i965: enable ARB_instanced_arrays extension
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #undef NDEBUG
29
30 #include "main/glheader.h"
31 #include "main/bufferobj.h"
32 #include "main/context.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35
36 #include "brw_draw.h"
37 #include "brw_defines.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "intel_batchbuffer.h"
42 #include "intel_buffer_objects.h"
43
44 static GLuint double_types[5] = {
45 0,
46 BRW_SURFACEFORMAT_R64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
49 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
50 };
51
52 static GLuint float_types[5] = {
53 0,
54 BRW_SURFACEFORMAT_R32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
57 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
58 };
59
60 static GLuint half_float_types[5] = {
61 0,
62 BRW_SURFACEFORMAT_R16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
65 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
66 };
67
68 static GLuint uint_types_direct[5] = {
69 0,
70 BRW_SURFACEFORMAT_R32_UINT,
71 BRW_SURFACEFORMAT_R32G32_UINT,
72 BRW_SURFACEFORMAT_R32G32B32_UINT,
73 BRW_SURFACEFORMAT_R32G32B32A32_UINT
74 };
75
76 static GLuint uint_types_norm[5] = {
77 0,
78 BRW_SURFACEFORMAT_R32_UNORM,
79 BRW_SURFACEFORMAT_R32G32_UNORM,
80 BRW_SURFACEFORMAT_R32G32B32_UNORM,
81 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
82 };
83
84 static GLuint uint_types_scale[5] = {
85 0,
86 BRW_SURFACEFORMAT_R32_USCALED,
87 BRW_SURFACEFORMAT_R32G32_USCALED,
88 BRW_SURFACEFORMAT_R32G32B32_USCALED,
89 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
90 };
91
92 static GLuint int_types_direct[5] = {
93 0,
94 BRW_SURFACEFORMAT_R32_SINT,
95 BRW_SURFACEFORMAT_R32G32_SINT,
96 BRW_SURFACEFORMAT_R32G32B32_SINT,
97 BRW_SURFACEFORMAT_R32G32B32A32_SINT
98 };
99
100 static GLuint int_types_norm[5] = {
101 0,
102 BRW_SURFACEFORMAT_R32_SNORM,
103 BRW_SURFACEFORMAT_R32G32_SNORM,
104 BRW_SURFACEFORMAT_R32G32B32_SNORM,
105 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
106 };
107
108 static GLuint int_types_scale[5] = {
109 0,
110 BRW_SURFACEFORMAT_R32_SSCALED,
111 BRW_SURFACEFORMAT_R32G32_SSCALED,
112 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
113 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
114 };
115
116 static GLuint ushort_types_direct[5] = {
117 0,
118 BRW_SURFACEFORMAT_R16_UINT,
119 BRW_SURFACEFORMAT_R16G16_UINT,
120 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
121 BRW_SURFACEFORMAT_R16G16B16A16_UINT
122 };
123
124 static GLuint ushort_types_norm[5] = {
125 0,
126 BRW_SURFACEFORMAT_R16_UNORM,
127 BRW_SURFACEFORMAT_R16G16_UNORM,
128 BRW_SURFACEFORMAT_R16G16B16_UNORM,
129 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
130 };
131
132 static GLuint ushort_types_scale[5] = {
133 0,
134 BRW_SURFACEFORMAT_R16_USCALED,
135 BRW_SURFACEFORMAT_R16G16_USCALED,
136 BRW_SURFACEFORMAT_R16G16B16_USCALED,
137 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
138 };
139
140 static GLuint short_types_direct[5] = {
141 0,
142 BRW_SURFACEFORMAT_R16_SINT,
143 BRW_SURFACEFORMAT_R16G16_SINT,
144 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
145 BRW_SURFACEFORMAT_R16G16B16A16_SINT
146 };
147
148 static GLuint short_types_norm[5] = {
149 0,
150 BRW_SURFACEFORMAT_R16_SNORM,
151 BRW_SURFACEFORMAT_R16G16_SNORM,
152 BRW_SURFACEFORMAT_R16G16B16_SNORM,
153 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
154 };
155
156 static GLuint short_types_scale[5] = {
157 0,
158 BRW_SURFACEFORMAT_R16_SSCALED,
159 BRW_SURFACEFORMAT_R16G16_SSCALED,
160 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
161 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
162 };
163
164 static GLuint ubyte_types_direct[5] = {
165 0,
166 BRW_SURFACEFORMAT_R8_UINT,
167 BRW_SURFACEFORMAT_R8G8_UINT,
168 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
169 BRW_SURFACEFORMAT_R8G8B8A8_UINT
170 };
171
172 static GLuint ubyte_types_norm[5] = {
173 0,
174 BRW_SURFACEFORMAT_R8_UNORM,
175 BRW_SURFACEFORMAT_R8G8_UNORM,
176 BRW_SURFACEFORMAT_R8G8B8_UNORM,
177 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
178 };
179
180 static GLuint ubyte_types_scale[5] = {
181 0,
182 BRW_SURFACEFORMAT_R8_USCALED,
183 BRW_SURFACEFORMAT_R8G8_USCALED,
184 BRW_SURFACEFORMAT_R8G8B8_USCALED,
185 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
186 };
187
188 static GLuint byte_types_direct[5] = {
189 0,
190 BRW_SURFACEFORMAT_R8_SINT,
191 BRW_SURFACEFORMAT_R8G8_SINT,
192 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
193 BRW_SURFACEFORMAT_R8G8B8A8_SINT
194 };
195
196 static GLuint byte_types_norm[5] = {
197 0,
198 BRW_SURFACEFORMAT_R8_SNORM,
199 BRW_SURFACEFORMAT_R8G8_SNORM,
200 BRW_SURFACEFORMAT_R8G8B8_SNORM,
201 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
202 };
203
204 static GLuint byte_types_scale[5] = {
205 0,
206 BRW_SURFACEFORMAT_R8_SSCALED,
207 BRW_SURFACEFORMAT_R8G8_SSCALED,
208 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
209 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
210 };
211
212
213 /**
214 * Given vertex array type/size/format/normalized info, return
215 * the appopriate hardware surface type.
216 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
217 */
218 static GLuint get_surface_type( GLenum type, GLuint size,
219 GLenum format, bool normalized, bool integer )
220 {
221 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
222 printf("type %s size %d normalized %d\n",
223 _mesa_lookup_enum_by_nr(type), size, normalized);
224
225 if (integer) {
226 assert(format == GL_RGBA); /* sanity check */
227 switch (type) {
228 case GL_INT: return int_types_direct[size];
229 case GL_SHORT: return short_types_direct[size];
230 case GL_BYTE: return byte_types_direct[size];
231 case GL_UNSIGNED_INT: return uint_types_direct[size];
232 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
233 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
234 default: assert(0); return 0;
235 }
236 } else if (normalized) {
237 switch (type) {
238 case GL_DOUBLE: return double_types[size];
239 case GL_FLOAT: return float_types[size];
240 case GL_HALF_FLOAT: return half_float_types[size];
241 case GL_INT: return int_types_norm[size];
242 case GL_SHORT: return short_types_norm[size];
243 case GL_BYTE: return byte_types_norm[size];
244 case GL_UNSIGNED_INT: return uint_types_norm[size];
245 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
246 case GL_UNSIGNED_BYTE:
247 if (format == GL_BGRA) {
248 /* See GL_EXT_vertex_array_bgra */
249 assert(size == 4);
250 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
251 }
252 else {
253 return ubyte_types_norm[size];
254 }
255 default: assert(0); return 0;
256 }
257 }
258 else {
259 assert(format == GL_RGBA); /* sanity check */
260 switch (type) {
261 case GL_DOUBLE: return double_types[size];
262 case GL_FLOAT: return float_types[size];
263 case GL_HALF_FLOAT: return half_float_types[size];
264 case GL_INT: return int_types_scale[size];
265 case GL_SHORT: return short_types_scale[size];
266 case GL_BYTE: return byte_types_scale[size];
267 case GL_UNSIGNED_INT: return uint_types_scale[size];
268 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
269 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
270 /* This produces GL_FIXED inputs as values between INT32_MIN and
271 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272 */
273 case GL_FIXED: return int_types_scale[size];
274 default: assert(0); return 0;
275 }
276 }
277 }
278
279
280 static GLuint get_size( GLenum type )
281 {
282 switch (type) {
283 case GL_DOUBLE: return sizeof(GLdouble);
284 case GL_FLOAT: return sizeof(GLfloat);
285 case GL_HALF_FLOAT: return sizeof(GLhalfARB);
286 case GL_INT: return sizeof(GLint);
287 case GL_SHORT: return sizeof(GLshort);
288 case GL_BYTE: return sizeof(GLbyte);
289 case GL_UNSIGNED_INT: return sizeof(GLuint);
290 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
291 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
292 case GL_FIXED: return sizeof(GLuint);
293 default: assert(0); return 0;
294 }
295 }
296
297 static GLuint get_index_type(GLenum type)
298 {
299 switch (type) {
300 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
301 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
302 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
303 default: assert(0); return 0;
304 }
305 }
306
307 static void
308 copy_array_to_vbo_array(struct brw_context *brw,
309 struct brw_vertex_element *element,
310 int min, int max,
311 struct brw_vertex_buffer *buffer,
312 GLuint dst_stride)
313 {
314 if (min == -1) {
315 /* If we don't have computed min/max bounds, then this must be a use of
316 * the current attribute, which has a 0 stride. Otherwise, we wouldn't
317 * know what data to upload.
318 */
319 assert(element->glarray->StrideB == 0);
320
321 intel_upload_data(&brw->intel, element->glarray->Ptr,
322 element->element_size,
323 element->element_size,
324 &buffer->bo, &buffer->offset);
325
326 buffer->stride = 0;
327 return;
328 }
329
330 int src_stride = element->glarray->StrideB;
331 const unsigned char *src = element->glarray->Ptr + min * src_stride;
332 int count = max - min + 1;
333 GLuint size = count * dst_stride;
334
335 if (dst_stride == src_stride) {
336 intel_upload_data(&brw->intel, src, size, dst_stride,
337 &buffer->bo, &buffer->offset);
338 } else {
339 char * const map = intel_upload_map(&brw->intel, size, dst_stride);
340 char *dst = map;
341
342 while (count--) {
343 memcpy(dst, src, dst_stride);
344 src += src_stride;
345 dst += dst_stride;
346 }
347 intel_upload_unmap(&brw->intel, map, size, dst_stride,
348 &buffer->bo, &buffer->offset);
349 }
350 buffer->stride = dst_stride;
351 }
352
353 static void brw_prepare_vertices(struct brw_context *brw)
354 {
355 struct gl_context *ctx = &brw->intel.ctx;
356 struct intel_context *intel = intel_context(ctx);
357 /* CACHE_NEW_VS_PROG */
358 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
359 const unsigned char *ptr = NULL;
360 GLuint interleaved = 0, total_size = 0;
361 unsigned int min_index = brw->vb.min_index;
362 unsigned int max_index = brw->vb.max_index;
363 int delta, i, j;
364 GLboolean can_merge_uploads = GL_TRUE;
365
366 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
367 GLuint nr_uploads = 0;
368
369 /* First build an array of pointers to ve's in vb.inputs_read
370 */
371 if (0)
372 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
373
374 /* Accumulate the list of enabled arrays. */
375 brw->vb.nr_enabled = 0;
376 while (vs_inputs) {
377 GLuint i = ffsll(vs_inputs) - 1;
378 struct brw_vertex_element *input = &brw->vb.inputs[i];
379
380 vs_inputs &= ~BITFIELD64_BIT(i);
381 if (input->glarray->Size && get_size(input->glarray->Type))
382 brw->vb.enabled[brw->vb.nr_enabled++] = input;
383 }
384
385 if (brw->vb.nr_enabled == 0)
386 return;
387
388 if (brw->vb.nr_buffers)
389 goto prepare;
390
391 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
392 struct brw_vertex_element *input = brw->vb.enabled[i];
393 const struct gl_client_array *glarray = input->glarray;
394 int type_size = get_size(glarray->Type);
395
396 input->element_size = type_size * glarray->Size;
397
398 if (_mesa_is_bufferobj(glarray->BufferObj)) {
399 struct intel_buffer_object *intel_buffer =
400 intel_buffer_object(glarray->BufferObj);
401 int k;
402
403 for (k = 0; k < i; k++) {
404 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
405 if (glarray->BufferObj == other->BufferObj &&
406 glarray->StrideB == other->StrideB &&
407 glarray->InstanceDivisor == other->InstanceDivisor &&
408 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
409 {
410 input->buffer = brw->vb.enabled[k]->buffer;
411 input->offset = glarray->Ptr - other->Ptr;
412 break;
413 }
414 }
415 if (k == i) {
416 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
417
418 /* Named buffer object: Just reference its contents directly. */
419 buffer->bo = intel_bufferobj_source(intel,
420 intel_buffer, type_size,
421 &buffer->offset);
422 drm_intel_bo_reference(buffer->bo);
423 buffer->offset += (uintptr_t)glarray->Ptr;
424 buffer->stride = glarray->StrideB;
425 buffer->step_rate = glarray->InstanceDivisor;
426
427 input->buffer = j++;
428 input->offset = 0;
429 }
430
431 /* This is a common place to reach if the user mistakenly supplies
432 * a pointer in place of a VBO offset. If we just let it go through,
433 * we may end up dereferencing a pointer beyond the bounds of the
434 * GTT. We would hope that the VBO's max_index would save us, but
435 * Mesa appears to hand us min/max values not clipped to the
436 * array object's _MaxElement, and _MaxElement frequently appears
437 * to be wrong anyway.
438 *
439 * The VBO spec allows application termination in this case, and it's
440 * probably a service to the poor programmer to do so rather than
441 * trying to just not render.
442 */
443 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
444 } else {
445 /* Queue the buffer object up to be uploaded in the next pass,
446 * when we've decided if we're doing interleaved or not.
447 */
448 if (nr_uploads == 0) {
449 /* Position array not properly enabled:
450 */
451 if (input->attrib == VERT_ATTRIB_POS && glarray->StrideB == 0) {
452 intel->Fallback = true; /* boolean, not bitfield */
453 return;
454 }
455
456 interleaved = glarray->StrideB;
457 ptr = glarray->Ptr;
458 }
459 else if (interleaved != glarray->StrideB ||
460 (uintptr_t)(glarray->Ptr - ptr) > interleaved)
461 {
462 interleaved = 0;
463 }
464 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
465 {
466 /* enforce natural alignment (for doubles) */
467 interleaved = 0;
468 }
469
470 upload[nr_uploads++] = input;
471
472 total_size = ALIGN(total_size, type_size);
473 total_size += input->element_size;
474
475 if (glarray->InstanceDivisor != 0) {
476 can_merge_uploads = GL_FALSE;
477 }
478 }
479 }
480
481 /* If we need to upload all the arrays, then we can trim those arrays to
482 * only the used elements [min_index, max_index] so long as we adjust all
483 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
484 */
485 brw->vb.start_vertex_bias = 0;
486 delta = min_index;
487 if (nr_uploads == brw->vb.nr_enabled) {
488 brw->vb.start_vertex_bias = -delta;
489 delta = 0;
490 }
491 if (delta && !brw->intel.intelScreen->relaxed_relocations)
492 min_index = delta = 0;
493
494 /* Handle any arrays to be uploaded. */
495 if (nr_uploads > 1) {
496 if (interleaved && interleaved <= 2*total_size) {
497 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
498 /* All uploads are interleaved, so upload the arrays together as
499 * interleaved. First, upload the contents and set up upload[0].
500 */
501 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
502 buffer, interleaved);
503 buffer->offset -= delta * interleaved;
504
505 for (i = 0; i < nr_uploads; i++) {
506 /* Then, just point upload[i] at upload[0]'s buffer. */
507 upload[i]->offset =
508 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
509 upload[i]->buffer = j;
510 }
511 j++;
512
513 nr_uploads = 0;
514 }
515 else if ((total_size < 2048) && can_merge_uploads) {
516 /* Upload non-interleaved arrays into a single interleaved array */
517 struct brw_vertex_buffer *buffer;
518 int count = MAX2(max_index - min_index + 1, 1);
519 int offset;
520 char *map;
521
522 map = intel_upload_map(&brw->intel, total_size * count, total_size);
523 for (i = offset = 0; i < nr_uploads; i++) {
524 const unsigned char *src = upload[i]->glarray->Ptr;
525 int size = upload[i]->element_size;
526 int stride = upload[i]->glarray->StrideB;
527 char *dst;
528 int n;
529
530 offset = ALIGN(offset, get_size(upload[i]->glarray->Type));
531 dst = map + offset;
532 src += min_index * stride;
533
534 for (n = 0; n < count; n++) {
535 memcpy(dst, src, size);
536 src += stride;
537 dst += total_size;
538 }
539
540 upload[i]->offset = offset;
541 upload[i]->buffer = j;
542
543 offset += size;
544 }
545 assert(offset == total_size);
546 buffer = &brw->vb.buffers[j++];
547 intel_upload_unmap(&brw->intel, map, offset * count, offset,
548 &buffer->bo, &buffer->offset);
549 buffer->stride = offset;
550 buffer->step_rate = 0;
551 buffer->offset -= delta * offset;
552
553 nr_uploads = 0;
554 }
555 }
556 /* Upload non-interleaved arrays */
557 for (i = 0; i < nr_uploads; i++) {
558 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
559 if (upload[i]->glarray->InstanceDivisor == 0) {
560 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
561 buffer, upload[i]->element_size);
562 } else {
563 /* This is an instanced attribute, since its InstanceDivisor
564 * is not zero. Therefore, its data will be stepped after the
565 * instanced draw has been run InstanceDivisor times.
566 */
567 uint32_t instanced_attr_max_index =
568 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
569 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
570 buffer, upload[i]->element_size);
571 }
572 buffer->offset -= delta * buffer->stride;
573 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
574 upload[i]->buffer = j++;
575 upload[i]->offset = 0;
576 }
577
578 /* can we simply extend the current vb? */
579 if (j == brw->vb.nr_current_buffers) {
580 int delta = 0;
581 for (i = 0; i < j; i++) {
582 int d;
583
584 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
585 brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
586 brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
587 break;
588
589 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
590 if (d < 0)
591 break;
592 if (i == 0)
593 delta = d / brw->vb.current_buffers[i].stride;
594 if (delta * brw->vb.current_buffers[i].stride != d)
595 break;
596 }
597
598 if (i == j) {
599 brw->vb.start_vertex_bias += delta;
600 while (--j >= 0)
601 drm_intel_bo_unreference(brw->vb.buffers[j].bo);
602 j = 0;
603 }
604 }
605
606 brw->vb.nr_buffers = j;
607
608 prepare:
609 brw_prepare_query_begin(brw);
610 }
611
612 static void brw_emit_vertices(struct brw_context *brw)
613 {
614 struct gl_context *ctx = &brw->intel.ctx;
615 struct intel_context *intel = intel_context(ctx);
616 GLuint i, nr_elements;
617
618 brw_prepare_vertices(brw);
619
620 brw_emit_query_begin(brw);
621
622 /* If the VS doesn't read any inputs (calculating vertex position from
623 * a state variable for some reason, for example), emit a single pad
624 * VERTEX_ELEMENT struct and bail.
625 *
626 * The stale VB state stays in place, but they don't do anything unless
627 * a VE loads from them.
628 */
629 if (brw->vb.nr_enabled == 0) {
630 BEGIN_BATCH(3);
631 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
632 if (intel->gen >= 6) {
633 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
634 GEN6_VE0_VALID |
635 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
636 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
637 } else {
638 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
639 BRW_VE0_VALID |
640 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
641 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
642 }
643 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
644 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
645 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
646 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
647 CACHED_BATCH();
648 return;
649 }
650
651 /* Now emit VB and VEP state packets.
652 */
653
654 if (brw->vb.nr_buffers) {
655 if (intel->gen >= 6) {
656 assert(brw->vb.nr_buffers <= 33);
657 } else {
658 assert(brw->vb.nr_buffers <= 17);
659 }
660
661 BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
662 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
663 for (i = 0; i < brw->vb.nr_buffers; i++) {
664 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
665 uint32_t dw0;
666
667 if (intel->gen >= 6) {
668 dw0 = buffer->step_rate
669 ? GEN6_VB0_ACCESS_INSTANCEDATA
670 : GEN6_VB0_ACCESS_VERTEXDATA;
671 dw0 |= i << GEN6_VB0_INDEX_SHIFT;
672 } else {
673 dw0 = buffer->step_rate
674 ? BRW_VB0_ACCESS_INSTANCEDATA
675 : BRW_VB0_ACCESS_VERTEXDATA;
676 dw0 |= i << BRW_VB0_INDEX_SHIFT;
677 }
678
679 if (intel->gen >= 7)
680 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
681
682 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
683 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
684 if (intel->gen >= 5) {
685 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
686 } else
687 OUT_BATCH(0);
688 OUT_BATCH(buffer->step_rate);
689
690 brw->vb.current_buffers[i].handle = buffer->bo->handle;
691 brw->vb.current_buffers[i].offset = buffer->offset;
692 brw->vb.current_buffers[i].stride = buffer->stride;
693 brw->vb.current_buffers[i].step_rate = buffer->step_rate;
694 }
695 brw->vb.nr_current_buffers = i;
696 ADVANCE_BATCH();
697 }
698
699 nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
700
701 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
702 * for VertexID/InstanceID.
703 */
704 if (intel->gen >= 6) {
705 assert(nr_elements <= 34);
706 } else {
707 assert(nr_elements <= 18);
708 }
709
710 BEGIN_BATCH(1 + nr_elements * 2);
711 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
712 for (i = 0; i < brw->vb.nr_enabled; i++) {
713 struct brw_vertex_element *input = brw->vb.enabled[i];
714 uint32_t format = get_surface_type(input->glarray->Type,
715 input->glarray->Size,
716 input->glarray->Format,
717 input->glarray->Normalized,
718 input->glarray->Integer);
719 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
720 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
721 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
722 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
723
724 switch (input->glarray->Size) {
725 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
726 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
727 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
728 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
729 : BRW_VE1_COMPONENT_STORE_1_FLT;
730 break;
731 }
732
733 if (intel->gen >= 6) {
734 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
735 GEN6_VE0_VALID |
736 (format << BRW_VE0_FORMAT_SHIFT) |
737 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
738 } else {
739 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
740 BRW_VE0_VALID |
741 (format << BRW_VE0_FORMAT_SHIFT) |
742 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
743 }
744
745 if (intel->gen >= 5)
746 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
747 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
748 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
749 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
750 else
751 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
752 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
753 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
754 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
755 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
756 }
757
758 if (brw->vs.prog_data->uses_vertexid) {
759 uint32_t dw0 = 0, dw1 = 0;
760
761 dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
762 (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
763 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
764 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
765
766 if (intel->gen >= 6) {
767 dw0 |= GEN6_VE0_VALID;
768 } else {
769 dw0 |= BRW_VE0_VALID;
770 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
771 }
772
773 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
774 * the format is ignored and the value is always int.
775 */
776
777 OUT_BATCH(dw0);
778 OUT_BATCH(dw1);
779 }
780
781 CACHED_BATCH();
782 }
783
784 const struct brw_tracked_state brw_vertices = {
785 .dirty = {
786 .mesa = 0,
787 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
788 .cache = CACHE_NEW_VS_PROG,
789 },
790 .emit = brw_emit_vertices,
791 };
792
793 static void brw_upload_indices(struct brw_context *brw)
794 {
795 struct gl_context *ctx = &brw->intel.ctx;
796 struct intel_context *intel = &brw->intel;
797 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
798 GLuint ib_size;
799 drm_intel_bo *bo = NULL;
800 struct gl_buffer_object *bufferobj;
801 GLuint offset;
802 GLuint ib_type_size;
803
804 if (index_buffer == NULL)
805 return;
806
807 ib_type_size = get_size(index_buffer->type);
808 ib_size = ib_type_size * index_buffer->count;
809 bufferobj = index_buffer->obj;
810
811 /* Turn into a proper VBO:
812 */
813 if (!_mesa_is_bufferobj(bufferobj)) {
814
815 /* Get new bufferobj, offset:
816 */
817 intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
818 &bo, &offset);
819 brw->ib.start_vertex_offset = offset / ib_type_size;
820 } else {
821 offset = (GLuint) (unsigned long) index_buffer->ptr;
822
823 /* If the index buffer isn't aligned to its element size, we have to
824 * rebase it into a temporary.
825 */
826 if ((get_size(index_buffer->type) - 1) & offset) {
827 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
828 offset,
829 ib_size,
830 GL_MAP_WRITE_BIT,
831 bufferobj);
832
833 intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
834 &bo, &offset);
835 brw->ib.start_vertex_offset = offset / ib_type_size;
836
837 ctx->Driver.UnmapBuffer(ctx, bufferobj);
838 } else {
839 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
840 * the index buffer state when we're just moving the start index
841 * of our drawing.
842 */
843 brw->ib.start_vertex_offset = offset / ib_type_size;
844
845 bo = intel_bufferobj_source(intel,
846 intel_buffer_object(bufferobj),
847 ib_type_size,
848 &offset);
849 drm_intel_bo_reference(bo);
850
851 brw->ib.start_vertex_offset += offset / ib_type_size;
852 }
853 }
854
855 if (brw->ib.bo != bo) {
856 drm_intel_bo_unreference(brw->ib.bo);
857 brw->ib.bo = bo;
858
859 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
860 } else {
861 drm_intel_bo_unreference(bo);
862 }
863
864 if (index_buffer->type != brw->ib.type) {
865 brw->ib.type = index_buffer->type;
866 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
867 }
868 }
869
870 const struct brw_tracked_state brw_indices = {
871 .dirty = {
872 .mesa = 0,
873 .brw = BRW_NEW_INDICES,
874 .cache = 0,
875 },
876 .emit = brw_upload_indices,
877 };
878
879 static void brw_emit_index_buffer(struct brw_context *brw)
880 {
881 struct intel_context *intel = &brw->intel;
882 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
883 GLuint cut_index_setting;
884
885 if (index_buffer == NULL)
886 return;
887
888 if (brw->prim_restart.enable_cut_index) {
889 cut_index_setting = BRW_CUT_INDEX_ENABLE;
890 } else {
891 cut_index_setting = 0;
892 }
893
894 BEGIN_BATCH(3);
895 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
896 cut_index_setting |
897 get_index_type(index_buffer->type) << 8 |
898 1);
899 OUT_RELOC(brw->ib.bo,
900 I915_GEM_DOMAIN_VERTEX, 0,
901 0);
902 OUT_RELOC(brw->ib.bo,
903 I915_GEM_DOMAIN_VERTEX, 0,
904 brw->ib.bo->size - 1);
905 ADVANCE_BATCH();
906 }
907
908 const struct brw_tracked_state brw_index_buffer = {
909 .dirty = {
910 .mesa = 0,
911 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
912 .cache = 0,
913 },
914 .emit = brw_emit_index_buffer,
915 };