i965: Set step_rate = 0 for interleaved vertex buffers
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "main/bufferobj.h"
27 #include "main/context.h"
28 #include "main/enums.h"
29 #include "main/macros.h"
30 #include "main/glformats.h"
31
32 #include "brw_draw.h"
33 #include "brw_defines.h"
34 #include "brw_context.h"
35 #include "brw_state.h"
36
37 #include "intel_batchbuffer.h"
38 #include "intel_buffer_objects.h"
39
40 static const GLuint double_types_float[5] = {
41 0,
42 ISL_FORMAT_R64_FLOAT,
43 ISL_FORMAT_R64G64_FLOAT,
44 ISL_FORMAT_R64G64B64_FLOAT,
45 ISL_FORMAT_R64G64B64A64_FLOAT
46 };
47
48 static const GLuint double_types_passthru[5] = {
49 0,
50 ISL_FORMAT_R64_PASSTHRU,
51 ISL_FORMAT_R64G64_PASSTHRU,
52 ISL_FORMAT_R64G64B64_PASSTHRU,
53 ISL_FORMAT_R64G64B64A64_PASSTHRU
54 };
55
56 static const GLuint float_types[5] = {
57 0,
58 ISL_FORMAT_R32_FLOAT,
59 ISL_FORMAT_R32G32_FLOAT,
60 ISL_FORMAT_R32G32B32_FLOAT,
61 ISL_FORMAT_R32G32B32A32_FLOAT
62 };
63
64 static const GLuint half_float_types[5] = {
65 0,
66 ISL_FORMAT_R16_FLOAT,
67 ISL_FORMAT_R16G16_FLOAT,
68 ISL_FORMAT_R16G16B16_FLOAT,
69 ISL_FORMAT_R16G16B16A16_FLOAT
70 };
71
72 static const GLuint fixed_point_types[5] = {
73 0,
74 ISL_FORMAT_R32_SFIXED,
75 ISL_FORMAT_R32G32_SFIXED,
76 ISL_FORMAT_R32G32B32_SFIXED,
77 ISL_FORMAT_R32G32B32A32_SFIXED,
78 };
79
80 static const GLuint uint_types_direct[5] = {
81 0,
82 ISL_FORMAT_R32_UINT,
83 ISL_FORMAT_R32G32_UINT,
84 ISL_FORMAT_R32G32B32_UINT,
85 ISL_FORMAT_R32G32B32A32_UINT
86 };
87
88 static const GLuint uint_types_norm[5] = {
89 0,
90 ISL_FORMAT_R32_UNORM,
91 ISL_FORMAT_R32G32_UNORM,
92 ISL_FORMAT_R32G32B32_UNORM,
93 ISL_FORMAT_R32G32B32A32_UNORM
94 };
95
96 static const GLuint uint_types_scale[5] = {
97 0,
98 ISL_FORMAT_R32_USCALED,
99 ISL_FORMAT_R32G32_USCALED,
100 ISL_FORMAT_R32G32B32_USCALED,
101 ISL_FORMAT_R32G32B32A32_USCALED
102 };
103
104 static const GLuint int_types_direct[5] = {
105 0,
106 ISL_FORMAT_R32_SINT,
107 ISL_FORMAT_R32G32_SINT,
108 ISL_FORMAT_R32G32B32_SINT,
109 ISL_FORMAT_R32G32B32A32_SINT
110 };
111
112 static const GLuint int_types_norm[5] = {
113 0,
114 ISL_FORMAT_R32_SNORM,
115 ISL_FORMAT_R32G32_SNORM,
116 ISL_FORMAT_R32G32B32_SNORM,
117 ISL_FORMAT_R32G32B32A32_SNORM
118 };
119
120 static const GLuint int_types_scale[5] = {
121 0,
122 ISL_FORMAT_R32_SSCALED,
123 ISL_FORMAT_R32G32_SSCALED,
124 ISL_FORMAT_R32G32B32_SSCALED,
125 ISL_FORMAT_R32G32B32A32_SSCALED
126 };
127
128 static const GLuint ushort_types_direct[5] = {
129 0,
130 ISL_FORMAT_R16_UINT,
131 ISL_FORMAT_R16G16_UINT,
132 ISL_FORMAT_R16G16B16_UINT,
133 ISL_FORMAT_R16G16B16A16_UINT
134 };
135
136 static const GLuint ushort_types_norm[5] = {
137 0,
138 ISL_FORMAT_R16_UNORM,
139 ISL_FORMAT_R16G16_UNORM,
140 ISL_FORMAT_R16G16B16_UNORM,
141 ISL_FORMAT_R16G16B16A16_UNORM
142 };
143
144 static const GLuint ushort_types_scale[5] = {
145 0,
146 ISL_FORMAT_R16_USCALED,
147 ISL_FORMAT_R16G16_USCALED,
148 ISL_FORMAT_R16G16B16_USCALED,
149 ISL_FORMAT_R16G16B16A16_USCALED
150 };
151
152 static const GLuint short_types_direct[5] = {
153 0,
154 ISL_FORMAT_R16_SINT,
155 ISL_FORMAT_R16G16_SINT,
156 ISL_FORMAT_R16G16B16_SINT,
157 ISL_FORMAT_R16G16B16A16_SINT
158 };
159
160 static const GLuint short_types_norm[5] = {
161 0,
162 ISL_FORMAT_R16_SNORM,
163 ISL_FORMAT_R16G16_SNORM,
164 ISL_FORMAT_R16G16B16_SNORM,
165 ISL_FORMAT_R16G16B16A16_SNORM
166 };
167
168 static const GLuint short_types_scale[5] = {
169 0,
170 ISL_FORMAT_R16_SSCALED,
171 ISL_FORMAT_R16G16_SSCALED,
172 ISL_FORMAT_R16G16B16_SSCALED,
173 ISL_FORMAT_R16G16B16A16_SSCALED
174 };
175
176 static const GLuint ubyte_types_direct[5] = {
177 0,
178 ISL_FORMAT_R8_UINT,
179 ISL_FORMAT_R8G8_UINT,
180 ISL_FORMAT_R8G8B8_UINT,
181 ISL_FORMAT_R8G8B8A8_UINT
182 };
183
184 static const GLuint ubyte_types_norm[5] = {
185 0,
186 ISL_FORMAT_R8_UNORM,
187 ISL_FORMAT_R8G8_UNORM,
188 ISL_FORMAT_R8G8B8_UNORM,
189 ISL_FORMAT_R8G8B8A8_UNORM
190 };
191
192 static const GLuint ubyte_types_scale[5] = {
193 0,
194 ISL_FORMAT_R8_USCALED,
195 ISL_FORMAT_R8G8_USCALED,
196 ISL_FORMAT_R8G8B8_USCALED,
197 ISL_FORMAT_R8G8B8A8_USCALED
198 };
199
200 static const GLuint byte_types_direct[5] = {
201 0,
202 ISL_FORMAT_R8_SINT,
203 ISL_FORMAT_R8G8_SINT,
204 ISL_FORMAT_R8G8B8_SINT,
205 ISL_FORMAT_R8G8B8A8_SINT
206 };
207
208 static const GLuint byte_types_norm[5] = {
209 0,
210 ISL_FORMAT_R8_SNORM,
211 ISL_FORMAT_R8G8_SNORM,
212 ISL_FORMAT_R8G8B8_SNORM,
213 ISL_FORMAT_R8G8B8A8_SNORM
214 };
215
216 static const GLuint byte_types_scale[5] = {
217 0,
218 ISL_FORMAT_R8_SSCALED,
219 ISL_FORMAT_R8G8_SSCALED,
220 ISL_FORMAT_R8G8B8_SSCALED,
221 ISL_FORMAT_R8G8B8A8_SSCALED
222 };
223
224 static GLuint
225 double_types(struct brw_context *brw,
226 int size,
227 GLboolean doubles)
228 {
229 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
230 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
231 * 64-bit components are stored in the URB without any conversion."
232 * Also included on BDW PRM, Volume 7, page 470, table "Source Element
233 * Formats Supported in VF Unit"
234 *
235 * Previous PRMs don't include those references, so for gen7 we can't use
236 * PASSTHRU formats directly. But in any case, we prefer to return passthru
237 * even in that case, because that reflects what we want to achieve, even
238 * if we would need to workaround on gen < 8.
239 */
240 return (doubles
241 ? double_types_passthru[size]
242 : double_types_float[size]);
243 }
244
245 /**
246 * Given vertex array type/size/format/normalized info, return
247 * the appopriate hardware surface type.
248 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
249 */
250 unsigned
251 brw_get_vertex_surface_type(struct brw_context *brw,
252 const struct gl_vertex_array *glarray)
253 {
254 int size = glarray->Size;
255 const bool is_ivybridge_or_older =
256 brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell;
257
258 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
259 fprintf(stderr, "type %s size %d normalized %d\n",
260 _mesa_enum_to_string(glarray->Type),
261 glarray->Size, glarray->Normalized);
262
263 if (glarray->Integer) {
264 assert(glarray->Format == GL_RGBA); /* sanity check */
265 switch (glarray->Type) {
266 case GL_INT: return int_types_direct[size];
267 case GL_SHORT:
268 if (is_ivybridge_or_older && size == 3)
269 return short_types_direct[4];
270 else
271 return short_types_direct[size];
272 case GL_BYTE:
273 if (is_ivybridge_or_older && size == 3)
274 return byte_types_direct[4];
275 else
276 return byte_types_direct[size];
277 case GL_UNSIGNED_INT: return uint_types_direct[size];
278 case GL_UNSIGNED_SHORT:
279 if (is_ivybridge_or_older && size == 3)
280 return ushort_types_direct[4];
281 else
282 return ushort_types_direct[size];
283 case GL_UNSIGNED_BYTE:
284 if (is_ivybridge_or_older && size == 3)
285 return ubyte_types_direct[4];
286 else
287 return ubyte_types_direct[size];
288 default: unreachable("not reached");
289 }
290 } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
291 return ISL_FORMAT_R11G11B10_FLOAT;
292 } else if (glarray->Normalized) {
293 switch (glarray->Type) {
294 case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
295 case GL_FLOAT: return float_types[size];
296 case GL_HALF_FLOAT:
297 case GL_HALF_FLOAT_OES:
298 if (brw->gen < 6 && size == 3)
299 return half_float_types[4];
300 else
301 return half_float_types[size];
302 case GL_INT: return int_types_norm[size];
303 case GL_SHORT: return short_types_norm[size];
304 case GL_BYTE: return byte_types_norm[size];
305 case GL_UNSIGNED_INT: return uint_types_norm[size];
306 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
307 case GL_UNSIGNED_BYTE:
308 if (glarray->Format == GL_BGRA) {
309 /* See GL_EXT_vertex_array_bgra */
310 assert(size == 4);
311 return ISL_FORMAT_B8G8R8A8_UNORM;
312 }
313 else {
314 return ubyte_types_norm[size];
315 }
316 case GL_FIXED:
317 if (brw->gen >= 8 || brw->is_haswell)
318 return fixed_point_types[size];
319
320 /* This produces GL_FIXED inputs as values between INT32_MIN and
321 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
322 */
323 return int_types_scale[size];
324 /* See GL_ARB_vertex_type_2_10_10_10_rev.
325 * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
326 * like to use here, so upload everything as UINT and fix
327 * it in the shader
328 */
329 case GL_INT_2_10_10_10_REV:
330 assert(size == 4);
331 if (brw->gen >= 8 || brw->is_haswell) {
332 return glarray->Format == GL_BGRA
333 ? ISL_FORMAT_B10G10R10A2_SNORM
334 : ISL_FORMAT_R10G10B10A2_SNORM;
335 }
336 return ISL_FORMAT_R10G10B10A2_UINT;
337 case GL_UNSIGNED_INT_2_10_10_10_REV:
338 assert(size == 4);
339 if (brw->gen >= 8 || brw->is_haswell) {
340 return glarray->Format == GL_BGRA
341 ? ISL_FORMAT_B10G10R10A2_UNORM
342 : ISL_FORMAT_R10G10B10A2_UNORM;
343 }
344 return ISL_FORMAT_R10G10B10A2_UINT;
345 default: unreachable("not reached");
346 }
347 }
348 else {
349 /* See GL_ARB_vertex_type_2_10_10_10_rev.
350 * W/A: the hardware doesn't really support the formats we'd
351 * like to use here, so upload everything as UINT and fix
352 * it in the shader
353 */
354 if (glarray->Type == GL_INT_2_10_10_10_REV) {
355 assert(size == 4);
356 if (brw->gen >= 8 || brw->is_haswell) {
357 return glarray->Format == GL_BGRA
358 ? ISL_FORMAT_B10G10R10A2_SSCALED
359 : ISL_FORMAT_R10G10B10A2_SSCALED;
360 }
361 return ISL_FORMAT_R10G10B10A2_UINT;
362 } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
363 assert(size == 4);
364 if (brw->gen >= 8 || brw->is_haswell) {
365 return glarray->Format == GL_BGRA
366 ? ISL_FORMAT_B10G10R10A2_USCALED
367 : ISL_FORMAT_R10G10B10A2_USCALED;
368 }
369 return ISL_FORMAT_R10G10B10A2_UINT;
370 }
371 assert(glarray->Format == GL_RGBA); /* sanity check */
372 switch (glarray->Type) {
373 case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
374 case GL_FLOAT: return float_types[size];
375 case GL_HALF_FLOAT:
376 case GL_HALF_FLOAT_OES:
377 if (brw->gen < 6 && size == 3)
378 return half_float_types[4];
379 else
380 return half_float_types[size];
381 case GL_INT: return int_types_scale[size];
382 case GL_SHORT: return short_types_scale[size];
383 case GL_BYTE: return byte_types_scale[size];
384 case GL_UNSIGNED_INT: return uint_types_scale[size];
385 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
386 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
387 case GL_FIXED:
388 if (brw->gen >= 8 || brw->is_haswell)
389 return fixed_point_types[size];
390
391 /* This produces GL_FIXED inputs as values between INT32_MIN and
392 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
393 */
394 return int_types_scale[size];
395 default: unreachable("not reached");
396 }
397 }
398 }
399
400 static void
401 copy_array_to_vbo_array(struct brw_context *brw,
402 struct brw_vertex_element *element,
403 int min, int max,
404 struct brw_vertex_buffer *buffer,
405 GLuint dst_stride)
406 {
407 const int src_stride = element->glarray->StrideB;
408
409 /* If the source stride is zero, we just want to upload the current
410 * attribute once and set the buffer's stride to 0. There's no need
411 * to replicate it out.
412 */
413 if (src_stride == 0) {
414 intel_upload_data(brw, element->glarray->Ptr,
415 element->glarray->_ElementSize,
416 element->glarray->_ElementSize,
417 &buffer->bo, &buffer->offset);
418
419 buffer->stride = 0;
420 buffer->size = element->glarray->_ElementSize;
421 return;
422 }
423
424 const unsigned char *src = element->glarray->Ptr + min * src_stride;
425 int count = max - min + 1;
426 GLuint size = count * dst_stride;
427 uint8_t *dst = intel_upload_space(brw, size, dst_stride,
428 &buffer->bo, &buffer->offset);
429
430 /* The GL 4.5 spec says:
431 * "If any enabled array’s buffer binding is zero when DrawArrays or
432 * one of the other drawing commands defined in section 10.4 is called,
433 * the result is undefined."
434 *
435 * In this case, let's the dst with undefined values
436 */
437 if (src != NULL) {
438 if (dst_stride == src_stride) {
439 memcpy(dst, src, size);
440 } else {
441 while (count--) {
442 memcpy(dst, src, dst_stride);
443 src += src_stride;
444 dst += dst_stride;
445 }
446 }
447 }
448 buffer->stride = dst_stride;
449 buffer->size = size;
450 }
451
452 void
453 brw_prepare_vertices(struct brw_context *brw)
454 {
455 struct gl_context *ctx = &brw->ctx;
456 /* BRW_NEW_VS_PROG_DATA */
457 const struct brw_vs_prog_data *vs_prog_data =
458 brw_vs_prog_data(brw->vs.base.prog_data);
459 GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
460 const unsigned char *ptr = NULL;
461 GLuint interleaved = 0;
462 unsigned int min_index = brw->vb.min_index + brw->basevertex;
463 unsigned int max_index = brw->vb.max_index + brw->basevertex;
464 unsigned i;
465 int delta, j;
466
467 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
468 GLuint nr_uploads = 0;
469
470 /* _NEW_POLYGON
471 *
472 * On gen6+, edge flags don't end up in the VUE (either in or out of the
473 * VS). Instead, they're uploaded as the last vertex element, and the data
474 * is passed sideband through the fixed function units. So, we need to
475 * prepare the vertex buffer for it, but it's not present in inputs_read.
476 */
477 if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
478 ctx->Polygon.BackMode != GL_FILL)) {
479 vs_inputs |= VERT_BIT_EDGEFLAG;
480 }
481
482 if (0)
483 fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
484
485 /* Accumulate the list of enabled arrays. */
486 brw->vb.nr_enabled = 0;
487 while (vs_inputs) {
488 GLuint first = ffsll(vs_inputs) - 1;
489 assert (first < 64);
490 GLuint index =
491 first - DIV_ROUND_UP(_mesa_bitcount_64(vs_prog_data->double_inputs_read &
492 BITFIELD64_MASK(first)), 2);
493 struct brw_vertex_element *input = &brw->vb.inputs[index];
494 input->is_dual_slot = (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) != 0;
495 vs_inputs &= ~BITFIELD64_BIT(first);
496 if (input->is_dual_slot)
497 vs_inputs &= ~BITFIELD64_BIT(first + 1);
498 brw->vb.enabled[brw->vb.nr_enabled++] = input;
499 }
500
501 if (brw->vb.nr_enabled == 0)
502 return;
503
504 if (brw->vb.nr_buffers)
505 return;
506
507 /* The range of data in a given buffer represented as [min, max) */
508 struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
509 uint32_t buffer_range_start[VERT_ATTRIB_MAX];
510 uint32_t buffer_range_end[VERT_ATTRIB_MAX];
511
512 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
513 struct brw_vertex_element *input = brw->vb.enabled[i];
514 const struct gl_vertex_array *glarray = input->glarray;
515
516 if (_mesa_is_bufferobj(glarray->BufferObj)) {
517 struct intel_buffer_object *intel_buffer =
518 intel_buffer_object(glarray->BufferObj);
519
520 const uint32_t offset = (uintptr_t)glarray->Ptr;
521
522 /* Start with the worst case */
523 uint32_t start = 0;
524 uint32_t range = intel_buffer->Base.Size;
525 if (glarray->InstanceDivisor) {
526 if (brw->num_instances) {
527 start = offset + glarray->StrideB * brw->baseinstance;
528 range = (glarray->StrideB * ((brw->num_instances - 1) /
529 glarray->InstanceDivisor) +
530 glarray->_ElementSize);
531 }
532 } else {
533 if (brw->vb.index_bounds_valid) {
534 start = offset + min_index * glarray->StrideB;
535 range = (glarray->StrideB * (max_index - min_index) +
536 glarray->_ElementSize);
537 }
538 }
539
540 /* If we have a VB set to be uploaded for this buffer object
541 * already, reuse that VB state so that we emit fewer
542 * relocations.
543 */
544 unsigned k;
545 for (k = 0; k < i; k++) {
546 const struct gl_vertex_array *other = brw->vb.enabled[k]->glarray;
547 if (glarray->BufferObj == other->BufferObj &&
548 glarray->StrideB == other->StrideB &&
549 glarray->InstanceDivisor == other->InstanceDivisor &&
550 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
551 {
552 input->buffer = brw->vb.enabled[k]->buffer;
553 input->offset = glarray->Ptr - other->Ptr;
554
555 buffer_range_start[input->buffer] =
556 MIN2(buffer_range_start[input->buffer], start);
557 buffer_range_end[input->buffer] =
558 MAX2(buffer_range_end[input->buffer], start + range);
559 break;
560 }
561 }
562 if (k == i) {
563 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
564
565 /* Named buffer object: Just reference its contents directly. */
566 buffer->offset = offset;
567 buffer->stride = glarray->StrideB;
568 buffer->step_rate = glarray->InstanceDivisor;
569 buffer->size = glarray->BufferObj->Size - offset;
570
571 enabled_buffer[j] = intel_buffer;
572 buffer_range_start[j] = start;
573 buffer_range_end[j] = start + range;
574
575 input->buffer = j++;
576 input->offset = 0;
577 }
578 } else {
579 /* Queue the buffer object up to be uploaded in the next pass,
580 * when we've decided if we're doing interleaved or not.
581 */
582 if (nr_uploads == 0) {
583 interleaved = glarray->StrideB;
584 ptr = glarray->Ptr;
585 }
586 else if (interleaved != glarray->StrideB ||
587 glarray->InstanceDivisor != 0 ||
588 glarray->Ptr < ptr ||
589 (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
590 {
591 /* If our stride is different from the first attribute's stride,
592 * or if we are using an instance divisor or if the first
593 * attribute's stride didn't cover our element, disable the
594 * interleaved upload optimization. The second case can most
595 * commonly occur in cases where there is a single vertex and, for
596 * example, the data is stored on the application's stack.
597 *
598 * NOTE: This will also disable the optimization in cases where
599 * the data is in a different order than the array indices.
600 * Something like:
601 *
602 * float data[...];
603 * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
604 * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
605 */
606 interleaved = 0;
607 }
608
609 upload[nr_uploads++] = input;
610 }
611 }
612
613 /* Now that we've set up all of the buffers, we walk through and reference
614 * each of them. We do this late so that we get the right size in each
615 * buffer and don't reference too little data.
616 */
617 for (i = 0; i < j; i++) {
618 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
619 if (buffer->bo)
620 continue;
621
622 const uint32_t start = buffer_range_start[i];
623 const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
624
625 buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start, range);
626 brw_bo_reference(buffer->bo);
627 }
628
629 /* If we need to upload all the arrays, then we can trim those arrays to
630 * only the used elements [min_index, max_index] so long as we adjust all
631 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
632 */
633 brw->vb.start_vertex_bias = 0;
634 delta = min_index;
635 if (nr_uploads == brw->vb.nr_enabled) {
636 brw->vb.start_vertex_bias = -delta;
637 delta = 0;
638 }
639
640 /* Handle any arrays to be uploaded. */
641 if (nr_uploads > 1) {
642 if (interleaved) {
643 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
644 /* All uploads are interleaved, so upload the arrays together as
645 * interleaved. First, upload the contents and set up upload[0].
646 */
647 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
648 buffer, interleaved);
649 buffer->offset -= delta * interleaved;
650 buffer->size += delta * interleaved;
651 buffer->step_rate = 0;
652
653 for (i = 0; i < nr_uploads; i++) {
654 /* Then, just point upload[i] at upload[0]'s buffer. */
655 upload[i]->offset =
656 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
657 upload[i]->buffer = j;
658 }
659 j++;
660
661 nr_uploads = 0;
662 }
663 }
664 /* Upload non-interleaved arrays */
665 for (i = 0; i < nr_uploads; i++) {
666 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
667 if (upload[i]->glarray->InstanceDivisor == 0) {
668 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
669 buffer, upload[i]->glarray->_ElementSize);
670 } else {
671 /* This is an instanced attribute, since its InstanceDivisor
672 * is not zero. Therefore, its data will be stepped after the
673 * instanced draw has been run InstanceDivisor times.
674 */
675 uint32_t instanced_attr_max_index =
676 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
677 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
678 buffer, upload[i]->glarray->_ElementSize);
679 }
680 buffer->offset -= delta * buffer->stride;
681 buffer->size += delta * buffer->stride;
682 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
683 upload[i]->buffer = j++;
684 upload[i]->offset = 0;
685 }
686
687 brw->vb.nr_buffers = j;
688 }
689
690 void
691 brw_prepare_shader_draw_parameters(struct brw_context *brw)
692 {
693 const struct brw_vs_prog_data *vs_prog_data =
694 brw_vs_prog_data(brw->vs.base.prog_data);
695
696 /* For non-indirect draws, upload gl_BaseVertex. */
697 if ((vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) &&
698 brw->draw.draw_params_bo == NULL) {
699 intel_upload_data(brw, &brw->draw.params, sizeof(brw->draw.params), 4,
700 &brw->draw.draw_params_bo,
701 &brw->draw.draw_params_offset);
702 }
703
704 if (vs_prog_data->uses_drawid) {
705 intel_upload_data(brw, &brw->draw.gl_drawid, sizeof(brw->draw.gl_drawid), 4,
706 &brw->draw.draw_id_bo,
707 &brw->draw.draw_id_offset);
708 }
709 }
710
711 static void
712 brw_upload_indices(struct brw_context *brw)
713 {
714 struct gl_context *ctx = &brw->ctx;
715 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
716 GLuint ib_size;
717 struct brw_bo *old_bo = brw->ib.bo;
718 struct gl_buffer_object *bufferobj;
719 GLuint offset;
720 GLuint ib_type_size;
721
722 if (index_buffer == NULL)
723 return;
724
725 ib_type_size = index_buffer->index_size;
726 ib_size = index_buffer->count ? ib_type_size * index_buffer->count :
727 index_buffer->obj->Size;
728 bufferobj = index_buffer->obj;
729
730 /* Turn into a proper VBO:
731 */
732 if (!_mesa_is_bufferobj(bufferobj)) {
733 /* Get new bufferobj, offset:
734 */
735 intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
736 &brw->ib.bo, &offset);
737 brw->ib.size = brw->ib.bo->size;
738 } else {
739 offset = (GLuint) (unsigned long) index_buffer->ptr;
740
741 /* If the index buffer isn't aligned to its element size, we have to
742 * rebase it into a temporary.
743 */
744 if ((ib_type_size - 1) & offset) {
745 perf_debug("copying index buffer to a temporary to work around "
746 "misaligned offset %d\n", offset);
747
748 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
749 offset,
750 ib_size,
751 GL_MAP_READ_BIT,
752 bufferobj,
753 MAP_INTERNAL);
754
755 intel_upload_data(brw, map, ib_size, ib_type_size,
756 &brw->ib.bo, &offset);
757 brw->ib.size = brw->ib.bo->size;
758
759 ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
760 } else {
761 struct brw_bo *bo =
762 intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
763 offset, ib_size);
764 if (bo != brw->ib.bo) {
765 brw_bo_unreference(brw->ib.bo);
766 brw->ib.bo = bo;
767 brw->ib.size = bufferobj->Size;
768 brw_bo_reference(bo);
769 }
770 }
771 }
772
773 /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
774 * the index buffer state when we're just moving the start index
775 * of our drawing.
776 */
777 brw->ib.start_vertex_offset = offset / ib_type_size;
778
779 if (brw->ib.bo != old_bo)
780 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
781
782 if (index_buffer->index_size != brw->ib.index_size) {
783 brw->ib.index_size = index_buffer->index_size;
784 brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
785 }
786 }
787
788 const struct brw_tracked_state brw_indices = {
789 .dirty = {
790 .mesa = 0,
791 .brw = BRW_NEW_BLORP |
792 BRW_NEW_INDICES,
793 },
794 .emit = brw_upload_indices,
795 };