i965: Drop assertion about buffer offset at draw time.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "main/bufferobj.h"
27 #include "main/context.h"
28 #include "main/enums.h"
29 #include "main/macros.h"
30 #include "main/glformats.h"
31
32 #include "brw_draw.h"
33 #include "brw_defines.h"
34 #include "brw_context.h"
35 #include "brw_state.h"
36
37 #include "intel_batchbuffer.h"
38 #include "intel_buffer_objects.h"
39
40 static const GLuint double_types_float[5] = {
41 0,
42 BRW_SURFACEFORMAT_R64_FLOAT,
43 BRW_SURFACEFORMAT_R64G64_FLOAT,
44 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
45 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
46 };
47
48 static const GLuint double_types_passthru[5] = {
49 0,
50 BRW_SURFACEFORMAT_R64_PASSTHRU,
51 BRW_SURFACEFORMAT_R64G64_PASSTHRU,
52 BRW_SURFACEFORMAT_R64G64B64_PASSTHRU,
53 BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU
54 };
55
56 static const GLuint float_types[5] = {
57 0,
58 BRW_SURFACEFORMAT_R32_FLOAT,
59 BRW_SURFACEFORMAT_R32G32_FLOAT,
60 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
61 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
62 };
63
64 static const GLuint half_float_types[5] = {
65 0,
66 BRW_SURFACEFORMAT_R16_FLOAT,
67 BRW_SURFACEFORMAT_R16G16_FLOAT,
68 BRW_SURFACEFORMAT_R16G16B16_FLOAT,
69 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
70 };
71
72 static const GLuint fixed_point_types[5] = {
73 0,
74 BRW_SURFACEFORMAT_R32_SFIXED,
75 BRW_SURFACEFORMAT_R32G32_SFIXED,
76 BRW_SURFACEFORMAT_R32G32B32_SFIXED,
77 BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
78 };
79
80 static const GLuint uint_types_direct[5] = {
81 0,
82 BRW_SURFACEFORMAT_R32_UINT,
83 BRW_SURFACEFORMAT_R32G32_UINT,
84 BRW_SURFACEFORMAT_R32G32B32_UINT,
85 BRW_SURFACEFORMAT_R32G32B32A32_UINT
86 };
87
88 static const GLuint uint_types_norm[5] = {
89 0,
90 BRW_SURFACEFORMAT_R32_UNORM,
91 BRW_SURFACEFORMAT_R32G32_UNORM,
92 BRW_SURFACEFORMAT_R32G32B32_UNORM,
93 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
94 };
95
96 static const GLuint uint_types_scale[5] = {
97 0,
98 BRW_SURFACEFORMAT_R32_USCALED,
99 BRW_SURFACEFORMAT_R32G32_USCALED,
100 BRW_SURFACEFORMAT_R32G32B32_USCALED,
101 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
102 };
103
104 static const GLuint int_types_direct[5] = {
105 0,
106 BRW_SURFACEFORMAT_R32_SINT,
107 BRW_SURFACEFORMAT_R32G32_SINT,
108 BRW_SURFACEFORMAT_R32G32B32_SINT,
109 BRW_SURFACEFORMAT_R32G32B32A32_SINT
110 };
111
112 static const GLuint int_types_norm[5] = {
113 0,
114 BRW_SURFACEFORMAT_R32_SNORM,
115 BRW_SURFACEFORMAT_R32G32_SNORM,
116 BRW_SURFACEFORMAT_R32G32B32_SNORM,
117 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
118 };
119
120 static const GLuint int_types_scale[5] = {
121 0,
122 BRW_SURFACEFORMAT_R32_SSCALED,
123 BRW_SURFACEFORMAT_R32G32_SSCALED,
124 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
125 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
126 };
127
128 static const GLuint ushort_types_direct[5] = {
129 0,
130 BRW_SURFACEFORMAT_R16_UINT,
131 BRW_SURFACEFORMAT_R16G16_UINT,
132 BRW_SURFACEFORMAT_R16G16B16_UINT,
133 BRW_SURFACEFORMAT_R16G16B16A16_UINT
134 };
135
136 static const GLuint ushort_types_norm[5] = {
137 0,
138 BRW_SURFACEFORMAT_R16_UNORM,
139 BRW_SURFACEFORMAT_R16G16_UNORM,
140 BRW_SURFACEFORMAT_R16G16B16_UNORM,
141 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
142 };
143
144 static const GLuint ushort_types_scale[5] = {
145 0,
146 BRW_SURFACEFORMAT_R16_USCALED,
147 BRW_SURFACEFORMAT_R16G16_USCALED,
148 BRW_SURFACEFORMAT_R16G16B16_USCALED,
149 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
150 };
151
152 static const GLuint short_types_direct[5] = {
153 0,
154 BRW_SURFACEFORMAT_R16_SINT,
155 BRW_SURFACEFORMAT_R16G16_SINT,
156 BRW_SURFACEFORMAT_R16G16B16_SINT,
157 BRW_SURFACEFORMAT_R16G16B16A16_SINT
158 };
159
160 static const GLuint short_types_norm[5] = {
161 0,
162 BRW_SURFACEFORMAT_R16_SNORM,
163 BRW_SURFACEFORMAT_R16G16_SNORM,
164 BRW_SURFACEFORMAT_R16G16B16_SNORM,
165 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
166 };
167
168 static const GLuint short_types_scale[5] = {
169 0,
170 BRW_SURFACEFORMAT_R16_SSCALED,
171 BRW_SURFACEFORMAT_R16G16_SSCALED,
172 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
173 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
174 };
175
176 static const GLuint ubyte_types_direct[5] = {
177 0,
178 BRW_SURFACEFORMAT_R8_UINT,
179 BRW_SURFACEFORMAT_R8G8_UINT,
180 BRW_SURFACEFORMAT_R8G8B8_UINT,
181 BRW_SURFACEFORMAT_R8G8B8A8_UINT
182 };
183
184 static const GLuint ubyte_types_norm[5] = {
185 0,
186 BRW_SURFACEFORMAT_R8_UNORM,
187 BRW_SURFACEFORMAT_R8G8_UNORM,
188 BRW_SURFACEFORMAT_R8G8B8_UNORM,
189 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
190 };
191
192 static const GLuint ubyte_types_scale[5] = {
193 0,
194 BRW_SURFACEFORMAT_R8_USCALED,
195 BRW_SURFACEFORMAT_R8G8_USCALED,
196 BRW_SURFACEFORMAT_R8G8B8_USCALED,
197 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
198 };
199
200 static const GLuint byte_types_direct[5] = {
201 0,
202 BRW_SURFACEFORMAT_R8_SINT,
203 BRW_SURFACEFORMAT_R8G8_SINT,
204 BRW_SURFACEFORMAT_R8G8B8_SINT,
205 BRW_SURFACEFORMAT_R8G8B8A8_SINT
206 };
207
208 static const GLuint byte_types_norm[5] = {
209 0,
210 BRW_SURFACEFORMAT_R8_SNORM,
211 BRW_SURFACEFORMAT_R8G8_SNORM,
212 BRW_SURFACEFORMAT_R8G8B8_SNORM,
213 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
214 };
215
216 static const GLuint byte_types_scale[5] = {
217 0,
218 BRW_SURFACEFORMAT_R8_SSCALED,
219 BRW_SURFACEFORMAT_R8G8_SSCALED,
220 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
221 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
222 };
223
224 static GLuint
225 double_types(struct brw_context *brw,
226 int size,
227 GLboolean doubles)
228 {
229 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
230 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
231 * 64-bit components are stored in the URB without any conversion."
232 * Also included on BDW PRM, Volume 7, page 470, table "Source Element
233 * Formats Supported in VF Unit"
234 * Previous PRMs don't include those references.
235 */
236 return (brw->gen >= 8 && doubles
237 ? double_types_passthru[size]
238 : double_types_float[size]);
239 }
240
241 /**
242 * Given vertex array type/size/format/normalized info, return
243 * the appopriate hardware surface type.
244 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
245 */
246 unsigned
247 brw_get_vertex_surface_type(struct brw_context *brw,
248 const struct gl_client_array *glarray)
249 {
250 int size = glarray->Size;
251 const bool is_ivybridge_or_older =
252 brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell;
253
254 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
255 fprintf(stderr, "type %s size %d normalized %d\n",
256 _mesa_enum_to_string(glarray->Type),
257 glarray->Size, glarray->Normalized);
258
259 if (glarray->Integer) {
260 assert(glarray->Format == GL_RGBA); /* sanity check */
261 switch (glarray->Type) {
262 case GL_INT: return int_types_direct[size];
263 case GL_SHORT:
264 if (is_ivybridge_or_older && size == 3)
265 return short_types_direct[4];
266 else
267 return short_types_direct[size];
268 case GL_BYTE:
269 if (is_ivybridge_or_older && size == 3)
270 return byte_types_direct[4];
271 else
272 return byte_types_direct[size];
273 case GL_UNSIGNED_INT: return uint_types_direct[size];
274 case GL_UNSIGNED_SHORT:
275 if (is_ivybridge_or_older && size == 3)
276 return ushort_types_direct[4];
277 else
278 return ushort_types_direct[size];
279 case GL_UNSIGNED_BYTE:
280 if (is_ivybridge_or_older && size == 3)
281 return ubyte_types_direct[4];
282 else
283 return ubyte_types_direct[size];
284 default: unreachable("not reached");
285 }
286 } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
287 return BRW_SURFACEFORMAT_R11G11B10_FLOAT;
288 } else if (glarray->Normalized) {
289 switch (glarray->Type) {
290 case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
291 case GL_FLOAT: return float_types[size];
292 case GL_HALF_FLOAT:
293 if (brw->gen < 6 && size == 3)
294 return half_float_types[4];
295 else
296 return half_float_types[size];
297 case GL_INT: return int_types_norm[size];
298 case GL_SHORT: return short_types_norm[size];
299 case GL_BYTE: return byte_types_norm[size];
300 case GL_UNSIGNED_INT: return uint_types_norm[size];
301 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
302 case GL_UNSIGNED_BYTE:
303 if (glarray->Format == GL_BGRA) {
304 /* See GL_EXT_vertex_array_bgra */
305 assert(size == 4);
306 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
307 }
308 else {
309 return ubyte_types_norm[size];
310 }
311 case GL_FIXED:
312 if (brw->gen >= 8 || brw->is_haswell)
313 return fixed_point_types[size];
314
315 /* This produces GL_FIXED inputs as values between INT32_MIN and
316 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
317 */
318 return int_types_scale[size];
319 /* See GL_ARB_vertex_type_2_10_10_10_rev.
320 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
321 * like to use here, so upload everything as UINT and fix
322 * it in the shader
323 */
324 case GL_INT_2_10_10_10_REV:
325 assert(size == 4);
326 if (brw->gen >= 8 || brw->is_haswell) {
327 return glarray->Format == GL_BGRA
328 ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
329 : BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
330 }
331 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
332 case GL_UNSIGNED_INT_2_10_10_10_REV:
333 assert(size == 4);
334 if (brw->gen >= 8 || brw->is_haswell) {
335 return glarray->Format == GL_BGRA
336 ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
337 : BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
338 }
339 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
340 default: unreachable("not reached");
341 }
342 }
343 else {
344 /* See GL_ARB_vertex_type_2_10_10_10_rev.
345 * W/A: the hardware doesn't really support the formats we'd
346 * like to use here, so upload everything as UINT and fix
347 * it in the shader
348 */
349 if (glarray->Type == GL_INT_2_10_10_10_REV) {
350 assert(size == 4);
351 if (brw->gen >= 8 || brw->is_haswell) {
352 return glarray->Format == GL_BGRA
353 ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
354 : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
355 }
356 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
357 } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
358 assert(size == 4);
359 if (brw->gen >= 8 || brw->is_haswell) {
360 return glarray->Format == GL_BGRA
361 ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
362 : BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
363 }
364 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
365 }
366 assert(glarray->Format == GL_RGBA); /* sanity check */
367 switch (glarray->Type) {
368 case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
369 case GL_FLOAT: return float_types[size];
370 case GL_HALF_FLOAT:
371 if (brw->gen < 6 && size == 3)
372 return half_float_types[4];
373 else
374 return half_float_types[size];
375 case GL_INT: return int_types_scale[size];
376 case GL_SHORT: return short_types_scale[size];
377 case GL_BYTE: return byte_types_scale[size];
378 case GL_UNSIGNED_INT: return uint_types_scale[size];
379 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
380 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
381 case GL_FIXED:
382 if (brw->gen >= 8 || brw->is_haswell)
383 return fixed_point_types[size];
384
385 /* This produces GL_FIXED inputs as values between INT32_MIN and
386 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
387 */
388 return int_types_scale[size];
389 default: unreachable("not reached");
390 }
391 }
392 }
393
394 static void
395 copy_array_to_vbo_array(struct brw_context *brw,
396 struct brw_vertex_element *element,
397 int min, int max,
398 struct brw_vertex_buffer *buffer,
399 GLuint dst_stride)
400 {
401 const int src_stride = element->glarray->StrideB;
402
403 /* If the source stride is zero, we just want to upload the current
404 * attribute once and set the buffer's stride to 0. There's no need
405 * to replicate it out.
406 */
407 if (src_stride == 0) {
408 intel_upload_data(brw, element->glarray->Ptr,
409 element->glarray->_ElementSize,
410 element->glarray->_ElementSize,
411 &buffer->bo, &buffer->offset);
412
413 buffer->stride = 0;
414 buffer->size = element->glarray->_ElementSize;
415 return;
416 }
417
418 const unsigned char *src = element->glarray->Ptr + min * src_stride;
419 int count = max - min + 1;
420 GLuint size = count * dst_stride;
421 uint8_t *dst = intel_upload_space(brw, size, dst_stride,
422 &buffer->bo, &buffer->offset);
423
424 if (dst_stride == src_stride) {
425 memcpy(dst, src, size);
426 } else {
427 while (count--) {
428 memcpy(dst, src, dst_stride);
429 src += src_stride;
430 dst += dst_stride;
431 }
432 }
433 buffer->stride = dst_stride;
434 buffer->size = size;
435 }
436
437 void
438 brw_prepare_vertices(struct brw_context *brw)
439 {
440 struct gl_context *ctx = &brw->ctx;
441 /* BRW_NEW_VS_PROG_DATA */
442 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
443 const unsigned char *ptr = NULL;
444 GLuint interleaved = 0;
445 unsigned int min_index = brw->vb.min_index + brw->basevertex;
446 unsigned int max_index = brw->vb.max_index + brw->basevertex;
447 unsigned i;
448 int delta, j;
449
450 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
451 GLuint nr_uploads = 0;
452
453 /* _NEW_POLYGON
454 *
455 * On gen6+, edge flags don't end up in the VUE (either in or out of the
456 * VS). Instead, they're uploaded as the last vertex element, and the data
457 * is passed sideband through the fixed function units. So, we need to
458 * prepare the vertex buffer for it, but it's not present in inputs_read.
459 */
460 if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
461 ctx->Polygon.BackMode != GL_FILL)) {
462 vs_inputs |= VERT_BIT_EDGEFLAG;
463 }
464
465 if (0)
466 fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
467
468 /* Accumulate the list of enabled arrays. */
469 brw->vb.nr_enabled = 0;
470 while (vs_inputs) {
471 GLuint index = ffsll(vs_inputs) - 1;
472 struct brw_vertex_element *input = &brw->vb.inputs[index];
473
474 vs_inputs &= ~BITFIELD64_BIT(index);
475 brw->vb.enabled[brw->vb.nr_enabled++] = input;
476 }
477
478 if (brw->vb.nr_enabled == 0)
479 return;
480
481 if (brw->vb.nr_buffers)
482 return;
483
484 /* The range of data in a given buffer represented as [min, max) */
485 struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
486 uint32_t buffer_range_start[VERT_ATTRIB_MAX];
487 uint32_t buffer_range_end[VERT_ATTRIB_MAX];
488
489 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
490 struct brw_vertex_element *input = brw->vb.enabled[i];
491 const struct gl_client_array *glarray = input->glarray;
492
493 if (_mesa_is_bufferobj(glarray->BufferObj)) {
494 struct intel_buffer_object *intel_buffer =
495 intel_buffer_object(glarray->BufferObj);
496
497 const uint32_t offset = (uintptr_t)glarray->Ptr;
498
499 /* Start with the worst case */
500 uint32_t start = 0;
501 uint32_t range = intel_buffer->Base.Size;
502 if (glarray->InstanceDivisor) {
503 if (brw->num_instances) {
504 start = offset + glarray->StrideB * brw->baseinstance;
505 range = (glarray->StrideB * ((brw->num_instances - 1) /
506 glarray->InstanceDivisor) +
507 glarray->_ElementSize);
508 }
509 } else {
510 if (brw->vb.index_bounds_valid) {
511 start = offset + min_index * glarray->StrideB;
512 range = (glarray->StrideB * (max_index - min_index) +
513 glarray->_ElementSize);
514 }
515 }
516
517 /* If we have a VB set to be uploaded for this buffer object
518 * already, reuse that VB state so that we emit fewer
519 * relocations.
520 */
521 unsigned k;
522 for (k = 0; k < i; k++) {
523 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
524 if (glarray->BufferObj == other->BufferObj &&
525 glarray->StrideB == other->StrideB &&
526 glarray->InstanceDivisor == other->InstanceDivisor &&
527 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
528 {
529 input->buffer = brw->vb.enabled[k]->buffer;
530 input->offset = glarray->Ptr - other->Ptr;
531
532 buffer_range_start[input->buffer] =
533 MIN2(buffer_range_start[input->buffer], start);
534 buffer_range_end[input->buffer] =
535 MAX2(buffer_range_end[input->buffer], start + range);
536 break;
537 }
538 }
539 if (k == i) {
540 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
541
542 /* Named buffer object: Just reference its contents directly. */
543 buffer->offset = offset;
544 buffer->stride = glarray->StrideB;
545 buffer->step_rate = glarray->InstanceDivisor;
546 buffer->size = glarray->BufferObj->Size - offset;
547
548 enabled_buffer[j] = intel_buffer;
549 buffer_range_start[j] = start;
550 buffer_range_end[j] = start + range;
551
552 input->buffer = j++;
553 input->offset = 0;
554 }
555 } else {
556 /* Queue the buffer object up to be uploaded in the next pass,
557 * when we've decided if we're doing interleaved or not.
558 */
559 if (nr_uploads == 0) {
560 interleaved = glarray->StrideB;
561 ptr = glarray->Ptr;
562 }
563 else if (interleaved != glarray->StrideB ||
564 glarray->Ptr < ptr ||
565 (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
566 {
567 /* If our stride is different from the first attribute's stride,
568 * or if the first attribute's stride didn't cover our element,
569 * disable the interleaved upload optimization. The second case
570 * can most commonly occur in cases where there is a single vertex
571 * and, for example, the data is stored on the application's
572 * stack.
573 *
574 * NOTE: This will also disable the optimization in cases where
575 * the data is in a different order than the array indices.
576 * Something like:
577 *
578 * float data[...];
579 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
580 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
581 */
582 interleaved = 0;
583 }
584
585 upload[nr_uploads++] = input;
586 }
587 }
588
589 /* Now that we've set up all of the buffers, we walk through and reference
590 * each of them. We do this late so that we get the right size in each
591 * buffer and don't reference too little data.
592 */
593 for (i = 0; i < j; i++) {
594 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
595 if (buffer->bo)
596 continue;
597
598 const uint32_t start = buffer_range_start[i];
599 const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
600
601 buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start, range);
602 drm_intel_bo_reference(buffer->bo);
603 }
604
605 /* If we need to upload all the arrays, then we can trim those arrays to
606 * only the used elements [min_index, max_index] so long as we adjust all
607 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
608 */
609 brw->vb.start_vertex_bias = 0;
610 delta = min_index;
611 if (nr_uploads == brw->vb.nr_enabled) {
612 brw->vb.start_vertex_bias = -delta;
613 delta = 0;
614 }
615
616 /* Handle any arrays to be uploaded. */
617 if (nr_uploads > 1) {
618 if (interleaved) {
619 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
620 /* All uploads are interleaved, so upload the arrays together as
621 * interleaved. First, upload the contents and set up upload[0].
622 */
623 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
624 buffer, interleaved);
625 buffer->offset -= delta * interleaved;
626 buffer->size += delta * interleaved;
627
628 for (i = 0; i < nr_uploads; i++) {
629 /* Then, just point upload[i] at upload[0]'s buffer. */
630 upload[i]->offset =
631 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
632 upload[i]->buffer = j;
633 }
634 j++;
635
636 nr_uploads = 0;
637 }
638 }
639 /* Upload non-interleaved arrays */
640 for (i = 0; i < nr_uploads; i++) {
641 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
642 if (upload[i]->glarray->InstanceDivisor == 0) {
643 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
644 buffer, upload[i]->glarray->_ElementSize);
645 } else {
646 /* This is an instanced attribute, since its InstanceDivisor
647 * is not zero. Therefore, its data will be stepped after the
648 * instanced draw has been run InstanceDivisor times.
649 */
650 uint32_t instanced_attr_max_index =
651 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
652 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
653 buffer, upload[i]->glarray->_ElementSize);
654 }
655 buffer->offset -= delta * buffer->stride;
656 buffer->size += delta * buffer->stride;
657 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
658 upload[i]->buffer = j++;
659 upload[i]->offset = 0;
660 }
661
662 brw->vb.nr_buffers = j;
663 }
664
665 void
666 brw_prepare_shader_draw_parameters(struct brw_context *brw)
667 {
668 /* For non-indirect draws, upload gl_BaseVertex. */
669 if ((brw->vs.prog_data->uses_basevertex ||
670 brw->vs.prog_data->uses_baseinstance) &&
671 brw->draw.draw_params_bo == NULL) {
672 intel_upload_data(brw, &brw->draw.params, sizeof(brw->draw.params), 4,
673 &brw->draw.draw_params_bo,
674 &brw->draw.draw_params_offset);
675 }
676
677 if (brw->vs.prog_data->uses_drawid) {
678 intel_upload_data(brw, &brw->draw.gl_drawid, sizeof(brw->draw.gl_drawid), 4,
679 &brw->draw.draw_id_bo,
680 &brw->draw.draw_id_offset);
681 }
682 }
683
684 /**
685 * Emit a VERTEX_BUFFER_STATE entry (part of 3DSTATE_VERTEX_BUFFERS).
686 */
687 uint32_t *
688 brw_emit_vertex_buffer_state(struct brw_context *brw,
689 unsigned buffer_nr,
690 drm_intel_bo *bo,
691 unsigned start_offset,
692 unsigned end_offset,
693 unsigned stride,
694 unsigned step_rate,
695 uint32_t *__map)
696 {
697 struct gl_context *ctx = &brw->ctx;
698 uint32_t dw0;
699
700 if (brw->gen >= 8) {
701 dw0 = buffer_nr << GEN6_VB0_INDEX_SHIFT;
702 } else if (brw->gen >= 6) {
703 dw0 = (buffer_nr << GEN6_VB0_INDEX_SHIFT) |
704 (step_rate ? GEN6_VB0_ACCESS_INSTANCEDATA
705 : GEN6_VB0_ACCESS_VERTEXDATA);
706 } else {
707 dw0 = (buffer_nr << BRW_VB0_INDEX_SHIFT) |
708 (step_rate ? BRW_VB0_ACCESS_INSTANCEDATA
709 : BRW_VB0_ACCESS_VERTEXDATA);
710 }
711
712 if (brw->gen >= 7)
713 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
714
715 switch (brw->gen) {
716 case 7:
717 dw0 |= GEN7_MOCS_L3 << 16;
718 break;
719 case 8:
720 dw0 |= BDW_MOCS_WB << 16;
721 break;
722 case 9:
723 dw0 |= SKL_MOCS_WB << 16;
724 break;
725 }
726
727 WARN_ONCE(stride >= (brw->gen >= 5 ? 2048 : 2047),
728 "VBO stride %d too large, bad rendering may occur\n",
729 stride);
730 OUT_BATCH(dw0 | (stride << BRW_VB0_PITCH_SHIFT));
731 if (brw->gen >= 8) {
732 OUT_RELOC64(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
733 /* From the BSpec: 3D Pipeline Stages - 3D Pipeline Geometry -
734 * Vertex Fetch (VF) Stage - State
735 *
736 * Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
737 * VBState.BufferPitch", the address of the byte immediately beyond the
738 * last valid byte of the buffer is determined by
739 * "VBState.StartingBufferAddress + VBState.BufferSize".
740 */
741 OUT_BATCH(end_offset - start_offset);
742 } else if (brw->gen >= 5) {
743 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
744 /* From the BSpec: 3D Pipeline Stages - 3D Pipeline Geometry -
745 * Vertex Fetch (VF) Stage - State
746 *
747 * Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
748 * VBState.BufferPitch", the address of the byte immediately beyond the
749 * last valid byte of the buffer is determined by
750 * "VBState.EndAddress + 1".
751 */
752 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, end_offset - 1);
753 OUT_BATCH(step_rate);
754 } else {
755 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
756 OUT_BATCH(0);
757 OUT_BATCH(step_rate);
758 }
759
760 return __map;
761 }
762
763 static void
764 brw_emit_vertices(struct brw_context *brw)
765 {
766 GLuint i;
767
768 brw_prepare_vertices(brw);
769 brw_prepare_shader_draw_parameters(brw);
770
771 brw_emit_query_begin(brw);
772
773 unsigned nr_elements = brw->vb.nr_enabled;
774 if (brw->vs.prog_data->uses_vertexid || brw->vs.prog_data->uses_instanceid ||
775 brw->vs.prog_data->uses_basevertex || brw->vs.prog_data->uses_baseinstance)
776 ++nr_elements;
777 if (brw->vs.prog_data->uses_drawid)
778 nr_elements++;
779
780 /* If the VS doesn't read any inputs (calculating vertex position from
781 * a state variable for some reason, for example), emit a single pad
782 * VERTEX_ELEMENT struct and bail.
783 *
784 * The stale VB state stays in place, but they don't do anything unless
785 * a VE loads from them.
786 */
787 if (nr_elements == 0) {
788 BEGIN_BATCH(3);
789 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
790 if (brw->gen >= 6) {
791 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
792 GEN6_VE0_VALID |
793 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
794 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
795 } else {
796 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
797 BRW_VE0_VALID |
798 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
799 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
800 }
801 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
802 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
803 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
804 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
805 ADVANCE_BATCH();
806 return;
807 }
808
809 /* Now emit VB and VEP state packets.
810 */
811
812 const bool uses_draw_params =
813 brw->vs.prog_data->uses_basevertex ||
814 brw->vs.prog_data->uses_baseinstance;
815 const unsigned nr_buffers = brw->vb.nr_buffers +
816 uses_draw_params + brw->vs.prog_data->uses_drawid;
817
818 if (nr_buffers) {
819 if (brw->gen >= 6) {
820 assert(nr_buffers <= 33);
821 } else {
822 assert(nr_buffers <= 17);
823 }
824
825 BEGIN_BATCH(1 + 4 * nr_buffers);
826 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4 * nr_buffers - 1));
827 for (i = 0; i < brw->vb.nr_buffers; i++) {
828 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
829 /* Prior to Haswell and Bay Trail we have to use 4-component formats
830 * to fake 3-component ones. In particular, we do this for
831 * half-float and 8 and 16-bit integer formats. This means that the
832 * vertex element may poke over the end of the buffer by 2 bytes.
833 */
834 unsigned padding =
835 (brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
836 EMIT_VERTEX_BUFFER_STATE(brw, i, buffer->bo, buffer->offset,
837 buffer->offset + buffer->size + padding,
838 buffer->stride, buffer->step_rate);
839
840 }
841
842 if (uses_draw_params) {
843 EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers,
844 brw->draw.draw_params_bo,
845 brw->draw.draw_params_offset,
846 brw->draw.draw_params_bo->size,
847 0, /* stride */
848 0); /* step rate */
849 }
850
851 if (brw->vs.prog_data->uses_drawid) {
852 EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers + 1,
853 brw->draw.draw_id_bo,
854 brw->draw.draw_id_offset,
855 brw->draw.draw_id_bo->size,
856 0, /* stride */
857 0); /* step rate */
858 }
859
860 ADVANCE_BATCH();
861 }
862
863 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
864 * for VertexID/InstanceID.
865 */
866 if (brw->gen >= 6) {
867 assert(nr_elements <= 34);
868 } else {
869 assert(nr_elements <= 18);
870 }
871
872 struct brw_vertex_element *gen6_edgeflag_input = NULL;
873
874 BEGIN_BATCH(1 + nr_elements * 2);
875 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
876 for (i = 0; i < brw->vb.nr_enabled; i++) {
877 struct brw_vertex_element *input = brw->vb.enabled[i];
878 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
879 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
880 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
881 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
882 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
883
884 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
885 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
886 * of in the VUE. We have to upload it sideband as the last vertex
887 * element according to the B-Spec.
888 */
889 if (brw->gen >= 6) {
890 gen6_edgeflag_input = input;
891 continue;
892 }
893 }
894
895 switch (input->glarray->Size) {
896 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
897 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
898 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
899 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
900 : BRW_VE1_COMPONENT_STORE_1_FLT;
901 break;
902 }
903
904 if (brw->gen >= 6) {
905 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
906 GEN6_VE0_VALID |
907 (format << BRW_VE0_FORMAT_SHIFT) |
908 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
909 } else {
910 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
911 BRW_VE0_VALID |
912 (format << BRW_VE0_FORMAT_SHIFT) |
913 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
914 }
915
916 if (brw->gen >= 5)
917 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
918 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
919 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
920 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
921 else
922 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
923 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
924 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
925 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
926 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
927 }
928
929 if (brw->vs.prog_data->uses_vertexid || brw->vs.prog_data->uses_instanceid ||
930 brw->vs.prog_data->uses_basevertex || brw->vs.prog_data->uses_baseinstance) {
931 uint32_t dw0 = 0, dw1 = 0;
932 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_0;
933 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_0;
934 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_0;
935 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_0;
936
937 if (brw->vs.prog_data->uses_basevertex)
938 comp0 = BRW_VE1_COMPONENT_STORE_SRC;
939
940 if (brw->vs.prog_data->uses_baseinstance)
941 comp1 = BRW_VE1_COMPONENT_STORE_SRC;
942
943 if (brw->vs.prog_data->uses_vertexid)
944 comp2 = BRW_VE1_COMPONENT_STORE_VID;
945
946 if (brw->vs.prog_data->uses_instanceid)
947 comp3 = BRW_VE1_COMPONENT_STORE_IID;
948
949 dw1 = (comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
950 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
951 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
952 (comp3 << BRW_VE1_COMPONENT_3_SHIFT);
953
954 if (brw->gen >= 6) {
955 dw0 |= GEN6_VE0_VALID |
956 brw->vb.nr_buffers << GEN6_VE0_INDEX_SHIFT |
957 BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
958 } else {
959 dw0 |= BRW_VE0_VALID |
960 brw->vb.nr_buffers << BRW_VE0_INDEX_SHIFT |
961 BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
962 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
963 }
964
965 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
966 * the format is ignored and the value is always int.
967 */
968
969 OUT_BATCH(dw0);
970 OUT_BATCH(dw1);
971 }
972
973 if (brw->vs.prog_data->uses_drawid) {
974 uint32_t dw0 = 0, dw1 = 0;
975
976 dw1 = (BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
977 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
978 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
979 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT);
980
981 if (brw->gen >= 6) {
982 dw0 |= GEN6_VE0_VALID |
983 ((brw->vb.nr_buffers + 1) << GEN6_VE0_INDEX_SHIFT) |
984 (BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
985 } else {
986 dw0 |= BRW_VE0_VALID |
987 ((brw->vb.nr_buffers + 1) << BRW_VE0_INDEX_SHIFT) |
988 (BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
989
990 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
991 }
992
993 OUT_BATCH(dw0);
994 OUT_BATCH(dw1);
995 }
996
997 if (brw->gen >= 6 && gen6_edgeflag_input) {
998 uint32_t format =
999 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
1000
1001 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
1002 GEN6_VE0_VALID |
1003 GEN6_VE0_EDGE_FLAG_ENABLE |
1004 (format << BRW_VE0_FORMAT_SHIFT) |
1005 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
1006 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
1007 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
1008 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
1009 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
1010 }
1011
1012 ADVANCE_BATCH();
1013 }
1014
1015 const struct brw_tracked_state brw_vertices = {
1016 .dirty = {
1017 .mesa = _NEW_POLYGON,
1018 .brw = BRW_NEW_BATCH |
1019 BRW_NEW_BLORP |
1020 BRW_NEW_VERTICES |
1021 BRW_NEW_VS_PROG_DATA,
1022 },
1023 .emit = brw_emit_vertices,
1024 };
1025
1026 static void
1027 brw_upload_indices(struct brw_context *brw)
1028 {
1029 struct gl_context *ctx = &brw->ctx;
1030 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
1031 GLuint ib_size;
1032 drm_intel_bo *old_bo = brw->ib.bo;
1033 struct gl_buffer_object *bufferobj;
1034 GLuint offset;
1035 GLuint ib_type_size;
1036
1037 if (index_buffer == NULL)
1038 return;
1039
1040 ib_type_size = _mesa_sizeof_type(index_buffer->type);
1041 ib_size = index_buffer->count ? ib_type_size * index_buffer->count :
1042 index_buffer->obj->Size;
1043 bufferobj = index_buffer->obj;
1044
1045 /* Turn into a proper VBO:
1046 */
1047 if (!_mesa_is_bufferobj(bufferobj)) {
1048 /* Get new bufferobj, offset:
1049 */
1050 intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
1051 &brw->ib.bo, &offset);
1052 brw->ib.size = brw->ib.bo->size;
1053 } else {
1054 offset = (GLuint) (unsigned long) index_buffer->ptr;
1055
1056 /* If the index buffer isn't aligned to its element size, we have to
1057 * rebase it into a temporary.
1058 */
1059 if ((ib_type_size - 1) & offset) {
1060 perf_debug("copying index buffer to a temporary to work around "
1061 "misaligned offset %d\n", offset);
1062
1063 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
1064 offset,
1065 ib_size,
1066 GL_MAP_READ_BIT,
1067 bufferobj,
1068 MAP_INTERNAL);
1069
1070 intel_upload_data(brw, map, ib_size, ib_type_size,
1071 &brw->ib.bo, &offset);
1072 brw->ib.size = brw->ib.bo->size;
1073
1074 ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
1075 } else {
1076 drm_intel_bo *bo =
1077 intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
1078 offset, ib_size);
1079 if (bo != brw->ib.bo) {
1080 drm_intel_bo_unreference(brw->ib.bo);
1081 brw->ib.bo = bo;
1082 brw->ib.size = bufferobj->Size;
1083 drm_intel_bo_reference(bo);
1084 }
1085 }
1086 }
1087
1088 /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
1089 * the index buffer state when we're just moving the start index
1090 * of our drawing.
1091 */
1092 brw->ib.start_vertex_offset = offset / ib_type_size;
1093
1094 if (brw->ib.bo != old_bo)
1095 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
1096
1097 if (index_buffer->type != brw->ib.type) {
1098 brw->ib.type = index_buffer->type;
1099 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
1100 }
1101 }
1102
1103 const struct brw_tracked_state brw_indices = {
1104 .dirty = {
1105 .mesa = 0,
1106 .brw = BRW_NEW_BLORP |
1107 BRW_NEW_INDICES,
1108 },
1109 .emit = brw_upload_indices,
1110 };
1111
1112 static void
1113 brw_emit_index_buffer(struct brw_context *brw)
1114 {
1115 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
1116 GLuint cut_index_setting;
1117
1118 if (index_buffer == NULL)
1119 return;
1120
1121 if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
1122 cut_index_setting = BRW_CUT_INDEX_ENABLE;
1123 } else {
1124 cut_index_setting = 0;
1125 }
1126
1127 BEGIN_BATCH(3);
1128 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
1129 cut_index_setting |
1130 brw_get_index_type(index_buffer->type) |
1131 1);
1132 OUT_RELOC(brw->ib.bo,
1133 I915_GEM_DOMAIN_VERTEX, 0,
1134 0);
1135 OUT_RELOC(brw->ib.bo,
1136 I915_GEM_DOMAIN_VERTEX, 0,
1137 brw->ib.size - 1);
1138 ADVANCE_BATCH();
1139 }
1140
1141 const struct brw_tracked_state brw_index_buffer = {
1142 .dirty = {
1143 .mesa = 0,
1144 .brw = BRW_NEW_BATCH |
1145 BRW_NEW_BLORP |
1146 BRW_NEW_INDEX_BUFFER,
1147 },
1148 .emit = brw_emit_index_buffer,
1149 };