i965: Remove the gl_vertex_array indirection.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "main/arrayobj.h"
27 #include "main/bufferobj.h"
28 #include "main/context.h"
29 #include "main/enums.h"
30 #include "main/macros.h"
31 #include "main/glformats.h"
32
33 #include "brw_draw.h"
34 #include "brw_defines.h"
35 #include "brw_context.h"
36 #include "brw_state.h"
37
38 #include "intel_batchbuffer.h"
39 #include "intel_buffer_objects.h"
40
41 static const GLuint double_types_float[5] = {
42 0,
43 ISL_FORMAT_R64_FLOAT,
44 ISL_FORMAT_R64G64_FLOAT,
45 ISL_FORMAT_R64G64B64_FLOAT,
46 ISL_FORMAT_R64G64B64A64_FLOAT
47 };
48
49 static const GLuint double_types_passthru[5] = {
50 0,
51 ISL_FORMAT_R64_PASSTHRU,
52 ISL_FORMAT_R64G64_PASSTHRU,
53 ISL_FORMAT_R64G64B64_PASSTHRU,
54 ISL_FORMAT_R64G64B64A64_PASSTHRU
55 };
56
57 static const GLuint float_types[5] = {
58 0,
59 ISL_FORMAT_R32_FLOAT,
60 ISL_FORMAT_R32G32_FLOAT,
61 ISL_FORMAT_R32G32B32_FLOAT,
62 ISL_FORMAT_R32G32B32A32_FLOAT
63 };
64
65 static const GLuint half_float_types[5] = {
66 0,
67 ISL_FORMAT_R16_FLOAT,
68 ISL_FORMAT_R16G16_FLOAT,
69 ISL_FORMAT_R16G16B16_FLOAT,
70 ISL_FORMAT_R16G16B16A16_FLOAT
71 };
72
73 static const GLuint fixed_point_types[5] = {
74 0,
75 ISL_FORMAT_R32_SFIXED,
76 ISL_FORMAT_R32G32_SFIXED,
77 ISL_FORMAT_R32G32B32_SFIXED,
78 ISL_FORMAT_R32G32B32A32_SFIXED,
79 };
80
81 static const GLuint uint_types_direct[5] = {
82 0,
83 ISL_FORMAT_R32_UINT,
84 ISL_FORMAT_R32G32_UINT,
85 ISL_FORMAT_R32G32B32_UINT,
86 ISL_FORMAT_R32G32B32A32_UINT
87 };
88
89 static const GLuint uint_types_norm[5] = {
90 0,
91 ISL_FORMAT_R32_UNORM,
92 ISL_FORMAT_R32G32_UNORM,
93 ISL_FORMAT_R32G32B32_UNORM,
94 ISL_FORMAT_R32G32B32A32_UNORM
95 };
96
97 static const GLuint uint_types_scale[5] = {
98 0,
99 ISL_FORMAT_R32_USCALED,
100 ISL_FORMAT_R32G32_USCALED,
101 ISL_FORMAT_R32G32B32_USCALED,
102 ISL_FORMAT_R32G32B32A32_USCALED
103 };
104
105 static const GLuint int_types_direct[5] = {
106 0,
107 ISL_FORMAT_R32_SINT,
108 ISL_FORMAT_R32G32_SINT,
109 ISL_FORMAT_R32G32B32_SINT,
110 ISL_FORMAT_R32G32B32A32_SINT
111 };
112
113 static const GLuint int_types_norm[5] = {
114 0,
115 ISL_FORMAT_R32_SNORM,
116 ISL_FORMAT_R32G32_SNORM,
117 ISL_FORMAT_R32G32B32_SNORM,
118 ISL_FORMAT_R32G32B32A32_SNORM
119 };
120
121 static const GLuint int_types_scale[5] = {
122 0,
123 ISL_FORMAT_R32_SSCALED,
124 ISL_FORMAT_R32G32_SSCALED,
125 ISL_FORMAT_R32G32B32_SSCALED,
126 ISL_FORMAT_R32G32B32A32_SSCALED
127 };
128
129 static const GLuint ushort_types_direct[5] = {
130 0,
131 ISL_FORMAT_R16_UINT,
132 ISL_FORMAT_R16G16_UINT,
133 ISL_FORMAT_R16G16B16_UINT,
134 ISL_FORMAT_R16G16B16A16_UINT
135 };
136
137 static const GLuint ushort_types_norm[5] = {
138 0,
139 ISL_FORMAT_R16_UNORM,
140 ISL_FORMAT_R16G16_UNORM,
141 ISL_FORMAT_R16G16B16_UNORM,
142 ISL_FORMAT_R16G16B16A16_UNORM
143 };
144
145 static const GLuint ushort_types_scale[5] = {
146 0,
147 ISL_FORMAT_R16_USCALED,
148 ISL_FORMAT_R16G16_USCALED,
149 ISL_FORMAT_R16G16B16_USCALED,
150 ISL_FORMAT_R16G16B16A16_USCALED
151 };
152
153 static const GLuint short_types_direct[5] = {
154 0,
155 ISL_FORMAT_R16_SINT,
156 ISL_FORMAT_R16G16_SINT,
157 ISL_FORMAT_R16G16B16_SINT,
158 ISL_FORMAT_R16G16B16A16_SINT
159 };
160
161 static const GLuint short_types_norm[5] = {
162 0,
163 ISL_FORMAT_R16_SNORM,
164 ISL_FORMAT_R16G16_SNORM,
165 ISL_FORMAT_R16G16B16_SNORM,
166 ISL_FORMAT_R16G16B16A16_SNORM
167 };
168
169 static const GLuint short_types_scale[5] = {
170 0,
171 ISL_FORMAT_R16_SSCALED,
172 ISL_FORMAT_R16G16_SSCALED,
173 ISL_FORMAT_R16G16B16_SSCALED,
174 ISL_FORMAT_R16G16B16A16_SSCALED
175 };
176
177 static const GLuint ubyte_types_direct[5] = {
178 0,
179 ISL_FORMAT_R8_UINT,
180 ISL_FORMAT_R8G8_UINT,
181 ISL_FORMAT_R8G8B8_UINT,
182 ISL_FORMAT_R8G8B8A8_UINT
183 };
184
185 static const GLuint ubyte_types_norm[5] = {
186 0,
187 ISL_FORMAT_R8_UNORM,
188 ISL_FORMAT_R8G8_UNORM,
189 ISL_FORMAT_R8G8B8_UNORM,
190 ISL_FORMAT_R8G8B8A8_UNORM
191 };
192
193 static const GLuint ubyte_types_scale[5] = {
194 0,
195 ISL_FORMAT_R8_USCALED,
196 ISL_FORMAT_R8G8_USCALED,
197 ISL_FORMAT_R8G8B8_USCALED,
198 ISL_FORMAT_R8G8B8A8_USCALED
199 };
200
201 static const GLuint byte_types_direct[5] = {
202 0,
203 ISL_FORMAT_R8_SINT,
204 ISL_FORMAT_R8G8_SINT,
205 ISL_FORMAT_R8G8B8_SINT,
206 ISL_FORMAT_R8G8B8A8_SINT
207 };
208
209 static const GLuint byte_types_norm[5] = {
210 0,
211 ISL_FORMAT_R8_SNORM,
212 ISL_FORMAT_R8G8_SNORM,
213 ISL_FORMAT_R8G8B8_SNORM,
214 ISL_FORMAT_R8G8B8A8_SNORM
215 };
216
217 static const GLuint byte_types_scale[5] = {
218 0,
219 ISL_FORMAT_R8_SSCALED,
220 ISL_FORMAT_R8G8_SSCALED,
221 ISL_FORMAT_R8G8B8_SSCALED,
222 ISL_FORMAT_R8G8B8A8_SSCALED
223 };
224
225 static GLuint
226 double_types(int size, GLboolean doubles)
227 {
228 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
229 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
230 * 64-bit components are stored in the URB without any conversion."
231 * Also included on BDW PRM, Volume 7, page 470, table "Source Element
232 * Formats Supported in VF Unit"
233 *
234 * Previous PRMs don't include those references, so for gen7 we can't use
235 * PASSTHRU formats directly. But in any case, we prefer to return passthru
236 * even in that case, because that reflects what we want to achieve, even
237 * if we would need to workaround on gen < 8.
238 */
239 return (doubles
240 ? double_types_passthru[size]
241 : double_types_float[size]);
242 }
243
244 /**
245 * Given vertex array type/size/format/normalized info, return
246 * the appopriate hardware surface type.
247 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
248 */
249 unsigned
250 brw_get_vertex_surface_type(struct brw_context *brw,
251 const struct gl_array_attributes *glattrib)
252 {
253 int size = glattrib->Size;
254 const struct gen_device_info *devinfo = &brw->screen->devinfo;
255 const bool is_ivybridge_or_older =
256 devinfo->gen <= 7 && !devinfo->is_baytrail && !devinfo->is_haswell;
257
258 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
259 fprintf(stderr, "type %s size %d normalized %d\n",
260 _mesa_enum_to_string(glattrib->Type),
261 glattrib->Size, glattrib->Normalized);
262
263 if (glattrib->Integer) {
264 assert(glattrib->Format == GL_RGBA); /* sanity check */
265 switch (glattrib->Type) {
266 case GL_INT: return int_types_direct[size];
267 case GL_SHORT:
268 if (is_ivybridge_or_older && size == 3)
269 return short_types_direct[4];
270 else
271 return short_types_direct[size];
272 case GL_BYTE:
273 if (is_ivybridge_or_older && size == 3)
274 return byte_types_direct[4];
275 else
276 return byte_types_direct[size];
277 case GL_UNSIGNED_INT: return uint_types_direct[size];
278 case GL_UNSIGNED_SHORT:
279 if (is_ivybridge_or_older && size == 3)
280 return ushort_types_direct[4];
281 else
282 return ushort_types_direct[size];
283 case GL_UNSIGNED_BYTE:
284 if (is_ivybridge_or_older && size == 3)
285 return ubyte_types_direct[4];
286 else
287 return ubyte_types_direct[size];
288 default: unreachable("not reached");
289 }
290 } else if (glattrib->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
291 return ISL_FORMAT_R11G11B10_FLOAT;
292 } else if (glattrib->Normalized) {
293 switch (glattrib->Type) {
294 case GL_DOUBLE: return double_types(size, glattrib->Doubles);
295 case GL_FLOAT: return float_types[size];
296 case GL_HALF_FLOAT:
297 case GL_HALF_FLOAT_OES:
298 if (devinfo->gen < 6 && size == 3)
299 return half_float_types[4];
300 else
301 return half_float_types[size];
302 case GL_INT: return int_types_norm[size];
303 case GL_SHORT: return short_types_norm[size];
304 case GL_BYTE: return byte_types_norm[size];
305 case GL_UNSIGNED_INT: return uint_types_norm[size];
306 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
307 case GL_UNSIGNED_BYTE:
308 if (glattrib->Format == GL_BGRA) {
309 /* See GL_EXT_vertex_array_bgra */
310 assert(size == 4);
311 return ISL_FORMAT_B8G8R8A8_UNORM;
312 }
313 else {
314 return ubyte_types_norm[size];
315 }
316 case GL_FIXED:
317 if (devinfo->gen >= 8 || devinfo->is_haswell)
318 return fixed_point_types[size];
319
320 /* This produces GL_FIXED inputs as values between INT32_MIN and
321 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
322 */
323 return int_types_scale[size];
324 /* See GL_ARB_vertex_type_2_10_10_10_rev.
325 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
326 * like to use here, so upload everything as UINT and fix
327 * it in the shader
328 */
329 case GL_INT_2_10_10_10_REV:
330 assert(size == 4);
331 if (devinfo->gen >= 8 || devinfo->is_haswell) {
332 return glattrib->Format == GL_BGRA
333 ? ISL_FORMAT_B10G10R10A2_SNORM
334 : ISL_FORMAT_R10G10B10A2_SNORM;
335 }
336 return ISL_FORMAT_R10G10B10A2_UINT;
337 case GL_UNSIGNED_INT_2_10_10_10_REV:
338 assert(size == 4);
339 if (devinfo->gen >= 8 || devinfo->is_haswell) {
340 return glattrib->Format == GL_BGRA
341 ? ISL_FORMAT_B10G10R10A2_UNORM
342 : ISL_FORMAT_R10G10B10A2_UNORM;
343 }
344 return ISL_FORMAT_R10G10B10A2_UINT;
345 default: unreachable("not reached");
346 }
347 }
348 else {
349 /* See GL_ARB_vertex_type_2_10_10_10_rev.
350 * W/A: the hardware doesn't really support the formats we'd
351 * like to use here, so upload everything as UINT and fix
352 * it in the shader
353 */
354 if (glattrib->Type == GL_INT_2_10_10_10_REV) {
355 assert(size == 4);
356 if (devinfo->gen >= 8 || devinfo->is_haswell) {
357 return glattrib->Format == GL_BGRA
358 ? ISL_FORMAT_B10G10R10A2_SSCALED
359 : ISL_FORMAT_R10G10B10A2_SSCALED;
360 }
361 return ISL_FORMAT_R10G10B10A2_UINT;
362 } else if (glattrib->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
363 assert(size == 4);
364 if (devinfo->gen >= 8 || devinfo->is_haswell) {
365 return glattrib->Format == GL_BGRA
366 ? ISL_FORMAT_B10G10R10A2_USCALED
367 : ISL_FORMAT_R10G10B10A2_USCALED;
368 }
369 return ISL_FORMAT_R10G10B10A2_UINT;
370 }
371 assert(glattrib->Format == GL_RGBA); /* sanity check */
372 switch (glattrib->Type) {
373 case GL_DOUBLE: return double_types(size, glattrib->Doubles);
374 case GL_FLOAT: return float_types[size];
375 case GL_HALF_FLOAT:
376 case GL_HALF_FLOAT_OES:
377 if (devinfo->gen < 6 && size == 3)
378 return half_float_types[4];
379 else
380 return half_float_types[size];
381 case GL_INT: return int_types_scale[size];
382 case GL_SHORT: return short_types_scale[size];
383 case GL_BYTE: return byte_types_scale[size];
384 case GL_UNSIGNED_INT: return uint_types_scale[size];
385 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
386 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
387 case GL_FIXED:
388 if (devinfo->gen >= 8 || devinfo->is_haswell)
389 return fixed_point_types[size];
390
391 /* This produces GL_FIXED inputs as values between INT32_MIN and
392 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
393 */
394 return int_types_scale[size];
395 default: unreachable("not reached");
396 }
397 }
398 }
399
400 static void
401 copy_array_to_vbo_array(struct brw_context *brw,
402 struct brw_vertex_element *element,
403 int min, int max,
404 struct brw_vertex_buffer *buffer,
405 GLuint dst_stride)
406 {
407 const struct gl_vertex_buffer_binding *glbinding = element->glbinding;
408 const struct gl_array_attributes *glattrib = element->glattrib;
409 const int src_stride = glbinding->Stride;
410
411 /* If the source stride is zero, we just want to upload the current
412 * attribute once and set the buffer's stride to 0. There's no need
413 * to replicate it out.
414 */
415 if (src_stride == 0) {
416 brw_upload_data(&brw->upload, glattrib->Ptr, glattrib->_ElementSize,
417 glattrib->_ElementSize, &buffer->bo, &buffer->offset);
418
419 buffer->stride = 0;
420 buffer->size = glattrib->_ElementSize;
421 return;
422 }
423
424 const unsigned char *src = glattrib->Ptr + min * src_stride;
425 int count = max - min + 1;
426 GLuint size = count * dst_stride;
427 uint8_t *dst = brw_upload_space(&brw->upload, size, dst_stride,
428 &buffer->bo, &buffer->offset);
429
430 /* The GL 4.5 spec says:
431 * "If any enabled array’s buffer binding is zero when DrawArrays or
432 * one of the other drawing commands defined in section 10.4 is called,
433 * the result is undefined."
434 *
435 * In this case, let's the dst with undefined values
436 */
437 if (src != NULL) {
438 if (dst_stride == src_stride) {
439 memcpy(dst, src, size);
440 } else {
441 while (count--) {
442 memcpy(dst, src, dst_stride);
443 src += src_stride;
444 dst += dst_stride;
445 }
446 }
447 }
448 buffer->stride = dst_stride;
449 buffer->size = size;
450 }
451
452 void
453 brw_prepare_vertices(struct brw_context *brw)
454 {
455 const struct gen_device_info *devinfo = &brw->screen->devinfo;
456 struct gl_context *ctx = &brw->ctx;
457 /* BRW_NEW_VS_PROG_DATA */
458 const struct brw_vs_prog_data *vs_prog_data =
459 brw_vs_prog_data(brw->vs.base.prog_data);
460 GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
461 const unsigned char *ptr = NULL;
462 GLuint interleaved = 0;
463 unsigned int min_index = brw->vb.min_index + brw->basevertex;
464 unsigned int max_index = brw->vb.max_index + brw->basevertex;
465 unsigned i;
466 int delta, j;
467
468 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
469 GLuint nr_uploads = 0;
470
471 /* _NEW_POLYGON
472 *
473 * On gen6+, edge flags don't end up in the VUE (either in or out of the
474 * VS). Instead, they're uploaded as the last vertex element, and the data
475 * is passed sideband through the fixed function units. So, we need to
476 * prepare the vertex buffer for it, but it's not present in inputs_read.
477 */
478 if (devinfo->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
479 ctx->Polygon.BackMode != GL_FILL)) {
480 vs_inputs |= VERT_BIT_EDGEFLAG;
481 }
482
483 if (0)
484 fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
485
486 /* Accumulate the list of enabled arrays. */
487 brw->vb.nr_enabled = 0;
488 while (vs_inputs) {
489 GLuint first = ffsll(vs_inputs) - 1;
490 assert (first < 64);
491 GLuint index =
492 first - DIV_ROUND_UP(_mesa_bitcount_64(vs_prog_data->double_inputs_read &
493 BITFIELD64_MASK(first)), 2);
494 struct brw_vertex_element *input = &brw->vb.inputs[index];
495 input->is_dual_slot = (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) != 0;
496 vs_inputs &= ~BITFIELD64_BIT(first);
497 if (input->is_dual_slot)
498 vs_inputs &= ~BITFIELD64_BIT(first + 1);
499 brw->vb.enabled[brw->vb.nr_enabled++] = input;
500 }
501
502 if (brw->vb.nr_enabled == 0)
503 return;
504
505 if (brw->vb.nr_buffers)
506 return;
507
508 /* The range of data in a given buffer represented as [min, max) */
509 struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
510 uint32_t buffer_range_start[VERT_ATTRIB_MAX];
511 uint32_t buffer_range_end[VERT_ATTRIB_MAX];
512
513 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
514 struct brw_vertex_element *input = brw->vb.enabled[i];
515 const struct gl_vertex_buffer_binding *glbinding = input->glbinding;
516 const struct gl_array_attributes *glattrib = input->glattrib;
517
518 if (_mesa_is_bufferobj(glbinding->BufferObj)) {
519 struct intel_buffer_object *intel_buffer =
520 intel_buffer_object(glbinding->BufferObj);
521
522 const uint32_t offset = _mesa_draw_binding_offset(glbinding) +
523 _mesa_draw_attributes_relative_offset(glattrib);
524
525 /* Start with the worst case */
526 uint32_t start = 0;
527 uint32_t range = intel_buffer->Base.Size;
528 if (glbinding->InstanceDivisor) {
529 if (brw->num_instances) {
530 start = offset + glbinding->Stride * brw->baseinstance;
531 range = (glbinding->Stride * ((brw->num_instances - 1) /
532 glbinding->InstanceDivisor) +
533 glattrib->_ElementSize);
534 }
535 } else {
536 if (brw->vb.index_bounds_valid) {
537 start = offset + min_index * glbinding->Stride;
538 range = (glbinding->Stride * (max_index - min_index) +
539 glattrib->_ElementSize);
540 }
541 }
542
543 /* If we have a VB set to be uploaded for this buffer object
544 * already, reuse that VB state so that we emit fewer
545 * relocations.
546 */
547 unsigned k;
548 for (k = 0; k < i; k++) {
549 struct brw_vertex_element *other = brw->vb.enabled[k];
550 const struct gl_vertex_buffer_binding *obind = other->glbinding;
551 const struct gl_array_attributes *oattrib = other->glattrib;
552 const uint32_t ooffset = _mesa_draw_binding_offset(obind) +
553 _mesa_draw_attributes_relative_offset(oattrib);
554 if (glbinding->BufferObj == obind->BufferObj &&
555 glbinding->Stride == obind->Stride &&
556 glbinding->InstanceDivisor == obind->InstanceDivisor &&
557 (offset - ooffset) < glbinding->Stride)
558 {
559 input->buffer = brw->vb.enabled[k]->buffer;
560 input->offset = offset - ooffset;
561
562 buffer_range_start[input->buffer] =
563 MIN2(buffer_range_start[input->buffer], start);
564 buffer_range_end[input->buffer] =
565 MAX2(buffer_range_end[input->buffer], start + range);
566 break;
567 }
568 }
569 if (k == i) {
570 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
571
572 /* Named buffer object: Just reference its contents directly. */
573 buffer->offset = offset;
574 buffer->stride = glbinding->Stride;
575 buffer->step_rate = glbinding->InstanceDivisor;
576 buffer->size = glbinding->BufferObj->Size - offset;
577
578 enabled_buffer[j] = intel_buffer;
579 buffer_range_start[j] = start;
580 buffer_range_end[j] = start + range;
581
582 input->buffer = j++;
583 input->offset = 0;
584 }
585 } else {
586 /* Queue the buffer object up to be uploaded in the next pass,
587 * when we've decided if we're doing interleaved or not.
588 */
589 if (nr_uploads == 0) {
590 interleaved = glbinding->Stride;
591 ptr = glattrib->Ptr;
592 }
593 else if (interleaved != glbinding->Stride ||
594 glbinding->InstanceDivisor != 0 ||
595 glattrib->Ptr < ptr ||
596 (uintptr_t)(glattrib->Ptr - ptr) + glattrib->_ElementSize > interleaved)
597 {
598 /* If our stride is different from the first attribute's stride,
599 * or if we are using an instance divisor or if the first
600 * attribute's stride didn't cover our element, disable the
601 * interleaved upload optimization. The second case can most
602 * commonly occur in cases where there is a single vertex and, for
603 * example, the data is stored on the application's stack.
604 *
605 * NOTE: This will also disable the optimization in cases where
606 * the data is in a different order than the array indices.
607 * Something like:
608 *
609 * float data[...];
610 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
611 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
612 */
613 interleaved = 0;
614 }
615
616 upload[nr_uploads++] = input;
617 }
618 }
619
620 /* Now that we've set up all of the buffers, we walk through and reference
621 * each of them. We do this late so that we get the right size in each
622 * buffer and don't reference too little data.
623 */
624 for (i = 0; i < j; i++) {
625 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
626 if (buffer->bo)
627 continue;
628
629 const uint32_t start = buffer_range_start[i];
630 const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
631
632 buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start,
633 range, false);
634 brw_bo_reference(buffer->bo);
635 }
636
637 /* If we need to upload all the arrays, then we can trim those arrays to
638 * only the used elements [min_index, max_index] so long as we adjust all
639 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
640 */
641 brw->vb.start_vertex_bias = 0;
642 delta = min_index;
643 if (nr_uploads == brw->vb.nr_enabled) {
644 brw->vb.start_vertex_bias = -delta;
645 delta = 0;
646 }
647
648 /* Handle any arrays to be uploaded. */
649 if (nr_uploads > 1) {
650 if (interleaved) {
651 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
652 /* All uploads are interleaved, so upload the arrays together as
653 * interleaved. First, upload the contents and set up upload[0].
654 */
655 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
656 buffer, interleaved);
657 buffer->offset -= delta * interleaved;
658 buffer->size += delta * interleaved;
659 buffer->step_rate = 0;
660
661 for (i = 0; i < nr_uploads; i++) {
662 const struct gl_array_attributes *glattrib = upload[i]->glattrib;
663 /* Then, just point upload[i] at upload[0]'s buffer. */
664 upload[i]->offset = ((const unsigned char *)glattrib->Ptr - ptr);
665 upload[i]->buffer = j;
666 }
667 j++;
668
669 nr_uploads = 0;
670 }
671 }
672 /* Upload non-interleaved arrays */
673 for (i = 0; i < nr_uploads; i++) {
674 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
675 const struct gl_vertex_buffer_binding *glbinding = upload[i]->glbinding;
676 const struct gl_array_attributes *glattrib = upload[i]->glattrib;
677 if (glbinding->InstanceDivisor == 0) {
678 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
679 buffer, glattrib->_ElementSize);
680 } else {
681 /* This is an instanced attribute, since its InstanceDivisor
682 * is not zero. Therefore, its data will be stepped after the
683 * instanced draw has been run InstanceDivisor times.
684 */
685 uint32_t instanced_attr_max_index =
686 (brw->num_instances - 1) / glbinding->InstanceDivisor;
687 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
688 buffer, glattrib->_ElementSize);
689 }
690 buffer->offset -= delta * buffer->stride;
691 buffer->size += delta * buffer->stride;
692 buffer->step_rate = glbinding->InstanceDivisor;
693 upload[i]->buffer = j++;
694 upload[i]->offset = 0;
695 }
696
697 brw->vb.nr_buffers = j;
698 }
699
700 void
701 brw_prepare_shader_draw_parameters(struct brw_context *brw)
702 {
703 const struct brw_vs_prog_data *vs_prog_data =
704 brw_vs_prog_data(brw->vs.base.prog_data);
705
706 /* For non-indirect draws, upload the shader draw parameters */
707 if ((vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) &&
708 brw->draw.draw_params_bo == NULL) {
709 brw_upload_data(&brw->upload,
710 &brw->draw.params, sizeof(brw->draw.params), 4,
711 &brw->draw.draw_params_bo,
712 &brw->draw.draw_params_offset);
713 }
714
715 if (vs_prog_data->uses_drawid || vs_prog_data->uses_is_indexed_draw) {
716 brw_upload_data(&brw->upload,
717 &brw->draw.derived_params, sizeof(brw->draw.derived_params), 4,
718 &brw->draw.derived_draw_params_bo,
719 &brw->draw.derived_draw_params_offset);
720 }
721 }
722
723 static void
724 brw_upload_indices(struct brw_context *brw)
725 {
726 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
727 GLuint ib_size;
728 struct brw_bo *old_bo = brw->ib.bo;
729 struct gl_buffer_object *bufferobj;
730 GLuint offset;
731 GLuint ib_type_size;
732
733 if (index_buffer == NULL)
734 return;
735
736 ib_type_size = index_buffer->index_size;
737 ib_size = index_buffer->count ? ib_type_size * index_buffer->count :
738 index_buffer->obj->Size;
739 bufferobj = index_buffer->obj;
740
741 /* Turn into a proper VBO:
742 */
743 if (!_mesa_is_bufferobj(bufferobj)) {
744 /* Get new bufferobj, offset:
745 */
746 brw_upload_data(&brw->upload, index_buffer->ptr, ib_size, ib_type_size,
747 &brw->ib.bo, &offset);
748 brw->ib.size = brw->ib.bo->size;
749 } else {
750 offset = (GLuint) (unsigned long) index_buffer->ptr;
751
752 struct brw_bo *bo =
753 intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
754 offset, ib_size, false);
755 if (bo != brw->ib.bo) {
756 brw_bo_unreference(brw->ib.bo);
757 brw->ib.bo = bo;
758 brw->ib.size = bufferobj->Size;
759 brw_bo_reference(bo);
760 }
761 }
762
763 /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
764 * the index buffer state when we're just moving the start index
765 * of our drawing.
766 */
767 brw->ib.start_vertex_offset = offset / ib_type_size;
768
769 if (brw->ib.bo != old_bo)
770 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
771
772 if (index_buffer->index_size != brw->ib.index_size) {
773 brw->ib.index_size = index_buffer->index_size;
774 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
775 }
776 }
777
778 const struct brw_tracked_state brw_indices = {
779 .dirty = {
780 .mesa = 0,
781 .brw = BRW_NEW_BLORP |
782 BRW_NEW_INDICES,
783 },
784 .emit = brw_upload_indices,
785 };