Revert 5 i965 patches: 8e27a4d2, 373143ed, c5bdf9be, 6f56e142, 88e3d404
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "main/glheader.h"
29 #include "main/bufferobj.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/macros.h"
33 #include "main/glformats.h"
34
35 #include "brw_draw.h"
36 #include "brw_defines.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "intel_batchbuffer.h"
41 #include "intel_buffer_objects.h"
42
43 static GLuint double_types[5] = {
44 0,
45 BRW_SURFACEFORMAT_R64_FLOAT,
46 BRW_SURFACEFORMAT_R64G64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
49 };
50
51 static GLuint float_types[5] = {
52 0,
53 BRW_SURFACEFORMAT_R32_FLOAT,
54 BRW_SURFACEFORMAT_R32G32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
57 };
58
59 static GLuint half_float_types[5] = {
60 0,
61 BRW_SURFACEFORMAT_R16_FLOAT,
62 BRW_SURFACEFORMAT_R16G16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
65 };
66
67 static GLuint fixed_point_types[5] = {
68 0,
69 BRW_SURFACEFORMAT_R32_SFIXED,
70 BRW_SURFACEFORMAT_R32G32_SFIXED,
71 BRW_SURFACEFORMAT_R32G32B32_SFIXED,
72 BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
73 };
74
75 static GLuint uint_types_direct[5] = {
76 0,
77 BRW_SURFACEFORMAT_R32_UINT,
78 BRW_SURFACEFORMAT_R32G32_UINT,
79 BRW_SURFACEFORMAT_R32G32B32_UINT,
80 BRW_SURFACEFORMAT_R32G32B32A32_UINT
81 };
82
83 static GLuint uint_types_norm[5] = {
84 0,
85 BRW_SURFACEFORMAT_R32_UNORM,
86 BRW_SURFACEFORMAT_R32G32_UNORM,
87 BRW_SURFACEFORMAT_R32G32B32_UNORM,
88 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
89 };
90
91 static GLuint uint_types_scale[5] = {
92 0,
93 BRW_SURFACEFORMAT_R32_USCALED,
94 BRW_SURFACEFORMAT_R32G32_USCALED,
95 BRW_SURFACEFORMAT_R32G32B32_USCALED,
96 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
97 };
98
99 static GLuint int_types_direct[5] = {
100 0,
101 BRW_SURFACEFORMAT_R32_SINT,
102 BRW_SURFACEFORMAT_R32G32_SINT,
103 BRW_SURFACEFORMAT_R32G32B32_SINT,
104 BRW_SURFACEFORMAT_R32G32B32A32_SINT
105 };
106
107 static GLuint int_types_norm[5] = {
108 0,
109 BRW_SURFACEFORMAT_R32_SNORM,
110 BRW_SURFACEFORMAT_R32G32_SNORM,
111 BRW_SURFACEFORMAT_R32G32B32_SNORM,
112 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
113 };
114
115 static GLuint int_types_scale[5] = {
116 0,
117 BRW_SURFACEFORMAT_R32_SSCALED,
118 BRW_SURFACEFORMAT_R32G32_SSCALED,
119 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
120 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
121 };
122
123 static GLuint ushort_types_direct[5] = {
124 0,
125 BRW_SURFACEFORMAT_R16_UINT,
126 BRW_SURFACEFORMAT_R16G16_UINT,
127 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
128 BRW_SURFACEFORMAT_R16G16B16A16_UINT
129 };
130
131 static GLuint ushort_types_norm[5] = {
132 0,
133 BRW_SURFACEFORMAT_R16_UNORM,
134 BRW_SURFACEFORMAT_R16G16_UNORM,
135 BRW_SURFACEFORMAT_R16G16B16_UNORM,
136 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
137 };
138
139 static GLuint ushort_types_scale[5] = {
140 0,
141 BRW_SURFACEFORMAT_R16_USCALED,
142 BRW_SURFACEFORMAT_R16G16_USCALED,
143 BRW_SURFACEFORMAT_R16G16B16_USCALED,
144 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
145 };
146
147 static GLuint short_types_direct[5] = {
148 0,
149 BRW_SURFACEFORMAT_R16_SINT,
150 BRW_SURFACEFORMAT_R16G16_SINT,
151 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
152 BRW_SURFACEFORMAT_R16G16B16A16_SINT
153 };
154
155 static GLuint short_types_norm[5] = {
156 0,
157 BRW_SURFACEFORMAT_R16_SNORM,
158 BRW_SURFACEFORMAT_R16G16_SNORM,
159 BRW_SURFACEFORMAT_R16G16B16_SNORM,
160 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
161 };
162
163 static GLuint short_types_scale[5] = {
164 0,
165 BRW_SURFACEFORMAT_R16_SSCALED,
166 BRW_SURFACEFORMAT_R16G16_SSCALED,
167 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
168 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
169 };
170
171 static GLuint ubyte_types_direct[5] = {
172 0,
173 BRW_SURFACEFORMAT_R8_UINT,
174 BRW_SURFACEFORMAT_R8G8_UINT,
175 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
176 BRW_SURFACEFORMAT_R8G8B8A8_UINT
177 };
178
179 static GLuint ubyte_types_norm[5] = {
180 0,
181 BRW_SURFACEFORMAT_R8_UNORM,
182 BRW_SURFACEFORMAT_R8G8_UNORM,
183 BRW_SURFACEFORMAT_R8G8B8_UNORM,
184 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
185 };
186
187 static GLuint ubyte_types_scale[5] = {
188 0,
189 BRW_SURFACEFORMAT_R8_USCALED,
190 BRW_SURFACEFORMAT_R8G8_USCALED,
191 BRW_SURFACEFORMAT_R8G8B8_USCALED,
192 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
193 };
194
195 static GLuint byte_types_direct[5] = {
196 0,
197 BRW_SURFACEFORMAT_R8_SINT,
198 BRW_SURFACEFORMAT_R8G8_SINT,
199 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
200 BRW_SURFACEFORMAT_R8G8B8A8_SINT
201 };
202
203 static GLuint byte_types_norm[5] = {
204 0,
205 BRW_SURFACEFORMAT_R8_SNORM,
206 BRW_SURFACEFORMAT_R8G8_SNORM,
207 BRW_SURFACEFORMAT_R8G8B8_SNORM,
208 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
209 };
210
211 static GLuint byte_types_scale[5] = {
212 0,
213 BRW_SURFACEFORMAT_R8_SSCALED,
214 BRW_SURFACEFORMAT_R8G8_SSCALED,
215 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
216 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
217 };
218
219
220 /**
221 * Given vertex array type/size/format/normalized info, return
222 * the appopriate hardware surface type.
223 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
224 */
225 unsigned
226 brw_get_vertex_surface_type(struct brw_context *brw,
227 const struct gl_client_array *glarray)
228 {
229 int size = glarray->Size;
230
231 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
232 fprintf(stderr, "type %s size %d normalized %d\n",
233 _mesa_lookup_enum_by_nr(glarray->Type),
234 glarray->Size, glarray->Normalized);
235
236 if (glarray->Integer) {
237 assert(glarray->Format == GL_RGBA); /* sanity check */
238 switch (glarray->Type) {
239 case GL_INT: return int_types_direct[size];
240 case GL_SHORT: return short_types_direct[size];
241 case GL_BYTE: return byte_types_direct[size];
242 case GL_UNSIGNED_INT: return uint_types_direct[size];
243 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
244 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
245 default: unreachable("not reached");
246 }
247 } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
248 return BRW_SURFACEFORMAT_R11G11B10_FLOAT;
249 } else if (glarray->Normalized) {
250 switch (glarray->Type) {
251 case GL_DOUBLE: return double_types[size];
252 case GL_FLOAT: return float_types[size];
253 case GL_HALF_FLOAT: return half_float_types[size];
254 case GL_INT: return int_types_norm[size];
255 case GL_SHORT: return short_types_norm[size];
256 case GL_BYTE: return byte_types_norm[size];
257 case GL_UNSIGNED_INT: return uint_types_norm[size];
258 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
259 case GL_UNSIGNED_BYTE:
260 if (glarray->Format == GL_BGRA) {
261 /* See GL_EXT_vertex_array_bgra */
262 assert(size == 4);
263 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
264 }
265 else {
266 return ubyte_types_norm[size];
267 }
268 case GL_FIXED:
269 if (brw->gen >= 8 || brw->is_haswell)
270 return fixed_point_types[size];
271
272 /* This produces GL_FIXED inputs as values between INT32_MIN and
273 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
274 */
275 return int_types_scale[size];
276 /* See GL_ARB_vertex_type_2_10_10_10_rev.
277 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
278 * like to use here, so upload everything as UINT and fix
279 * it in the shader
280 */
281 case GL_INT_2_10_10_10_REV:
282 assert(size == 4);
283 if (brw->gen >= 8 || brw->is_haswell) {
284 return glarray->Format == GL_BGRA
285 ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
286 : BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
287 }
288 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
289 case GL_UNSIGNED_INT_2_10_10_10_REV:
290 assert(size == 4);
291 if (brw->gen >= 8 || brw->is_haswell) {
292 return glarray->Format == GL_BGRA
293 ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
294 : BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
295 }
296 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
297 default: unreachable("not reached");
298 }
299 }
300 else {
301 /* See GL_ARB_vertex_type_2_10_10_10_rev.
302 * W/A: the hardware doesn't really support the formats we'd
303 * like to use here, so upload everything as UINT and fix
304 * it in the shader
305 */
306 if (glarray->Type == GL_INT_2_10_10_10_REV) {
307 assert(size == 4);
308 if (brw->gen >= 8 || brw->is_haswell) {
309 return glarray->Format == GL_BGRA
310 ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
311 : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
312 }
313 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
314 } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
315 assert(size == 4);
316 if (brw->gen >= 8 || brw->is_haswell) {
317 return glarray->Format == GL_BGRA
318 ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
319 : BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
320 }
321 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
322 }
323 assert(glarray->Format == GL_RGBA); /* sanity check */
324 switch (glarray->Type) {
325 case GL_DOUBLE: return double_types[size];
326 case GL_FLOAT: return float_types[size];
327 case GL_HALF_FLOAT: return half_float_types[size];
328 case GL_INT: return int_types_scale[size];
329 case GL_SHORT: return short_types_scale[size];
330 case GL_BYTE: return byte_types_scale[size];
331 case GL_UNSIGNED_INT: return uint_types_scale[size];
332 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
333 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
334 case GL_FIXED:
335 if (brw->gen >= 8 || brw->is_haswell)
336 return fixed_point_types[size];
337
338 /* This produces GL_FIXED inputs as values between INT32_MIN and
339 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
340 */
341 return int_types_scale[size];
342 default: unreachable("not reached");
343 }
344 }
345 }
346
347 unsigned
348 brw_get_index_type(GLenum type)
349 {
350 switch (type) {
351 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
352 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
353 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
354 default: unreachable("not reached");
355 }
356 }
357
358 static void
359 copy_array_to_vbo_array(struct brw_context *brw,
360 struct brw_vertex_element *element,
361 int min, int max,
362 struct brw_vertex_buffer *buffer,
363 GLuint dst_stride)
364 {
365 const int src_stride = element->glarray->StrideB;
366
367 /* If the source stride is zero, we just want to upload the current
368 * attribute once and set the buffer's stride to 0. There's no need
369 * to replicate it out.
370 */
371 if (src_stride == 0) {
372 intel_upload_data(brw, element->glarray->Ptr,
373 element->glarray->_ElementSize,
374 element->glarray->_ElementSize,
375 &buffer->bo, &buffer->offset);
376
377 buffer->stride = 0;
378 return;
379 }
380
381 const unsigned char *src = element->glarray->Ptr + min * src_stride;
382 int count = max - min + 1;
383 GLuint size = count * dst_stride;
384 uint8_t *dst = intel_upload_space(brw, size, dst_stride,
385 &buffer->bo, &buffer->offset);
386
387 if (dst_stride == src_stride) {
388 memcpy(dst, src, size);
389 } else {
390 while (count--) {
391 memcpy(dst, src, dst_stride);
392 src += src_stride;
393 dst += dst_stride;
394 }
395 }
396 buffer->stride = dst_stride;
397 }
398
399 void
400 brw_prepare_vertices(struct brw_context *brw)
401 {
402 struct gl_context *ctx = &brw->ctx;
403 /* CACHE_NEW_VS_PROG */
404 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
405 const unsigned char *ptr = NULL;
406 GLuint interleaved = 0;
407 unsigned int min_index = brw->vb.min_index + brw->basevertex;
408 unsigned int max_index = brw->vb.max_index + brw->basevertex;
409 int delta, i, j;
410
411 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
412 GLuint nr_uploads = 0;
413
414 /* _NEW_POLYGON
415 *
416 * On gen6+, edge flags don't end up in the VUE (either in or out of the
417 * VS). Instead, they're uploaded as the last vertex element, and the data
418 * is passed sideband through the fixed function units. So, we need to
419 * prepare the vertex buffer for it, but it's not present in inputs_read.
420 */
421 if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
422 ctx->Polygon.BackMode != GL_FILL)) {
423 vs_inputs |= VERT_BIT_EDGEFLAG;
424 }
425
426 if (0)
427 fprintf(stderr, "%s %d..%d\n", __FUNCTION__, min_index, max_index);
428
429 /* Accumulate the list of enabled arrays. */
430 brw->vb.nr_enabled = 0;
431 while (vs_inputs) {
432 GLuint i = ffsll(vs_inputs) - 1;
433 struct brw_vertex_element *input = &brw->vb.inputs[i];
434
435 vs_inputs &= ~BITFIELD64_BIT(i);
436 brw->vb.enabled[brw->vb.nr_enabled++] = input;
437 }
438
439 if (brw->vb.nr_enabled == 0)
440 return;
441
442 if (brw->vb.nr_buffers)
443 return;
444
445 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
446 struct brw_vertex_element *input = brw->vb.enabled[i];
447 const struct gl_client_array *glarray = input->glarray;
448
449 if (_mesa_is_bufferobj(glarray->BufferObj)) {
450 struct intel_buffer_object *intel_buffer =
451 intel_buffer_object(glarray->BufferObj);
452 int k;
453
454 /* If we have a VB set to be uploaded for this buffer object
455 * already, reuse that VB state so that we emit fewer
456 * relocations.
457 */
458 for (k = 0; k < i; k++) {
459 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
460 if (glarray->BufferObj == other->BufferObj &&
461 glarray->StrideB == other->StrideB &&
462 glarray->InstanceDivisor == other->InstanceDivisor &&
463 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
464 {
465 input->buffer = brw->vb.enabled[k]->buffer;
466 input->offset = glarray->Ptr - other->Ptr;
467 break;
468 }
469 }
470 if (k == i) {
471 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
472
473 /* Named buffer object: Just reference its contents directly. */
474 buffer->offset = (uintptr_t)glarray->Ptr;
475 buffer->stride = glarray->StrideB;
476 buffer->step_rate = glarray->InstanceDivisor;
477
478 uint32_t offset, size;
479 if (glarray->InstanceDivisor) {
480 offset = buffer->offset;
481 size = (buffer->stride * ((brw->num_instances /
482 glarray->InstanceDivisor) - 1) +
483 glarray->_ElementSize);
484 } else {
485 if (min_index == -1) {
486 offset = 0;
487 size = intel_buffer->Base.Size;
488 } else {
489 offset = buffer->offset + min_index * buffer->stride;
490 size = (buffer->stride * (max_index - min_index) +
491 glarray->_ElementSize);
492 }
493 }
494 buffer->bo = intel_bufferobj_buffer(brw, intel_buffer,
495 offset, size);
496 drm_intel_bo_reference(buffer->bo);
497
498 input->buffer = j++;
499 input->offset = 0;
500 }
501
502 /* This is a common place to reach if the user mistakenly supplies
503 * a pointer in place of a VBO offset. If we just let it go through,
504 * we may end up dereferencing a pointer beyond the bounds of the
505 * GTT. We would hope that the VBO's max_index would save us, but
506 * Mesa appears to hand us min/max values not clipped to the
507 * array object's _MaxElement, and _MaxElement frequently appears
508 * to be wrong anyway.
509 *
510 * The VBO spec allows application termination in this case, and it's
511 * probably a service to the poor programmer to do so rather than
512 * trying to just not render.
513 */
514 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
515 } else {
516 /* Queue the buffer object up to be uploaded in the next pass,
517 * when we've decided if we're doing interleaved or not.
518 */
519 if (nr_uploads == 0) {
520 interleaved = glarray->StrideB;
521 ptr = glarray->Ptr;
522 }
523 else if (interleaved != glarray->StrideB ||
524 glarray->Ptr < ptr ||
525 (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
526 {
527 /* If our stride is different from the first attribute's stride,
528 * or if the first attribute's stride didn't cover our element,
529 * disable the interleaved upload optimization. The second case
530 * can most commonly occur in cases where there is a single vertex
531 * and, for example, the data is stored on the application's
532 * stack.
533 *
534 * NOTE: This will also disable the optimization in cases where
535 * the data is in a different order than the array indices.
536 * Something like:
537 *
538 * float data[...];
539 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
540 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
541 */
542 interleaved = 0;
543 }
544
545 upload[nr_uploads++] = input;
546 }
547 }
548
549 /* If we need to upload all the arrays, then we can trim those arrays to
550 * only the used elements [min_index, max_index] so long as we adjust all
551 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
552 */
553 brw->vb.start_vertex_bias = 0;
554 delta = min_index;
555 if (nr_uploads == brw->vb.nr_enabled) {
556 brw->vb.start_vertex_bias = -delta;
557 delta = 0;
558 }
559
560 /* Handle any arrays to be uploaded. */
561 if (nr_uploads > 1) {
562 if (interleaved) {
563 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
564 /* All uploads are interleaved, so upload the arrays together as
565 * interleaved. First, upload the contents and set up upload[0].
566 */
567 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
568 buffer, interleaved);
569 buffer->offset -= delta * interleaved;
570
571 for (i = 0; i < nr_uploads; i++) {
572 /* Then, just point upload[i] at upload[0]'s buffer. */
573 upload[i]->offset =
574 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
575 upload[i]->buffer = j;
576 }
577 j++;
578
579 nr_uploads = 0;
580 }
581 }
582 /* Upload non-interleaved arrays */
583 for (i = 0; i < nr_uploads; i++) {
584 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
585 if (upload[i]->glarray->InstanceDivisor == 0) {
586 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
587 buffer, upload[i]->glarray->_ElementSize);
588 } else {
589 /* This is an instanced attribute, since its InstanceDivisor
590 * is not zero. Therefore, its data will be stepped after the
591 * instanced draw has been run InstanceDivisor times.
592 */
593 uint32_t instanced_attr_max_index =
594 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
595 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
596 buffer, upload[i]->glarray->_ElementSize);
597 }
598 buffer->offset -= delta * buffer->stride;
599 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
600 upload[i]->buffer = j++;
601 upload[i]->offset = 0;
602 }
603
604 brw->vb.nr_buffers = j;
605 }
606
607 static void brw_emit_vertices(struct brw_context *brw)
608 {
609 struct gl_context *ctx = &brw->ctx;
610 GLuint i, nr_elements;
611
612 brw_prepare_vertices(brw);
613
614 brw_emit_query_begin(brw);
615
616 nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
617
618 /* If the VS doesn't read any inputs (calculating vertex position from
619 * a state variable for some reason, for example), emit a single pad
620 * VERTEX_ELEMENT struct and bail.
621 *
622 * The stale VB state stays in place, but they don't do anything unless
623 * a VE loads from them.
624 */
625 if (nr_elements == 0) {
626 BEGIN_BATCH(3);
627 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
628 if (brw->gen >= 6) {
629 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
630 GEN6_VE0_VALID |
631 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
632 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
633 } else {
634 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
635 BRW_VE0_VALID |
636 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
637 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
638 }
639 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
640 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
641 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
642 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
643 ADVANCE_BATCH();
644 return;
645 }
646
647 /* Now emit VB and VEP state packets.
648 */
649
650 if (brw->vb.nr_buffers) {
651 if (brw->gen >= 6) {
652 assert(brw->vb.nr_buffers <= 33);
653 } else {
654 assert(brw->vb.nr_buffers <= 17);
655 }
656
657 BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
658 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
659 for (i = 0; i < brw->vb.nr_buffers; i++) {
660 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
661 uint32_t dw0;
662
663 if (brw->gen >= 6) {
664 dw0 = buffer->step_rate
665 ? GEN6_VB0_ACCESS_INSTANCEDATA
666 : GEN6_VB0_ACCESS_VERTEXDATA;
667 dw0 |= i << GEN6_VB0_INDEX_SHIFT;
668 } else {
669 dw0 = buffer->step_rate
670 ? BRW_VB0_ACCESS_INSTANCEDATA
671 : BRW_VB0_ACCESS_VERTEXDATA;
672 dw0 |= i << BRW_VB0_INDEX_SHIFT;
673 }
674
675 if (brw->gen >= 7)
676 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
677
678 if (brw->gen == 7)
679 dw0 |= GEN7_MOCS_L3 << 16;
680
681 WARN_ONCE(buffer->stride >= (brw->gen >= 5 ? 2048 : 2047),
682 "VBO stride %d too large, bad rendering may occur\n",
683 buffer->stride);
684 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
685 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
686 if (brw->gen >= 5) {
687 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
688 } else
689 OUT_BATCH(0);
690 OUT_BATCH(buffer->step_rate);
691 }
692 ADVANCE_BATCH();
693 }
694
695 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
696 * for VertexID/InstanceID.
697 */
698 if (brw->gen >= 6) {
699 assert(nr_elements <= 34);
700 } else {
701 assert(nr_elements <= 18);
702 }
703
704 struct brw_vertex_element *gen6_edgeflag_input = NULL;
705
706 BEGIN_BATCH(1 + nr_elements * 2);
707 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
708 for (i = 0; i < brw->vb.nr_enabled; i++) {
709 struct brw_vertex_element *input = brw->vb.enabled[i];
710 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
711 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
712 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
713 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
714 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
715
716 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
717 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
718 * of in the VUE. We have to upload it sideband as the last vertex
719 * element according to the B-Spec.
720 */
721 if (brw->gen >= 6) {
722 gen6_edgeflag_input = input;
723 continue;
724 }
725 }
726
727 switch (input->glarray->Size) {
728 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
729 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
730 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
731 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
732 : BRW_VE1_COMPONENT_STORE_1_FLT;
733 break;
734 }
735
736 if (brw->gen >= 6) {
737 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
738 GEN6_VE0_VALID |
739 (format << BRW_VE0_FORMAT_SHIFT) |
740 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
741 } else {
742 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
743 BRW_VE0_VALID |
744 (format << BRW_VE0_FORMAT_SHIFT) |
745 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
746 }
747
748 if (brw->gen >= 5)
749 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
750 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
751 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
752 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
753 else
754 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
755 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
756 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
757 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
758 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
759 }
760
761 if (brw->gen >= 6 && gen6_edgeflag_input) {
762 uint32_t format =
763 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
764
765 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
766 GEN6_VE0_VALID |
767 GEN6_VE0_EDGE_FLAG_ENABLE |
768 (format << BRW_VE0_FORMAT_SHIFT) |
769 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
770 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
771 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
772 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
773 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
774 }
775
776 if (brw->vs.prog_data->uses_vertexid) {
777 uint32_t dw0 = 0, dw1 = 0;
778
779 dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
780 (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
781 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
782 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
783
784 if (brw->gen >= 6) {
785 dw0 |= GEN6_VE0_VALID;
786 } else {
787 dw0 |= BRW_VE0_VALID;
788 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
789 }
790
791 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
792 * the format is ignored and the value is always int.
793 */
794
795 OUT_BATCH(dw0);
796 OUT_BATCH(dw1);
797 }
798
799 ADVANCE_BATCH();
800 }
801
802 const struct brw_tracked_state brw_vertices = {
803 .dirty = {
804 .mesa = _NEW_POLYGON,
805 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
806 .cache = CACHE_NEW_VS_PROG,
807 },
808 .emit = brw_emit_vertices,
809 };
810
811 static void brw_upload_indices(struct brw_context *brw)
812 {
813 struct gl_context *ctx = &brw->ctx;
814 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
815 GLuint ib_size;
816 drm_intel_bo *old_bo = brw->ib.bo;
817 struct gl_buffer_object *bufferobj;
818 GLuint offset;
819 GLuint ib_type_size;
820
821 if (index_buffer == NULL)
822 return;
823
824 ib_type_size = _mesa_sizeof_type(index_buffer->type);
825 ib_size = ib_type_size * index_buffer->count;
826 bufferobj = index_buffer->obj;
827
828 /* Turn into a proper VBO:
829 */
830 if (!_mesa_is_bufferobj(bufferobj)) {
831 /* Get new bufferobj, offset:
832 */
833 intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
834 &brw->ib.bo, &offset);
835 } else {
836 offset = (GLuint) (unsigned long) index_buffer->ptr;
837
838 /* If the index buffer isn't aligned to its element size, we have to
839 * rebase it into a temporary.
840 */
841 if ((ib_type_size - 1) & offset) {
842 perf_debug("copying index buffer to a temporary to work around "
843 "misaligned offset %d\n", offset);
844
845 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
846 offset,
847 ib_size,
848 GL_MAP_READ_BIT,
849 bufferobj,
850 MAP_INTERNAL);
851
852 intel_upload_data(brw, map, ib_size, ib_type_size,
853 &brw->ib.bo, &offset);
854
855 ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
856 } else {
857 drm_intel_bo *bo =
858 intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
859 offset, ib_size);
860 if (bo != brw->ib.bo) {
861 drm_intel_bo_unreference(brw->ib.bo);
862 brw->ib.bo = bo;
863 drm_intel_bo_reference(bo);
864 }
865 }
866 }
867
868 /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
869 * the index buffer state when we're just moving the start index
870 * of our drawing.
871 */
872 brw->ib.start_vertex_offset = offset / ib_type_size;
873
874 if (brw->ib.bo != old_bo)
875 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
876
877 if (index_buffer->type != brw->ib.type) {
878 brw->ib.type = index_buffer->type;
879 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
880 }
881 }
882
883 const struct brw_tracked_state brw_indices = {
884 .dirty = {
885 .mesa = 0,
886 .brw = BRW_NEW_INDICES,
887 .cache = 0,
888 },
889 .emit = brw_upload_indices,
890 };
891
892 static void brw_emit_index_buffer(struct brw_context *brw)
893 {
894 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
895 GLuint cut_index_setting;
896
897 if (index_buffer == NULL)
898 return;
899
900 if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
901 cut_index_setting = BRW_CUT_INDEX_ENABLE;
902 } else {
903 cut_index_setting = 0;
904 }
905
906 BEGIN_BATCH(3);
907 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
908 cut_index_setting |
909 brw_get_index_type(index_buffer->type) << 8 |
910 1);
911 OUT_RELOC(brw->ib.bo,
912 I915_GEM_DOMAIN_VERTEX, 0,
913 0);
914 OUT_RELOC(brw->ib.bo,
915 I915_GEM_DOMAIN_VERTEX, 0,
916 brw->ib.bo->size - 1);
917 ADVANCE_BATCH();
918 }
919
920 const struct brw_tracked_state brw_index_buffer = {
921 .dirty = {
922 .mesa = 0,
923 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
924 .cache = 0,
925 },
926 .emit = brw_emit_index_buffer,
927 };