i965: Micro-optimize brw_get_index_type
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "main/glheader.h"
29 #include "main/bufferobj.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/macros.h"
33 #include "main/glformats.h"
34
35 #include "brw_draw.h"
36 #include "brw_defines.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "intel_batchbuffer.h"
41 #include "intel_buffer_objects.h"
42
43 static GLuint double_types[5] = {
44 0,
45 BRW_SURFACEFORMAT_R64_FLOAT,
46 BRW_SURFACEFORMAT_R64G64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
49 };
50
51 static GLuint float_types[5] = {
52 0,
53 BRW_SURFACEFORMAT_R32_FLOAT,
54 BRW_SURFACEFORMAT_R32G32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
57 };
58
59 static GLuint half_float_types[5] = {
60 0,
61 BRW_SURFACEFORMAT_R16_FLOAT,
62 BRW_SURFACEFORMAT_R16G16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
65 };
66
67 static GLuint fixed_point_types[5] = {
68 0,
69 BRW_SURFACEFORMAT_R32_SFIXED,
70 BRW_SURFACEFORMAT_R32G32_SFIXED,
71 BRW_SURFACEFORMAT_R32G32B32_SFIXED,
72 BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
73 };
74
75 static GLuint uint_types_direct[5] = {
76 0,
77 BRW_SURFACEFORMAT_R32_UINT,
78 BRW_SURFACEFORMAT_R32G32_UINT,
79 BRW_SURFACEFORMAT_R32G32B32_UINT,
80 BRW_SURFACEFORMAT_R32G32B32A32_UINT
81 };
82
83 static GLuint uint_types_norm[5] = {
84 0,
85 BRW_SURFACEFORMAT_R32_UNORM,
86 BRW_SURFACEFORMAT_R32G32_UNORM,
87 BRW_SURFACEFORMAT_R32G32B32_UNORM,
88 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
89 };
90
91 static GLuint uint_types_scale[5] = {
92 0,
93 BRW_SURFACEFORMAT_R32_USCALED,
94 BRW_SURFACEFORMAT_R32G32_USCALED,
95 BRW_SURFACEFORMAT_R32G32B32_USCALED,
96 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
97 };
98
99 static GLuint int_types_direct[5] = {
100 0,
101 BRW_SURFACEFORMAT_R32_SINT,
102 BRW_SURFACEFORMAT_R32G32_SINT,
103 BRW_SURFACEFORMAT_R32G32B32_SINT,
104 BRW_SURFACEFORMAT_R32G32B32A32_SINT
105 };
106
107 static GLuint int_types_norm[5] = {
108 0,
109 BRW_SURFACEFORMAT_R32_SNORM,
110 BRW_SURFACEFORMAT_R32G32_SNORM,
111 BRW_SURFACEFORMAT_R32G32B32_SNORM,
112 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
113 };
114
115 static GLuint int_types_scale[5] = {
116 0,
117 BRW_SURFACEFORMAT_R32_SSCALED,
118 BRW_SURFACEFORMAT_R32G32_SSCALED,
119 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
120 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
121 };
122
123 static GLuint ushort_types_direct[5] = {
124 0,
125 BRW_SURFACEFORMAT_R16_UINT,
126 BRW_SURFACEFORMAT_R16G16_UINT,
127 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
128 BRW_SURFACEFORMAT_R16G16B16A16_UINT
129 };
130
131 static GLuint ushort_types_norm[5] = {
132 0,
133 BRW_SURFACEFORMAT_R16_UNORM,
134 BRW_SURFACEFORMAT_R16G16_UNORM,
135 BRW_SURFACEFORMAT_R16G16B16_UNORM,
136 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
137 };
138
139 static GLuint ushort_types_scale[5] = {
140 0,
141 BRW_SURFACEFORMAT_R16_USCALED,
142 BRW_SURFACEFORMAT_R16G16_USCALED,
143 BRW_SURFACEFORMAT_R16G16B16_USCALED,
144 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
145 };
146
147 static GLuint short_types_direct[5] = {
148 0,
149 BRW_SURFACEFORMAT_R16_SINT,
150 BRW_SURFACEFORMAT_R16G16_SINT,
151 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
152 BRW_SURFACEFORMAT_R16G16B16A16_SINT
153 };
154
155 static GLuint short_types_norm[5] = {
156 0,
157 BRW_SURFACEFORMAT_R16_SNORM,
158 BRW_SURFACEFORMAT_R16G16_SNORM,
159 BRW_SURFACEFORMAT_R16G16B16_SNORM,
160 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
161 };
162
163 static GLuint short_types_scale[5] = {
164 0,
165 BRW_SURFACEFORMAT_R16_SSCALED,
166 BRW_SURFACEFORMAT_R16G16_SSCALED,
167 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
168 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
169 };
170
171 static GLuint ubyte_types_direct[5] = {
172 0,
173 BRW_SURFACEFORMAT_R8_UINT,
174 BRW_SURFACEFORMAT_R8G8_UINT,
175 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
176 BRW_SURFACEFORMAT_R8G8B8A8_UINT
177 };
178
179 static GLuint ubyte_types_norm[5] = {
180 0,
181 BRW_SURFACEFORMAT_R8_UNORM,
182 BRW_SURFACEFORMAT_R8G8_UNORM,
183 BRW_SURFACEFORMAT_R8G8B8_UNORM,
184 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
185 };
186
187 static GLuint ubyte_types_scale[5] = {
188 0,
189 BRW_SURFACEFORMAT_R8_USCALED,
190 BRW_SURFACEFORMAT_R8G8_USCALED,
191 BRW_SURFACEFORMAT_R8G8B8_USCALED,
192 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
193 };
194
195 static GLuint byte_types_direct[5] = {
196 0,
197 BRW_SURFACEFORMAT_R8_SINT,
198 BRW_SURFACEFORMAT_R8G8_SINT,
199 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
200 BRW_SURFACEFORMAT_R8G8B8A8_SINT
201 };
202
203 static GLuint byte_types_norm[5] = {
204 0,
205 BRW_SURFACEFORMAT_R8_SNORM,
206 BRW_SURFACEFORMAT_R8G8_SNORM,
207 BRW_SURFACEFORMAT_R8G8B8_SNORM,
208 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
209 };
210
211 static GLuint byte_types_scale[5] = {
212 0,
213 BRW_SURFACEFORMAT_R8_SSCALED,
214 BRW_SURFACEFORMAT_R8G8_SSCALED,
215 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
216 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
217 };
218
219
220 /**
221 * Given vertex array type/size/format/normalized info, return
222 * the appopriate hardware surface type.
223 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
224 */
225 unsigned
226 brw_get_vertex_surface_type(struct brw_context *brw,
227 const struct gl_client_array *glarray)
228 {
229 int size = glarray->Size;
230
231 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
232 fprintf(stderr, "type %s size %d normalized %d\n",
233 _mesa_lookup_enum_by_nr(glarray->Type),
234 glarray->Size, glarray->Normalized);
235
236 if (glarray->Integer) {
237 assert(glarray->Format == GL_RGBA); /* sanity check */
238 switch (glarray->Type) {
239 case GL_INT: return int_types_direct[size];
240 case GL_SHORT: return short_types_direct[size];
241 case GL_BYTE: return byte_types_direct[size];
242 case GL_UNSIGNED_INT: return uint_types_direct[size];
243 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
244 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
245 default: unreachable("not reached");
246 }
247 } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
248 return BRW_SURFACEFORMAT_R11G11B10_FLOAT;
249 } else if (glarray->Normalized) {
250 switch (glarray->Type) {
251 case GL_DOUBLE: return double_types[size];
252 case GL_FLOAT: return float_types[size];
253 case GL_HALF_FLOAT: return half_float_types[size];
254 case GL_INT: return int_types_norm[size];
255 case GL_SHORT: return short_types_norm[size];
256 case GL_BYTE: return byte_types_norm[size];
257 case GL_UNSIGNED_INT: return uint_types_norm[size];
258 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
259 case GL_UNSIGNED_BYTE:
260 if (glarray->Format == GL_BGRA) {
261 /* See GL_EXT_vertex_array_bgra */
262 assert(size == 4);
263 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
264 }
265 else {
266 return ubyte_types_norm[size];
267 }
268 case GL_FIXED:
269 if (brw->gen >= 8 || brw->is_haswell)
270 return fixed_point_types[size];
271
272 /* This produces GL_FIXED inputs as values between INT32_MIN and
273 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
274 */
275 return int_types_scale[size];
276 /* See GL_ARB_vertex_type_2_10_10_10_rev.
277 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
278 * like to use here, so upload everything as UINT and fix
279 * it in the shader
280 */
281 case GL_INT_2_10_10_10_REV:
282 assert(size == 4);
283 if (brw->gen >= 8 || brw->is_haswell) {
284 return glarray->Format == GL_BGRA
285 ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
286 : BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
287 }
288 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
289 case GL_UNSIGNED_INT_2_10_10_10_REV:
290 assert(size == 4);
291 if (brw->gen >= 8 || brw->is_haswell) {
292 return glarray->Format == GL_BGRA
293 ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
294 : BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
295 }
296 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
297 default: unreachable("not reached");
298 }
299 }
300 else {
301 /* See GL_ARB_vertex_type_2_10_10_10_rev.
302 * W/A: the hardware doesn't really support the formats we'd
303 * like to use here, so upload everything as UINT and fix
304 * it in the shader
305 */
306 if (glarray->Type == GL_INT_2_10_10_10_REV) {
307 assert(size == 4);
308 if (brw->gen >= 8 || brw->is_haswell) {
309 return glarray->Format == GL_BGRA
310 ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
311 : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
312 }
313 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
314 } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
315 assert(size == 4);
316 if (brw->gen >= 8 || brw->is_haswell) {
317 return glarray->Format == GL_BGRA
318 ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
319 : BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
320 }
321 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
322 }
323 assert(glarray->Format == GL_RGBA); /* sanity check */
324 switch (glarray->Type) {
325 case GL_DOUBLE: return double_types[size];
326 case GL_FLOAT: return float_types[size];
327 case GL_HALF_FLOAT: return half_float_types[size];
328 case GL_INT: return int_types_scale[size];
329 case GL_SHORT: return short_types_scale[size];
330 case GL_BYTE: return byte_types_scale[size];
331 case GL_UNSIGNED_INT: return uint_types_scale[size];
332 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
333 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
334 case GL_FIXED:
335 if (brw->gen >= 8 || brw->is_haswell)
336 return fixed_point_types[size];
337
338 /* This produces GL_FIXED inputs as values between INT32_MIN and
339 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
340 */
341 return int_types_scale[size];
342 default: unreachable("not reached");
343 }
344 }
345 }
346
347 static void
348 copy_array_to_vbo_array(struct brw_context *brw,
349 struct brw_vertex_element *element,
350 int min, int max,
351 struct brw_vertex_buffer *buffer,
352 GLuint dst_stride)
353 {
354 const int src_stride = element->glarray->StrideB;
355
356 /* If the source stride is zero, we just want to upload the current
357 * attribute once and set the buffer's stride to 0. There's no need
358 * to replicate it out.
359 */
360 if (src_stride == 0) {
361 intel_upload_data(brw, element->glarray->Ptr,
362 element->glarray->_ElementSize,
363 element->glarray->_ElementSize,
364 &buffer->bo, &buffer->offset);
365
366 buffer->stride = 0;
367 return;
368 }
369
370 const unsigned char *src = element->glarray->Ptr + min * src_stride;
371 int count = max - min + 1;
372 GLuint size = count * dst_stride;
373 uint8_t *dst = intel_upload_space(brw, size, dst_stride,
374 &buffer->bo, &buffer->offset);
375
376 if (dst_stride == src_stride) {
377 memcpy(dst, src, size);
378 } else {
379 while (count--) {
380 memcpy(dst, src, dst_stride);
381 src += src_stride;
382 dst += dst_stride;
383 }
384 }
385 buffer->stride = dst_stride;
386 }
387
388 void
389 brw_prepare_vertices(struct brw_context *brw)
390 {
391 struct gl_context *ctx = &brw->ctx;
392 /* BRW_NEW_VS_PROG_DATA */
393 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
394 const unsigned char *ptr = NULL;
395 GLuint interleaved = 0;
396 unsigned int min_index = brw->vb.min_index + brw->basevertex;
397 unsigned int max_index = brw->vb.max_index + brw->basevertex;
398 int delta, i, j;
399
400 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
401 GLuint nr_uploads = 0;
402
403 /* _NEW_POLYGON
404 *
405 * On gen6+, edge flags don't end up in the VUE (either in or out of the
406 * VS). Instead, they're uploaded as the last vertex element, and the data
407 * is passed sideband through the fixed function units. So, we need to
408 * prepare the vertex buffer for it, but it's not present in inputs_read.
409 */
410 if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
411 ctx->Polygon.BackMode != GL_FILL)) {
412 vs_inputs |= VERT_BIT_EDGEFLAG;
413 }
414
415 if (0)
416 fprintf(stderr, "%s %d..%d\n", __FUNCTION__, min_index, max_index);
417
418 /* Accumulate the list of enabled arrays. */
419 brw->vb.nr_enabled = 0;
420 while (vs_inputs) {
421 GLuint i = ffsll(vs_inputs) - 1;
422 struct brw_vertex_element *input = &brw->vb.inputs[i];
423
424 vs_inputs &= ~BITFIELD64_BIT(i);
425 brw->vb.enabled[brw->vb.nr_enabled++] = input;
426 }
427
428 if (brw->vb.nr_enabled == 0)
429 return;
430
431 if (brw->vb.nr_buffers)
432 return;
433
434 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
435 struct brw_vertex_element *input = brw->vb.enabled[i];
436 const struct gl_client_array *glarray = input->glarray;
437
438 if (_mesa_is_bufferobj(glarray->BufferObj)) {
439 struct intel_buffer_object *intel_buffer =
440 intel_buffer_object(glarray->BufferObj);
441 int k;
442
443 /* If we have a VB set to be uploaded for this buffer object
444 * already, reuse that VB state so that we emit fewer
445 * relocations.
446 */
447 for (k = 0; k < i; k++) {
448 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
449 if (glarray->BufferObj == other->BufferObj &&
450 glarray->StrideB == other->StrideB &&
451 glarray->InstanceDivisor == other->InstanceDivisor &&
452 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
453 {
454 input->buffer = brw->vb.enabled[k]->buffer;
455 input->offset = glarray->Ptr - other->Ptr;
456 break;
457 }
458 }
459 if (k == i) {
460 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
461
462 /* Named buffer object: Just reference its contents directly. */
463 buffer->offset = (uintptr_t)glarray->Ptr;
464 buffer->stride = glarray->StrideB;
465 buffer->step_rate = glarray->InstanceDivisor;
466
467 uint32_t offset, size;
468 if (glarray->InstanceDivisor) {
469 offset = buffer->offset;
470 size = (buffer->stride * ((brw->num_instances /
471 glarray->InstanceDivisor) - 1) +
472 glarray->_ElementSize);
473 } else {
474 if (min_index == -1) {
475 offset = 0;
476 size = intel_buffer->Base.Size;
477 } else {
478 offset = buffer->offset + min_index * buffer->stride;
479 size = (buffer->stride * (max_index - min_index) +
480 glarray->_ElementSize);
481 }
482 }
483 buffer->bo = intel_bufferobj_buffer(brw, intel_buffer,
484 offset, size);
485 drm_intel_bo_reference(buffer->bo);
486
487 input->buffer = j++;
488 input->offset = 0;
489 }
490
491 /* This is a common place to reach if the user mistakenly supplies
492 * a pointer in place of a VBO offset. If we just let it go through,
493 * we may end up dereferencing a pointer beyond the bounds of the
494 * GTT.
495 *
496 * The VBO spec allows application termination in this case, and it's
497 * probably a service to the poor programmer to do so rather than
498 * trying to just not render.
499 */
500 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
501 } else {
502 /* Queue the buffer object up to be uploaded in the next pass,
503 * when we've decided if we're doing interleaved or not.
504 */
505 if (nr_uploads == 0) {
506 interleaved = glarray->StrideB;
507 ptr = glarray->Ptr;
508 }
509 else if (interleaved != glarray->StrideB ||
510 glarray->Ptr < ptr ||
511 (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
512 {
513 /* If our stride is different from the first attribute's stride,
514 * or if the first attribute's stride didn't cover our element,
515 * disable the interleaved upload optimization. The second case
516 * can most commonly occur in cases where there is a single vertex
517 * and, for example, the data is stored on the application's
518 * stack.
519 *
520 * NOTE: This will also disable the optimization in cases where
521 * the data is in a different order than the array indices.
522 * Something like:
523 *
524 * float data[...];
525 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
526 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
527 */
528 interleaved = 0;
529 }
530
531 upload[nr_uploads++] = input;
532 }
533 }
534
535 /* If we need to upload all the arrays, then we can trim those arrays to
536 * only the used elements [min_index, max_index] so long as we adjust all
537 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
538 */
539 brw->vb.start_vertex_bias = 0;
540 delta = min_index;
541 if (nr_uploads == brw->vb.nr_enabled) {
542 brw->vb.start_vertex_bias = -delta;
543 delta = 0;
544 }
545
546 /* Handle any arrays to be uploaded. */
547 if (nr_uploads > 1) {
548 if (interleaved) {
549 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
550 /* All uploads are interleaved, so upload the arrays together as
551 * interleaved. First, upload the contents and set up upload[0].
552 */
553 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
554 buffer, interleaved);
555 buffer->offset -= delta * interleaved;
556
557 for (i = 0; i < nr_uploads; i++) {
558 /* Then, just point upload[i] at upload[0]'s buffer. */
559 upload[i]->offset =
560 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
561 upload[i]->buffer = j;
562 }
563 j++;
564
565 nr_uploads = 0;
566 }
567 }
568 /* Upload non-interleaved arrays */
569 for (i = 0; i < nr_uploads; i++) {
570 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
571 if (upload[i]->glarray->InstanceDivisor == 0) {
572 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
573 buffer, upload[i]->glarray->_ElementSize);
574 } else {
575 /* This is an instanced attribute, since its InstanceDivisor
576 * is not zero. Therefore, its data will be stepped after the
577 * instanced draw has been run InstanceDivisor times.
578 */
579 uint32_t instanced_attr_max_index =
580 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
581 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
582 buffer, upload[i]->glarray->_ElementSize);
583 }
584 buffer->offset -= delta * buffer->stride;
585 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
586 upload[i]->buffer = j++;
587 upload[i]->offset = 0;
588 }
589
590 brw->vb.nr_buffers = j;
591 }
592
593 void
594 brw_prepare_shader_draw_parameters(struct brw_context *brw)
595 {
596 /* For non-indirect draws, upload gl_BaseVertex. */
597 if (brw->vs.prog_data->uses_vertexid && brw->draw.draw_params_bo == NULL) {
598 intel_upload_data(brw, &brw->draw.gl_basevertex, 4, 4,
599 &brw->draw.draw_params_bo,
600 &brw->draw.draw_params_offset);
601 }
602 }
603
604 /**
605 * Emit a VERTEX_BUFFER_STATE entry (part of 3DSTATE_VERTEX_BUFFERS).
606 */
607 static void
608 emit_vertex_buffer_state(struct brw_context *brw,
609 unsigned buffer_nr,
610 drm_intel_bo *bo,
611 unsigned bo_ending_address,
612 unsigned bo_offset,
613 unsigned stride,
614 unsigned step_rate)
615 {
616 struct gl_context *ctx = &brw->ctx;
617 uint32_t dw0;
618
619 if (brw->gen >= 6) {
620 dw0 = (buffer_nr << GEN6_VB0_INDEX_SHIFT) |
621 (step_rate ? GEN6_VB0_ACCESS_INSTANCEDATA
622 : GEN6_VB0_ACCESS_VERTEXDATA);
623 } else {
624 dw0 = (buffer_nr << BRW_VB0_INDEX_SHIFT) |
625 (step_rate ? BRW_VB0_ACCESS_INSTANCEDATA
626 : BRW_VB0_ACCESS_VERTEXDATA);
627 }
628
629 if (brw->gen >= 7)
630 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
631
632 if (brw->gen == 7)
633 dw0 |= GEN7_MOCS_L3 << 16;
634
635 WARN_ONCE(stride >= (brw->gen >= 5 ? 2048 : 2047),
636 "VBO stride %d too large, bad rendering may occur\n",
637 stride);
638 OUT_BATCH(dw0 | (stride << BRW_VB0_PITCH_SHIFT));
639 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, bo_offset);
640 if (brw->gen >= 5) {
641 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, bo_ending_address);
642 } else {
643 OUT_BATCH(0);
644 }
645 OUT_BATCH(step_rate);
646 }
647
648 static void brw_emit_vertices(struct brw_context *brw)
649 {
650 GLuint i;
651
652 brw_prepare_vertices(brw);
653 brw_prepare_shader_draw_parameters(brw);
654
655 brw_emit_query_begin(brw);
656
657 unsigned nr_elements = brw->vb.nr_enabled;
658 if (brw->vs.prog_data->uses_vertexid || brw->vs.prog_data->uses_instanceid)
659 ++nr_elements;
660
661 /* If the VS doesn't read any inputs (calculating vertex position from
662 * a state variable for some reason, for example), emit a single pad
663 * VERTEX_ELEMENT struct and bail.
664 *
665 * The stale VB state stays in place, but they don't do anything unless
666 * a VE loads from them.
667 */
668 if (nr_elements == 0) {
669 BEGIN_BATCH(3);
670 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
671 if (brw->gen >= 6) {
672 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
673 GEN6_VE0_VALID |
674 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
675 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
676 } else {
677 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
678 BRW_VE0_VALID |
679 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
680 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
681 }
682 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
683 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
684 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
685 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
686 ADVANCE_BATCH();
687 return;
688 }
689
690 /* Now emit VB and VEP state packets.
691 */
692
693 unsigned nr_buffers =
694 brw->vb.nr_buffers + brw->vs.prog_data->uses_vertexid;
695
696 if (nr_buffers) {
697 if (brw->gen >= 6) {
698 assert(nr_buffers <= 33);
699 } else {
700 assert(nr_buffers <= 17);
701 }
702
703 BEGIN_BATCH(1 + 4 * nr_buffers);
704 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4 * nr_buffers - 1));
705 for (i = 0; i < brw->vb.nr_buffers; i++) {
706 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
707 emit_vertex_buffer_state(brw, i, buffer->bo, buffer->bo->size - 1,
708 buffer->offset, buffer->stride,
709 buffer->step_rate);
710
711 }
712
713 if (brw->vs.prog_data->uses_vertexid) {
714 emit_vertex_buffer_state(brw, brw->vb.nr_buffers,
715 brw->draw.draw_params_bo,
716 brw->draw.draw_params_bo->size - 1,
717 brw->draw.draw_params_offset,
718 0, /* stride */
719 0); /* step rate */
720 }
721 ADVANCE_BATCH();
722 }
723
724 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
725 * for VertexID/InstanceID.
726 */
727 if (brw->gen >= 6) {
728 assert(nr_elements <= 34);
729 } else {
730 assert(nr_elements <= 18);
731 }
732
733 struct brw_vertex_element *gen6_edgeflag_input = NULL;
734
735 BEGIN_BATCH(1 + nr_elements * 2);
736 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
737 for (i = 0; i < brw->vb.nr_enabled; i++) {
738 struct brw_vertex_element *input = brw->vb.enabled[i];
739 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
740 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
741 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
742 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
743 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
744
745 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
746 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
747 * of in the VUE. We have to upload it sideband as the last vertex
748 * element according to the B-Spec.
749 */
750 if (brw->gen >= 6) {
751 gen6_edgeflag_input = input;
752 continue;
753 }
754 }
755
756 switch (input->glarray->Size) {
757 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
758 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
759 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
760 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
761 : BRW_VE1_COMPONENT_STORE_1_FLT;
762 break;
763 }
764
765 if (brw->gen >= 6) {
766 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
767 GEN6_VE0_VALID |
768 (format << BRW_VE0_FORMAT_SHIFT) |
769 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
770 } else {
771 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
772 BRW_VE0_VALID |
773 (format << BRW_VE0_FORMAT_SHIFT) |
774 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
775 }
776
777 if (brw->gen >= 5)
778 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
779 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
780 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
781 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
782 else
783 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
784 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
785 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
786 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
787 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
788 }
789
790 if (brw->gen >= 6 && gen6_edgeflag_input) {
791 uint32_t format =
792 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
793
794 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
795 GEN6_VE0_VALID |
796 GEN6_VE0_EDGE_FLAG_ENABLE |
797 (format << BRW_VE0_FORMAT_SHIFT) |
798 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
799 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
800 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
801 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
802 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
803 }
804
805 if (brw->vs.prog_data->uses_vertexid || brw->vs.prog_data->uses_instanceid) {
806 uint32_t dw0 = 0, dw1 = 0;
807 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_0;
808 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_0;
809 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_0;
810 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_0;
811
812 if (brw->vs.prog_data->uses_vertexid) {
813 comp0 = BRW_VE1_COMPONENT_STORE_SRC;
814 comp2 = BRW_VE1_COMPONENT_STORE_VID;
815 }
816
817 if (brw->vs.prog_data->uses_instanceid) {
818 comp3 = BRW_VE1_COMPONENT_STORE_IID;
819 }
820
821 dw1 = (comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
822 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
823 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
824 (comp3 << BRW_VE1_COMPONENT_3_SHIFT);
825
826 if (brw->gen >= 6) {
827 dw0 |= GEN6_VE0_VALID |
828 brw->vb.nr_buffers << GEN6_VE0_INDEX_SHIFT |
829 BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT;
830 } else {
831 dw0 |= BRW_VE0_VALID |
832 brw->vb.nr_buffers << BRW_VE0_INDEX_SHIFT |
833 BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT;
834 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
835 }
836
837 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
838 * the format is ignored and the value is always int.
839 */
840
841 OUT_BATCH(dw0);
842 OUT_BATCH(dw1);
843 }
844
845 ADVANCE_BATCH();
846 }
847
848 const struct brw_tracked_state brw_vertices = {
849 .dirty = {
850 .mesa = _NEW_POLYGON,
851 .brw = BRW_NEW_BATCH |
852 BRW_NEW_VERTICES |
853 BRW_NEW_VS_PROG_DATA,
854 },
855 .emit = brw_emit_vertices,
856 };
857
858 static void brw_upload_indices(struct brw_context *brw)
859 {
860 struct gl_context *ctx = &brw->ctx;
861 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
862 GLuint ib_size;
863 drm_intel_bo *old_bo = brw->ib.bo;
864 struct gl_buffer_object *bufferobj;
865 GLuint offset;
866 GLuint ib_type_size;
867
868 if (index_buffer == NULL)
869 return;
870
871 ib_type_size = _mesa_sizeof_type(index_buffer->type);
872 ib_size = ib_type_size * index_buffer->count;
873 bufferobj = index_buffer->obj;
874
875 /* Turn into a proper VBO:
876 */
877 if (!_mesa_is_bufferobj(bufferobj)) {
878 /* Get new bufferobj, offset:
879 */
880 intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
881 &brw->ib.bo, &offset);
882 } else {
883 offset = (GLuint) (unsigned long) index_buffer->ptr;
884
885 /* If the index buffer isn't aligned to its element size, we have to
886 * rebase it into a temporary.
887 */
888 if ((ib_type_size - 1) & offset) {
889 perf_debug("copying index buffer to a temporary to work around "
890 "misaligned offset %d\n", offset);
891
892 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
893 offset,
894 ib_size,
895 GL_MAP_READ_BIT,
896 bufferobj,
897 MAP_INTERNAL);
898
899 intel_upload_data(brw, map, ib_size, ib_type_size,
900 &brw->ib.bo, &offset);
901
902 ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
903 } else {
904 drm_intel_bo *bo =
905 intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
906 offset, ib_size);
907 if (bo != brw->ib.bo) {
908 drm_intel_bo_unreference(brw->ib.bo);
909 brw->ib.bo = bo;
910 drm_intel_bo_reference(bo);
911 }
912 }
913 }
914
915 /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
916 * the index buffer state when we're just moving the start index
917 * of our drawing.
918 */
919 brw->ib.start_vertex_offset = offset / ib_type_size;
920
921 if (brw->ib.bo != old_bo)
922 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
923
924 if (index_buffer->type != brw->ib.type) {
925 brw->ib.type = index_buffer->type;
926 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
927 }
928 }
929
930 const struct brw_tracked_state brw_indices = {
931 .dirty = {
932 .mesa = 0,
933 .brw = BRW_NEW_INDICES,
934 },
935 .emit = brw_upload_indices,
936 };
937
938 static void brw_emit_index_buffer(struct brw_context *brw)
939 {
940 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
941 GLuint cut_index_setting;
942
943 if (index_buffer == NULL)
944 return;
945
946 if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
947 cut_index_setting = BRW_CUT_INDEX_ENABLE;
948 } else {
949 cut_index_setting = 0;
950 }
951
952 BEGIN_BATCH(3);
953 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
954 cut_index_setting |
955 brw_get_index_type(index_buffer->type) |
956 1);
957 OUT_RELOC(brw->ib.bo,
958 I915_GEM_DOMAIN_VERTEX, 0,
959 0);
960 OUT_RELOC(brw->ib.bo,
961 I915_GEM_DOMAIN_VERTEX, 0,
962 brw->ib.bo->size - 1);
963 ADVANCE_BATCH();
964 }
965
966 const struct brw_tracked_state brw_index_buffer = {
967 .dirty = {
968 .mesa = 0,
969 .brw = BRW_NEW_BATCH |
970 BRW_NEW_INDEX_BUFFER,
971 },
972 .emit = brw_emit_index_buffer,
973 };