 case GL_FLOAT: return float_types[size];
263 case GL_HALF_FLOAT: return half_float_types[size];
264 case GL_INT: return int_types_scale[size];
265 case GL_SHORT: return short_types_scale[size];
266 case GL_BYTE: return byte_types_scale[size];
267 case GL_UNSIGNED_INT: return uint_types_scale[size];
268 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
269 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
270 /* This produces GL_FIXED inputs as values between INT32_MIN and
271 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272 */
273 case GL_FIXED: return int_types_scale[size];
274 default: assert(0); return 0;
275 }
276 }
277 }
278
279
280 static GLuint get_size( GLenum type )
281 {
282 switch (type) {
283 case GL_DOUBLE: return sizeof(GLdouble);
284 case GL_FLOAT: return sizeof(GLfloat);
285 case GL_HALF_FLOAT: return sizeof(GLhalfARB);
286 case GL_INT: return sizeof(GLint);
287 case GL_SHORT: return sizeof(GLshort);
288 case GL_BYTE: return sizeof(GLbyte);
289 case GL_UNSIGNED_INT: return sizeof(GLuint);
290 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
291 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
292 case GL_FIXED: return sizeof(GLuint);
293 default: assert(0); return 0;
294 }
295 }
296
297 static GLuint get_index_type(GLenum type)
298 {
299 switch (type) {
300 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
301 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
302 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
303 default: assert(0); return 0;
304 }
305 }
306
307 static void
308 copy_array_to_vbo_array(struct brw_context *brw,
309 struct brw_vertex_element *element,
310 int min, int max,
311 struct brw_vertex_buffer *buffer,
312 GLuint dst_stride)
313 {
314 if (min == -1) {
315 /* If we don't have computed min/max bounds, then this must be a use of
316 * the current attribute, which has a 0 stride. Otherwise, we wouldn't
317 * know what data to upload.
318 */
319 assert(element->glarray->StrideB == 0);
320
321 intel_upload_data(&brw->intel, element->glarray->Ptr,
322 element->element_size,
323 element->element_size,
324 &buffer->bo, &buffer->offset);
325
326 buffer->stride = 0;
327 return;
328 }
329
330 int src_stride = element->glarray->StrideB;
331 const unsigned char *src = element->glarray->Ptr + min * src_stride;
332 int count = max - min + 1;
333 GLuint size = count * dst_stride;
334
335 if (dst_stride == src_stride) {
336 intel_upload_data(&brw->intel, src, size, dst_stride,
337 &buffer->bo, &buffer->offset);
338 } else {
339 char * const map = intel_upload_map(&brw->intel, size, dst_stride);
340 char *dst = map;
341
342 while (count--) {
343 memcpy(dst, src, dst_stride);
344 src += src_stride;
345 dst += dst_stride;
346 }
347 intel_upload_unmap(&brw->intel, map, size, dst_stride,
348 &buffer->bo, &buffer->offset);
349 }
350 buffer->stride = dst_stride;
351 }
352
353 static void brw_prepare_vertices(struct brw_context *brw)
354 {
355 struct gl_context *ctx = &brw->intel.ctx;
356 struct intel_context *intel = intel_context(ctx);
357 /* CACHE_NEW_VS_PROG */
358 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
359 const unsigned char *ptr = NULL;
360 GLuint interleaved = 0, total_size = 0;
361 unsigned int min_index = brw->vb.min_index;
362 unsigned int max_index = brw->vb.max_index;
363 int delta, i, j;
364 GLboolean can_merge_uploads = GL_TRUE;
365
366 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
367 GLuint nr_uploads = 0;
368
369 /* _NEW_POLYGON
370 *
371 * On gen6+, edge flags don't end up in the VUE (either in or out of the
372 * VS). Instead, they're uploaded as the last vertex element, and the data
373 * is passed sideband through the fixed function units. So, we need to
374 * prepare the vertex buffer for it, but it's not present in inputs_read.
375 */
376 if (intel->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
377 ctx->Polygon.BackMode != GL_FILL)) {
378 vs_inputs |= VERT_BIT_EDGEFLAG;
379 }
380
381 /* First build an array of pointers to ve's in vb.inputs_read
382 */
383 if (0)
384 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
385
386 /* Accumulate the list of enabled arrays. */
387 brw->vb.nr_enabled = 0;
388 while (vs_inputs) {
389 GLuint i = ffsll(vs_inputs) - 1;
390 struct brw_vertex_element *input = &brw->vb.inputs[i];
391
392 vs_inputs &= ~BITFIELD64_BIT(i);
393 if (input->glarray->Size && get_size(input->glarray->Type))
394 brw->vb.enabled[brw->vb.nr_enabled++] = input;
395 }
396
397 if (brw->vb.nr_enabled == 0)
398 return;
399
400 if (brw->vb.nr_buffers)
401 goto prepare;
402
403 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
404 struct brw_vertex_element *input = brw->vb.enabled[i];
405 const struct gl_client_array *glarray = input->glarray;
406 int type_size = get_size(glarray->Type);
407
408 input->element_size = type_size * glarray->Size;
409
410 if (_mesa_is_bufferobj(glarray->BufferObj)) {
411 struct intel_buffer_object *intel_buffer =
412 intel_buffer_object(glarray->BufferObj);
413 int k;
414
415 for (k = 0; k < i; k++) {
416 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
417 if (glarray->BufferObj == other->BufferObj &&
418 glarray->StrideB == other->StrideB &&
419 glarray->InstanceDivisor == other->InstanceDivisor &&
420 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
421 {
422 input->buffer = brw->vb.enabled[k]->buffer;
423 input->offset = glarray->Ptr - other->Ptr;
424 break;
425 }
426 }
427 if (k == i) {
428 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
429
430 /* Named buffer object: Just reference its contents directly. */
431 buffer->bo = intel_bufferobj_source(intel,
432 intel_buffer, type_size,
433 &buffer->offset);
434 drm_intel_bo_reference(buffer->bo);
435 buffer->offset += (uintptr_t)glarray->Ptr;
436 buffer->stride = glarray->StrideB;
437 buffer->step_rate = glarray->InstanceDivisor;
438
439 input->buffer = j++;
440 input->offset = 0;
441 }
442
443 /* This is a common place to reach if the user mistakenly supplies
444 * a pointer in place of a VBO offset. If we just let it go through,
445 * we may end up dereferencing a pointer beyond the bounds of the
446 * GTT. We would hope that the VBO's max_index would save us, but
447 * Mesa appears to hand us min/max values not clipped to the
448 * array object's _MaxElement, and _MaxElement frequently appears
449 * to be wrong anyway.
450 *
451 * The VBO spec allows application termination in this case, and it's
452 * probably a service to the poor programmer to do so rather than
453 * trying to just not render.
454 */
455 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
456 } else {
457 /* Queue the buffer object up to be uploaded in the next pass,
458 * when we've decided if we're doing interleaved or not.
459 */
460 if (nr_uploads == 0) {
461 /* Position array not properly enabled:
462 */
463 if (input->attrib == VERT_ATTRIB_POS && glarray->StrideB == 0) {
464 intel->Fallback = true; /* boolean, not bitfield */
465 return;
466 }
467
468 interleaved = glarray->StrideB;
469 ptr = glarray->Ptr;
470 }
471 else if (interleaved != glarray->StrideB ||
472 (uintptr_t)(glarray->Ptr - ptr) > interleaved)
473 {
474 interleaved = 0;
475 }
476 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
477 {
478 /* enforce natural alignment (for doubles) */
479 interleaved = 0;
480 }
481
482 upload[nr_uploads++] = input;
483
484 total_size = ALIGN(total_size, type_size);
485 total_size += input->element_size;
486
487 if (glarray->InstanceDivisor != 0) {
488 can_merge_uploads = GL_FALSE;
489 }
490 }
491 }
492
493 /* If we need to upload all the arrays, then we can trim those arrays to
494 * only the used elements [min_index, max_index] so long as we adjust all
495 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
496 */
497 brw->vb.start_vertex_bias = 0;
498 delta = min_index;
499 if (nr_uploads == brw->vb.nr_enabled) {
500 brw->vb.start_vertex_bias = -delta;
501 delta = 0;
502 }
503 if (delta && !brw->intel.intelScreen->relaxed_relocations)
504 min_index = delta = 0;
505
506 /* Handle any arrays to be uploaded. */
507 if (nr_uploads > 1) {
508 if (interleaved && interleaved <= 2*total_size) {
509 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
510 /* All uploads are interleaved, so upload the arrays together as
511 * interleaved. First, upload the contents and set up upload[0].
512 */
513 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
514 buffer, interleaved);
515 buffer->offset -= delta * interleaved;
516
517 for (i = 0; i < nr_uploads; i++) {
518 /* Then, just point upload[i] at upload[0]'s buffer. */
519 upload[i]->offset =
520 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
521 upload[i]->buffer = j;
522 }
523 j++;
524
525 nr_uploads = 0;
526 }
527 else if ((total_size < 2048) && can_merge_uploads) {
528 /* Upload non-interleaved arrays into a single interleaved array */
529 struct brw_vertex_buffer *buffer;
530 int count = MAX2(max_index - min_index + 1, 1);
531 int offset;
532 char *map;
533
534 map = intel_upload_map(&brw->intel, total_size * count, total_size);
535 for (i = offset = 0; i < nr_uploads; i++) {
536 const unsigned char *src = upload[i]->glarray->Ptr;
537 int size = upload[i]->element_size;
538 int stride = upload[i]->glarray->StrideB;
539 char *dst;
540 int n;
541
542 offset = ALIGN(offset, get_size(upload[i]->glarray->Type));
543 dst = map + offset;
544 src += min_index * stride;
545
546 for (n = 0; n < count; n++) {
547 memcpy(dst, src, size);
548 src += stride;
549 dst += total_size;
550 }
551
552 upload[i]->offset = offset;
553 upload[i]->buffer = j;
554
555 offset += size;
556 }
557 assert(offset == total_size);
558 buffer = &brw->vb.buffers[j++];
559 intel_upload_unmap(&brw->intel, map, offset * count, offset,
560 &buffer->bo, &buffer->offset);
561 buffer->stride = offset;
562 buffer->step_rate = 0;
563 buffer->offset -= delta * offset;
564
565 nr_uploads = 0;
566 }
567 }
568 /* Upload non-interleaved arrays */
569 for (i = 0; i < nr_uploads; i++) {
570 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
571 if (upload[i]->glarray->InstanceDivisor == 0) {
572 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
573 buffer, upload[i]->element_size);
574 } else {
575 /* This is an instanced attribute, since its InstanceDivisor
576 * is not zero. Therefore, its data will be stepped after the
577 * instanced draw has been run InstanceDivisor times.
578 */
579 uint32_t instanced_attr_max_index =
580 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
581 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
582 buffer, upload[i]->element_size);
583 }
584 buffer->offset -= delta * buffer->stride;
585 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
586 upload[i]->buffer = j++;
587 upload[i]->offset = 0;
588 }
589
590 /* can we simply extend the current vb? */
591 if (j == brw->vb.nr_current_buffers) {
592 int delta = 0;
593 for (i = 0; i < j; i++) {
594 int d;
595
596 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
597 brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
598 brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
599 break;
600
601 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
602 if (d < 0)
603 break;
604 if (i == 0)
605 delta = d / brw->vb.current_buffers[i].stride;
606 if (delta * brw->vb.current_buffers[i].stride != d)
607 break;
608 }
609
610 if (i == j) {
611 brw->vb.start_vertex_bias += delta;
612 while (--j >= 0)
613 drm_intel_bo_unreference(brw->vb.buffers[j].bo);
614 j = 0;
615 }
616 }
617
618 brw->vb.nr_buffers = j;
619
620 prepare:
621 brw_prepare_query_begin(brw);
622 }
623
624 static void brw_emit_vertices(struct brw_context *brw)
625 {
626 struct gl_context *ctx = &brw->intel.ctx;
627 struct intel_context *intel = intel_context(ctx);
628 GLuint i, nr_elements;
629
630 brw_prepare_vertices(brw);
631
632 brw_emit_query_begin(brw);
633
634 /* If the VS doesn't read any inputs (calculating vertex position from
635 * a state variable for some reason, for example), emit a single pad
636 * VERTEX_ELEMENT struct and bail.
637 *
638 * The stale VB state stays in place, but they don't do anything unless
639 * a VE loads from them.
640 */
641 if (brw->vb.nr_enabled == 0) {
642 BEGIN_BATCH(3);
643 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
644 if (intel->gen >= 6) {
645 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
646 GEN6_VE0_VALID |
647 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
648 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
649 } else {
650 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
651 BRW_VE0_VALID |
652 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
653 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
654 }
655 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
656 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
657 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
658 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
659 CACHED_BATCH();
660 return;
661 }
662
663 /* Now emit VB and VEP state packets.
664 */
665
666 if (brw->vb.nr_buffers) {
667 if (intel->gen >= 6) {
668 assert(brw->vb.nr_buffers <= 33);
669 } else {
670 assert(brw->vb.nr_buffers <= 17);
671 }
672
673 BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
674 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
675 for (i = 0; i < brw->vb.nr_buffers; i++) {
676 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
677 uint32_t dw0;
678
679 if (intel->gen >= 6) {
680 dw0 = buffer->step_rate
681 ? GEN6_VB0_ACCESS_INSTANCEDATA
682 : GEN6_VB0_ACCESS_VERTEXDATA;
683 dw0 |= i << GEN6_VB0_INDEX_SHIFT;
684 } else {
685 dw0 = buffer->step_rate
686 ? BRW_VB0_ACCESS_INSTANCEDATA
687 : BRW_VB0_ACCESS_VERTEXDATA;
688 dw0 |= i << BRW_VB0_INDEX_SHIFT;
689 }
690
691 if (intel->gen >= 7)
692 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
693
694 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
695 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
696 if (intel->gen >= 5) {
697 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
698 } else
699 OUT_BATCH(0);
700 OUT_BATCH(buffer->step_rate);
701
702 brw->vb.current_buffers[i].handle = buffer->bo->handle;
703 brw->vb.current_buffers[i].offset = buffer->offset;
704 brw->vb.current_buffers[i].stride = buffer->stride;
705 brw->vb.current_buffers[i].step_rate = buffer->step_rate;
706 }
707 brw->vb.nr_current_buffers = i;
708 ADVANCE_BATCH();
709 }
710
711 nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
712
713 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
714 * for VertexID/InstanceID.
715 */
716 if (intel->gen >= 6) {
717 assert(nr_elements <= 34);
718 } else {
719 assert(nr_elements <= 18);
720 }
721
722 struct brw_vertex_element *gen6_edgeflag_input = NULL;
723
724 BEGIN_BATCH(1 + nr_elements * 2);
725 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
726 for (i = 0; i < brw->vb.nr_enabled; i++) {
727 struct brw_vertex_element *input = brw->vb.enabled[i];
728 uint32_t format = get_surface_type(input->glarray->Type,
729 input->glarray->Size,
730 input->glarray->Format,
731 input->glarray->Normalized,
732 input->glarray->Integer);
733 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
734 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
735 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
736 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
737
738 /* The gen4 driver expects edgeflag to come in as a float, and passes
739 * that float on to the tests in the clipper. Mesa's current vertex
740 * attribute value for EdgeFlag is stored as a float, which works out.
741 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
742 * integer ubyte. Just rewrite that to convert to a float.
743 */
744 if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
745 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
746 * of in the VUE. We have to upload it sideband as the last vertex
747 * element according to the B-Spec.
748 */
749 if (intel->gen >= 6) {
750 gen6_edgeflag_input = input;
751 continue;
752 }
753
754 if (format == BRW_SURFACEFORMAT_R8_UINT)
755 format = BRW_SURFACEFORMAT_R8_SSCALED;
756 }
757
758 switch (input->glarray->Size) {
759 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
760 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
761 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
762 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
763 : BRW_VE1_COMPONENT_STORE_1_FLT;
764 break;
765 }
766
767 if (intel->gen >= 6) {
768 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
769 GEN6_VE0_VALID |
770 (format << BRW_VE0_FORMAT_SHIFT) |
771 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
772 } else {
773 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
774 BRW_VE0_VALID |
775 (format << BRW_VE0_FORMAT_SHIFT) |
776 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
777 }
778
779 if (intel->gen >= 5)
780 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
781 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
782 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
783 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
784 else
785 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
786 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
787 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
788 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
789 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
790 }
791
792 if (intel->gen >= 6 && gen6_edgeflag_input) {
793 uint32_t format = get_surface_type(gen6_edgeflag_input->glarray->Type,
794 gen6_edgeflag_input->glarray->Size,
795 gen6_edgeflag_input->glarray->Format,
796 gen6_edgeflag_input->glarray->Normalized,
797 gen6_edgeflag_input->glarray->Integer);
798
799 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
800 GEN6_VE0_VALID |
801 GEN6_VE0_EDGE_FLAG_ENABLE |
802 (format << BRW_VE0_FORMAT_SHIFT) |
803 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
804 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
805 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
806 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
807 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
808 }
809
810 if (brw->vs.prog_data->uses_vertexid) {
811 uint32_t dw0 = 0, dw1 = 0;
812
813 dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
814 (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
815 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
816 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
817
818 if (intel->gen >= 6) {
819 dw0 |= GEN6_VE0_VALID;
820 } else {
821 dw0 |= BRW_VE0_VALID;
822 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
823 }
824
825 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
826 * the format is ignored and the value is always int.
827 */
828
829 OUT_BATCH(dw0);
830 OUT_BATCH(dw1);
831 }
832
833 CACHED_BATCH();
834 }
835
836 const struct brw_tracked_state brw_vertices = {
837 .dirty = {
838 .mesa = _NEW_POLYGON,
839 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
840 .cache = CACHE_NEW_VS_PROG,
841 },
842 .emit = brw_emit_vertices,
843 };
844
845 static void brw_upload_indices(struct brw_context *brw)
846 {
847 struct gl_context *ctx = &brw->intel.ctx;
848 struct intel_context *intel = &brw->intel;
849 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
850 GLuint ib_size;
851 drm_intel_bo *bo = NULL;
852 struct gl_buffer_object *bufferobj;
853 GLuint offset;
854 GLuint ib_type_size;
855
856 if (index_buffer == NULL)
857 return;
858
859 ib_type_size = get_size(index_buffer->type);
860 ib_size = ib_type_size * index_buffer->count;
861 bufferobj = index_buffer->obj;
862
863 /* Turn into a proper VBO:
864 */
865 if (!_mesa_is_bufferobj(bufferobj)) {
866
867 /* Get new bufferobj, offset:
868 */
869 intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
870 &bo, &offset);
871 brw->ib.start_vertex_offset = offset / ib_type_size;
872 } else {
873 offset = (GLuint) (unsigned long) index_buffer->ptr;
874
875 /* If the index buffer isn't aligned to its element size, we have to
876 * rebase it into a temporary.
877 */
878 if ((get_size(index_buffer->type) - 1) & offset) {
879 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
880 offset,
881 ib_size,
882 GL_MAP_WRITE_BIT,
883 bufferobj);
884
885 intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
886 &bo, &offset);
887 brw->ib.start_vertex_offset = offset / ib_type_size;
888
889 ctx->Driver.UnmapBuffer(ctx, bufferobj);
890 } else {
891 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
892 * the index buffer state when we're just moving the start index
893 * of our drawing.
894 */
895 brw->ib.start_vertex_offset = offset / ib_type_size;
896
897 bo = intel_bufferobj_source(intel,
898 intel_buffer_object(bufferobj),
899 ib_type_size,
900 &offset);
901 drm_intel_bo_reference(bo);
902
903 brw->ib.start_vertex_offset += offset / ib_type_size;
904 }
905 }
906
907 if (brw->ib.bo != bo) {
908 drm_intel_bo_unreference(brw->ib.bo);
909 brw->ib.bo = bo;
910
911 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
912 } else {
913 drm_intel_bo_unreference(bo);
914 }
915
916 if (index_buffer->type != brw->ib.type) {
917 brw->ib.type = index_buffer->type;
918 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
919 }
920 }
921
922 const struct brw_tracked_state brw_indices = {
923 .dirty = {
924 .mesa = 0,
925 .brw = BRW_NEW_INDICES,
926 .cache = 0,
927 },
928 .emit = brw_upload_indices,
929 };
930
931 static void brw_emit_index_buffer(struct brw_context *brw)
932 {
933 struct intel_context *intel = &brw->intel;
934 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
935 GLuint cut_index_setting;
936
937 if (index_buffer == NULL)
938 return;
939
940 if (brw->prim_restart.enable_cut_index) {
941 cut_index_setting = BRW_CUT_INDEX_ENABLE;
942 } else {
943 cut_index_setting = 0;
944 }
945
946 BEGIN_BATCH(3);
947 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
948 cut_index_setting |
949 get_index_type(index_buffer->type) << 8 |
950 1);
951 OUT_RELOC(brw->ib.bo,
952 I915_GEM_DOMAIN_VERTEX, 0,
953 0);
954 OUT_RELOC(brw->ib.bo,
955 I915_GEM_DOMAIN_VERTEX, 0,
956 brw->ib.bo->size - 1);
957 ADVANCE_BATCH();
958 }
959
960 const struct brw_tracked_state brw_index_buffer = {
961 .dirty = {
962 .mesa = 0,
963 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
964 .cache = 0,
965 },
966 .emit = brw_emit_index_buffer,
967 };