Merge commit 'origin/master' into i965g-restart
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/glheader.h"
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/state.h"
33 #include "main/api_validate.h"
34 #include "main/enums.h"
35
36 #include "brw_draw.h"
37 #include "brw_defines.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40 #include "brw_fallback.h"
41
42 #include "intel_batchbuffer.h"
43 #include "intel_buffer_objects.h"
44 #include "intel_tex.h"
45
46 static GLuint double_types[5] = {
47 0,
48 BRW_SURFACEFORMAT_R64_FLOAT,
49 BRW_SURFACEFORMAT_R64G64_FLOAT,
50 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
51 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
52 };
53
54 static GLuint float_types[5] = {
55 0,
56 BRW_SURFACEFORMAT_R32_FLOAT,
57 BRW_SURFACEFORMAT_R32G32_FLOAT,
58 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
59 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
60 };
61
62 static GLuint uint_types_norm[5] = {
63 0,
64 BRW_SURFACEFORMAT_R32_UNORM,
65 BRW_SURFACEFORMAT_R32G32_UNORM,
66 BRW_SURFACEFORMAT_R32G32B32_UNORM,
67 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
68 };
69
70 static GLuint uint_types_scale[5] = {
71 0,
72 BRW_SURFACEFORMAT_R32_USCALED,
73 BRW_SURFACEFORMAT_R32G32_USCALED,
74 BRW_SURFACEFORMAT_R32G32B32_USCALED,
75 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
76 };
77
78 static GLuint int_types_norm[5] = {
79 0,
80 BRW_SURFACEFORMAT_R32_SNORM,
81 BRW_SURFACEFORMAT_R32G32_SNORM,
82 BRW_SURFACEFORMAT_R32G32B32_SNORM,
83 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
84 };
85
86 static GLuint int_types_scale[5] = {
87 0,
88 BRW_SURFACEFORMAT_R32_SSCALED,
89 BRW_SURFACEFORMAT_R32G32_SSCALED,
90 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
91 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
92 };
93
94 static GLuint ushort_types_norm[5] = {
95 0,
96 BRW_SURFACEFORMAT_R16_UNORM,
97 BRW_SURFACEFORMAT_R16G16_UNORM,
98 BRW_SURFACEFORMAT_R16G16B16_UNORM,
99 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
100 };
101
102 static GLuint ushort_types_scale[5] = {
103 0,
104 BRW_SURFACEFORMAT_R16_USCALED,
105 BRW_SURFACEFORMAT_R16G16_USCALED,
106 BRW_SURFACEFORMAT_R16G16B16_USCALED,
107 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
108 };
109
110 static GLuint short_types_norm[5] = {
111 0,
112 BRW_SURFACEFORMAT_R16_SNORM,
113 BRW_SURFACEFORMAT_R16G16_SNORM,
114 BRW_SURFACEFORMAT_R16G16B16_SNORM,
115 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
116 };
117
118 static GLuint short_types_scale[5] = {
119 0,
120 BRW_SURFACEFORMAT_R16_SSCALED,
121 BRW_SURFACEFORMAT_R16G16_SSCALED,
122 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
123 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
124 };
125
126 static GLuint ubyte_types_norm[5] = {
127 0,
128 BRW_SURFACEFORMAT_R8_UNORM,
129 BRW_SURFACEFORMAT_R8G8_UNORM,
130 BRW_SURFACEFORMAT_R8G8B8_UNORM,
131 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
132 };
133
134 static GLuint ubyte_types_scale[5] = {
135 0,
136 BRW_SURFACEFORMAT_R8_USCALED,
137 BRW_SURFACEFORMAT_R8G8_USCALED,
138 BRW_SURFACEFORMAT_R8G8B8_USCALED,
139 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
140 };
141
142 static GLuint byte_types_norm[5] = {
143 0,
144 BRW_SURFACEFORMAT_R8_SNORM,
145 BRW_SURFACEFORMAT_R8G8_SNORM,
146 BRW_SURFACEFORMAT_R8G8B8_SNORM,
147 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
148 };
149
150 static GLuint byte_types_scale[5] = {
151 0,
152 BRW_SURFACEFORMAT_R8_SSCALED,
153 BRW_SURFACEFORMAT_R8G8_SSCALED,
154 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
155 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
156 };
157
158
159 /**
160 * Given vertex array type/size/format/normalized info, return
161 * the appopriate hardware surface type.
162 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
163 */
164 static GLuint get_surface_type( GLenum type, GLuint size,
165 GLenum format, GLboolean normalized )
166 {
167 if (INTEL_DEBUG & DEBUG_VERTS)
168 _mesa_printf("type %s size %d normalized %d\n",
169 _mesa_lookup_enum_by_nr(type), size, normalized);
170
171 if (normalized) {
172 switch (type) {
173 case GL_DOUBLE: return double_types[size];
174 case GL_FLOAT: return float_types[size];
175 case GL_INT: return int_types_norm[size];
176 case GL_SHORT: return short_types_norm[size];
177 case GL_BYTE: return byte_types_norm[size];
178 case GL_UNSIGNED_INT: return uint_types_norm[size];
179 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
180 case GL_UNSIGNED_BYTE:
181 if (format == GL_BGRA) {
182 /* See GL_EXT_vertex_array_bgra */
183 assert(size == 4);
184 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
185 }
186 else {
187 return ubyte_types_norm[size];
188 }
189 default: assert(0); return 0;
190 }
191 }
192 else {
193 assert(format == GL_RGBA); /* sanity check */
194 switch (type) {
195 case GL_DOUBLE: return double_types[size];
196 case GL_FLOAT: return float_types[size];
197 case GL_INT: return int_types_scale[size];
198 case GL_SHORT: return short_types_scale[size];
199 case GL_BYTE: return byte_types_scale[size];
200 case GL_UNSIGNED_INT: return uint_types_scale[size];
201 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
202 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
203 default: assert(0); return 0;
204 }
205 }
206 }
207
208
209 static GLuint get_size( GLenum type )
210 {
211 switch (type) {
212 case GL_DOUBLE: return sizeof(GLdouble);
213 case GL_FLOAT: return sizeof(GLfloat);
214 case GL_INT: return sizeof(GLint);
215 case GL_SHORT: return sizeof(GLshort);
216 case GL_BYTE: return sizeof(GLbyte);
217 case GL_UNSIGNED_INT: return sizeof(GLuint);
218 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
219 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
220 default: return 0;
221 }
222 }
223
224 static GLuint get_index_type(GLenum type)
225 {
226 switch (type) {
227 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
228 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
229 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
230 default: assert(0); return 0;
231 }
232 }
233
234 static void wrap_buffers( struct brw_context *brw,
235 GLuint size )
236 {
237 if (size < BRW_UPLOAD_INIT_SIZE)
238 size = BRW_UPLOAD_INIT_SIZE;
239
240 brw->vb.upload.offset = 0;
241
242 if (brw->vb.upload.bo != NULL)
243 dri_bo_unreference(brw->vb.upload.bo);
244 brw->vb.upload.bo = dri_bo_alloc(brw->intel.bufmgr, "temporary VBO",
245 size, 1);
246 }
247
248 static void get_space( struct brw_context *brw,
249 GLuint size,
250 dri_bo **bo_return,
251 GLuint *offset_return )
252 {
253 size = ALIGN(size, 64);
254
255 if (brw->vb.upload.bo == NULL ||
256 brw->vb.upload.offset + size > brw->vb.upload.bo->size) {
257 wrap_buffers(brw, size);
258 }
259
260 assert(*bo_return == NULL);
261 dri_bo_reference(brw->vb.upload.bo);
262 *bo_return = brw->vb.upload.bo;
263 *offset_return = brw->vb.upload.offset;
264 brw->vb.upload.offset += size;
265 }
266
267 static void
268 copy_array_to_vbo_array( struct brw_context *brw,
269 struct brw_vertex_element *element,
270 GLuint dst_stride)
271 {
272 struct intel_context *intel = &brw->intel;
273 GLuint size = element->count * dst_stride;
274
275 get_space(brw, size, &element->bo, &element->offset);
276
277 if (element->glarray->StrideB == 0) {
278 assert(element->count == 1);
279 element->stride = 0;
280 } else {
281 element->stride = dst_stride;
282 }
283
284 if (dst_stride == element->glarray->StrideB) {
285 if (intel->intelScreen->kernel_exec_fencing) {
286 drm_intel_gem_bo_map_gtt(element->bo);
287 memcpy((char *)element->bo->virtual + element->offset,
288 element->glarray->Ptr, size);
289 drm_intel_gem_bo_unmap_gtt(element->bo);
290 } else {
291 dri_bo_subdata(element->bo,
292 element->offset,
293 size,
294 element->glarray->Ptr);
295 }
296 } else {
297 char *dest;
298 const unsigned char *src = element->glarray->Ptr;
299 int i;
300
301 if (intel->intelScreen->kernel_exec_fencing) {
302 drm_intel_gem_bo_map_gtt(element->bo);
303 dest = element->bo->virtual;
304 dest += element->offset;
305
306 for (i = 0; i < element->count; i++) {
307 memcpy(dest, src, dst_stride);
308 src += element->glarray->StrideB;
309 dest += dst_stride;
310 }
311
312 drm_intel_gem_bo_unmap_gtt(element->bo);
313 } else {
314 void *data;
315
316 data = _mesa_malloc(dst_stride * element->count);
317 dest = data;
318 for (i = 0; i < element->count; i++) {
319 memcpy(dest, src, dst_stride);
320 src += element->glarray->StrideB;
321 dest += dst_stride;
322 }
323
324 dri_bo_subdata(element->bo,
325 element->offset,
326 size,
327 data);
328
329 _mesa_free(data);
330 }
331 }
332 }
333
334 static void brw_prepare_vertices(struct brw_context *brw)
335 {
336 GLcontext *ctx = &brw->intel.ctx;
337 struct intel_context *intel = intel_context(ctx);
338 GLbitfield vs_inputs = brw->vs.prog_data->inputs_read;
339 GLuint i;
340 const unsigned char *ptr = NULL;
341 GLuint interleave = 0;
342 unsigned int min_index = brw->vb.min_index;
343 unsigned int max_index = brw->vb.max_index;
344
345 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
346 GLuint nr_uploads = 0;
347
348 /* First build an array of pointers to ve's in vb.inputs_read
349 */
350 if (0)
351 _mesa_printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
352
353 /* Accumulate the list of enabled arrays. */
354 brw->vb.nr_enabled = 0;
355 while (vs_inputs) {
356 GLuint i = _mesa_ffsll(vs_inputs) - 1;
357 struct brw_vertex_element *input = &brw->vb.inputs[i];
358
359 vs_inputs &= ~(1 << i);
360 brw->vb.enabled[brw->vb.nr_enabled++] = input;
361 }
362
363 /* XXX: In the rare cases where this happens we fallback all
364 * the way to software rasterization, although a tnl fallback
365 * would be sufficient. I don't know of *any* real world
366 * cases with > 17 vertex attributes enabled, so it probably
367 * isn't an issue at this point.
368 */
369 if (brw->vb.nr_enabled >= BRW_VEP_MAX) {
370 intel->Fallback = GL_TRUE; /* boolean, not bitfield */
371 return;
372 }
373
374 for (i = 0; i < brw->vb.nr_enabled; i++) {
375 struct brw_vertex_element *input = brw->vb.enabled[i];
376
377 input->element_size = get_size(input->glarray->Type) * input->glarray->Size;
378
379 if (_mesa_is_bufferobj(input->glarray->BufferObj)) {
380 struct intel_buffer_object *intel_buffer =
381 intel_buffer_object(input->glarray->BufferObj);
382
383 /* Named buffer object: Just reference its contents directly. */
384 dri_bo_unreference(input->bo);
385 input->bo = intel_bufferobj_buffer(intel, intel_buffer,
386 INTEL_READ);
387 dri_bo_reference(input->bo);
388 input->offset = (unsigned long)input->glarray->Ptr;
389 input->stride = input->glarray->StrideB;
390 input->count = input->glarray->_MaxElement;
391
392 /* This is a common place to reach if the user mistakenly supplies
393 * a pointer in place of a VBO offset. If we just let it go through,
394 * we may end up dereferencing a pointer beyond the bounds of the
395 * GTT. We would hope that the VBO's max_index would save us, but
396 * Mesa appears to hand us min/max values not clipped to the
397 * array object's _MaxElement, and _MaxElement frequently appears
398 * to be wrong anyway.
399 *
400 * The VBO spec allows application termination in this case, and it's
401 * probably a service to the poor programmer to do so rather than
402 * trying to just not render.
403 */
404 assert(input->offset < input->bo->size);
405 } else {
406 input->count = input->glarray->StrideB ? max_index + 1 - min_index : 1;
407 if (input->bo != NULL) {
408 /* Already-uploaded vertex data is present from a previous
409 * prepare_vertices, but we had to re-validate state due to
410 * check_aperture failing and a new batch being produced.
411 */
412 continue;
413 }
414
415 /* Queue the buffer object up to be uploaded in the next pass,
416 * when we've decided if we're doing interleaved or not.
417 */
418 if (input->attrib == VERT_ATTRIB_POS) {
419 /* Position array not properly enabled:
420 */
421 if (input->glarray->StrideB == 0) {
422 intel->Fallback = GL_TRUE; /* boolean, not bitfield */
423 return;
424 }
425
426 interleave = input->glarray->StrideB;
427 ptr = input->glarray->Ptr;
428 }
429 else if (interleave != input->glarray->StrideB ||
430 (const unsigned char *)input->glarray->Ptr - ptr < 0 ||
431 (const unsigned char *)input->glarray->Ptr - ptr > interleave)
432 {
433 interleave = 0;
434 }
435
436 upload[nr_uploads++] = input;
437
438 /* We rebase drawing to start at element zero only when
439 * varyings are not in vbos, which means we can end up
440 * uploading non-varying arrays (stride != 0) when min_index
441 * is zero. This doesn't matter as the amount to upload is
442 * the same for these arrays whether the draw call is rebased
443 * or not - we just have to upload the one element.
444 */
445 assert(min_index == 0 || input->glarray->StrideB == 0);
446 }
447 }
448
449 /* Handle any arrays to be uploaded. */
450 if (nr_uploads > 1 && interleave && interleave <= 256) {
451 /* All uploads are interleaved, so upload the arrays together as
452 * interleaved. First, upload the contents and set up upload[0].
453 */
454 copy_array_to_vbo_array(brw, upload[0], interleave);
455
456 for (i = 1; i < nr_uploads; i++) {
457 /* Then, just point upload[i] at upload[0]'s buffer. */
458 upload[i]->stride = interleave;
459 upload[i]->offset = upload[0]->offset +
460 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
461 upload[i]->bo = upload[0]->bo;
462 dri_bo_reference(upload[i]->bo);
463 }
464 }
465 else {
466 /* Upload non-interleaved arrays */
467 for (i = 0; i < nr_uploads; i++) {
468 copy_array_to_vbo_array(brw, upload[i], upload[i]->element_size);
469 }
470 }
471
472 brw_prepare_query_begin(brw);
473
474 for (i = 0; i < brw->vb.nr_enabled; i++) {
475 struct brw_vertex_element *input = brw->vb.enabled[i];
476
477 brw_add_validated_bo(brw, input->bo);
478 }
479 }
480
481 static void brw_emit_vertices(struct brw_context *brw)
482 {
483 GLcontext *ctx = &brw->intel.ctx;
484 struct intel_context *intel = intel_context(ctx);
485 GLuint i;
486
487 brw_emit_query_begin(brw);
488
489 /* If the VS doesn't read any inputs (calculating vertex position from
490 * a state variable for some reason, for example), emit a single pad
491 * VERTEX_ELEMENT struct and bail.
492 *
493 * The stale VB state stays in place, but they don't do anything unless
494 * a VE loads from them.
495 */
496 if (brw->vb.nr_enabled == 0) {
497 BEGIN_BATCH(3, IGNORE_CLIPRECTS);
498 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | 1);
499 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
500 BRW_VE0_VALID |
501 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
502 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
503 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
504 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
505 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
506 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
507 ADVANCE_BATCH();
508 return;
509 }
510
511 /* Now emit VB and VEP state packets.
512 *
513 * This still defines a hardware VB for each input, even if they
514 * are interleaved or from the same VBO. TBD if this makes a
515 * performance difference.
516 */
517 BEGIN_BATCH(1 + brw->vb.nr_enabled * 4, IGNORE_CLIPRECTS);
518 OUT_BATCH((CMD_VERTEX_BUFFER << 16) |
519 ((1 + brw->vb.nr_enabled * 4) - 2));
520
521 for (i = 0; i < brw->vb.nr_enabled; i++) {
522 struct brw_vertex_element *input = brw->vb.enabled[i];
523
524 OUT_BATCH((i << BRW_VB0_INDEX_SHIFT) |
525 BRW_VB0_ACCESS_VERTEXDATA |
526 (input->stride << BRW_VB0_PITCH_SHIFT));
527 OUT_RELOC(input->bo,
528 I915_GEM_DOMAIN_VERTEX, 0,
529 input->offset);
530 if (BRW_IS_IGDNG(brw)) {
531 OUT_RELOC(input->bo,
532 I915_GEM_DOMAIN_VERTEX, 0,
533 input->bo->size - 1);
534 } else
535 OUT_BATCH(input->stride ? input->count : 0);
536 OUT_BATCH(0); /* Instance data step rate */
537 }
538 ADVANCE_BATCH();
539
540 BEGIN_BATCH(1 + brw->vb.nr_enabled * 2, IGNORE_CLIPRECTS);
541 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | ((1 + brw->vb.nr_enabled * 2) - 2));
542 for (i = 0; i < brw->vb.nr_enabled; i++) {
543 struct brw_vertex_element *input = brw->vb.enabled[i];
544 uint32_t format = get_surface_type(input->glarray->Type,
545 input->glarray->Size,
546 input->glarray->Format,
547 input->glarray->Normalized);
548 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
549 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
550 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
551 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
552
553 switch (input->glarray->Size) {
554 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
555 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
556 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
557 case 3: comp3 = BRW_VE1_COMPONENT_STORE_1_FLT;
558 break;
559 }
560
561 OUT_BATCH((i << BRW_VE0_INDEX_SHIFT) |
562 BRW_VE0_VALID |
563 (format << BRW_VE0_FORMAT_SHIFT) |
564 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
565
566 if (BRW_IS_IGDNG(brw))
567 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
568 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
569 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
570 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
571 else
572 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
573 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
574 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
575 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
576 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
577 }
578 ADVANCE_BATCH();
579 }
580
581 const struct brw_tracked_state brw_vertices = {
582 .dirty = {
583 .mesa = 0,
584 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
585 .cache = 0,
586 },
587 .prepare = brw_prepare_vertices,
588 .emit = brw_emit_vertices,
589 };
590
591 static void brw_prepare_indices(struct brw_context *brw)
592 {
593 GLcontext *ctx = &brw->intel.ctx;
594 struct intel_context *intel = &brw->intel;
595 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
596 GLuint ib_size;
597 dri_bo *bo = NULL;
598 struct gl_buffer_object *bufferobj;
599 GLuint offset;
600 GLuint ib_type_size;
601
602 if (index_buffer == NULL)
603 return;
604
605 ib_type_size = get_size(index_buffer->type);
606 ib_size = ib_type_size * index_buffer->count;
607 bufferobj = index_buffer->obj;;
608
609 /* Turn into a proper VBO:
610 */
611 if (!_mesa_is_bufferobj(bufferobj)) {
612 brw->ib.start_vertex_offset = 0;
613
614 /* Get new bufferobj, offset:
615 */
616 get_space(brw, ib_size, &bo, &offset);
617
618 /* Straight upload
619 */
620 if (intel->intelScreen->kernel_exec_fencing) {
621 drm_intel_gem_bo_map_gtt(bo);
622 memcpy((char *)bo->virtual + offset, index_buffer->ptr, ib_size);
623 drm_intel_gem_bo_unmap_gtt(bo);
624 } else {
625 dri_bo_subdata(bo, offset, ib_size, index_buffer->ptr);
626 }
627 } else {
628 offset = (GLuint) (unsigned long) index_buffer->ptr;
629 brw->ib.start_vertex_offset = 0;
630
631 /* If the index buffer isn't aligned to its element size, we have to
632 * rebase it into a temporary.
633 */
634 if ((get_size(index_buffer->type) - 1) & offset) {
635 GLubyte *map = ctx->Driver.MapBuffer(ctx,
636 GL_ELEMENT_ARRAY_BUFFER_ARB,
637 GL_DYNAMIC_DRAW_ARB,
638 bufferobj);
639 map += offset;
640
641 get_space(brw, ib_size, &bo, &offset);
642
643 dri_bo_subdata(bo, offset, ib_size, map);
644
645 ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, bufferobj);
646 } else {
647 bo = intel_bufferobj_buffer(intel, intel_buffer_object(bufferobj),
648 INTEL_READ);
649 dri_bo_reference(bo);
650
651 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
652 * the index buffer state when we're just moving the start index
653 * of our drawing.
654 */
655 brw->ib.start_vertex_offset = offset / ib_type_size;
656 offset = 0;
657 ib_size = bo->size;
658 }
659 }
660
661 if (brw->ib.bo != bo ||
662 brw->ib.offset != offset ||
663 brw->ib.size != ib_size)
664 {
665 drm_intel_bo_unreference(brw->ib.bo);
666 brw->ib.bo = bo;
667 brw->ib.offset = offset;
668 brw->ib.size = ib_size;
669
670 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
671 } else {
672 drm_intel_bo_unreference(bo);
673 }
674
675 brw_add_validated_bo(brw, brw->ib.bo);
676 }
677
678 const struct brw_tracked_state brw_indices = {
679 .dirty = {
680 .mesa = 0,
681 .brw = BRW_NEW_INDICES,
682 .cache = 0,
683 },
684 .prepare = brw_prepare_indices,
685 };
686
687 static void brw_emit_index_buffer(struct brw_context *brw)
688 {
689 struct intel_context *intel = &brw->intel;
690 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
691
692 if (index_buffer == NULL)
693 return;
694
695 /* Emit the indexbuffer packet:
696 */
697 {
698 struct brw_indexbuffer ib;
699
700 memset(&ib, 0, sizeof(ib));
701
702 ib.header.bits.opcode = CMD_INDEX_BUFFER;
703 ib.header.bits.length = sizeof(ib)/4 - 2;
704 ib.header.bits.index_format = get_index_type(index_buffer->type);
705 ib.header.bits.cut_index_enable = 0;
706
707 BEGIN_BATCH(4, IGNORE_CLIPRECTS);
708 OUT_BATCH( ib.header.dword );
709 OUT_RELOC(brw->ib.bo,
710 I915_GEM_DOMAIN_VERTEX, 0,
711 brw->ib.offset);
712 OUT_RELOC(brw->ib.bo,
713 I915_GEM_DOMAIN_VERTEX, 0,
714 brw->ib.offset + brw->ib.size - 1);
715 OUT_BATCH( 0 );
716 ADVANCE_BATCH();
717 }
718 }
719
720 const struct brw_tracked_state brw_index_buffer = {
721 .dirty = {
722 .mesa = 0,
723 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
724 .cache = 0,
725 },
726 .emit = brw_emit_index_buffer,
727 };