i965: implement get_size for 2_10_10_10 formats
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #undef NDEBUG
29
30 #include "main/glheader.h"
31 #include "main/bufferobj.h"
32 #include "main/context.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35
36 #include "brw_draw.h"
37 #include "brw_defines.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "intel_batchbuffer.h"
42 #include "intel_buffer_objects.h"
43
44 static GLuint double_types[5] = {
45 0,
46 BRW_SURFACEFORMAT_R64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
49 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
50 };
51
52 static GLuint float_types[5] = {
53 0,
54 BRW_SURFACEFORMAT_R32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
57 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
58 };
59
60 static GLuint half_float_types[5] = {
61 0,
62 BRW_SURFACEFORMAT_R16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
65 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
66 };
67
68 static GLuint uint_types_direct[5] = {
69 0,
70 BRW_SURFACEFORMAT_R32_UINT,
71 BRW_SURFACEFORMAT_R32G32_UINT,
72 BRW_SURFACEFORMAT_R32G32B32_UINT,
73 BRW_SURFACEFORMAT_R32G32B32A32_UINT
74 };
75
76 static GLuint uint_types_norm[5] = {
77 0,
78 BRW_SURFACEFORMAT_R32_UNORM,
79 BRW_SURFACEFORMAT_R32G32_UNORM,
80 BRW_SURFACEFORMAT_R32G32B32_UNORM,
81 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
82 };
83
84 static GLuint uint_types_scale[5] = {
85 0,
86 BRW_SURFACEFORMAT_R32_USCALED,
87 BRW_SURFACEFORMAT_R32G32_USCALED,
88 BRW_SURFACEFORMAT_R32G32B32_USCALED,
89 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
90 };
91
92 static GLuint int_types_direct[5] = {
93 0,
94 BRW_SURFACEFORMAT_R32_SINT,
95 BRW_SURFACEFORMAT_R32G32_SINT,
96 BRW_SURFACEFORMAT_R32G32B32_SINT,
97 BRW_SURFACEFORMAT_R32G32B32A32_SINT
98 };
99
100 static GLuint int_types_norm[5] = {
101 0,
102 BRW_SURFACEFORMAT_R32_SNORM,
103 BRW_SURFACEFORMAT_R32G32_SNORM,
104 BRW_SURFACEFORMAT_R32G32B32_SNORM,
105 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
106 };
107
108 static GLuint int_types_scale[5] = {
109 0,
110 BRW_SURFACEFORMAT_R32_SSCALED,
111 BRW_SURFACEFORMAT_R32G32_SSCALED,
112 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
113 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
114 };
115
116 static GLuint ushort_types_direct[5] = {
117 0,
118 BRW_SURFACEFORMAT_R16_UINT,
119 BRW_SURFACEFORMAT_R16G16_UINT,
120 BRW_SURFACEFORMAT_R16G16B16A16_UINT,
121 BRW_SURFACEFORMAT_R16G16B16A16_UINT
122 };
123
124 static GLuint ushort_types_norm[5] = {
125 0,
126 BRW_SURFACEFORMAT_R16_UNORM,
127 BRW_SURFACEFORMAT_R16G16_UNORM,
128 BRW_SURFACEFORMAT_R16G16B16_UNORM,
129 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
130 };
131
132 static GLuint ushort_types_scale[5] = {
133 0,
134 BRW_SURFACEFORMAT_R16_USCALED,
135 BRW_SURFACEFORMAT_R16G16_USCALED,
136 BRW_SURFACEFORMAT_R16G16B16_USCALED,
137 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
138 };
139
140 static GLuint short_types_direct[5] = {
141 0,
142 BRW_SURFACEFORMAT_R16_SINT,
143 BRW_SURFACEFORMAT_R16G16_SINT,
144 BRW_SURFACEFORMAT_R16G16B16A16_SINT,
145 BRW_SURFACEFORMAT_R16G16B16A16_SINT
146 };
147
148 static GLuint short_types_norm[5] = {
149 0,
150 BRW_SURFACEFORMAT_R16_SNORM,
151 BRW_SURFACEFORMAT_R16G16_SNORM,
152 BRW_SURFACEFORMAT_R16G16B16_SNORM,
153 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
154 };
155
156 static GLuint short_types_scale[5] = {
157 0,
158 BRW_SURFACEFORMAT_R16_SSCALED,
159 BRW_SURFACEFORMAT_R16G16_SSCALED,
160 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
161 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
162 };
163
164 static GLuint ubyte_types_direct[5] = {
165 0,
166 BRW_SURFACEFORMAT_R8_UINT,
167 BRW_SURFACEFORMAT_R8G8_UINT,
168 BRW_SURFACEFORMAT_R8G8B8A8_UINT,
169 BRW_SURFACEFORMAT_R8G8B8A8_UINT
170 };
171
172 static GLuint ubyte_types_norm[5] = {
173 0,
174 BRW_SURFACEFORMAT_R8_UNORM,
175 BRW_SURFACEFORMAT_R8G8_UNORM,
176 BRW_SURFACEFORMAT_R8G8B8_UNORM,
177 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
178 };
179
180 static GLuint ubyte_types_scale[5] = {
181 0,
182 BRW_SURFACEFORMAT_R8_USCALED,
183 BRW_SURFACEFORMAT_R8G8_USCALED,
184 BRW_SURFACEFORMAT_R8G8B8_USCALED,
185 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
186 };
187
188 static GLuint byte_types_direct[5] = {
189 0,
190 BRW_SURFACEFORMAT_R8_SINT,
191 BRW_SURFACEFORMAT_R8G8_SINT,
192 BRW_SURFACEFORMAT_R8G8B8A8_SINT,
193 BRW_SURFACEFORMAT_R8G8B8A8_SINT
194 };
195
196 static GLuint byte_types_norm[5] = {
197 0,
198 BRW_SURFACEFORMAT_R8_SNORM,
199 BRW_SURFACEFORMAT_R8G8_SNORM,
200 BRW_SURFACEFORMAT_R8G8B8_SNORM,
201 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
202 };
203
204 static GLuint byte_types_scale[5] = {
205 0,
206 BRW_SURFACEFORMAT_R8_SSCALED,
207 BRW_SURFACEFORMAT_R8G8_SSCALED,
208 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
209 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
210 };
211
212
213 /**
214 * Given vertex array type/size/format/normalized info, return
215 * the appopriate hardware surface type.
216 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
217 */
218 static GLuint get_surface_type( GLenum type, GLuint size,
219 GLenum format, bool normalized, bool integer )
220 {
221 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
222 printf("type %s size %d normalized %d\n",
223 _mesa_lookup_enum_by_nr(type), size, normalized);
224
225 if (integer) {
226 assert(format == GL_RGBA); /* sanity check */
227 switch (type) {
228 case GL_INT: return int_types_direct[size];
229 case GL_SHORT: return short_types_direct[size];
230 case GL_BYTE: return byte_types_direct[size];
231 case GL_UNSIGNED_INT: return uint_types_direct[size];
232 case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
233 case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
234 default: assert(0); return 0;
235 }
236 } else if (normalized) {
237 switch (type) {
238 case GL_DOUBLE: return double_types[size];
239 case GL_FLOAT: return float_types[size];
240 case GL_HALF_FLOAT: return half_float_types[size];
241 case GL_INT: return int_types_norm[size];
242 case GL_SHORT: return short_types_norm[size];
243 case GL_BYTE: return byte_types_norm[size];
244 case GL_UNSIGNED_INT: return uint_types_norm[size];
245 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
246 case GL_UNSIGNED_BYTE:
247 if (format == GL_BGRA) {
248 /* See GL_EXT_vertex_array_bgra */
249 assert(size == 4);
250 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
251 }
252 else {
253 return ubyte_types_norm[size];
254 }
255 default: assert(0); return 0;
256 }
257 }
258 else {
259 assert(format == GL_RGBA); /* sanity check */
260 switch (type) {
261 case GL_DOUBLE: return double_types[size];
262 case GL_FLOAT: return float_types[size];
263 case GL_HALF_FLOAT: return half_float_types[size];
264 case GL_INT: return int_types_scale[size];
265 case GL_SHORT: return short_types_scale[size];
266 case GL_BYTE: return byte_types_scale[size];
267 case GL_UNSIGNED_INT: return uint_types_scale[size];
268 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
269 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
270 /* This produces GL_FIXED inputs as values between INT32_MIN and
271 * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272 */
273 case GL_FIXED: return int_types_scale[size];
274 default: assert(0); return 0;
275 }
276 }
277 }
278
279
280 static GLuint get_size( GLenum type )
281 {
282 switch (type) {
283 case GL_DOUBLE: return sizeof(GLdouble);
284 case GL_FLOAT: return sizeof(GLfloat);
285 case GL_HALF_FLOAT: return sizeof(GLhalfARB);
286 case GL_INT: return sizeof(GLint);
287 case GL_SHORT: return sizeof(GLshort);
288 case GL_BYTE: return sizeof(GLbyte);
289 case GL_UNSIGNED_INT: return sizeof(GLuint);
290 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
291 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
292 case GL_FIXED: return sizeof(GLuint);
293 /* packed formats: always have 4 components, and element size is
294 * 4 bytes, so pretend each component is 1 byte.
295 */
296 case GL_INT_2_10_10_10_REV: return sizeof(GLbyte);
297 case GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GLubyte);
298 default: assert(0); return 0;
299 }
300 }
301
302 static GLuint get_index_type(GLenum type)
303 {
304 switch (type) {
305 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
306 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
307 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
308 default: assert(0); return 0;
309 }
310 }
311
312 static void
313 copy_array_to_vbo_array(struct brw_context *brw,
314 struct brw_vertex_element *element,
315 int min, int max,
316 struct brw_vertex_buffer *buffer,
317 GLuint dst_stride)
318 {
319 const int src_stride = element->glarray->StrideB;
320
321 /* If the source stride is zero, we just want to upload the current
322 * attribute once and set the buffer's stride to 0. There's no need
323 * to replicate it out.
324 */
325 if (src_stride == 0) {
326 intel_upload_data(&brw->intel, element->glarray->Ptr,
327 element->element_size,
328 element->element_size,
329 &buffer->bo, &buffer->offset);
330
331 buffer->stride = 0;
332 return;
333 }
334
335 const unsigned char *src = element->glarray->Ptr + min * src_stride;
336 int count = max - min + 1;
337 GLuint size = count * dst_stride;
338
339 if (dst_stride == src_stride) {
340 intel_upload_data(&brw->intel, src, size, dst_stride,
341 &buffer->bo, &buffer->offset);
342 } else {
343 char * const map = intel_upload_map(&brw->intel, size, dst_stride);
344 char *dst = map;
345
346 while (count--) {
347 memcpy(dst, src, dst_stride);
348 src += src_stride;
349 dst += dst_stride;
350 }
351 intel_upload_unmap(&brw->intel, map, size, dst_stride,
352 &buffer->bo, &buffer->offset);
353 }
354 buffer->stride = dst_stride;
355 }
356
357 static void brw_prepare_vertices(struct brw_context *brw)
358 {
359 struct gl_context *ctx = &brw->intel.ctx;
360 struct intel_context *intel = intel_context(ctx);
361 /* CACHE_NEW_VS_PROG */
362 GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
363 const unsigned char *ptr = NULL;
364 GLuint interleaved = 0;
365 unsigned int min_index = brw->vb.min_index + brw->basevertex;
366 unsigned int max_index = brw->vb.max_index + brw->basevertex;
367 int delta, i, j;
368
369 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
370 GLuint nr_uploads = 0;
371
372 /* _NEW_POLYGON
373 *
374 * On gen6+, edge flags don't end up in the VUE (either in or out of the
375 * VS). Instead, they're uploaded as the last vertex element, and the data
376 * is passed sideband through the fixed function units. So, we need to
377 * prepare the vertex buffer for it, but it's not present in inputs_read.
378 */
379 if (intel->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
380 ctx->Polygon.BackMode != GL_FILL)) {
381 vs_inputs |= VERT_BIT_EDGEFLAG;
382 }
383
384 /* First build an array of pointers to ve's in vb.inputs_read
385 */
386 if (0)
387 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
388
389 /* Accumulate the list of enabled arrays. */
390 brw->vb.nr_enabled = 0;
391 while (vs_inputs) {
392 GLuint i = ffsll(vs_inputs) - 1;
393 struct brw_vertex_element *input = &brw->vb.inputs[i];
394
395 vs_inputs &= ~BITFIELD64_BIT(i);
396 if (input->glarray->Size && get_size(input->glarray->Type))
397 brw->vb.enabled[brw->vb.nr_enabled++] = input;
398 }
399
400 if (brw->vb.nr_enabled == 0)
401 return;
402
403 if (brw->vb.nr_buffers)
404 return;
405
406 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
407 struct brw_vertex_element *input = brw->vb.enabled[i];
408 const struct gl_client_array *glarray = input->glarray;
409 int type_size = get_size(glarray->Type);
410
411 input->element_size = type_size * glarray->Size;
412
413 if (_mesa_is_bufferobj(glarray->BufferObj)) {
414 struct intel_buffer_object *intel_buffer =
415 intel_buffer_object(glarray->BufferObj);
416 int k;
417
418 /* If we have a VB set to be uploaded for this buffer object
419 * already, reuse that VB state so that we emit fewer
420 * relocations.
421 */
422 for (k = 0; k < i; k++) {
423 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
424 if (glarray->BufferObj == other->BufferObj &&
425 glarray->StrideB == other->StrideB &&
426 glarray->InstanceDivisor == other->InstanceDivisor &&
427 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
428 {
429 input->buffer = brw->vb.enabled[k]->buffer;
430 input->offset = glarray->Ptr - other->Ptr;
431 break;
432 }
433 }
434 if (k == i) {
435 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
436
437 /* Named buffer object: Just reference its contents directly. */
438 buffer->bo = intel_bufferobj_source(intel,
439 intel_buffer, type_size,
440 &buffer->offset);
441 drm_intel_bo_reference(buffer->bo);
442 buffer->offset += (uintptr_t)glarray->Ptr;
443 buffer->stride = glarray->StrideB;
444 buffer->step_rate = glarray->InstanceDivisor;
445
446 input->buffer = j++;
447 input->offset = 0;
448 }
449
450 /* This is a common place to reach if the user mistakenly supplies
451 * a pointer in place of a VBO offset. If we just let it go through,
452 * we may end up dereferencing a pointer beyond the bounds of the
453 * GTT. We would hope that the VBO's max_index would save us, but
454 * Mesa appears to hand us min/max values not clipped to the
455 * array object's _MaxElement, and _MaxElement frequently appears
456 * to be wrong anyway.
457 *
458 * The VBO spec allows application termination in this case, and it's
459 * probably a service to the poor programmer to do so rather than
460 * trying to just not render.
461 */
462 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
463 } else {
464 /* Queue the buffer object up to be uploaded in the next pass,
465 * when we've decided if we're doing interleaved or not.
466 */
467 if (nr_uploads == 0) {
468 interleaved = glarray->StrideB;
469 ptr = glarray->Ptr;
470 }
471 else if (interleaved != glarray->StrideB ||
472 (uintptr_t)(glarray->Ptr - ptr) > interleaved)
473 {
474 interleaved = 0;
475 }
476 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
477 {
478 /* enforce natural alignment (for doubles) */
479 interleaved = 0;
480 }
481
482 upload[nr_uploads++] = input;
483 }
484 }
485
486 /* If we need to upload all the arrays, then we can trim those arrays to
487 * only the used elements [min_index, max_index] so long as we adjust all
488 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
489 */
490 brw->vb.start_vertex_bias = 0;
491 delta = min_index;
492 if (nr_uploads == brw->vb.nr_enabled) {
493 brw->vb.start_vertex_bias = -delta;
494 delta = 0;
495 }
496 if (delta && !brw->intel.intelScreen->relaxed_relocations)
497 min_index = delta = 0;
498
499 /* Handle any arrays to be uploaded. */
500 if (nr_uploads > 1) {
501 if (interleaved) {
502 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
503 /* All uploads are interleaved, so upload the arrays together as
504 * interleaved. First, upload the contents and set up upload[0].
505 */
506 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
507 buffer, interleaved);
508 buffer->offset -= delta * interleaved;
509
510 for (i = 0; i < nr_uploads; i++) {
511 /* Then, just point upload[i] at upload[0]'s buffer. */
512 upload[i]->offset =
513 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
514 upload[i]->buffer = j;
515 }
516 j++;
517
518 nr_uploads = 0;
519 }
520 }
521 /* Upload non-interleaved arrays */
522 for (i = 0; i < nr_uploads; i++) {
523 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
524 if (upload[i]->glarray->InstanceDivisor == 0) {
525 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
526 buffer, upload[i]->element_size);
527 } else {
528 /* This is an instanced attribute, since its InstanceDivisor
529 * is not zero. Therefore, its data will be stepped after the
530 * instanced draw has been run InstanceDivisor times.
531 */
532 uint32_t instanced_attr_max_index =
533 (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
534 copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
535 buffer, upload[i]->element_size);
536 }
537 buffer->offset -= delta * buffer->stride;
538 buffer->step_rate = upload[i]->glarray->InstanceDivisor;
539 upload[i]->buffer = j++;
540 upload[i]->offset = 0;
541 }
542
543 brw->vb.nr_buffers = j;
544 }
545
546 static void brw_emit_vertices(struct brw_context *brw)
547 {
548 struct gl_context *ctx = &brw->intel.ctx;
549 struct intel_context *intel = intel_context(ctx);
550 GLuint i, nr_elements;
551
552 brw_prepare_vertices(brw);
553
554 brw_emit_query_begin(brw);
555
556 /* If the VS doesn't read any inputs (calculating vertex position from
557 * a state variable for some reason, for example), emit a single pad
558 * VERTEX_ELEMENT struct and bail.
559 *
560 * The stale VB state stays in place, but they don't do anything unless
561 * a VE loads from them.
562 */
563 if (brw->vb.nr_enabled == 0) {
564 BEGIN_BATCH(3);
565 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
566 if (intel->gen >= 6) {
567 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
568 GEN6_VE0_VALID |
569 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
570 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
571 } else {
572 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
573 BRW_VE0_VALID |
574 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
575 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
576 }
577 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
578 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
579 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
580 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
581 CACHED_BATCH();
582 return;
583 }
584
585 /* Now emit VB and VEP state packets.
586 */
587
588 if (brw->vb.nr_buffers) {
589 if (intel->gen >= 6) {
590 assert(brw->vb.nr_buffers <= 33);
591 } else {
592 assert(brw->vb.nr_buffers <= 17);
593 }
594
595 BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
596 OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
597 for (i = 0; i < brw->vb.nr_buffers; i++) {
598 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
599 uint32_t dw0;
600
601 if (intel->gen >= 6) {
602 dw0 = buffer->step_rate
603 ? GEN6_VB0_ACCESS_INSTANCEDATA
604 : GEN6_VB0_ACCESS_VERTEXDATA;
605 dw0 |= i << GEN6_VB0_INDEX_SHIFT;
606 } else {
607 dw0 = buffer->step_rate
608 ? BRW_VB0_ACCESS_INSTANCEDATA
609 : BRW_VB0_ACCESS_VERTEXDATA;
610 dw0 |= i << BRW_VB0_INDEX_SHIFT;
611 }
612
613 if (intel->gen >= 7)
614 dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
615
616 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
617 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
618 if (intel->gen >= 5) {
619 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
620 } else
621 OUT_BATCH(0);
622 OUT_BATCH(buffer->step_rate);
623 }
624 ADVANCE_BATCH();
625 }
626
627 nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
628
629 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
630 * for VertexID/InstanceID.
631 */
632 if (intel->gen >= 6) {
633 assert(nr_elements <= 34);
634 } else {
635 assert(nr_elements <= 18);
636 }
637
638 struct brw_vertex_element *gen6_edgeflag_input = NULL;
639
640 BEGIN_BATCH(1 + nr_elements * 2);
641 OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
642 for (i = 0; i < brw->vb.nr_enabled; i++) {
643 struct brw_vertex_element *input = brw->vb.enabled[i];
644 uint32_t format = get_surface_type(input->glarray->Type,
645 input->glarray->Size,
646 input->glarray->Format,
647 input->glarray->Normalized,
648 input->glarray->Integer);
649 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
650 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
651 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
652 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
653
654 /* The gen4 driver expects edgeflag to come in as a float, and passes
655 * that float on to the tests in the clipper. Mesa's current vertex
656 * attribute value for EdgeFlag is stored as a float, which works out.
657 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
658 * integer ubyte. Just rewrite that to convert to a float.
659 */
660 if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
661 /* Gen6+ passes edgeflag as sideband along with the vertex, instead
662 * of in the VUE. We have to upload it sideband as the last vertex
663 * element according to the B-Spec.
664 */
665 if (intel->gen >= 6) {
666 gen6_edgeflag_input = input;
667 continue;
668 }
669
670 if (format == BRW_SURFACEFORMAT_R8_UINT)
671 format = BRW_SURFACEFORMAT_R8_SSCALED;
672 }
673
674 switch (input->glarray->Size) {
675 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
676 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
677 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
678 case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
679 : BRW_VE1_COMPONENT_STORE_1_FLT;
680 break;
681 }
682
683 if (intel->gen >= 6) {
684 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
685 GEN6_VE0_VALID |
686 (format << BRW_VE0_FORMAT_SHIFT) |
687 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
688 } else {
689 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
690 BRW_VE0_VALID |
691 (format << BRW_VE0_FORMAT_SHIFT) |
692 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
693 }
694
695 if (intel->gen >= 5)
696 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
697 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
698 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
699 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
700 else
701 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
702 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
703 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
704 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
705 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
706 }
707
708 if (intel->gen >= 6 && gen6_edgeflag_input) {
709 uint32_t format = get_surface_type(gen6_edgeflag_input->glarray->Type,
710 gen6_edgeflag_input->glarray->Size,
711 gen6_edgeflag_input->glarray->Format,
712 gen6_edgeflag_input->glarray->Normalized,
713 gen6_edgeflag_input->glarray->Integer);
714
715 OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
716 GEN6_VE0_VALID |
717 GEN6_VE0_EDGE_FLAG_ENABLE |
718 (format << BRW_VE0_FORMAT_SHIFT) |
719 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
720 OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
721 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
722 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
723 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
724 }
725
726 if (brw->vs.prog_data->uses_vertexid) {
727 uint32_t dw0 = 0, dw1 = 0;
728
729 dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
730 (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
731 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
732 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
733
734 if (intel->gen >= 6) {
735 dw0 |= GEN6_VE0_VALID;
736 } else {
737 dw0 |= BRW_VE0_VALID;
738 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
739 }
740
741 /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
742 * the format is ignored and the value is always int.
743 */
744
745 OUT_BATCH(dw0);
746 OUT_BATCH(dw1);
747 }
748
749 CACHED_BATCH();
750 }
751
752 const struct brw_tracked_state brw_vertices = {
753 .dirty = {
754 .mesa = _NEW_POLYGON,
755 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
756 .cache = CACHE_NEW_VS_PROG,
757 },
758 .emit = brw_emit_vertices,
759 };
760
761 static void brw_upload_indices(struct brw_context *brw)
762 {
763 struct gl_context *ctx = &brw->intel.ctx;
764 struct intel_context *intel = &brw->intel;
765 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
766 GLuint ib_size;
767 drm_intel_bo *bo = NULL;
768 struct gl_buffer_object *bufferobj;
769 GLuint offset;
770 GLuint ib_type_size;
771
772 if (index_buffer == NULL)
773 return;
774
775 ib_type_size = get_size(index_buffer->type);
776 ib_size = ib_type_size * index_buffer->count;
777 bufferobj = index_buffer->obj;
778
779 /* Turn into a proper VBO:
780 */
781 if (!_mesa_is_bufferobj(bufferobj)) {
782
783 /* Get new bufferobj, offset:
784 */
785 intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
786 &bo, &offset);
787 brw->ib.start_vertex_offset = offset / ib_type_size;
788 } else {
789 offset = (GLuint) (unsigned long) index_buffer->ptr;
790
791 /* If the index buffer isn't aligned to its element size, we have to
792 * rebase it into a temporary.
793 */
794 if ((get_size(index_buffer->type) - 1) & offset) {
795 GLubyte *map = ctx->Driver.MapBufferRange(ctx,
796 offset,
797 ib_size,
798 GL_MAP_WRITE_BIT,
799 bufferobj);
800
801 intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
802 &bo, &offset);
803 brw->ib.start_vertex_offset = offset / ib_type_size;
804
805 ctx->Driver.UnmapBuffer(ctx, bufferobj);
806 } else {
807 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
808 * the index buffer state when we're just moving the start index
809 * of our drawing.
810 */
811 brw->ib.start_vertex_offset = offset / ib_type_size;
812
813 bo = intel_bufferobj_source(intel,
814 intel_buffer_object(bufferobj),
815 ib_type_size,
816 &offset);
817 drm_intel_bo_reference(bo);
818
819 brw->ib.start_vertex_offset += offset / ib_type_size;
820 }
821 }
822
823 if (brw->ib.bo != bo) {
824 drm_intel_bo_unreference(brw->ib.bo);
825 brw->ib.bo = bo;
826
827 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
828 } else {
829 drm_intel_bo_unreference(bo);
830 }
831
832 if (index_buffer->type != brw->ib.type) {
833 brw->ib.type = index_buffer->type;
834 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
835 }
836 }
837
838 const struct brw_tracked_state brw_indices = {
839 .dirty = {
840 .mesa = 0,
841 .brw = BRW_NEW_INDICES,
842 .cache = 0,
843 },
844 .emit = brw_upload_indices,
845 };
846
847 static void brw_emit_index_buffer(struct brw_context *brw)
848 {
849 struct intel_context *intel = &brw->intel;
850 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
851 GLuint cut_index_setting;
852
853 if (index_buffer == NULL)
854 return;
855
856 if (brw->prim_restart.enable_cut_index && !intel->is_haswell) {
857 cut_index_setting = BRW_CUT_INDEX_ENABLE;
858 } else {
859 cut_index_setting = 0;
860 }
861
862 BEGIN_BATCH(3);
863 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
864 cut_index_setting |
865 get_index_type(index_buffer->type) << 8 |
866 1);
867 OUT_RELOC(brw->ib.bo,
868 I915_GEM_DOMAIN_VERTEX, 0,
869 0);
870 OUT_RELOC(brw->ib.bo,
871 I915_GEM_DOMAIN_VERTEX, 0,
872 brw->ib.bo->size - 1);
873 ADVANCE_BATCH();
874 }
875
876 const struct brw_tracked_state brw_index_buffer = {
877 .dirty = {
878 .mesa = 0,
879 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
880 .cache = 0,
881 },
882 .emit = brw_emit_index_buffer,
883 };