i965/draw: Properly handle rounding when dividing by InstanceDivisor
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "main/bufferobj.h"
27 #include "main/context.h"
28 #include "main/enums.h"
29 #include "main/macros.h"
30 #include "main/glformats.h"
31
32 #include "brw_draw.h"
33 #include "brw_defines.h"
34 #include "brw_context.h"
35 #include "brw_state.h"
36
37 #include "intel_batchbuffer.h"
38 #include "intel_buffer_objects.h"
39
40 static const GLuint double_types_float[5] = {
41 0,
42 BRW_SURFACEFORMAT_R64_FLOAT,
43 BRW_SURFACEFORMAT_R64G64_FLOAT,
44 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
45 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
46 };
47
48 static const GLuint double_types_passthru[5] = {
49 0,
50 BRW_SURFACEFORMAT_R64_PASSTHRU,
51 BRW_SURFACEFORMAT_R64G64_PASSTHRU,
52 BRW_SURFACEFORMAT_R64G64B64_PASSTHRU,
53 BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU
54 };
55
56 static const GLuint float_types[5] = {
57 0,
58 BRW_SURFACEFORMAT_R32_FLOAT,
59 BRW_SURFACEFORMAT_R32G32_FLOAT,
60 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
61 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
62 };
63
64 static const GLuint half_float_types[5] = {
65 0,
66 BRW_SURFACEFORMAT_R16_FLOAT,
67 BRW_SURFACEFORMAT_R16G16_FLOAT,
68 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
69 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
70 };
71
72 static const GLuint fixed_point_types[5] = {
73 0,
74 BRW_SURFACEFORMAT_R32_SFIXED,
75 BRW_SURFACEFORMAT_R32G32_SFIXED,
76 BRW_SURFACEFORMAT_R32G32B32_SFIXED,
77 BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
78 };
79
80 static const GLuint uint_types_direct[5] = {
81 0,
82 BRW_SURFACEFORMAT_R32_UINT,
83 BRW_SURFACEFORMAT_R32G32_UINT,
84 BRW_SURFACEFORMAT_R32G32B32_UINT,
85 BRW_SURFACEFORMAT_R32G32B32A32_UINT
86 };
87
88 static const GLuint uint_types_norm[5] = {
89 0,
90 BRW_SURFACEFORMAT_R32_UNORM,
91 BRW_SURFACEFORMAT_R32G32_UNORM,
92 BRW_SURFACEFORMAT_R32G32B32_UNORM,
93 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
94 };
95
96 static const GLuint uint_types_scale[5] = {
97 0,
98 BRW_SURFACEFORMAT_R32_USCALED,
99 BRW_SURFACEFORMAT_R32G32_USCALED,
100 BRW_SURFACEFORMAT_R32G32B32_USCALED,
101 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
102 };
103
104 static const GLuint int_types_direct[5] = {
105 0,
106 BRW_SURFACEFORMAT_R32_SINT,
107 BRW_SURFACEFORMAT_R32G32_SINT,
108 BRW_SURFACEFORMAT_R32G32B32_SINT,
109 BRW_SURFACEFORMAT_R32G32B32A32_SINT
110 };
111
112 static const GLuint int_types_norm[5] = {
113 0,
114 BRW_SURFACEFORMAT_R32_SNORM,
115 BRW_SURFACEFORMAT_R32G32_SNORM,
116 BRW_SURFACEFORMAT_R32G32B32_SNORM,
117 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
118 };
119
120 static const GLuint int_types_scale[5] = {
121 0,
122 BRW_SURFACEFORMAT_R32_SSCALED,
123 BRW_SURFACEFORMAT_R32G32_SSCALED,
124 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
125 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
126 };
127
128 static const GLuint ushort_types_direct[5] = {
129 0,
130 BRW_SURFACEFORMAT_R16_UINT,
131 BRW_SURFACEFORMAT_R16G16_UINT,
132 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
133 BRW_SURFACEFORMAT_R16G16B16A16_UINT
134 };
135
136 static const GLuint ushort_types_norm[5] = {
137 0,
138 BRW_SURFACEFORMAT_R16_UNORM,
139 BRW_SURFACEFORMAT_R16G16_UNORM,
140 BRW_SURFACEFORMAT_R16G16B16_UNORM,
141 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
142 };
143
144 static const GLuint ushort_types_scale[5] = {
145 0,
146 BRW_SURFACEFORMAT_R16_USCALED,
147 BRW_SURFACEFORMAT_R16G16_USCALED,
148 BRW_SURFACEFORMAT_R16G16B16_USCALED,
149 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
150 };
151
152 static const GLuint short_types_direct[5] = {
153 0,
154 BRW_SURFACEFORMAT_R16_SINT,
155 BRW_SURFACEFORMAT_R16G16_SINT,
156 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
157 BRW_SURFACEFORMAT_R16G16B16A16_SINT
158 };
159
160 static const GLuint short_types_norm[5] = {
161 0,
162 BRW_SURFACEFORMAT_R16_SNORM,
163 BRW_SURFACEFORMAT_R16G16_SNORM,
164 BRW_SURFACEFORMAT_R16G16B16_SNORM,
165 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
166 };
167
168 static const GLuint short_types_scale[5] = {
169 0,
170 BRW_SURFACEFORMAT_R16_SSCALED,
171 BRW_SURFACEFORMAT_R16G16_SSCALED,
172 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
173 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
174 };
175
176 static const GLuint ubyte_types_direct[5] = {
177 0,
178 BRW_SURFACEFORMAT_R8_UINT,
179 BRW_SURFACEFORMAT_R8G8_UINT,
180 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
181 BRW_SURFACEFORMAT_R8G8B8A8_UINT
182 };
183
184 static const GLuint ubyte_types_norm[5] = {
185 0,
186 BRW_SURFACEFORMAT_R8_UNORM,
187 BRW_SURFACEFORMAT_R8G8_UNORM,
188 BRW_SURFACEFORMAT_R8G8B8_UNORM,
189 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
190 };
191
192 static const GLuint ubyte_types_scale[5] = {
193 0,
194 BRW_SURFACEFORMAT_R8_USCALED,
195 BRW_SURFACEFORMAT_R8G8_USCALED,
196 BRW_SURFACEFORMAT_R8G8B8_USCALED,
197 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
198 };
199
200 static const GLuint byte_types_direct[5] = {
201 0,
202 BRW_SURFACEFORMAT_R8_SINT,
203 BRW_SURFACEFORMAT_R8G8_SINT,
204 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
205 BRW_SURFACEFORMAT_R8G8B8A8_SINT
206 };
207
208 static const GLuint byte_types_norm[5] = {
209 0,
210 BRW_SURFACEFORMAT_R8_SNORM,
211 BRW_SURFACEFORMAT_R8G8_SNORM,
212 BRW_SURFACEFORMAT_R8G8B8_SNORM,
213 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
214 };
215
216 static const GLuint byte_types_scale[5] = {
217 0,
218 BRW_SURFACEFORMAT_R8_SSCALED,
219 BRW_SURFACEFORMAT_R8G8_SSCALED,
220 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
221 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
222 };
223
224 static GLuint
225 double_types(struct brw_context *brw,
226 int size,
227 GLboolean doubles)
228 {
229 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
230 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
231 * 64-bit components are stored in the URB without any conversion."
232 * Also included on BDW PRM, Volume 7, page 470, table "Source Element
233 * Formats Supported in VF Unit"
234 * Previous PRMs don't include those references.
235 */
236 return (brw->gen >= 8 && doubles
237 ? double_types_passthru[size]
238 : double_types_float[size]);
239 }
240
241 /**
242 * Given vertex array type/size/format/normalized info, return
243 * the appopriate hardware surface type.
244 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
245 */
246 unsigned
247 brw_get_vertex_surface_type(struct brw_context *brw,
248 const struct gl_client_array *glarray)
249 {
250 int size = glarray->Size;
251
252 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
253 fprintf(stderr, "type %s size %d normalized %d\n",
254 _mesa_enum_to_string(glarray->Type),
255 glarray->Size, glarray->Normalized);
256
257 if (glarray->Integer) {
258 assert(glarray->Format == GL_RGBA); /* sanity check */
259 switch (glarray->Type) {
260 case GL_INT: return int_types_direct[size];
261 case GL_SHORT: return short_types_direct[size];
262 case GL_BYTE: return byte_types_direct[size];
263 case GL_UNSIGNED_INT: return uint_types_direct[size];
264 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
265 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
266 default: unreachable("not reached");
267 }
268 } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
269 return BRW_SURFACEFORMAT_R11G11B10_FLOAT;
270 } else if (glarray->Normalized) {
271 switch (glarray->Type) {
272 case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
273 case GL_FLOAT: return float_types[size];
274 case GL_HALF_FLOAT: return half_float_types[size];
275 case GL_INT: return int_types_norm[size];
276 case GL_SHORT: return short_types_norm[size];
277 case GL_BYTE: return byte_types_norm[size];
278 case GL_UNSIGNED_INT: return uint_types_norm[size];
279 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
280 case GL_UNSIGNED_BYTE:
281 if (glarray->Format == GL_BGRA) {
282 /* See GL_EXT_vertex_array_bgra */
283 assert(size == 4);
284 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
285 }
286 else {
287 return ubyte_types_norm[size];
288 }
289 case GL_FIXED:
290 if (brw->gen >= 8 || brw->is_haswell)
291 return fixed_point_types[size];
292
293 /* This produces GL_FIXED inputs as values between INT32_MIN and
294 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
295 */
296 return int_types_scale[size];
297 /* See GL_ARB_vertex_type_2_10_10_10_rev.
298 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
299 * like to use here, so upload everything as UINT and fix
300 * it in the shader
301 */
302 case GL_INT_2_10_10_10_REV:
303 assert(size == 4);
304 if (brw->gen >= 8 || brw->is_haswell) {
305 return glarray->Format == GL_BGRA
306 ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
307 : BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
308 }
309 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
310 case GL_UNSIGNED_INT_2_10_10_10_REV:
311 assert(size == 4);
312 if (brw->gen >= 8 || brw->is_haswell) {
313 return glarray->Format == GL_BGRA
314 ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
315 : BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
316 }
317 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
318 default: unreachable("not reached");
319 }
320 }
321 else {
322 /* See GL_ARB_vertex_type_2_10_10_10_rev.
323 * W/A: the hardware doesn't really support the formats we'd
324 * like to use here, so upload everything as UINT and fix
325 * it in the shader
326 */
327 if (glarray->Type == GL_INT_2_10_10_10_REV) {
328 assert(size == 4);
329 if (brw->gen >= 8 || brw->is_haswell) {
330 return glarray->Format == GL_BGRA
331 ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
332 : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
333 }
334 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
335 } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
336 assert(size == 4);
337 if (brw->gen >= 8 || brw->is_haswell) {
338 return glarray->Format == GL_BGRA
339 ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
340 : BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
341 }
342 return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
343 }
344 assert(glarray->Format == GL_RGBA); /* sanity check */
345 switch (glarray->Type) {
346 case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
347 case GL_FLOAT: return float_types[size];
348 case GL_HALF_FLOAT: return half_float_types[size];
349 case GL_INT: return int_types_scale[size];
350 case GL_SHORT: return short_types_scale[size];
351 case GL_BYTE: return byte_types_scale[size];
352 case GL_UNSIGNED_INT: return uint_types_scale[size];
353 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
354 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
355 case GL_FIXED:
356 if (brw->gen >= 8 || brw->is_haswell)
357 return fixed_point_types[size];
358
359 /* This produces GL_FIXED inputs as values between INT32_MIN and
360 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
361 */
362 return int_types_scale[size];
363 default: unreachable("not reached");
364 }
365 }
366 }
367
368 static void
369 copy_array_to_vbo_array(struct brw_context *brw,
370 struct brw_vertex_element *element,
371 int min, int max,
372 struct brw_vertex_buffer *buffer,
373 GLuint dst_stride)
374 {
375 const int src_stride = element->glarray->StrideB;
376
377 /* If the source stride is zero, we just want to upload the current
378 * attribute once and set the buffer's stride to 0. There's no need
379 * to replicate it out.
380 */
381 if (src_stride == 0) {
382 intel_upload_data(brw, element->glarray->Ptr,
383 element->glarray->_ElementSize,
384 element->glarray->_ElementSize,
385 &buffer->bo, &buffer->offset);
386
387 buffer->stride = 0;
388 return;
389 }
390
391 const unsigned char *src = element->glarray->Ptr + min * src_stride;
392 int count = max - min + 1;
393 GLuint size = count * dst_stride;
394 uint8_t *dst = intel_upload_space(brw, size, dst_stride,
395 &buffer->bo, &buffer->offset);
396
397 if (dst_stride == src_stride) {
398 memcpy(dst, src, size);
399 } else {
400 while (count--) {
401 memcpy(dst, src, dst_stride);
402 src += src_stride;
403 dst += dst_stride;
404 }
405 }
406 buffer->stride = dst_stride;
407 }
408
409 void
410 brw_prepare_vertices(struct brw_context *brw)
411 {
412 struct gl_context *ctx = &brw->ctx;
413 /* BRW_NEW_VS_PROG_DATA */
414 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
415 const unsigned char *ptr = NULL;
416 GLuint interleaved = 0;
417 unsigned int min_index = brw->vb.min_index + brw->basevertex;
418 unsigned int max_index = brw->vb.max_index + brw->basevertex;
419 unsigned i;
420 int delta, j;
421
422 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
423 GLuint nr_uploads = 0;
424
425 /* _NEW_POLYGON
426 *
427 * On gen6+, edge flags don't end up in the VUE (either in or out of the
428 * VS). Instead, they're uploaded as the last vertex element, and the data
429 * is passed sideband through the fixed function units. So, we need to
430 * prepare the vertex buffer for it, but it's not present in inputs_read.
431 */
432 if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
433 ctx->Polygon.BackMode != GL_FILL)) {
434 vs_inputs |= VERT_BIT_EDGEFLAG;
435 }
436
437 if (0)
438 fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
439
440 /* Accumulate the list of enabled arrays. */
441 brw->vb.nr_enabled = 0;
442 while (vs_inputs) {
443 GLuint index = ffsll(vs_inputs) - 1;
444 struct brw_vertex_element *input = &brw->vb.inputs[index];
445
446 vs_inputs &= ~BITFIELD64_BIT(index);
447 brw->vb.enabled[brw->vb.nr_enabled++] = input;
448 }
449
450 if (brw->vb.nr_enabled == 0)
451 return;
452
453 if (brw->vb.nr_buffers)
454 return;
455
456 /* The range of data in a given buffer represented as [min, max) */
457 struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
458 uint32_t buffer_range_start[VERT_ATTRIB_MAX];
459 uint32_t buffer_range_end[VERT_ATTRIB_MAX];
460
461 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
462 struct brw_vertex_element *input = brw->vb.enabled[i];
463 const struct gl_client_array *glarray = input->glarray;
464
465 if (_mesa_is_bufferobj(glarray->BufferObj)) {
466 struct intel_buffer_object *intel_buffer =
467 intel_buffer_object(glarray->BufferObj);
468
469 const uint32_t offset = (uintptr_t)glarray->Ptr;
470
471 /* Start with the worst case */
472 uint32_t start = 0;
473 uint32_t range = intel_buffer->Base.Size;
474 if (glarray->InstanceDivisor) {
475 if (brw->num_instances) {
476 start = offset + glarray->StrideB * brw->baseinstance;
477 range = (glarray->StrideB * ((brw->num_instances - 1) /
478 glarray->InstanceDivisor) +
479 glarray->_ElementSize);
480 }
481 } else {
482 if (brw->vb.index_bounds_valid) {
483 start = offset + min_index * glarray->StrideB;
484 range = (glarray->StrideB * (max_index - min_index) +
485 glarray->_ElementSize);
486 }
487 }
488
489 /* If we have a VB set to be uploaded for this buffer object
490 * already, reuse that VB state so that we emit fewer
491 * relocations.
492 */
493 unsigned k;
494 for (k = 0; k < i; k++) {
495 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
496 if (glarray->BufferObj == other->BufferObj &&
497 glarray->StrideB == other->StrideB &&
498 glarray->InstanceDivisor == other->InstanceDivisor &&
499 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
500 {
501 input->buffer = brw->vb.enabled[k]->buffer;
502 input->offset = glarray->Ptr - other->Ptr;
503
504 buffer_range_start[k] = MIN2(buffer_range_start[k], start);
505 buffer_range_end[k] = MAX2(buffer_range_end[k], start + range);
506 break;
507 }
508 }
509 if (k == i) {
510 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
511
512 /* Named buffer object: Just reference its contents directly. */
513 buffer->offset = offset;
514 buffer->stride = glarray->StrideB;
515 buffer->step_rate = glarray->InstanceDivisor;
516
517 enabled_buffer[j] = intel_buffer;
518 buffer_range_start[j] = start;
519 buffer_range_end[j] = start + range;
520
521 input->buffer = j++;
522 input->offset = 0;
523 }
524
525 /* This is a common place to reach if the user mistakenly supplies
526 * a pointer in place of a VBO offset. If we just let it go through,
527 * we may end up dereferencing a pointer beyond the bounds of the
528 * GTT.
529 *
530 * The VBO spec allows application termination in this case, and it's
531 * probably a service to the poor programmer to do so rather than
532 * trying to just not render.
533 */
534 assert(input->offset < intel_buffer->Base.Size);
535 } else {
536 /* Queue the buffer object up to be uploaded in the next pass,
537 * when we've decided if we're doing interleaved or not.
538 */
539 if (nr_uploads == 0) {
540 interleaved = glarray->StrideB;
541 ptr = glarray->Ptr;
542 }
543 else if (interleaved != glarray->StrideB ||
544 glarray->Ptr < ptr ||
545 (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
546 {
547 /* If our stride is different from the first attribute's stride,
548 * or if the first attribute's stride didn't cover our element,
549 * disable the interleaved upload optimization. The second case
550 * can most commonly occur in cases where there is a single vertex
551 * and, for example, the data is stored on the application's
552 * stack.
553 *
554 * NOTE: This will also disable the optimization in cases where
555 * the data is in a different order than the array indices.
556 * Something like:
557 *
558 * float data[...];
559 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
560 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
561 */
562 interleaved = 0;
563 }
564
565 upload[nr_uploads++] = input;
566 }
567 }
568
569 /* Now that we've set up all of the buffers, we walk through and reference
570 * each of them. We do this late so that we get the right size in each
571 * buffer and don't reference too little data.
572 */
573 for (i = 0; i < j; i++) {
574 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
575 if (buffer->bo)
576 continue;
577
578 const uint32_t start = buffer_range_start[i];
579 const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
580
581 buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start, range);
582 drm_intel_bo_reference(buffer->bo);
583 }
584
585 /* If we need to upload all the arrays, then we can trim those arrays to
586 * only the used elements [min_index, max_index] so long as we adjust all
587 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
588 */
589 brw->vb.start_vertex_bias = 0;
590 delta = min_index;
591 if (nr_uploads == brw->vb.nr_enabled) {
592 brw->vb.start_vertex_bias = -delta;
593 delta = 0;
594 }
595
596 /* Handle any arrays to be uploaded. */
597 if (nr_uploads > 1) {
598 if (interleaved) {
599 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
600 /* All uploads are interleaved, so upload the arrays together as
601 * interleaved. First, upload the contents and set up upload[0].
602 */
603 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
604 buffer, interleaved);
605 buffer->offset -= delta * interleaved;
606
607 for (i = 0; i < nr_uploads; i++) {
608 /* Then, just point upload[i] at upload[0]'s buffer. */
609 upload[i]->offset =
610 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
611 upload[i]->buffer = j;
612 }
613 j++;
614
615 nr_uploads = 0;
616 }
617 }
618 /* Upload non-interleaved arrays */
619 for (i = 0; i < nr_uploads; i++) {
620 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
621 if (upload[i]->glarray->InstanceDivisor == 0) {
622 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
623 buffer, upload[i]->glarray->_ElementSize);
624 } else {
625 /* This is an instanced attribute, since its InstanceDivisor
626 * is not zero. Therefore, its data will be stepped after the
627 * instanced draw has been run InstanceDivisor times.
628 */
629 uint32_t instanced_attr_max_index =
630 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
631 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
632 buffer, upload[i]->glarray->_ElementSize);
633 }
634 buffer->offset -= delta * buffer->stride;
635 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
636 upload[i]->buffer = j++;
637 upload[i]->offset = 0;
638 }
639
640 brw->vb.nr_buffers = j;
641 }
642
643 void
644 brw_prepare_shader_draw_parameters(struct brw_context *brw)
645 {
646 /* For non-indirect draws, upload gl_BaseVertex. */
647 if ((brw->vs.prog_data->uses_basevertex ||
648 brw->vs.prog_data->uses_baseinstance) &&
649 brw->draw.draw_params_bo == NULL) {
650 intel_upload_data(brw, &brw->draw.params, sizeof(brw->draw.params), 4,
651 &brw->draw.draw_params_bo,
652 &brw->draw.draw_params_offset);
653 }
654
655 if (brw->vs.prog_data->uses_drawid) {
656 intel_upload_data(brw, &brw->draw.gl_drawid, sizeof(brw->draw.gl_drawid), 4,
657 &brw->draw.draw_id_bo,
658 &brw->draw.draw_id_offset);
659 }
660 }
661
662 /**
663 * Emit a VERTEX_BUFFER_STATE entry (part of 3DSTATE_VERTEX_BUFFERS).
664 */
665 static uint32_t *
666 emit_vertex_buffer_state(struct brw_context *brw,
667 unsigned buffer_nr,
668 drm_intel_bo *bo,
669 unsigned bo_ending_address,
670 unsigned bo_offset,
671 unsigned stride,
672 unsigned step_rate,
673 uint32_t *__map)
674 {
675 struct gl_context *ctx = &brw->ctx;
676 uint32_t dw0;
677
678 if (brw->gen >= 6) {
679 dw0 = (buffer_nr << GEN6_VB0_INDEX_SHIFT) |
680 (step_rate ? GEN6_VB0_ACCESS_INSTANCEDATA
681 : GEN6_VB0_ACCESS_VERTEXDATA);
682 } else {
683 dw0 = (buffer_nr << BRW_VB0_INDEX_SHIFT) |
684 (step_rate ? BRW_VB0_ACCESS_INSTANCEDATA
685 : BRW_VB0_ACCESS_VERTEXDATA);
686 }
687
688 if (brw->gen >= 7)
689 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
690
691 if (brw->gen == 7)
692 dw0 |= GEN7_MOCS_L3 << 16;
693
694 WARN_ONCE(stride >= (brw->gen >= 5 ? 2048 : 2047),
695 "VBO stride %d too large, bad rendering may occur\n",
696 stride);
697 OUT_BATCH(dw0 | (stride << BRW_VB0_PITCH_SHIFT));
698 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, bo_offset);
699 if (brw->gen >= 5) {
700 OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, bo_ending_address);
701 } else {
702 OUT_BATCH(0);
703 }
704 OUT_BATCH(step_rate);
705
706 return __map;
707 }
708 #define EMIT_VERTEX_BUFFER_STATE(...) __map = emit_vertex_buffer_state(__VA_ARGS__, __map)
709
710 static void
711 brw_emit_vertices(struct brw_context *brw)
712 {
713 GLuint i;
714
715 brw_prepare_vertices(brw);
716 brw_prepare_shader_draw_parameters(brw);
717
718 brw_emit_query_begin(brw);
719
720 unsigned nr_elements = brw->vb.nr_enabled;
721 if (brw->vs.prog_data->uses_vertexid || brw->vs.prog_data->uses_instanceid ||
722 brw->vs.prog_data->uses_basevertex || brw->vs.prog_data->uses_baseinstance)
723 ++nr_elements;
724 if (brw->vs.prog_data->uses_drawid)
725 nr_elements++;
726
727 /* If the VS doesn't read any inputs (calculating vertex position from
728 * a state variable for some reason, for example), emit a single pad
729 * VERTEX_ELEMENT struct and bail.
730 *
731 * The stale VB state stays in place, but they don't do anything unless
732 * a VE loads from them.
733 */
734 if (nr_elements == 0) {
735 BEGIN_BATCH(3);
736 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
737 if (brw->gen >= 6) {
738 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
739 GEN6_VE0_VALID |
740 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
741 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
742 } else {
743 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
744 BRW_VE0_VALID |
745 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
746 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
747 }
748 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
749 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
750 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
751 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
752 ADVANCE_BATCH();
753 return;
754 }
755
756 /* Now emit VB and VEP state packets.
757 */
758
759 const bool uses_draw_params =
760 brw->vs.prog_data->uses_basevertex ||
761 brw->vs.prog_data->uses_baseinstance;
762 const unsigned nr_buffers = brw->vb.nr_buffers +
763 uses_draw_params + brw->vs.prog_data->uses_drawid;
764
765 if (nr_buffers) {
766 if (brw->gen >= 6) {
767 assert(nr_buffers <= 33);
768 } else {
769 assert(nr_buffers <= 17);
770 }
771
772 BEGIN_BATCH(1 + 4 * nr_buffers);
773 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4 * nr_buffers - 1));
774 for (i = 0; i < brw->vb.nr_buffers; i++) {
775 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
776 EMIT_VERTEX_BUFFER_STATE(brw, i, buffer->bo, buffer->bo->size - 1,
777 buffer->offset, buffer->stride,
778 buffer->step_rate);
779
780 }
781
782 if (uses_draw_params) {
783 EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers,
784 brw->draw.draw_params_bo,
785 brw->draw.draw_params_bo->size - 1,
786 brw->draw.draw_params_offset,
787 0, /* stride */
788 0); /* step rate */
789 }
790
791 if (brw->vs.prog_data->uses_drawid) {
792 EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers + 1,
793 brw->draw.draw_id_bo,
794 brw->draw.draw_id_bo->size - 1,
795 brw->draw.draw_id_offset,
796 0, /* stride */
797 0); /* step rate */
798 }
799
800 ADVANCE_BATCH();
801 }
802
803 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
804 * for VertexID/InstanceID.
805 */
806 if (brw->gen >= 6) {
807 assert(nr_elements <= 34);
808 } else {
809 assert(nr_elements <= 18);
810 }
811
812 struct brw_vertex_element *gen6_edgeflag_input = NULL;
813
814 BEGIN_BATCH(1 + nr_elements * 2);
815 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
816 for (i = 0; i < brw->vb.nr_enabled; i++) {
817 struct brw_vertex_element *input = brw->vb.enabled[i];
818 uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
819 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
820 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
821 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
822 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
823
824 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
825 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
826 * of in the VUE. We have to upload it sideband as the last vertex
827 * element according to the B-Spec.
828 */
829 if (brw->gen >= 6) {
830 gen6_edgeflag_input = input;
831 continue;
832 }
833 }
834
835 switch (input->glarray->Size) {
836 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
837 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
838 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
839 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
840 : BRW_VE1_COMPONENT_STORE_1_FLT;
841 break;
842 }
843
844 if (brw->gen >= 6) {
845 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
846 GEN6_VE0_VALID |
847 (format << BRW_VE0_FORMAT_SHIFT) |
848 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
849 } else {
850 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
851 BRW_VE0_VALID |
852 (format << BRW_VE0_FORMAT_SHIFT) |
853 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
854 }
855
856 if (brw->gen >= 5)
857 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
858 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
859 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
860 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
861 else
862 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
863 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
864 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
865 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
866 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
867 }
868
869 if (brw->vs.prog_data->uses_vertexid || brw->vs.prog_data->uses_instanceid ||
870 brw->vs.prog_data->uses_basevertex || brw->vs.prog_data->uses_baseinstance) {
871 uint32_t dw0 = 0, dw1 = 0;
872 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_0;
873 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_0;
874 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_0;
875 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_0;
876
877 if (brw->vs.prog_data->uses_basevertex)
878 comp0 = BRW_VE1_COMPONENT_STORE_SRC;
879
880 if (brw->vs.prog_data->uses_baseinstance)
881 comp1 = BRW_VE1_COMPONENT_STORE_SRC;
882
883 if (brw->vs.prog_data->uses_vertexid)
884 comp2 = BRW_VE1_COMPONENT_STORE_VID;
885
886 if (brw->vs.prog_data->uses_instanceid)
887 comp3 = BRW_VE1_COMPONENT_STORE_IID;
888
889 dw1 = (comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
890 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
891 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
892 (comp3 << BRW_VE1_COMPONENT_3_SHIFT);
893
894 if (brw->gen >= 6) {
895 dw0 |= GEN6_VE0_VALID |
896 brw->vb.nr_buffers << GEN6_VE0_INDEX_SHIFT |
897 BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
898 } else {
899 dw0 |= BRW_VE0_VALID |
900 brw->vb.nr_buffers << BRW_VE0_INDEX_SHIFT |
901 BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
902 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
903 }
904
905 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
906 * the format is ignored and the value is always int.
907 */
908
909 OUT_BATCH(dw0);
910 OUT_BATCH(dw1);
911 }
912
913 if (brw->vs.prog_data->uses_drawid) {
914 uint32_t dw0 = 0, dw1 = 0;
915
916 dw1 = (BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
917 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
918 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
919 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT);
920
921 if (brw->gen >= 6) {
922 dw0 |= GEN6_VE0_VALID |
923 ((brw->vb.nr_buffers + 1) << GEN6_VE0_INDEX_SHIFT) |
924 (BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
925 } else {
926 dw0 |= BRW_VE0_VALID |
927 ((brw->vb.nr_buffers + 1) << BRW_VE0_INDEX_SHIFT) |
928 (BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
929
930 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
931 }
932
933 OUT_BATCH(dw0);
934 OUT_BATCH(dw1);
935 }
936
937 if (brw->gen >= 6 && gen6_edgeflag_input) {
938 uint32_t format =
939 brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
940
941 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
942 GEN6_VE0_VALID |
943 GEN6_VE0_EDGE_FLAG_ENABLE |
944 (format << BRW_VE0_FORMAT_SHIFT) |
945 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
946 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
947 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
948 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
949 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
950 }
951
952 ADVANCE_BATCH();
953 }
954
955 const struct brw_tracked_state brw_vertices = {
956 .dirty = {
957 .mesa = _NEW_POLYGON,
958 .brw = BRW_NEW_BATCH |
959 BRW_NEW_BLORP |
960 BRW_NEW_VERTICES |
961 BRW_NEW_VS_PROG_DATA,
962 },
963 .emit = brw_emit_vertices,
964 };
965
966 static void
967 brw_upload_indices(struct brw_context *brw)
968 {
969 struct gl_context *ctx = &brw->ctx;
970 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
971 GLuint ib_size;
972 drm_intel_bo *old_bo = brw->ib.bo;
973 struct gl_buffer_object *bufferobj;
974 GLuint offset;
975 GLuint ib_type_size;
976
977 if (index_buffer == NULL)
978 return;
979
980 ib_type_size = _mesa_sizeof_type(index_buffer->type);
981 ib_size = ib_type_size * index_buffer->count;
982 bufferobj = index_buffer->obj;
983
984 /* Turn into a proper VBO:
985 */
986 if (!_mesa_is_bufferobj(bufferobj)) {
987 /* Get new bufferobj, offset:
988 */
989 intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
990 &brw->ib.bo, &offset);
991 } else {
992 offset = (GLuint) (unsigned long) index_buffer->ptr;
993
994 /* If the index buffer isn't aligned to its element size, we have to
995 * rebase it into a temporary.
996 */
997 if ((ib_type_size - 1) & offset) {
998 perf_debug("copying index buffer to a temporary to work around "
999 "misaligned offset %d\n", offset);
1000
1001 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
1002 offset,
1003 ib_size,
1004 GL_MAP_READ_BIT,
1005 bufferobj,
1006 MAP_INTERNAL);
1007
1008 intel_upload_data(brw, map, ib_size, ib_type_size,
1009 &brw->ib.bo, &offset);
1010
1011 ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
1012 } else {
1013 drm_intel_bo *bo =
1014 intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
1015 offset, ib_size);
1016 if (bo != brw->ib.bo) {
1017 drm_intel_bo_unreference(brw->ib.bo);
1018 brw->ib.bo = bo;
1019 drm_intel_bo_reference(bo);
1020 }
1021 }
1022 }
1023
1024 /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
1025 * the index buffer state when we're just moving the start index
1026 * of our drawing.
1027 */
1028 brw->ib.start_vertex_offset = offset / ib_type_size;
1029
1030 if (brw->ib.bo != old_bo)
1031 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
1032
1033 if (index_buffer->type != brw->ib.type) {
1034 brw->ib.type = index_buffer->type;
1035 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
1036 }
1037 }
1038
1039 const struct brw_tracked_state brw_indices = {
1040 .dirty = {
1041 .mesa = 0,
1042 .brw = BRW_NEW_BLORP |
1043 BRW_NEW_INDICES,
1044 },
1045 .emit = brw_upload_indices,
1046 };
1047
1048 static void
1049 brw_emit_index_buffer(struct brw_context *brw)
1050 {
1051 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
1052 GLuint cut_index_setting;
1053
1054 if (index_buffer == NULL)
1055 return;
1056
1057 if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
1058 cut_index_setting = BRW_CUT_INDEX_ENABLE;
1059 } else {
1060 cut_index_setting = 0;
1061 }
1062
1063 BEGIN_BATCH(3);
1064 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
1065 cut_index_setting |
1066 brw_get_index_type(index_buffer->type) |
1067 1);
1068 OUT_RELOC(brw->ib.bo,
1069 I915_GEM_DOMAIN_VERTEX, 0,
1070 0);
1071 OUT_RELOC(brw->ib.bo,
1072 I915_GEM_DOMAIN_VERTEX, 0,
1073 brw->ib.bo->size - 1);
1074 ADVANCE_BATCH();
1075 }
1076
1077 const struct brw_tracked_state brw_index_buffer = {
1078 .dirty = {
1079 .mesa = 0,
1080 .brw = BRW_NEW_BATCH |
1081 BRW_NEW_BLORP |
1082 BRW_NEW_INDEX_BUFFER,
1083 },
1084 .emit = brw_emit_index_buffer,
1085 };