i965/hsw: Change L3 MOCS of 3DSTATE_VERTEX_BUFFERS
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "main/glheader.h"
29 #include "main/bufferobj.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/macros.h"
33 #include "main/glformats.h"
34
35 #include "brw_draw.h"
36 #include "brw_defines.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "intel_batchbuffer.h"
41 #include "intel_buffer_objects.h"
42
43 static GLuint double_types[5] = {
44 0,
45 BRW_SURFACEFORMAT_R64_FLOAT,
46 BRW_SURFACEFORMAT_R64G64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
49 };
50
51 static GLuint float_types[5] = {
52 0,
53 BRW_SURFACEFORMAT_R32_FLOAT,
54 BRW_SURFACEFORMAT_R32G32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
57 };
58
59 static GLuint half_float_types[5] = {
60 0,
61 BRW_SURFACEFORMAT_R16_FLOAT,
62 BRW_SURFACEFORMAT_R16G16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
65 };
66
67 static GLuint fixed_point_types[5] = {
68 0,
69 BRW_SURFACEFORMAT_R32_SFIXED,
70 BRW_SURFACEFORMAT_R32G32_SFIXED,
71 BRW_SURFACEFORMAT_R32G32B32_SFIXED,
72 BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
73 };
74
75 static GLuint uint_types_direct[5] = {
76 0,
77 BRW_SURFACEFORMAT_R32_UINT,
78 BRW_SURFACEFORMAT_R32G32_UINT,
79 BRW_SURFACEFORMAT_R32G32B32_UINT,
80 BRW_SURFACEFORMAT_R32G32B32A32_UINT
81 };
82
83 static GLuint uint_types_norm[5] = {
84 0,
85 BRW_SURFACEFORMAT_R32_UNORM,
86 BRW_SURFACEFORMAT_R32G32_UNORM,
87 BRW_SURFACEFORMAT_R32G32B32_UNORM,
88 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
89 };
90
91 static GLuint uint_types_scale[5] = {
92 0,
93 BRW_SURFACEFORMAT_R32_USCALED,
94 BRW_SURFACEFORMAT_R32G32_USCALED,
95 BRW_SURFACEFORMAT_R32G32B32_USCALED,
96 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
97 };
98
99 static GLuint int_types_direct[5] = {
100 0,
101 BRW_SURFACEFORMAT_R32_SINT,
102 BRW_SURFACEFORMAT_R32G32_SINT,
103 BRW_SURFACEFORMAT_R32G32B32_SINT,
104 BRW_SURFACEFORMAT_R32G32B32A32_SINT
105 };
106
107 static GLuint int_types_norm[5] = {
108 0,
109 BRW_SURFACEFORMAT_R32_SNORM,
110 BRW_SURFACEFORMAT_R32G32_SNORM,
111 BRW_SURFACEFORMAT_R32G32B32_SNORM,
112 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
113 };
114
115 static GLuint int_types_scale[5] = {
116 0,
117 BRW_SURFACEFORMAT_R32_SSCALED,
118 BRW_SURFACEFORMAT_R32G32_SSCALED,
119 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
120 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
121 };
122
123 static GLuint ushort_types_direct[5] = {
124 0,
125 BRW_SURFACEFORMAT_R16_UINT,
126 BRW_SURFACEFORMAT_R16G16_UINT,
127 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
128 BRW_SURFACEFORMAT_R16G16B16A16_UINT
129 };
130
131 static GLuint ushort_types_norm[5] = {
132 0,
133 BRW_SURFACEFORMAT_R16_UNORM,
134 BRW_SURFACEFORMAT_R16G16_UNORM,
135 BRW_SURFACEFORMAT_R16G16B16_UNORM,
136 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
137 };
138
139 static GLuint ushort_types_scale[5] = {
140 0,
141 BRW_SURFACEFORMAT_R16_USCALED,
142 BRW_SURFACEFORMAT_R16G16_USCALED,
143 BRW_SURFACEFORMAT_R16G16B16_USCALED,
144 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
145 };
146
147 static GLuint short_types_direct[5] = {
148 0,
149 BRW_SURFACEFORMAT_R16_SINT,
150 BRW_SURFACEFORMAT_R16G16_SINT,
151 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
152 BRW_SURFACEFORMAT_R16G16B16A16_SINT
153 };
154
155 static GLuint short_types_norm[5] = {
156 0,
157 BRW_SURFACEFORMAT_R16_SNORM,
158 BRW_SURFACEFORMAT_R16G16_SNORM,
159 BRW_SURFACEFORMAT_R16G16B16_SNORM,
160 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
161 };
162
163 static GLuint short_types_scale[5] = {
164 0,
165 BRW_SURFACEFORMAT_R16_SSCALED,
166 BRW_SURFACEFORMAT_R16G16_SSCALED,
167 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
168 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
169 };
170
171 static GLuint ubyte_types_direct[5] = {
172 0,
173 BRW_SURFACEFORMAT_R8_UINT,
174 BRW_SURFACEFORMAT_R8G8_UINT,
175 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
176 BRW_SURFACEFORMAT_R8G8B8A8_UINT
177 };
178
179 static GLuint ubyte_types_norm[5] = {
180 0,
181 BRW_SURFACEFORMAT_R8_UNORM,
182 BRW_SURFACEFORMAT_R8G8_UNORM,
183 BRW_SURFACEFORMAT_R8G8B8_UNORM,
184 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
185 };
186
187 static GLuint ubyte_types_scale[5] = {
188 0,
189 BRW_SURFACEFORMAT_R8_USCALED,
190 BRW_SURFACEFORMAT_R8G8_USCALED,
191 BRW_SURFACEFORMAT_R8G8B8_USCALED,
192 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
193 };
194
195 static GLuint byte_types_direct[5] = {
196 0,
197 BRW_SURFACEFORMAT_R8_SINT,
198 BRW_SURFACEFORMAT_R8G8_SINT,
199 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
200 BRW_SURFACEFORMAT_R8G8B8A8_SINT
201 };
202
203 static GLuint byte_types_norm[5] = {
204 0,
205 BRW_SURFACEFORMAT_R8_SNORM,
206 BRW_SURFACEFORMAT_R8G8_SNORM,
207 BRW_SURFACEFORMAT_R8G8B8_SNORM,
208 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
209 };
210
211 static GLuint byte_types_scale[5] = {
212 0,
213 BRW_SURFACEFORMAT_R8_SSCALED,
214 BRW_SURFACEFORMAT_R8G8_SSCALED,
215 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
216 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
217 };
218
219
220 /**
221 * Given vertex array type/size/format/normalized info, return
222 * the appopriate hardware surface type.
223 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
224 */
225 static unsigned
226 get_surface_type(struct brw_context *brw,
227 const struct gl_client_array *glarray)
228 {
229 int size = glarray->Size;
230
231 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
232 printf("type %s size %d normalized %d\n",
233 _mesa_lookup_enum_by_nr(glarray->Type),
234 glarray->Size, glarray->Normalized);
235
236 if (glarray->Integer) {
237 assert(glarray->Format == GL_RGBA); /* sanity check */
238 switch (glarray->Type) {
239 case GL_INT: return int_types_direct[size];
240 case GL_SHORT: return short_types_direct[size];
241 case GL_BYTE: return byte_types_direct[size];
242 case GL_UNSIGNED_INT: return uint_types_direct[size];
243 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
244 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
245 default: assert(0); return 0;
246 }
247 } else if (glarray->Normalized) {
248 switch (glarray->Type) {
249 case GL_DOUBLE: return double_types[size];
250 case GL_FLOAT: return float_types[size];
251 case GL_HALF_FLOAT: return half_float_types[size];
252 case GL_INT: return int_types_norm[size];
253 case GL_SHORT: return short_types_norm[size];
254 case GL_BYTE: return byte_types_norm[size];
255 case GL_UNSIGNED_INT: return uint_types_norm[size];
256 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
257 case GL_UNSIGNED_BYTE:
258 if (glarray->Format == GL_BGRA) {
259 /* See GL_EXT_vertex_array_bgra */
260 assert(size == 4);
261 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
262 }
263 else {
264 return ubyte_types_norm[size];
265 }
266 case GL_FIXED:
267 if (brw->gen >= 8 || brw->is_haswell)
268 return fixed_point_types[size];
269
270 /* This produces GL_FIXED inputs as values between INT32_MIN and
271 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272 */
273 return int_types_scale[size];
274 /* See GL_ARB_vertex_type_2_10_10_10_rev.
275 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
276 * like to use here, so upload everything as UINT and fix
277 * it in the shader
278 */
279 case GL_INT_2_10_10_10_REV:
280 assert(size == 4);
281 if (brw->gen >= 8 || brw->is_haswell) {
282 return glarray->Format == GL_BGRA
283 ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
284 : BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
285 }
286 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
287 case GL_UNSIGNED_INT_2_10_10_10_REV:
288 assert(size == 4);
289 if (brw->gen >= 8 || brw->is_haswell) {
290 return glarray->Format == GL_BGRA
291 ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
292 : BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
293 }
294 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
295 default: assert(0); return 0;
296 }
297 }
298 else {
299 /* See GL_ARB_vertex_type_2_10_10_10_rev.
300 * W/A: the hardware doesn't really support the formats we'd
301 * like to use here, so upload everything as UINT and fix
302 * it in the shader
303 */
304 if (glarray->Type == GL_INT_2_10_10_10_REV) {
305 assert(size == 4);
306 if (brw->gen >= 8 || brw->is_haswell) {
307 return glarray->Format == GL_BGRA
308 ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
309 : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
310 }
311 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
312 } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
313 assert(size == 4);
314 if (brw->gen >= 8 || brw->is_haswell) {
315 return glarray->Format == GL_BGRA
316 ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
317 : BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
318 }
319 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
320 }
321 assert(glarray->Format == GL_RGBA); /* sanity check */
322 switch (glarray->Type) {
323 case GL_DOUBLE: return double_types[size];
324 case GL_FLOAT: return float_types[size];
325 case GL_HALF_FLOAT: return half_float_types[size];
326 case GL_INT: return int_types_scale[size];
327 case GL_SHORT: return short_types_scale[size];
328 case GL_BYTE: return byte_types_scale[size];
329 case GL_UNSIGNED_INT: return uint_types_scale[size];
330 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
331 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
332 case GL_FIXED:
333 if (brw->gen >= 8 || brw->is_haswell)
334 return fixed_point_types[size];
335
336 /* This produces GL_FIXED inputs as values between INT32_MIN and
337 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
338 */
339 return int_types_scale[size];
340 default: assert(0); return 0;
341 }
342 }
343 }
344
345 static GLuint get_index_type(GLenum type)
346 {
347 switch (type) {
348 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
349 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
350 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
351 default: assert(0); return 0;
352 }
353 }
354
355 static void
356 copy_array_to_vbo_array(struct brw_context *brw,
357 struct brw_vertex_element *element,
358 int min, int max,
359 struct brw_vertex_buffer *buffer,
360 GLuint dst_stride)
361 {
362 const int src_stride = element->glarray->StrideB;
363
364 /* If the source stride is zero, we just want to upload the current
365 * attribute once and set the buffer's stride to 0. There's no need
366 * to replicate it out.
367 */
368 if (src_stride == 0) {
369 intel_upload_data(brw, element->glarray->Ptr,
370 element->glarray->_ElementSize,
371 element->glarray->_ElementSize,
372 &buffer->bo, &buffer->offset);
373
374 buffer->stride = 0;
375 return;
376 }
377
378 const unsigned char *src = element->glarray->Ptr + min * src_stride;
379 int count = max - min + 1;
380 GLuint size = count * dst_stride;
381
382 if (dst_stride == src_stride) {
383 intel_upload_data(brw, src, size, dst_stride,
384 &buffer->bo, &buffer->offset);
385 } else {
386 char * const map = intel_upload_map(brw, size, dst_stride);
387 char *dst = map;
388
389 while (count--) {
390 memcpy(dst, src, dst_stride);
391 src += src_stride;
392 dst += dst_stride;
393 }
394 intel_upload_unmap(brw, map, size, dst_stride,
395 &buffer->bo, &buffer->offset);
396 }
397 buffer->stride = dst_stride;
398 }
399
400 static void brw_prepare_vertices(struct brw_context *brw)
401 {
402 struct gl_context *ctx = &brw->ctx;
403 /* CACHE_NEW_VS_PROG */
404 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
405 const unsigned char *ptr = NULL;
406 GLuint interleaved = 0;
407 unsigned int min_index = brw->vb.min_index + brw->basevertex;
408 unsigned int max_index = brw->vb.max_index + brw->basevertex;
409 int delta, i, j;
410
411 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
412 GLuint nr_uploads = 0;
413
414 /* _NEW_POLYGON
415 *
416 * On gen6+, edge flags don't end up in the VUE (either in or out of the
417 * VS). Instead, they're uploaded as the last vertex element, and the data
418 * is passed sideband through the fixed function units. So, we need to
419 * prepare the vertex buffer for it, but it's not present in inputs_read.
420 */
421 if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
422 ctx->Polygon.BackMode != GL_FILL)) {
423 vs_inputs |= VERT_BIT_EDGEFLAG;
424 }
425
426 if (0)
427 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
428
429 /* Accumulate the list of enabled arrays. */
430 brw->vb.nr_enabled = 0;
431 while (vs_inputs) {
432 GLuint i = ffsll(vs_inputs) - 1;
433 struct brw_vertex_element *input = &brw->vb.inputs[i];
434
435 vs_inputs &= ~BITFIELD64_BIT(i);
436 brw->vb.enabled[brw->vb.nr_enabled++] = input;
437 }
438
439 if (brw->vb.nr_enabled == 0)
440 return;
441
442 if (brw->vb.nr_buffers)
443 return;
444
445 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
446 struct brw_vertex_element *input = brw->vb.enabled[i];
447 const struct gl_client_array *glarray = input->glarray;
448
449 if (_mesa_is_bufferobj(glarray->BufferObj)) {
450 struct intel_buffer_object *intel_buffer =
451 intel_buffer_object(glarray->BufferObj);
452 int k;
453
454 /* If we have a VB set to be uploaded for this buffer object
455 * already, reuse that VB state so that we emit fewer
456 * relocations.
457 */
458 for (k = 0; k < i; k++) {
459 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
460 if (glarray->BufferObj == other->BufferObj &&
461 glarray->StrideB == other->StrideB &&
462 glarray->InstanceDivisor == other->InstanceDivisor &&
463 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
464 {
465 input->buffer = brw->vb.enabled[k]->buffer;
466 input->offset = glarray->Ptr - other->Ptr;
467 break;
468 }
469 }
470 if (k == i) {
471 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
472
473 /* Named buffer object: Just reference its contents directly. */
474 buffer->bo = intel_bufferobj_source(brw,
475 intel_buffer, 1,
476 &buffer->offset);
477 drm_intel_bo_reference(buffer->bo);
478 buffer->offset += (uintptr_t)glarray->Ptr;
479 buffer->stride = glarray->StrideB;
480 buffer->step_rate = glarray->InstanceDivisor;
481
482 input->buffer = j++;
483 input->offset = 0;
484 }
485
486 /* This is a common place to reach if the user mistakenly supplies
487 * a pointer in place of a VBO offset. If we just let it go through,
488 * we may end up dereferencing a pointer beyond the bounds of the
489 * GTT. We would hope that the VBO's max_index would save us, but
490 * Mesa appears to hand us min/max values not clipped to the
491 * array object's _MaxElement, and _MaxElement frequently appears
492 * to be wrong anyway.
493 *
494 * The VBO spec allows application termination in this case, and it's
495 * probably a service to the poor programmer to do so rather than
496 * trying to just not render.
497 */
498 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
499 } else {
500 /* Queue the buffer object up to be uploaded in the next pass,
501 * when we've decided if we're doing interleaved or not.
502 */
503 if (nr_uploads == 0) {
504 interleaved = glarray->StrideB;
505 ptr = glarray->Ptr;
506 }
507 else if (interleaved != glarray->StrideB ||
508 glarray->Ptr < ptr ||
509 (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
510 {
511 /* If our stride is different from the first attribute's stride,
512 * or if the first attribute's stride didn't cover our element,
513 * disable the interleaved upload optimization. The second case
514 * can most commonly occur in cases where there is a single vertex
515 * and, for example, the data is stored on the application's
516 * stack.
517 *
518 * NOTE: This will also disable the optimization in cases where
519 * the data is in a different order than the array indices.
520 * Something like:
521 *
522 * float data[...];
523 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
524 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
525 */
526 interleaved = 0;
527 }
528
529 upload[nr_uploads++] = input;
530 }
531 }
532
533 /* If we need to upload all the arrays, then we can trim those arrays to
534 * only the used elements [min_index, max_index] so long as we adjust all
535 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
536 */
537 brw->vb.start_vertex_bias = 0;
538 delta = min_index;
539 if (nr_uploads == brw->vb.nr_enabled) {
540 brw->vb.start_vertex_bias = -delta;
541 delta = 0;
542 }
543
544 /* Handle any arrays to be uploaded. */
545 if (nr_uploads > 1) {
546 if (interleaved) {
547 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
548 /* All uploads are interleaved, so upload the arrays together as
549 * interleaved. First, upload the contents and set up upload[0].
550 */
551 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
552 buffer, interleaved);
553 buffer->offset -= delta * interleaved;
554
555 for (i = 0; i < nr_uploads; i++) {
556 /* Then, just point upload[i] at upload[0]'s buffer. */
557 upload[i]->offset =
558 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
559 upload[i]->buffer = j;
560 }
561 j++;
562
563 nr_uploads = 0;
564 }
565 }
566 /* Upload non-interleaved arrays */
567 for (i = 0; i < nr_uploads; i++) {
568 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
569 if (upload[i]->glarray->InstanceDivisor == 0) {
570 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
571 buffer, upload[i]->glarray->_ElementSize);
572 } else {
573 /* This is an instanced attribute, since its InstanceDivisor
574 * is not zero. Therefore, its data will be stepped after the
575 * instanced draw has been run InstanceDivisor times.
576 */
577 uint32_t instanced_attr_max_index =
578 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
579 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
580 buffer, upload[i]->glarray->_ElementSize);
581 }
582 buffer->offset -= delta * buffer->stride;
583 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
584 upload[i]->buffer = j++;
585 upload[i]->offset = 0;
586 }
587
588 brw->vb.nr_buffers = j;
589 }
590
591 static void brw_emit_vertices(struct brw_context *brw)
592 {
593 GLuint i, nr_elements;
594
595 brw_prepare_vertices(brw);
596
597 brw_emit_query_begin(brw);
598
599 nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
600
601 /* If the VS doesn't read any inputs (calculating vertex position from
602 * a state variable for some reason, for example), emit a single pad
603 * VERTEX_ELEMENT struct and bail.
604 *
605 * The stale VB state stays in place, but they don't do anything unless
606 * a VE loads from them.
607 */
608 if (nr_elements == 0) {
609 BEGIN_BATCH(3);
610 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
611 if (brw->gen >= 6) {
612 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
613 GEN6_VE0_VALID |
614 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
615 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
616 } else {
617 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
618 BRW_VE0_VALID |
619 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
620 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
621 }
622 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
623 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
624 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
625 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
626 CACHED_BATCH();
627 return;
628 }
629
630 /* Now emit VB and VEP state packets.
631 */
632
633 if (brw->vb.nr_buffers) {
634 if (brw->gen >= 6) {
635 assert(brw->vb.nr_buffers <= 33);
636 } else {
637 assert(brw->vb.nr_buffers <= 17);
638 }
639
640 BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
641 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
642 for (i = 0; i < brw->vb.nr_buffers; i++) {
643 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
644 uint32_t dw0;
645
646 if (brw->gen >= 6) {
647 dw0 = buffer->step_rate
648 ? GEN6_VB0_ACCESS_INSTANCEDATA
649 : GEN6_VB0_ACCESS_VERTEXDATA;
650 dw0 |= i << GEN6_VB0_INDEX_SHIFT;
651 } else {
652 dw0 = buffer->step_rate
653 ? BRW_VB0_ACCESS_INSTANCEDATA
654 : BRW_VB0_ACCESS_VERTEXDATA;
655 dw0 |= i << BRW_VB0_INDEX_SHIFT;
656 }
657
658 if (brw->gen >= 7)
659 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
660
661 if (brw->is_haswell)
662 dw0 |= GEN7_MOCS_L3 << 16;
663
664 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
665 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
666 if (brw->gen >= 5) {
667 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
668 } else
669 OUT_BATCH(0);
670 OUT_BATCH(buffer->step_rate);
671 }
672 ADVANCE_BATCH();
673 }
674
675 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
676 * for VertexID/InstanceID.
677 */
678 if (brw->gen >= 6) {
679 assert(nr_elements <= 34);
680 } else {
681 assert(nr_elements <= 18);
682 }
683
684 struct brw_vertex_element *gen6_edgeflag_input = NULL;
685
686 BEGIN_BATCH(1 + nr_elements * 2);
687 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
688 for (i = 0; i < brw->vb.nr_enabled; i++) {
689 struct brw_vertex_element *input = brw->vb.enabled[i];
690 uint32_t format = get_surface_type(brw, input->glarray);
691 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
692 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
693 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
694 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
695
696 /* The gen4 driver expects edgeflag to come in as a float, and passes
697 * that float on to the tests in the clipper. Mesa's current vertex
698 * attribute value for EdgeFlag is stored as a float, which works out.
699 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
700 * integer ubyte. Just rewrite that to convert to a float.
701 */
702 if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
703 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
704 * of in the VUE. We have to upload it sideband as the last vertex
705 * element according to the B-Spec.
706 */
707 if (brw->gen >= 6) {
708 gen6_edgeflag_input = input;
709 continue;
710 }
711
712 if (format == BRW_SURFACEFORMAT_R8_UINT)
713 format = BRW_SURFACEFORMAT_R8_SSCALED;
714 }
715
716 switch (input->glarray->Size) {
717 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
718 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
719 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
720 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
721 : BRW_VE1_COMPONENT_STORE_1_FLT;
722 break;
723 }
724
725 if (brw->gen >= 6) {
726 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
727 GEN6_VE0_VALID |
728 (format << BRW_VE0_FORMAT_SHIFT) |
729 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
730 } else {
731 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
732 BRW_VE0_VALID |
733 (format << BRW_VE0_FORMAT_SHIFT) |
734 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
735 }
736
737 if (brw->gen >= 5)
738 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
739 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
740 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
741 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
742 else
743 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
744 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
745 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
746 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
747 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
748 }
749
750 if (brw->gen >= 6 && gen6_edgeflag_input) {
751 uint32_t format = get_surface_type(brw, gen6_edgeflag_input->glarray);
752
753 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
754 GEN6_VE0_VALID |
755 GEN6_VE0_EDGE_FLAG_ENABLE |
756 (format << BRW_VE0_FORMAT_SHIFT) |
757 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
758 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
759 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
760 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
761 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
762 }
763
764 if (brw->vs.prog_data->uses_vertexid) {
765 uint32_t dw0 = 0, dw1 = 0;
766
767 dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
768 (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
769 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
770 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
771
772 if (brw->gen >= 6) {
773 dw0 |= GEN6_VE0_VALID;
774 } else {
775 dw0 |= BRW_VE0_VALID;
776 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
777 }
778
779 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
780 * the format is ignored and the value is always int.
781 */
782
783 OUT_BATCH(dw0);
784 OUT_BATCH(dw1);
785 }
786
787 CACHED_BATCH();
788 }
789
790 const struct brw_tracked_state brw_vertices = {
791 .dirty = {
792 .mesa = _NEW_POLYGON,
793 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
794 .cache = CACHE_NEW_VS_PROG,
795 },
796 .emit = brw_emit_vertices,
797 };
798
799 static void brw_upload_indices(struct brw_context *brw)
800 {
801 struct gl_context *ctx = &brw->ctx;
802 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
803 GLuint ib_size;
804 drm_intel_bo *bo = NULL;
805 struct gl_buffer_object *bufferobj;
806 GLuint offset;
807 GLuint ib_type_size;
808
809 if (index_buffer == NULL)
810 return;
811
812 ib_type_size = _mesa_sizeof_type(index_buffer->type);
813 ib_size = ib_type_size * index_buffer->count;
814 bufferobj = index_buffer->obj;
815
816 /* Turn into a proper VBO:
817 */
818 if (!_mesa_is_bufferobj(bufferobj)) {
819
820 /* Get new bufferobj, offset:
821 */
822 intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
823 &bo, &offset);
824 brw->ib.start_vertex_offset = offset / ib_type_size;
825 } else {
826 offset = (GLuint) (unsigned long) index_buffer->ptr;
827
828 /* If the index buffer isn't aligned to its element size, we have to
829 * rebase it into a temporary.
830 */
831 if ((ib_type_size - 1) & offset) {
832 perf_debug("copying index buffer to a temporary to work around "
833 "misaligned offset %d\n", offset);
834
835 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
836 offset,
837 ib_size,
838 GL_MAP_READ_BIT,
839 bufferobj);
840
841 intel_upload_data(brw, map, ib_size, ib_type_size, &bo, &offset);
842 brw->ib.start_vertex_offset = offset / ib_type_size;
843
844 ctx->Driver.UnmapBuffer(ctx, bufferobj);
845 } else {
846 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
847 * the index buffer state when we're just moving the start index
848 * of our drawing.
849 */
850 brw->ib.start_vertex_offset = offset / ib_type_size;
851
852 bo = intel_bufferobj_source(brw,
853 intel_buffer_object(bufferobj),
854 ib_type_size,
855 &offset);
856 drm_intel_bo_reference(bo);
857
858 brw->ib.start_vertex_offset += offset / ib_type_size;
859 }
860 }
861
862 if (brw->ib.bo != bo) {
863 drm_intel_bo_unreference(brw->ib.bo);
864 brw->ib.bo = bo;
865
866 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
867 } else {
868 drm_intel_bo_unreference(bo);
869 }
870
871 if (index_buffer->type != brw->ib.type) {
872 brw->ib.type = index_buffer->type;
873 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
874 }
875 }
876
877 const struct brw_tracked_state brw_indices = {
878 .dirty = {
879 .mesa = 0,
880 .brw = BRW_NEW_INDICES,
881 .cache = 0,
882 },
883 .emit = brw_upload_indices,
884 };
885
886 static void brw_emit_index_buffer(struct brw_context *brw)
887 {
888 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
889 GLuint cut_index_setting;
890
891 if (index_buffer == NULL)
892 return;
893
894 if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
895 cut_index_setting = BRW_CUT_INDEX_ENABLE;
896 } else {
897 cut_index_setting = 0;
898 }
899
900 BEGIN_BATCH(3);
901 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
902 cut_index_setting |
903 get_index_type(index_buffer->type) << 8 |
904 1);
905 OUT_RELOC(brw->ib.bo,
906 I915_GEM_DOMAIN_VERTEX, 0,
907 0);
908 OUT_RELOC(brw->ib.bo,
909 I915_GEM_DOMAIN_VERTEX, 0,
910 brw->ib.bo->size - 1);
911 ADVANCE_BATCH();
912 }
913
914 const struct brw_tracked_state brw_index_buffer = {
915 .dirty = {
916 .mesa = 0,
917 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
918 .cache = 0,
919 },
920 .emit = brw_emit_index_buffer,
921 };