cd5bc9f2af05366b9793c485e3d8e9f3ef191b75
[mesa.git] / src / mesa / drivers / dri / i965 / brw_eu_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #include "brw_context.h"
34 #include "brw_defines.h"
35 #include "brw_eu.h"
36
37 #include "glsl/ralloc.h"
38
39 /***********************************************************************
40 * Internal helper for constructing instructions
41 */
42
43 static void guess_execution_size(struct brw_compile *p,
44 brw_inst *insn,
45 struct brw_reg reg)
46 {
47 const struct brw_context *brw = p->brw;
48
49 if (reg.width == BRW_WIDTH_8 && p->compressed) {
50 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_16);
51 } else {
52 /* Register width definitions are compatible with BRW_EXECUTE_* enums. */
53 brw_inst_set_exec_size(brw, insn, reg.width);
54 }
55 }
56
57
58 /**
59 * Prior to Sandybridge, the SEND instruction accepted non-MRF source
60 * registers, implicitly moving the operand to a message register.
61 *
62 * On Sandybridge, this is no longer the case. This function performs the
63 * explicit move; it should be called before emitting a SEND instruction.
64 */
65 void
66 gen6_resolve_implied_move(struct brw_compile *p,
67 struct brw_reg *src,
68 unsigned msg_reg_nr)
69 {
70 struct brw_context *brw = p->brw;
71 if (brw->gen < 6)
72 return;
73
74 if (src->file == BRW_MESSAGE_REGISTER_FILE)
75 return;
76
77 if (src->file != BRW_ARCHITECTURE_REGISTER_FILE || src->nr != BRW_ARF_NULL) {
78 brw_push_insn_state(p);
79 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
80 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
81 brw_MOV(p, retype(brw_message_reg(msg_reg_nr), BRW_REGISTER_TYPE_UD),
82 retype(*src, BRW_REGISTER_TYPE_UD));
83 brw_pop_insn_state(p);
84 }
85 *src = brw_message_reg(msg_reg_nr);
86 }
87
88 static void
89 gen7_convert_mrf_to_grf(struct brw_compile *p, struct brw_reg *reg)
90 {
91 /* From the Ivybridge PRM, Volume 4 Part 3, page 218 ("send"):
92 * "The send with EOT should use register space R112-R127 for <src>. This is
93 * to enable loading of a new thread into the same slot while the message
94 * with EOT for current thread is pending dispatch."
95 *
96 * Since we're pretending to have 16 MRFs anyway, we may as well use the
97 * registers required for messages with EOT.
98 */
99 struct brw_context *brw = p->brw;
100 if (brw->gen == 7 && reg->file == BRW_MESSAGE_REGISTER_FILE) {
101 reg->file = BRW_GENERAL_REGISTER_FILE;
102 reg->nr += GEN7_MRF_HACK_START;
103 }
104 }
105
106 /**
107 * Convert a brw_reg_type enumeration value into the hardware representation.
108 *
109 * The hardware encoding may depend on whether the value is an immediate.
110 */
111 unsigned
112 brw_reg_type_to_hw_type(const struct brw_context *brw,
113 enum brw_reg_type type, unsigned file)
114 {
115 if (file == BRW_IMMEDIATE_VALUE) {
116 const static int imm_hw_types[] = {
117 [BRW_REGISTER_TYPE_UD] = BRW_HW_REG_TYPE_UD,
118 [BRW_REGISTER_TYPE_D] = BRW_HW_REG_TYPE_D,
119 [BRW_REGISTER_TYPE_UW] = BRW_HW_REG_TYPE_UW,
120 [BRW_REGISTER_TYPE_W] = BRW_HW_REG_TYPE_W,
121 [BRW_REGISTER_TYPE_F] = BRW_HW_REG_TYPE_F,
122 [BRW_REGISTER_TYPE_UB] = -1,
123 [BRW_REGISTER_TYPE_B] = -1,
124 [BRW_REGISTER_TYPE_UV] = BRW_HW_REG_IMM_TYPE_UV,
125 [BRW_REGISTER_TYPE_VF] = BRW_HW_REG_IMM_TYPE_VF,
126 [BRW_REGISTER_TYPE_V] = BRW_HW_REG_IMM_TYPE_V,
127 [BRW_REGISTER_TYPE_DF] = GEN8_HW_REG_IMM_TYPE_DF,
128 [BRW_REGISTER_TYPE_HF] = GEN8_HW_REG_IMM_TYPE_HF,
129 [BRW_REGISTER_TYPE_UQ] = GEN8_HW_REG_TYPE_UQ,
130 [BRW_REGISTER_TYPE_Q] = GEN8_HW_REG_TYPE_Q,
131 };
132 assert(type < ARRAY_SIZE(imm_hw_types));
133 assert(imm_hw_types[type] != -1);
134 assert(brw->gen >= 8 || type < BRW_REGISTER_TYPE_DF);
135 return imm_hw_types[type];
136 } else {
137 /* Non-immediate registers */
138 const static int hw_types[] = {
139 [BRW_REGISTER_TYPE_UD] = BRW_HW_REG_TYPE_UD,
140 [BRW_REGISTER_TYPE_D] = BRW_HW_REG_TYPE_D,
141 [BRW_REGISTER_TYPE_UW] = BRW_HW_REG_TYPE_UW,
142 [BRW_REGISTER_TYPE_W] = BRW_HW_REG_TYPE_W,
143 [BRW_REGISTER_TYPE_UB] = BRW_HW_REG_NON_IMM_TYPE_UB,
144 [BRW_REGISTER_TYPE_B] = BRW_HW_REG_NON_IMM_TYPE_B,
145 [BRW_REGISTER_TYPE_F] = BRW_HW_REG_TYPE_F,
146 [BRW_REGISTER_TYPE_UV] = -1,
147 [BRW_REGISTER_TYPE_VF] = -1,
148 [BRW_REGISTER_TYPE_V] = -1,
149 [BRW_REGISTER_TYPE_DF] = GEN7_HW_REG_NON_IMM_TYPE_DF,
150 [BRW_REGISTER_TYPE_HF] = GEN8_HW_REG_NON_IMM_TYPE_HF,
151 [BRW_REGISTER_TYPE_UQ] = GEN8_HW_REG_TYPE_UQ,
152 [BRW_REGISTER_TYPE_Q] = GEN8_HW_REG_TYPE_Q,
153 };
154 assert(type < ARRAY_SIZE(hw_types));
155 assert(hw_types[type] != -1);
156 assert(brw->gen >= 7 || type < BRW_REGISTER_TYPE_DF);
157 assert(brw->gen >= 8 || type < BRW_REGISTER_TYPE_HF);
158 return hw_types[type];
159 }
160 }
161
162 void
163 brw_set_dest(struct brw_compile *p, brw_inst *inst, struct brw_reg dest)
164 {
165 const struct brw_context *brw = p->brw;
166
167 if (dest.file != BRW_ARCHITECTURE_REGISTER_FILE &&
168 dest.file != BRW_MESSAGE_REGISTER_FILE)
169 assert(dest.nr < 128);
170
171 gen7_convert_mrf_to_grf(p, &dest);
172
173 brw_inst_set_dst_reg_file(brw, inst, dest.file);
174 brw_inst_set_dst_reg_type(brw, inst, brw_reg_type_to_hw_type(brw, dest.type,
175 dest.file));
176 brw_inst_set_dst_address_mode(brw, inst, dest.address_mode);
177
178 if (dest.address_mode == BRW_ADDRESS_DIRECT) {
179 brw_inst_set_dst_da_reg_nr(brw, inst, dest.nr);
180
181 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
182 brw_inst_set_dst_da1_subreg_nr(brw, inst, dest.subnr);
183 if (dest.hstride == BRW_HORIZONTAL_STRIDE_0)
184 dest.hstride = BRW_HORIZONTAL_STRIDE_1;
185 brw_inst_set_dst_hstride(brw, inst, dest.hstride);
186 } else {
187 brw_inst_set_dst_da16_subreg_nr(brw, inst, dest.subnr / 16);
188 brw_inst_set_da16_writemask(brw, inst, dest.dw1.bits.writemask);
189 if (dest.file == BRW_GENERAL_REGISTER_FILE ||
190 dest.file == BRW_MESSAGE_REGISTER_FILE) {
191 assert(dest.dw1.bits.writemask != 0);
192 }
193 /* From the Ivybridge PRM, Vol 4, Part 3, Section 5.2.4.1:
194 * Although Dst.HorzStride is a don't care for Align16, HW needs
195 * this to be programmed as "01".
196 */
197 brw_inst_set_dst_hstride(brw, inst, 1);
198 }
199 } else {
200 brw_inst_set_dst_ia_subreg_nr(brw, inst, dest.subnr);
201
202 /* These are different sizes in align1 vs align16:
203 */
204 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
205 brw_inst_set_dst_ia1_addr_imm(brw, inst,
206 dest.dw1.bits.indirect_offset);
207 if (dest.hstride == BRW_HORIZONTAL_STRIDE_0)
208 dest.hstride = BRW_HORIZONTAL_STRIDE_1;
209 brw_inst_set_dst_hstride(brw, inst, dest.hstride);
210 } else {
211 brw_inst_set_dst_ia16_addr_imm(brw, inst,
212 dest.dw1.bits.indirect_offset);
213 /* even ignored in da16, still need to set as '01' */
214 brw_inst_set_dst_hstride(brw, inst, 1);
215 }
216 }
217
218 /* NEW: Set the execution size based on dest.width and
219 * inst->compression_control:
220 */
221 guess_execution_size(p, inst, dest);
222 }
223
224 extern int reg_type_size[];
225
226 static void
227 validate_reg(const struct brw_context *brw, brw_inst *inst, struct brw_reg reg)
228 {
229 int hstride_for_reg[] = {0, 1, 2, 4};
230 int vstride_for_reg[] = {0, 1, 2, 4, 8, 16, 32, 64, 128, 256};
231 int width_for_reg[] = {1, 2, 4, 8, 16};
232 int execsize_for_reg[] = {1, 2, 4, 8, 16};
233 int width, hstride, vstride, execsize;
234
235 if (reg.file == BRW_IMMEDIATE_VALUE) {
236 /* 3.3.6: Region Parameters. Restriction: Immediate vectors
237 * mean the destination has to be 128-bit aligned and the
238 * destination horiz stride has to be a word.
239 */
240 if (reg.type == BRW_REGISTER_TYPE_V) {
241 assert(hstride_for_reg[brw_inst_dst_hstride(brw, inst)] *
242 reg_type_size[brw_inst_dst_reg_type(brw, inst)] == 2);
243 }
244
245 return;
246 }
247
248 if (reg.file == BRW_ARCHITECTURE_REGISTER_FILE &&
249 reg.file == BRW_ARF_NULL)
250 return;
251
252 assert(reg.hstride >= 0 && reg.hstride < Elements(hstride_for_reg));
253 hstride = hstride_for_reg[reg.hstride];
254
255 if (reg.vstride == 0xf) {
256 vstride = -1;
257 } else {
258 assert(reg.vstride >= 0 && reg.vstride < Elements(vstride_for_reg));
259 vstride = vstride_for_reg[reg.vstride];
260 }
261
262 assert(reg.width >= 0 && reg.width < Elements(width_for_reg));
263 width = width_for_reg[reg.width];
264
265 assert(brw_inst_exec_size(brw, inst) >= 0 &&
266 brw_inst_exec_size(brw, inst) < Elements(execsize_for_reg));
267 execsize = execsize_for_reg[brw_inst_exec_size(brw, inst)];
268
269 /* Restrictions from 3.3.10: Register Region Restrictions. */
270 /* 3. */
271 assert(execsize >= width);
272
273 /* 4. */
274 if (execsize == width && hstride != 0) {
275 assert(vstride == -1 || vstride == width * hstride);
276 }
277
278 /* 5. */
279 if (execsize == width && hstride == 0) {
280 /* no restriction on vstride. */
281 }
282
283 /* 6. */
284 if (width == 1) {
285 assert(hstride == 0);
286 }
287
288 /* 7. */
289 if (execsize == 1 && width == 1) {
290 assert(hstride == 0);
291 assert(vstride == 0);
292 }
293
294 /* 8. */
295 if (vstride == 0 && hstride == 0) {
296 assert(width == 1);
297 }
298
299 /* 10. Check destination issues. */
300 }
301
302 static bool
303 is_compactable_immediate(unsigned imm)
304 {
305 /* We get the low 12 bits as-is. */
306 imm &= ~0xfff;
307
308 /* We get one bit replicated through the top 20 bits. */
309 return imm == 0 || imm == 0xfffff000;
310 }
311
312 void
313 brw_set_src0(struct brw_compile *p, brw_inst *inst, struct brw_reg reg)
314 {
315 struct brw_context *brw = p->brw;
316
317 if (reg.type != BRW_ARCHITECTURE_REGISTER_FILE)
318 assert(reg.nr < 128);
319
320 gen7_convert_mrf_to_grf(p, &reg);
321
322 if (brw->gen >= 6 && (brw_inst_opcode(brw, inst) == BRW_OPCODE_SEND ||
323 brw_inst_opcode(brw, inst) == BRW_OPCODE_SENDC)) {
324 /* Any source modifiers or regions will be ignored, since this just
325 * identifies the MRF/GRF to start reading the message contents from.
326 * Check for some likely failures.
327 */
328 assert(!reg.negate);
329 assert(!reg.abs);
330 assert(reg.address_mode == BRW_ADDRESS_DIRECT);
331 }
332
333 validate_reg(brw, inst, reg);
334
335 brw_inst_set_src0_reg_file(brw, inst, reg.file);
336 brw_inst_set_src0_reg_type(brw, inst,
337 brw_reg_type_to_hw_type(brw, reg.type, reg.file));
338 brw_inst_set_src0_abs(brw, inst, reg.abs);
339 brw_inst_set_src0_negate(brw, inst, reg.negate);
340 brw_inst_set_src0_address_mode(brw, inst, reg.address_mode);
341
342 if (reg.file == BRW_IMMEDIATE_VALUE) {
343 brw_inst_set_imm_ud(brw, inst, reg.dw1.ud);
344
345 /* The Bspec's section titled "Non-present Operands" claims that if src0
346 * is an immediate that src1's type must be the same as that of src0.
347 *
348 * The SNB+ DataTypeIndex instruction compaction tables contain mappings
349 * that do not follow this rule. E.g., from the IVB/HSW table:
350 *
351 * DataTypeIndex 18-Bit Mapping Mapped Meaning
352 * 3 001000001011111101 r:f | i:vf | a:ud | <1> | dir |
353 *
354 * And from the SNB table:
355 *
356 * DataTypeIndex 18-Bit Mapping Mapped Meaning
357 * 8 001000000111101100 a:w | i:w | a:ud | <1> | dir |
358 *
359 * Neither of these cause warnings from the simulator when used,
360 * compacted or otherwise. In fact, all compaction mappings that have an
361 * immediate in src0 use a:ud for src1.
362 *
363 * The GM45 instruction compaction tables do not contain mapped meanings
364 * so it's not clear whether it has the restriction. We'll assume it was
365 * lifted on SNB. (FINISHME: decode the GM45 tables and check.)
366 */
367 brw_inst_set_src1_reg_file(brw, inst, BRW_ARCHITECTURE_REGISTER_FILE);
368 if (brw->gen < 6) {
369 brw_inst_set_src1_reg_type(brw, inst,
370 brw_inst_src0_reg_type(brw, inst));
371 } else {
372 brw_inst_set_src1_reg_type(brw, inst, BRW_HW_REG_TYPE_UD);
373 }
374
375 /* Compacted instructions only have 12-bits (plus 1 for the other 20)
376 * for immediate values. Presumably the hardware engineers realized
377 * that the only useful floating-point value that could be represented
378 * in this format is 0.0, which can also be represented as a VF-typed
379 * immediate, so they gave us the previously mentioned mapping on IVB+.
380 *
381 * Strangely, we do have a mapping for imm:f in src1, so we don't need
382 * to do this there.
383 *
384 * If we see a 0.0:F, change the type to VF so that it can be compacted.
385 */
386 if (brw_inst_imm_ud(brw, inst) == 0x0 &&
387 brw_inst_src0_reg_type(brw, inst) == BRW_HW_REG_TYPE_F) {
388 brw_inst_set_src0_reg_type(brw, inst, BRW_HW_REG_IMM_TYPE_VF);
389 }
390
391 /* There are no mappings for dst:d | i:d, so if the immediate is suitable
392 * set the types to :UD so the instruction can be compacted.
393 */
394 if (is_compactable_immediate(brw_inst_imm_ud(brw, inst)) &&
395 brw_inst_cond_modifier(brw, inst) == BRW_CONDITIONAL_NONE &&
396 brw_inst_src0_reg_type(brw, inst) == BRW_HW_REG_TYPE_D &&
397 brw_inst_dst_reg_type(brw, inst) == BRW_HW_REG_TYPE_D) {
398 brw_inst_set_src0_reg_type(brw, inst, BRW_HW_REG_TYPE_UD);
399 brw_inst_set_dst_reg_type(brw, inst, BRW_HW_REG_TYPE_UD);
400 }
401 } else {
402 if (reg.address_mode == BRW_ADDRESS_DIRECT) {
403 brw_inst_set_src0_da_reg_nr(brw, inst, reg.nr);
404 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
405 brw_inst_set_src0_da1_subreg_nr(brw, inst, reg.subnr);
406 } else {
407 brw_inst_set_src0_da16_subreg_nr(brw, inst, reg.subnr / 16);
408 }
409 } else {
410 brw_inst_set_src0_ia_subreg_nr(brw, inst, reg.subnr);
411
412 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
413 brw_inst_set_src0_ia1_addr_imm(brw, inst, reg.dw1.bits.indirect_offset);
414 } else {
415 brw_inst_set_src0_ia_subreg_nr(brw, inst, reg.dw1.bits.indirect_offset);
416 }
417 }
418
419 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
420 if (reg.width == BRW_WIDTH_1 &&
421 brw_inst_exec_size(brw, inst) == BRW_EXECUTE_1) {
422 brw_inst_set_src0_hstride(brw, inst, BRW_HORIZONTAL_STRIDE_0);
423 brw_inst_set_src0_width(brw, inst, BRW_WIDTH_1);
424 brw_inst_set_src0_vstride(brw, inst, BRW_VERTICAL_STRIDE_0);
425 } else {
426 brw_inst_set_src0_hstride(brw, inst, reg.hstride);
427 brw_inst_set_src0_width(brw, inst, reg.width);
428 brw_inst_set_src0_vstride(brw, inst, reg.vstride);
429 }
430 } else {
431 brw_inst_set_src0_da16_swiz_x(brw, inst,
432 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_X));
433 brw_inst_set_src0_da16_swiz_y(brw, inst,
434 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_Y));
435 brw_inst_set_src0_da16_swiz_z(brw, inst,
436 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_Z));
437 brw_inst_set_src0_da16_swiz_w(brw, inst,
438 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_W));
439
440 /* This is an oddity of the fact we're using the same
441 * descriptions for registers in align_16 as align_1:
442 */
443 if (reg.vstride == BRW_VERTICAL_STRIDE_8)
444 brw_inst_set_src0_vstride(brw, inst, BRW_VERTICAL_STRIDE_4);
445 else
446 brw_inst_set_src0_vstride(brw, inst, reg.vstride);
447 }
448 }
449 }
450
451
452 void
453 brw_set_src1(struct brw_compile *p, brw_inst *inst, struct brw_reg reg)
454 {
455 const struct brw_context *brw = p->brw;
456 assert(reg.file != BRW_MESSAGE_REGISTER_FILE);
457
458 if (reg.type != BRW_ARCHITECTURE_REGISTER_FILE)
459 assert(reg.nr < 128);
460
461 gen7_convert_mrf_to_grf(p, &reg);
462
463 validate_reg(brw, inst, reg);
464
465 brw_inst_set_src1_reg_file(brw, inst, reg.file);
466 brw_inst_set_src1_reg_type(brw, inst,
467 brw_reg_type_to_hw_type(brw, reg.type, reg.file));
468 brw_inst_set_src1_abs(brw, inst, reg.abs);
469 brw_inst_set_src1_negate(brw, inst, reg.negate);
470
471 /* Only src1 can be immediate in two-argument instructions.
472 */
473 assert(brw_inst_src0_reg_file(brw, inst) != BRW_IMMEDIATE_VALUE);
474
475 if (reg.file == BRW_IMMEDIATE_VALUE) {
476 brw_inst_set_imm_ud(brw, inst, reg.dw1.ud);
477 } else {
478 /* This is a hardware restriction, which may or may not be lifted
479 * in the future:
480 */
481 assert (reg.address_mode == BRW_ADDRESS_DIRECT);
482 /* assert (reg.file == BRW_GENERAL_REGISTER_FILE); */
483
484 brw_inst_set_src1_da_reg_nr(brw, inst, reg.nr);
485 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
486 brw_inst_set_src1_da1_subreg_nr(brw, inst, reg.subnr);
487 } else {
488 brw_inst_set_src1_da16_subreg_nr(brw, inst, reg.subnr / 16);
489 }
490
491 if (brw_inst_access_mode(brw, inst) == BRW_ALIGN_1) {
492 if (reg.width == BRW_WIDTH_1 &&
493 brw_inst_exec_size(brw, inst) == BRW_EXECUTE_1) {
494 brw_inst_set_src1_hstride(brw, inst, BRW_HORIZONTAL_STRIDE_0);
495 brw_inst_set_src1_width(brw, inst, BRW_WIDTH_1);
496 brw_inst_set_src1_vstride(brw, inst, BRW_VERTICAL_STRIDE_0);
497 } else {
498 brw_inst_set_src1_hstride(brw, inst, reg.hstride);
499 brw_inst_set_src1_width(brw, inst, reg.width);
500 brw_inst_set_src1_vstride(brw, inst, reg.vstride);
501 }
502 } else {
503 brw_inst_set_src1_da16_swiz_x(brw, inst,
504 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_X));
505 brw_inst_set_src1_da16_swiz_y(brw, inst,
506 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_Y));
507 brw_inst_set_src1_da16_swiz_z(brw, inst,
508 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_Z));
509 brw_inst_set_src1_da16_swiz_w(brw, inst,
510 BRW_GET_SWZ(reg.dw1.bits.swizzle, BRW_CHANNEL_W));
511
512 /* This is an oddity of the fact we're using the same
513 * descriptions for registers in align_16 as align_1:
514 */
515 if (reg.vstride == BRW_VERTICAL_STRIDE_8)
516 brw_inst_set_src1_vstride(brw, inst, BRW_VERTICAL_STRIDE_4);
517 else
518 brw_inst_set_src1_vstride(brw, inst, reg.vstride);
519 }
520 }
521 }
522
523 /**
524 * Set the Message Descriptor and Extended Message Descriptor fields
525 * for SEND messages.
526 *
527 * \note This zeroes out the Function Control bits, so it must be called
528 * \b before filling out any message-specific data. Callers can
529 * choose not to fill in irrelevant bits; they will be zero.
530 */
531 static void
532 brw_set_message_descriptor(struct brw_compile *p,
533 brw_inst *inst,
534 enum brw_message_target sfid,
535 unsigned msg_length,
536 unsigned response_length,
537 bool header_present,
538 bool end_of_thread)
539 {
540 struct brw_context *brw = p->brw;
541
542 brw_set_src1(p, inst, brw_imm_d(0));
543 brw_inst_set_sfid(brw, inst, sfid);
544 brw_inst_set_mlen(brw, inst, msg_length);
545 brw_inst_set_rlen(brw, inst, response_length);
546 brw_inst_set_eot(brw, inst, end_of_thread);
547
548 if (brw->gen >= 5) {
549 brw_inst_set_header_present(brw, inst, header_present);
550 }
551 }
552
553 static void brw_set_math_message( struct brw_compile *p,
554 brw_inst *inst,
555 unsigned function,
556 unsigned integer_type,
557 bool low_precision,
558 unsigned dataType )
559 {
560 struct brw_context *brw = p->brw;
561 unsigned msg_length;
562 unsigned response_length;
563
564 /* Infer message length from the function */
565 switch (function) {
566 case BRW_MATH_FUNCTION_POW:
567 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
568 case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
569 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
570 msg_length = 2;
571 break;
572 default:
573 msg_length = 1;
574 break;
575 }
576
577 /* Infer response length from the function */
578 switch (function) {
579 case BRW_MATH_FUNCTION_SINCOS:
580 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
581 response_length = 2;
582 break;
583 default:
584 response_length = 1;
585 break;
586 }
587
588
589 brw_set_message_descriptor(p, inst, BRW_SFID_MATH,
590 msg_length, response_length, false, false);
591 brw_inst_set_math_msg_function(brw, inst, function);
592 brw_inst_set_math_msg_signed_int(brw, inst, integer_type);
593 brw_inst_set_math_msg_precision(brw, inst, low_precision);
594 brw_inst_set_math_msg_saturate(brw, inst, brw_inst_saturate(brw, inst));
595 brw_inst_set_math_msg_data_type(brw, inst, dataType);
596 brw_inst_set_saturate(brw, inst, 0);
597 }
598
599
600 static void brw_set_ff_sync_message(struct brw_compile *p,
601 brw_inst *insn,
602 bool allocate,
603 unsigned response_length,
604 bool end_of_thread)
605 {
606 const struct brw_context *brw = p->brw;
607
608 brw_set_message_descriptor(p, insn, BRW_SFID_URB,
609 1, response_length, true, end_of_thread);
610 brw_inst_set_urb_opcode(brw, insn, 1); /* FF_SYNC */
611 brw_inst_set_urb_allocate(brw, insn, allocate);
612 /* The following fields are not used by FF_SYNC: */
613 brw_inst_set_urb_global_offset(brw, insn, 0);
614 brw_inst_set_urb_swizzle_control(brw, insn, 0);
615 brw_inst_set_urb_used(brw, insn, 0);
616 brw_inst_set_urb_complete(brw, insn, 0);
617 }
618
619 static void brw_set_urb_message( struct brw_compile *p,
620 brw_inst *insn,
621 enum brw_urb_write_flags flags,
622 unsigned msg_length,
623 unsigned response_length,
624 unsigned offset,
625 unsigned swizzle_control )
626 {
627 struct brw_context *brw = p->brw;
628
629 assert(brw->gen < 7 || swizzle_control != BRW_URB_SWIZZLE_TRANSPOSE);
630 assert(brw->gen < 7 || !(flags & BRW_URB_WRITE_ALLOCATE));
631 assert(brw->gen >= 7 || !(flags & BRW_URB_WRITE_PER_SLOT_OFFSET));
632
633 brw_set_message_descriptor(p, insn, BRW_SFID_URB,
634 msg_length, response_length, true,
635 flags & BRW_URB_WRITE_EOT);
636
637 if (flags & BRW_URB_WRITE_OWORD) {
638 assert(msg_length == 2); /* header + one OWORD of data */
639 brw_inst_set_urb_opcode(brw, insn, BRW_URB_OPCODE_WRITE_OWORD);
640 } else {
641 brw_inst_set_urb_opcode(brw, insn, BRW_URB_OPCODE_WRITE_HWORD);
642 }
643
644 brw_inst_set_urb_global_offset(brw, insn, offset);
645 brw_inst_set_urb_swizzle_control(brw, insn, swizzle_control);
646
647 if (brw->gen < 8) {
648 brw_inst_set_urb_complete(brw, insn, !!(flags & BRW_URB_WRITE_COMPLETE));
649 }
650
651 if (brw->gen < 7) {
652 brw_inst_set_urb_allocate(brw, insn, !!(flags & BRW_URB_WRITE_ALLOCATE));
653 brw_inst_set_urb_used(brw, insn, !(flags & BRW_URB_WRITE_UNUSED));
654 } else {
655 brw_inst_set_urb_per_slot_offset(brw, insn,
656 !!(flags & BRW_URB_WRITE_PER_SLOT_OFFSET));
657 }
658 }
659
660 void
661 brw_set_dp_write_message(struct brw_compile *p,
662 brw_inst *insn,
663 unsigned binding_table_index,
664 unsigned msg_control,
665 unsigned msg_type,
666 unsigned msg_length,
667 bool header_present,
668 unsigned last_render_target,
669 unsigned response_length,
670 unsigned end_of_thread,
671 unsigned send_commit_msg)
672 {
673 struct brw_context *brw = p->brw;
674 unsigned sfid;
675
676 if (brw->gen >= 7) {
677 /* Use the Render Cache for RT writes; otherwise use the Data Cache */
678 if (msg_type == GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE)
679 sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
680 else
681 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
682 } else if (brw->gen == 6) {
683 /* Use the render cache for all write messages. */
684 sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
685 } else {
686 sfid = BRW_SFID_DATAPORT_WRITE;
687 }
688
689 brw_set_message_descriptor(p, insn, sfid, msg_length, response_length,
690 header_present, end_of_thread);
691
692 brw_inst_set_binding_table_index(brw, insn, binding_table_index);
693 brw_inst_set_dp_write_msg_type(brw, insn, msg_type);
694 brw_inst_set_dp_write_msg_control(brw, insn, msg_control);
695 brw_inst_set_rt_last(brw, insn, last_render_target);
696 if (brw->gen < 7) {
697 brw_inst_set_dp_write_commit(brw, insn, send_commit_msg);
698 }
699 }
700
701 void
702 brw_set_dp_read_message(struct brw_compile *p,
703 brw_inst *insn,
704 unsigned binding_table_index,
705 unsigned msg_control,
706 unsigned msg_type,
707 unsigned target_cache,
708 unsigned msg_length,
709 bool header_present,
710 unsigned response_length)
711 {
712 struct brw_context *brw = p->brw;
713 unsigned sfid;
714
715 if (brw->gen >= 7) {
716 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
717 } else if (brw->gen == 6) {
718 if (target_cache == BRW_DATAPORT_READ_TARGET_RENDER_CACHE)
719 sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
720 else
721 sfid = GEN6_SFID_DATAPORT_SAMPLER_CACHE;
722 } else {
723 sfid = BRW_SFID_DATAPORT_READ;
724 }
725
726 brw_set_message_descriptor(p, insn, sfid, msg_length, response_length,
727 header_present, false);
728
729 brw_inst_set_binding_table_index(brw, insn, binding_table_index);
730 brw_inst_set_dp_read_msg_type(brw, insn, msg_type);
731 brw_inst_set_dp_read_msg_control(brw, insn, msg_control);
732 if (brw->gen < 6)
733 brw_inst_set_dp_read_target_cache(brw, insn, target_cache);
734 }
735
736 void
737 brw_set_sampler_message(struct brw_compile *p,
738 brw_inst *inst,
739 unsigned binding_table_index,
740 unsigned sampler,
741 unsigned msg_type,
742 unsigned response_length,
743 unsigned msg_length,
744 unsigned header_present,
745 unsigned simd_mode,
746 unsigned return_format)
747 {
748 struct brw_context *brw = p->brw;
749
750 brw_set_message_descriptor(p, inst, BRW_SFID_SAMPLER, msg_length,
751 response_length, header_present, false);
752
753 brw_inst_set_binding_table_index(brw, inst, binding_table_index);
754 brw_inst_set_sampler(brw, inst, sampler);
755 brw_inst_set_sampler_msg_type(brw, inst, msg_type);
756 if (brw->gen >= 5) {
757 brw_inst_set_sampler_simd_mode(brw, inst, simd_mode);
758 } else if (brw->gen == 4 && !brw->is_g4x) {
759 brw_inst_set_sampler_return_format(brw, inst, return_format);
760 }
761 }
762
763 static void
764 gen7_set_dp_scratch_message(struct brw_compile *p,
765 brw_inst *inst,
766 bool write,
767 bool dword,
768 bool invalidate_after_read,
769 unsigned num_regs,
770 unsigned addr_offset,
771 unsigned mlen,
772 unsigned rlen,
773 bool header_present)
774 {
775 const struct brw_context *brw = p->brw;
776 assert(num_regs == 1 || num_regs == 2 || num_regs == 4 ||
777 (brw->gen >= 8 && num_regs == 8));
778 brw_set_message_descriptor(p, inst, GEN7_SFID_DATAPORT_DATA_CACHE,
779 mlen, rlen, header_present, false);
780 brw_inst_set_dp_category(brw, inst, 1); /* Scratch Block Read/Write msgs */
781 brw_inst_set_scratch_read_write(brw, inst, write);
782 brw_inst_set_scratch_type(brw, inst, dword);
783 brw_inst_set_scratch_invalidate_after_read(brw, inst, invalidate_after_read);
784 brw_inst_set_scratch_block_size(brw, inst, ffs(num_regs) - 1);
785 brw_inst_set_scratch_addr_offset(brw, inst, addr_offset);
786 }
787
788 #define next_insn brw_next_insn
789 brw_inst *
790 brw_next_insn(struct brw_compile *p, unsigned opcode)
791 {
792 const struct brw_context *brw = p->brw;
793 brw_inst *insn;
794
795 if (p->nr_insn + 1 > p->store_size) {
796 p->store_size <<= 1;
797 p->store = reralloc(p->mem_ctx, p->store, brw_inst, p->store_size);
798 }
799
800 p->next_insn_offset += 16;
801 insn = &p->store[p->nr_insn++];
802 memcpy(insn, p->current, sizeof(*insn));
803
804 brw_inst_set_opcode(brw, insn, opcode);
805 return insn;
806 }
807
808 static brw_inst *
809 brw_alu1(struct brw_compile *p, unsigned opcode,
810 struct brw_reg dest, struct brw_reg src)
811 {
812 brw_inst *insn = next_insn(p, opcode);
813 brw_set_dest(p, insn, dest);
814 brw_set_src0(p, insn, src);
815 return insn;
816 }
817
818 static brw_inst *
819 brw_alu2(struct brw_compile *p, unsigned opcode,
820 struct brw_reg dest, struct brw_reg src0, struct brw_reg src1)
821 {
822 brw_inst *insn = next_insn(p, opcode);
823 brw_set_dest(p, insn, dest);
824 brw_set_src0(p, insn, src0);
825 brw_set_src1(p, insn, src1);
826 return insn;
827 }
828
829 static int
830 get_3src_subreg_nr(struct brw_reg reg)
831 {
832 if (reg.vstride == BRW_VERTICAL_STRIDE_0) {
833 assert(brw_is_single_value_swizzle(reg.dw1.bits.swizzle));
834 return reg.subnr / 4 + BRW_GET_SWZ(reg.dw1.bits.swizzle, 0);
835 } else {
836 return reg.subnr / 4;
837 }
838 }
839
840 static brw_inst *
841 brw_alu3(struct brw_compile *p, unsigned opcode, struct brw_reg dest,
842 struct brw_reg src0, struct brw_reg src1, struct brw_reg src2)
843 {
844 struct brw_context *brw = p->brw;
845 brw_inst *inst = next_insn(p, opcode);
846
847 gen7_convert_mrf_to_grf(p, &dest);
848
849 assert(brw_inst_access_mode(brw, inst) == BRW_ALIGN_16);
850
851 assert(dest.file == BRW_GENERAL_REGISTER_FILE ||
852 dest.file == BRW_MESSAGE_REGISTER_FILE);
853 assert(dest.nr < 128);
854 assert(dest.address_mode == BRW_ADDRESS_DIRECT);
855 assert(dest.type == BRW_REGISTER_TYPE_F ||
856 dest.type == BRW_REGISTER_TYPE_D ||
857 dest.type == BRW_REGISTER_TYPE_UD);
858 if (brw->gen == 6) {
859 brw_inst_set_3src_dst_reg_file(brw, inst,
860 dest.file == BRW_MESSAGE_REGISTER_FILE);
861 }
862 brw_inst_set_3src_dst_reg_nr(brw, inst, dest.nr);
863 brw_inst_set_3src_dst_subreg_nr(brw, inst, dest.subnr / 16);
864 brw_inst_set_3src_dst_writemask(brw, inst, dest.dw1.bits.writemask);
865 guess_execution_size(p, inst, dest);
866
867 assert(src0.file == BRW_GENERAL_REGISTER_FILE);
868 assert(src0.address_mode == BRW_ADDRESS_DIRECT);
869 assert(src0.nr < 128);
870 brw_inst_set_3src_src0_swizzle(brw, inst, src0.dw1.bits.swizzle);
871 brw_inst_set_3src_src0_subreg_nr(brw, inst, get_3src_subreg_nr(src0));
872 brw_inst_set_3src_src0_reg_nr(brw, inst, src0.nr);
873 brw_inst_set_3src_src0_abs(brw, inst, src0.abs);
874 brw_inst_set_3src_src0_negate(brw, inst, src0.negate);
875 brw_inst_set_3src_src0_rep_ctrl(brw, inst,
876 src0.vstride == BRW_VERTICAL_STRIDE_0);
877
878 assert(src1.file == BRW_GENERAL_REGISTER_FILE);
879 assert(src1.address_mode == BRW_ADDRESS_DIRECT);
880 assert(src1.nr < 128);
881 brw_inst_set_3src_src1_swizzle(brw, inst, src1.dw1.bits.swizzle);
882 brw_inst_set_3src_src1_subreg_nr(brw, inst, get_3src_subreg_nr(src1));
883 brw_inst_set_3src_src1_reg_nr(brw, inst, src1.nr);
884 brw_inst_set_3src_src1_abs(brw, inst, src1.abs);
885 brw_inst_set_3src_src1_negate(brw, inst, src1.negate);
886 brw_inst_set_3src_src1_rep_ctrl(brw, inst,
887 src1.vstride == BRW_VERTICAL_STRIDE_0);
888
889 assert(src2.file == BRW_GENERAL_REGISTER_FILE);
890 assert(src2.address_mode == BRW_ADDRESS_DIRECT);
891 assert(src2.nr < 128);
892 brw_inst_set_3src_src2_swizzle(brw, inst, src2.dw1.bits.swizzle);
893 brw_inst_set_3src_src2_subreg_nr(brw, inst, get_3src_subreg_nr(src2));
894 brw_inst_set_3src_src2_reg_nr(brw, inst, src2.nr);
895 brw_inst_set_3src_src2_abs(brw, inst, src2.abs);
896 brw_inst_set_3src_src2_negate(brw, inst, src2.negate);
897 brw_inst_set_3src_src2_rep_ctrl(brw, inst,
898 src2.vstride == BRW_VERTICAL_STRIDE_0);
899
900 if (brw->gen >= 7) {
901 /* Set both the source and destination types based on dest.type,
902 * ignoring the source register types. The MAD and LRP emitters ensure
903 * that all four types are float. The BFE and BFI2 emitters, however,
904 * may send us mixed D and UD types and want us to ignore that and use
905 * the destination type.
906 */
907 switch (dest.type) {
908 case BRW_REGISTER_TYPE_F:
909 brw_inst_set_3src_src_type(brw, inst, BRW_3SRC_TYPE_F);
910 brw_inst_set_3src_dst_type(brw, inst, BRW_3SRC_TYPE_F);
911 break;
912 case BRW_REGISTER_TYPE_D:
913 brw_inst_set_3src_src_type(brw, inst, BRW_3SRC_TYPE_D);
914 brw_inst_set_3src_dst_type(brw, inst, BRW_3SRC_TYPE_D);
915 break;
916 case BRW_REGISTER_TYPE_UD:
917 brw_inst_set_3src_src_type(brw, inst, BRW_3SRC_TYPE_UD);
918 brw_inst_set_3src_dst_type(brw, inst, BRW_3SRC_TYPE_UD);
919 break;
920 }
921 }
922
923 return inst;
924 }
925
926
927 /***********************************************************************
928 * Convenience routines.
929 */
930 #define ALU1(OP) \
931 brw_inst *brw_##OP(struct brw_compile *p, \
932 struct brw_reg dest, \
933 struct brw_reg src0) \
934 { \
935 return brw_alu1(p, BRW_OPCODE_##OP, dest, src0); \
936 }
937
938 #define ALU2(OP) \
939 brw_inst *brw_##OP(struct brw_compile *p, \
940 struct brw_reg dest, \
941 struct brw_reg src0, \
942 struct brw_reg src1) \
943 { \
944 return brw_alu2(p, BRW_OPCODE_##OP, dest, src0, src1); \
945 }
946
947 #define ALU3(OP) \
948 brw_inst *brw_##OP(struct brw_compile *p, \
949 struct brw_reg dest, \
950 struct brw_reg src0, \
951 struct brw_reg src1, \
952 struct brw_reg src2) \
953 { \
954 return brw_alu3(p, BRW_OPCODE_##OP, dest, src0, src1, src2); \
955 }
956
957 #define ALU3F(OP) \
958 brw_inst *brw_##OP(struct brw_compile *p, \
959 struct brw_reg dest, \
960 struct brw_reg src0, \
961 struct brw_reg src1, \
962 struct brw_reg src2) \
963 { \
964 assert(dest.type == BRW_REGISTER_TYPE_F); \
965 assert(src0.type == BRW_REGISTER_TYPE_F); \
966 assert(src1.type == BRW_REGISTER_TYPE_F); \
967 assert(src2.type == BRW_REGISTER_TYPE_F); \
968 return brw_alu3(p, BRW_OPCODE_##OP, dest, src0, src1, src2); \
969 }
970
971 /* Rounding operations (other than RNDD) require two instructions - the first
972 * stores a rounded value (possibly the wrong way) in the dest register, but
973 * also sets a per-channel "increment bit" in the flag register. A predicated
974 * add of 1.0 fixes dest to contain the desired result.
975 *
976 * Sandybridge and later appear to round correctly without an ADD.
977 */
978 #define ROUND(OP) \
979 void brw_##OP(struct brw_compile *p, \
980 struct brw_reg dest, \
981 struct brw_reg src) \
982 { \
983 struct brw_context *brw = p->brw; \
984 brw_inst *rnd, *add; \
985 rnd = next_insn(p, BRW_OPCODE_##OP); \
986 brw_set_dest(p, rnd, dest); \
987 brw_set_src0(p, rnd, src); \
988 \
989 if (brw->gen < 6) { \
990 /* turn on round-increments */ \
991 brw_inst_set_cond_modifier(brw, rnd, BRW_CONDITIONAL_R); \
992 add = brw_ADD(p, dest, dest, brw_imm_f(1.0f)); \
993 brw_inst_set_pred_control(brw, add, BRW_PREDICATE_NORMAL); \
994 } \
995 }
996
997
998 ALU1(MOV)
999 ALU2(SEL)
1000 ALU1(NOT)
1001 ALU2(AND)
1002 ALU2(OR)
1003 ALU2(XOR)
1004 ALU2(SHR)
1005 ALU2(SHL)
1006 ALU2(ASR)
1007 ALU1(F32TO16)
1008 ALU1(F16TO32)
1009 ALU1(FRC)
1010 ALU1(RNDD)
1011 ALU2(MAC)
1012 ALU2(MACH)
1013 ALU1(LZD)
1014 ALU2(DP4)
1015 ALU2(DPH)
1016 ALU2(DP3)
1017 ALU2(DP2)
1018 ALU2(LINE)
1019 ALU2(PLN)
1020 ALU3F(MAD)
1021 ALU3F(LRP)
1022 ALU1(BFREV)
1023 ALU3(BFE)
1024 ALU2(BFI1)
1025 ALU3(BFI2)
1026 ALU1(FBH)
1027 ALU1(FBL)
1028 ALU1(CBIT)
1029 ALU2(ADDC)
1030 ALU2(SUBB)
1031
1032 ROUND(RNDZ)
1033 ROUND(RNDE)
1034
1035
1036 brw_inst *
1037 brw_ADD(struct brw_compile *p, struct brw_reg dest,
1038 struct brw_reg src0, struct brw_reg src1)
1039 {
1040 /* 6.2.2: add */
1041 if (src0.type == BRW_REGISTER_TYPE_F ||
1042 (src0.file == BRW_IMMEDIATE_VALUE &&
1043 src0.type == BRW_REGISTER_TYPE_VF)) {
1044 assert(src1.type != BRW_REGISTER_TYPE_UD);
1045 assert(src1.type != BRW_REGISTER_TYPE_D);
1046 }
1047
1048 if (src1.type == BRW_REGISTER_TYPE_F ||
1049 (src1.file == BRW_IMMEDIATE_VALUE &&
1050 src1.type == BRW_REGISTER_TYPE_VF)) {
1051 assert(src0.type != BRW_REGISTER_TYPE_UD);
1052 assert(src0.type != BRW_REGISTER_TYPE_D);
1053 }
1054
1055 return brw_alu2(p, BRW_OPCODE_ADD, dest, src0, src1);
1056 }
1057
1058 brw_inst *
1059 brw_AVG(struct brw_compile *p, struct brw_reg dest,
1060 struct brw_reg src0, struct brw_reg src1)
1061 {
1062 assert(dest.type == src0.type);
1063 assert(src0.type == src1.type);
1064 switch (src0.type) {
1065 case BRW_REGISTER_TYPE_B:
1066 case BRW_REGISTER_TYPE_UB:
1067 case BRW_REGISTER_TYPE_W:
1068 case BRW_REGISTER_TYPE_UW:
1069 case BRW_REGISTER_TYPE_D:
1070 case BRW_REGISTER_TYPE_UD:
1071 break;
1072 default:
1073 unreachable("Bad type for brw_AVG");
1074 }
1075
1076 return brw_alu2(p, BRW_OPCODE_AVG, dest, src0, src1);
1077 }
1078
1079 brw_inst *
1080 brw_MUL(struct brw_compile *p, struct brw_reg dest,
1081 struct brw_reg src0, struct brw_reg src1)
1082 {
1083 /* 6.32.38: mul */
1084 if (src0.type == BRW_REGISTER_TYPE_D ||
1085 src0.type == BRW_REGISTER_TYPE_UD ||
1086 src1.type == BRW_REGISTER_TYPE_D ||
1087 src1.type == BRW_REGISTER_TYPE_UD) {
1088 assert(dest.type != BRW_REGISTER_TYPE_F);
1089 }
1090
1091 if (src0.type == BRW_REGISTER_TYPE_F ||
1092 (src0.file == BRW_IMMEDIATE_VALUE &&
1093 src0.type == BRW_REGISTER_TYPE_VF)) {
1094 assert(src1.type != BRW_REGISTER_TYPE_UD);
1095 assert(src1.type != BRW_REGISTER_TYPE_D);
1096 }
1097
1098 if (src1.type == BRW_REGISTER_TYPE_F ||
1099 (src1.file == BRW_IMMEDIATE_VALUE &&
1100 src1.type == BRW_REGISTER_TYPE_VF)) {
1101 assert(src0.type != BRW_REGISTER_TYPE_UD);
1102 assert(src0.type != BRW_REGISTER_TYPE_D);
1103 }
1104
1105 assert(src0.file != BRW_ARCHITECTURE_REGISTER_FILE ||
1106 src0.nr != BRW_ARF_ACCUMULATOR);
1107 assert(src1.file != BRW_ARCHITECTURE_REGISTER_FILE ||
1108 src1.nr != BRW_ARF_ACCUMULATOR);
1109
1110 return brw_alu2(p, BRW_OPCODE_MUL, dest, src0, src1);
1111 }
1112
1113
1114 void brw_NOP(struct brw_compile *p)
1115 {
1116 brw_inst *insn = next_insn(p, BRW_OPCODE_NOP);
1117 brw_set_dest(p, insn, retype(brw_vec4_grf(0,0), BRW_REGISTER_TYPE_UD));
1118 brw_set_src0(p, insn, retype(brw_vec4_grf(0,0), BRW_REGISTER_TYPE_UD));
1119 brw_set_src1(p, insn, brw_imm_ud(0x0));
1120 }
1121
1122
1123
1124
1125
1126 /***********************************************************************
1127 * Comparisons, if/else/endif
1128 */
1129
1130 brw_inst *
1131 brw_JMPI(struct brw_compile *p, struct brw_reg index,
1132 unsigned predicate_control)
1133 {
1134 const struct brw_context *brw = p->brw;
1135 struct brw_reg ip = brw_ip_reg();
1136 brw_inst *inst = brw_alu2(p, BRW_OPCODE_JMPI, ip, ip, index);
1137
1138 brw_inst_set_exec_size(brw, inst, BRW_EXECUTE_2);
1139 brw_inst_set_qtr_control(brw, inst, BRW_COMPRESSION_NONE);
1140 brw_inst_set_mask_control(brw, inst, BRW_MASK_DISABLE);
1141 brw_inst_set_pred_control(brw, inst, predicate_control);
1142
1143 return inst;
1144 }
1145
1146 static void
1147 push_if_stack(struct brw_compile *p, brw_inst *inst)
1148 {
1149 p->if_stack[p->if_stack_depth] = inst - p->store;
1150
1151 p->if_stack_depth++;
1152 if (p->if_stack_array_size <= p->if_stack_depth) {
1153 p->if_stack_array_size *= 2;
1154 p->if_stack = reralloc(p->mem_ctx, p->if_stack, int,
1155 p->if_stack_array_size);
1156 }
1157 }
1158
1159 static brw_inst *
1160 pop_if_stack(struct brw_compile *p)
1161 {
1162 p->if_stack_depth--;
1163 return &p->store[p->if_stack[p->if_stack_depth]];
1164 }
1165
1166 static void
1167 push_loop_stack(struct brw_compile *p, brw_inst *inst)
1168 {
1169 if (p->loop_stack_array_size < p->loop_stack_depth) {
1170 p->loop_stack_array_size *= 2;
1171 p->loop_stack = reralloc(p->mem_ctx, p->loop_stack, int,
1172 p->loop_stack_array_size);
1173 p->if_depth_in_loop = reralloc(p->mem_ctx, p->if_depth_in_loop, int,
1174 p->loop_stack_array_size);
1175 }
1176
1177 p->loop_stack[p->loop_stack_depth] = inst - p->store;
1178 p->loop_stack_depth++;
1179 p->if_depth_in_loop[p->loop_stack_depth] = 0;
1180 }
1181
1182 static brw_inst *
1183 get_inner_do_insn(struct brw_compile *p)
1184 {
1185 return &p->store[p->loop_stack[p->loop_stack_depth - 1]];
1186 }
1187
1188 /* EU takes the value from the flag register and pushes it onto some
1189 * sort of a stack (presumably merging with any flag value already on
1190 * the stack). Within an if block, the flags at the top of the stack
1191 * control execution on each channel of the unit, eg. on each of the
1192 * 16 pixel values in our wm programs.
1193 *
1194 * When the matching 'else' instruction is reached (presumably by
1195 * countdown of the instruction count patched in by our ELSE/ENDIF
1196 * functions), the relevent flags are inverted.
1197 *
1198 * When the matching 'endif' instruction is reached, the flags are
1199 * popped off. If the stack is now empty, normal execution resumes.
1200 */
1201 brw_inst *
1202 brw_IF(struct brw_compile *p, unsigned execute_size)
1203 {
1204 struct brw_context *brw = p->brw;
1205 brw_inst *insn;
1206
1207 insn = next_insn(p, BRW_OPCODE_IF);
1208
1209 /* Override the defaults for this instruction:
1210 */
1211 if (brw->gen < 6) {
1212 brw_set_dest(p, insn, brw_ip_reg());
1213 brw_set_src0(p, insn, brw_ip_reg());
1214 brw_set_src1(p, insn, brw_imm_d(0x0));
1215 } else if (brw->gen == 6) {
1216 brw_set_dest(p, insn, brw_imm_w(0));
1217 brw_inst_set_gen6_jump_count(brw, insn, 0);
1218 brw_set_src0(p, insn, vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_D)));
1219 brw_set_src1(p, insn, vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_D)));
1220 } else {
1221 brw_set_dest(p, insn, vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_D)));
1222 brw_set_src0(p, insn, vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_D)));
1223 brw_set_src1(p, insn, brw_imm_ud(0));
1224 brw_inst_set_jip(brw, insn, 0);
1225 brw_inst_set_uip(brw, insn, 0);
1226 }
1227
1228 brw_inst_set_exec_size(brw, insn, execute_size);
1229 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1230 brw_inst_set_pred_control(brw, insn, BRW_PREDICATE_NORMAL);
1231 brw_inst_set_mask_control(brw, insn, BRW_MASK_ENABLE);
1232 if (!p->single_program_flow && brw->gen < 6)
1233 brw_inst_set_thread_control(brw, insn, BRW_THREAD_SWITCH);
1234
1235 push_if_stack(p, insn);
1236 p->if_depth_in_loop[p->loop_stack_depth]++;
1237 return insn;
1238 }
1239
1240 /* This function is only used for gen6-style IF instructions with an
1241 * embedded comparison (conditional modifier). It is not used on gen7.
1242 */
1243 brw_inst *
1244 gen6_IF(struct brw_compile *p, enum brw_conditional_mod conditional,
1245 struct brw_reg src0, struct brw_reg src1)
1246 {
1247 const struct brw_context *brw = p->brw;
1248 brw_inst *insn;
1249
1250 insn = next_insn(p, BRW_OPCODE_IF);
1251
1252 brw_set_dest(p, insn, brw_imm_w(0));
1253 brw_inst_set_exec_size(brw, insn, p->compressed ? BRW_EXECUTE_16
1254 : BRW_EXECUTE_8);
1255 brw_inst_set_gen6_jump_count(brw, insn, 0);
1256 brw_set_src0(p, insn, src0);
1257 brw_set_src1(p, insn, src1);
1258
1259 assert(brw_inst_qtr_control(brw, insn) == BRW_COMPRESSION_NONE);
1260 assert(brw_inst_pred_control(brw, insn) == BRW_PREDICATE_NONE);
1261 brw_inst_set_cond_modifier(brw, insn, conditional);
1262
1263 push_if_stack(p, insn);
1264 return insn;
1265 }
1266
1267 /**
1268 * In single-program-flow (SPF) mode, convert IF and ELSE into ADDs.
1269 */
1270 static void
1271 convert_IF_ELSE_to_ADD(struct brw_compile *p,
1272 brw_inst *if_inst, brw_inst *else_inst)
1273 {
1274 const struct brw_context *brw = p->brw;
1275
1276 /* The next instruction (where the ENDIF would be, if it existed) */
1277 brw_inst *next_inst = &p->store[p->nr_insn];
1278
1279 assert(p->single_program_flow);
1280 assert(if_inst != NULL && brw_inst_opcode(brw, if_inst) == BRW_OPCODE_IF);
1281 assert(else_inst == NULL || brw_inst_opcode(brw, else_inst) == BRW_OPCODE_ELSE);
1282 assert(brw_inst_exec_size(brw, if_inst) == BRW_EXECUTE_1);
1283
1284 /* Convert IF to an ADD instruction that moves the instruction pointer
1285 * to the first instruction of the ELSE block. If there is no ELSE
1286 * block, point to where ENDIF would be. Reverse the predicate.
1287 *
1288 * There's no need to execute an ENDIF since we don't need to do any
1289 * stack operations, and if we're currently executing, we just want to
1290 * continue normally.
1291 */
1292 brw_inst_set_opcode(brw, if_inst, BRW_OPCODE_ADD);
1293 brw_inst_set_pred_inv(brw, if_inst, true);
1294
1295 if (else_inst != NULL) {
1296 /* Convert ELSE to an ADD instruction that points where the ENDIF
1297 * would be.
1298 */
1299 brw_inst_set_opcode(brw, else_inst, BRW_OPCODE_ADD);
1300
1301 brw_inst_set_imm_ud(brw, if_inst, (else_inst - if_inst + 1) * 16);
1302 brw_inst_set_imm_ud(brw, else_inst, (next_inst - else_inst) * 16);
1303 } else {
1304 brw_inst_set_imm_ud(brw, if_inst, (next_inst - if_inst) * 16);
1305 }
1306 }
1307
1308 /**
1309 * Patch IF and ELSE instructions with appropriate jump targets.
1310 */
1311 static void
1312 patch_IF_ELSE(struct brw_compile *p,
1313 brw_inst *if_inst, brw_inst *else_inst, brw_inst *endif_inst)
1314 {
1315 struct brw_context *brw = p->brw;
1316
1317 /* We shouldn't be patching IF and ELSE instructions in single program flow
1318 * mode when gen < 6, because in single program flow mode on those
1319 * platforms, we convert flow control instructions to conditional ADDs that
1320 * operate on IP (see brw_ENDIF).
1321 *
1322 * However, on Gen6, writing to IP doesn't work in single program flow mode
1323 * (see the SandyBridge PRM, Volume 4 part 2, p79: "When SPF is ON, IP may
1324 * not be updated by non-flow control instructions."). And on later
1325 * platforms, there is no significant benefit to converting control flow
1326 * instructions to conditional ADDs. So we do patch IF and ELSE
1327 * instructions in single program flow mode on those platforms.
1328 */
1329 if (brw->gen < 6)
1330 assert(!p->single_program_flow);
1331
1332 assert(if_inst != NULL && brw_inst_opcode(brw, if_inst) == BRW_OPCODE_IF);
1333 assert(endif_inst != NULL);
1334 assert(else_inst == NULL || brw_inst_opcode(brw, else_inst) == BRW_OPCODE_ELSE);
1335
1336 unsigned br = 1;
1337 /* Jump count is for 64bit data chunk each, so one 128bit instruction
1338 * requires 2 chunks.
1339 */
1340 if (brw->gen >= 5)
1341 br = 2;
1342
1343 assert(brw_inst_opcode(brw, endif_inst) == BRW_OPCODE_ENDIF);
1344 brw_inst_set_exec_size(brw, endif_inst, brw_inst_exec_size(brw, if_inst));
1345
1346 if (else_inst == NULL) {
1347 /* Patch IF -> ENDIF */
1348 if (brw->gen < 6) {
1349 /* Turn it into an IFF, which means no mask stack operations for
1350 * all-false and jumping past the ENDIF.
1351 */
1352 brw_inst_set_opcode(brw, if_inst, BRW_OPCODE_IFF);
1353 brw_inst_set_gen4_jump_count(brw, if_inst,
1354 br * (endif_inst - if_inst + 1));
1355 brw_inst_set_gen4_pop_count(brw, if_inst, 0);
1356 } else if (brw->gen == 6) {
1357 /* As of gen6, there is no IFF and IF must point to the ENDIF. */
1358 brw_inst_set_gen6_jump_count(brw, if_inst, br*(endif_inst - if_inst));
1359 } else {
1360 brw_inst_set_uip(brw, if_inst, br * (endif_inst - if_inst));
1361 brw_inst_set_jip(brw, if_inst, br * (endif_inst - if_inst));
1362 }
1363 } else {
1364 brw_inst_set_exec_size(brw, else_inst, brw_inst_exec_size(brw, if_inst));
1365
1366 /* Patch IF -> ELSE */
1367 if (brw->gen < 6) {
1368 brw_inst_set_gen4_jump_count(brw, if_inst,
1369 br * (else_inst - if_inst));
1370 brw_inst_set_gen4_pop_count(brw, if_inst, 0);
1371 } else if (brw->gen == 6) {
1372 brw_inst_set_gen6_jump_count(brw, if_inst,
1373 br * (else_inst - if_inst + 1));
1374 }
1375
1376 /* Patch ELSE -> ENDIF */
1377 if (brw->gen < 6) {
1378 /* BRW_OPCODE_ELSE pre-gen6 should point just past the
1379 * matching ENDIF.
1380 */
1381 brw_inst_set_gen4_jump_count(brw, else_inst,
1382 br * (endif_inst - else_inst + 1));
1383 brw_inst_set_gen4_pop_count(brw, else_inst, 1);
1384 } else if (brw->gen == 6) {
1385 /* BRW_OPCODE_ELSE on gen6 should point to the matching ENDIF. */
1386 brw_inst_set_gen6_jump_count(brw, else_inst,
1387 br * (endif_inst - else_inst));
1388 } else {
1389 /* The IF instruction's JIP should point just past the ELSE */
1390 brw_inst_set_jip(brw, if_inst, br * (else_inst - if_inst + 1));
1391 /* The IF instruction's UIP and ELSE's JIP should point to ENDIF */
1392 brw_inst_set_uip(brw, if_inst, br * (endif_inst - if_inst));
1393 brw_inst_set_jip(brw, else_inst, br * (endif_inst - else_inst));
1394 }
1395 }
1396 }
1397
1398 void
1399 brw_ELSE(struct brw_compile *p)
1400 {
1401 struct brw_context *brw = p->brw;
1402 brw_inst *insn;
1403
1404 insn = next_insn(p, BRW_OPCODE_ELSE);
1405
1406 if (brw->gen < 6) {
1407 brw_set_dest(p, insn, brw_ip_reg());
1408 brw_set_src0(p, insn, brw_ip_reg());
1409 brw_set_src1(p, insn, brw_imm_d(0x0));
1410 } else if (brw->gen == 6) {
1411 brw_set_dest(p, insn, brw_imm_w(0));
1412 brw_inst_set_gen6_jump_count(brw, insn, 0);
1413 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1414 brw_set_src1(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1415 } else {
1416 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1417 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1418 brw_set_src1(p, insn, brw_imm_ud(0));
1419 brw_inst_set_jip(brw, insn, 0);
1420 brw_inst_set_uip(brw, insn, 0);
1421 }
1422
1423 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1424 brw_inst_set_mask_control(brw, insn, BRW_MASK_ENABLE);
1425 if (!p->single_program_flow && brw->gen < 6)
1426 brw_inst_set_thread_control(brw, insn, BRW_THREAD_SWITCH);
1427
1428 push_if_stack(p, insn);
1429 }
1430
1431 void
1432 brw_ENDIF(struct brw_compile *p)
1433 {
1434 struct brw_context *brw = p->brw;
1435 brw_inst *insn = NULL;
1436 brw_inst *else_inst = NULL;
1437 brw_inst *if_inst = NULL;
1438 brw_inst *tmp;
1439 bool emit_endif = true;
1440
1441 /* In single program flow mode, we can express IF and ELSE instructions
1442 * equivalently as ADD instructions that operate on IP. On platforms prior
1443 * to Gen6, flow control instructions cause an implied thread switch, so
1444 * this is a significant savings.
1445 *
1446 * However, on Gen6, writing to IP doesn't work in single program flow mode
1447 * (see the SandyBridge PRM, Volume 4 part 2, p79: "When SPF is ON, IP may
1448 * not be updated by non-flow control instructions."). And on later
1449 * platforms, there is no significant benefit to converting control flow
1450 * instructions to conditional ADDs. So we only do this trick on Gen4 and
1451 * Gen5.
1452 */
1453 if (brw->gen < 6 && p->single_program_flow)
1454 emit_endif = false;
1455
1456 /*
1457 * A single next_insn() may change the base adress of instruction store
1458 * memory(p->store), so call it first before referencing the instruction
1459 * store pointer from an index
1460 */
1461 if (emit_endif)
1462 insn = next_insn(p, BRW_OPCODE_ENDIF);
1463
1464 /* Pop the IF and (optional) ELSE instructions from the stack */
1465 p->if_depth_in_loop[p->loop_stack_depth]--;
1466 tmp = pop_if_stack(p);
1467 if (brw_inst_opcode(brw, tmp) == BRW_OPCODE_ELSE) {
1468 else_inst = tmp;
1469 tmp = pop_if_stack(p);
1470 }
1471 if_inst = tmp;
1472
1473 if (!emit_endif) {
1474 /* ENDIF is useless; don't bother emitting it. */
1475 convert_IF_ELSE_to_ADD(p, if_inst, else_inst);
1476 return;
1477 }
1478
1479 if (brw->gen < 6) {
1480 brw_set_dest(p, insn, retype(brw_vec4_grf(0,0), BRW_REGISTER_TYPE_UD));
1481 brw_set_src0(p, insn, retype(brw_vec4_grf(0,0), BRW_REGISTER_TYPE_UD));
1482 brw_set_src1(p, insn, brw_imm_d(0x0));
1483 } else if (brw->gen == 6) {
1484 brw_set_dest(p, insn, brw_imm_w(0));
1485 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1486 brw_set_src1(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1487 } else {
1488 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1489 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1490 brw_set_src1(p, insn, brw_imm_ud(0));
1491 }
1492
1493 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1494 brw_inst_set_mask_control(brw, insn, BRW_MASK_ENABLE);
1495 if (brw->gen < 6)
1496 brw_inst_set_thread_control(brw, insn, BRW_THREAD_SWITCH);
1497
1498 /* Also pop item off the stack in the endif instruction: */
1499 if (brw->gen < 6) {
1500 brw_inst_set_gen4_jump_count(brw, insn, 0);
1501 brw_inst_set_gen4_pop_count(brw, insn, 1);
1502 } else if (brw->gen == 6) {
1503 brw_inst_set_gen6_jump_count(brw, insn, 2);
1504 } else {
1505 brw_inst_set_jip(brw, insn, 2);
1506 }
1507 patch_IF_ELSE(p, if_inst, else_inst, insn);
1508 }
1509
1510 brw_inst *
1511 brw_BREAK(struct brw_compile *p)
1512 {
1513 struct brw_context *brw = p->brw;
1514 brw_inst *insn;
1515
1516 insn = next_insn(p, BRW_OPCODE_BREAK);
1517 if (brw->gen >= 6) {
1518 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1519 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1520 brw_set_src1(p, insn, brw_imm_d(0x0));
1521 } else {
1522 brw_set_dest(p, insn, brw_ip_reg());
1523 brw_set_src0(p, insn, brw_ip_reg());
1524 brw_set_src1(p, insn, brw_imm_d(0x0));
1525 brw_inst_set_gen4_pop_count(brw, insn,
1526 p->if_depth_in_loop[p->loop_stack_depth]);
1527 }
1528 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1529 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_8);
1530
1531 return insn;
1532 }
1533
1534 brw_inst *
1535 gen6_CONT(struct brw_compile *p)
1536 {
1537 const struct brw_context *brw = p->brw;
1538 brw_inst *insn;
1539
1540 insn = next_insn(p, BRW_OPCODE_CONTINUE);
1541 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1542 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1543 brw_set_dest(p, insn, brw_ip_reg());
1544 brw_set_src0(p, insn, brw_ip_reg());
1545 brw_set_src1(p, insn, brw_imm_d(0x0));
1546
1547 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1548 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_8);
1549 return insn;
1550 }
1551
1552 brw_inst *
1553 brw_CONT(struct brw_compile *p)
1554 {
1555 const struct brw_context *brw = p->brw;
1556 brw_inst *insn;
1557 insn = next_insn(p, BRW_OPCODE_CONTINUE);
1558 brw_set_dest(p, insn, brw_ip_reg());
1559 brw_set_src0(p, insn, brw_ip_reg());
1560 brw_set_src1(p, insn, brw_imm_d(0x0));
1561 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1562 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_8);
1563 /* insn->header.mask_control = BRW_MASK_DISABLE; */
1564 brw_inst_set_gen4_pop_count(brw, insn,
1565 p->if_depth_in_loop[p->loop_stack_depth]);
1566 return insn;
1567 }
1568
1569 brw_inst *
1570 gen6_HALT(struct brw_compile *p)
1571 {
1572 const struct brw_context *brw = p->brw;
1573 brw_inst *insn;
1574
1575 insn = next_insn(p, BRW_OPCODE_HALT);
1576 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1577 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1578 brw_set_src1(p, insn, brw_imm_d(0x0)); /* UIP and JIP, updated later. */
1579
1580 if (p->compressed) {
1581 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_16);
1582 } else {
1583 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1584 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_8);
1585 }
1586 return insn;
1587 }
1588
1589 /* DO/WHILE loop:
1590 *
1591 * The DO/WHILE is just an unterminated loop -- break or continue are
1592 * used for control within the loop. We have a few ways they can be
1593 * done.
1594 *
1595 * For uniform control flow, the WHILE is just a jump, so ADD ip, ip,
1596 * jip and no DO instruction.
1597 *
1598 * For non-uniform control flow pre-gen6, there's a DO instruction to
1599 * push the mask, and a WHILE to jump back, and BREAK to get out and
1600 * pop the mask.
1601 *
1602 * For gen6, there's no more mask stack, so no need for DO. WHILE
1603 * just points back to the first instruction of the loop.
1604 */
1605 brw_inst *
1606 brw_DO(struct brw_compile *p, unsigned execute_size)
1607 {
1608 struct brw_context *brw = p->brw;
1609
1610 if (brw->gen >= 6 || p->single_program_flow) {
1611 push_loop_stack(p, &p->store[p->nr_insn]);
1612 return &p->store[p->nr_insn];
1613 } else {
1614 brw_inst *insn = next_insn(p, BRW_OPCODE_DO);
1615
1616 push_loop_stack(p, insn);
1617
1618 /* Override the defaults for this instruction:
1619 */
1620 brw_set_dest(p, insn, brw_null_reg());
1621 brw_set_src0(p, insn, brw_null_reg());
1622 brw_set_src1(p, insn, brw_null_reg());
1623
1624 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1625 brw_inst_set_exec_size(brw, insn, execute_size);
1626 brw_inst_set_pred_control(brw, insn, BRW_PREDICATE_NONE);
1627
1628 return insn;
1629 }
1630 }
1631
1632 /**
1633 * For pre-gen6, we patch BREAK/CONT instructions to point at the WHILE
1634 * instruction here.
1635 *
1636 * For gen6+, see brw_set_uip_jip(), which doesn't care so much about the loop
1637 * nesting, since it can always just point to the end of the block/current loop.
1638 */
1639 static void
1640 brw_patch_break_cont(struct brw_compile *p, brw_inst *while_inst)
1641 {
1642 struct brw_context *brw = p->brw;
1643 brw_inst *do_inst = get_inner_do_insn(p);
1644 brw_inst *inst;
1645 int br = (brw->gen == 5) ? 2 : 1;
1646
1647 for (inst = while_inst - 1; inst != do_inst; inst--) {
1648 /* If the jump count is != 0, that means that this instruction has already
1649 * been patched because it's part of a loop inside of the one we're
1650 * patching.
1651 */
1652 if (brw_inst_opcode(brw, inst) == BRW_OPCODE_BREAK &&
1653 brw_inst_gen4_jump_count(brw, inst) == 0) {
1654 brw_inst_set_gen4_jump_count(brw, inst, br*((while_inst - inst) + 1));
1655 } else if (brw_inst_opcode(brw, inst) == BRW_OPCODE_CONTINUE &&
1656 brw_inst_gen4_jump_count(brw, inst) == 0) {
1657 brw_inst_set_gen4_jump_count(brw, inst, br * (while_inst - inst));
1658 }
1659 }
1660 }
1661
1662 brw_inst *
1663 brw_WHILE(struct brw_compile *p)
1664 {
1665 struct brw_context *brw = p->brw;
1666 brw_inst *insn, *do_insn;
1667 unsigned br = 1;
1668
1669 if (brw->gen >= 5)
1670 br = 2;
1671
1672 if (brw->gen >= 7) {
1673 insn = next_insn(p, BRW_OPCODE_WHILE);
1674 do_insn = get_inner_do_insn(p);
1675
1676 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1677 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1678 brw_set_src1(p, insn, brw_imm_ud(0));
1679 brw_inst_set_jip(brw, insn, br * (do_insn - insn));
1680
1681 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_8);
1682 } else if (brw->gen == 6) {
1683 insn = next_insn(p, BRW_OPCODE_WHILE);
1684 do_insn = get_inner_do_insn(p);
1685
1686 brw_set_dest(p, insn, brw_imm_w(0));
1687 brw_inst_set_gen6_jump_count(brw, insn, br * (do_insn - insn));
1688 brw_set_src0(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1689 brw_set_src1(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_D));
1690
1691 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_8);
1692 } else {
1693 if (p->single_program_flow) {
1694 insn = next_insn(p, BRW_OPCODE_ADD);
1695 do_insn = get_inner_do_insn(p);
1696
1697 brw_set_dest(p, insn, brw_ip_reg());
1698 brw_set_src0(p, insn, brw_ip_reg());
1699 brw_set_src1(p, insn, brw_imm_d((do_insn - insn) * 16));
1700 brw_inst_set_exec_size(brw, insn, BRW_EXECUTE_1);
1701 } else {
1702 insn = next_insn(p, BRW_OPCODE_WHILE);
1703 do_insn = get_inner_do_insn(p);
1704
1705 assert(brw_inst_opcode(brw, do_insn) == BRW_OPCODE_DO);
1706
1707 brw_set_dest(p, insn, brw_ip_reg());
1708 brw_set_src0(p, insn, brw_ip_reg());
1709 brw_set_src1(p, insn, brw_imm_d(0));
1710
1711 brw_inst_set_exec_size(brw, insn, brw_inst_exec_size(brw, do_insn));
1712 brw_inst_set_gen4_jump_count(brw, insn, br * (do_insn - insn + 1));
1713 brw_inst_set_gen4_pop_count(brw, insn, 0);
1714
1715 brw_patch_break_cont(p, insn);
1716 }
1717 }
1718 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1719
1720 p->loop_stack_depth--;
1721
1722 return insn;
1723 }
1724
1725 /* FORWARD JUMPS:
1726 */
1727 void brw_land_fwd_jump(struct brw_compile *p, int jmp_insn_idx)
1728 {
1729 struct brw_context *brw = p->brw;
1730 brw_inst *jmp_insn = &p->store[jmp_insn_idx];
1731 unsigned jmpi = 1;
1732
1733 if (brw->gen >= 5)
1734 jmpi = 2;
1735
1736 assert(brw_inst_opcode(brw, jmp_insn) == BRW_OPCODE_JMPI);
1737 assert(brw_inst_src1_reg_file(brw, jmp_insn) == BRW_IMMEDIATE_VALUE);
1738
1739 brw_inst_set_gen4_jump_count(brw, jmp_insn,
1740 jmpi * (p->nr_insn - jmp_insn_idx - 1));
1741 }
1742
1743 /* To integrate with the above, it makes sense that the comparison
1744 * instruction should populate the flag register. It might be simpler
1745 * just to use the flag reg for most WM tasks?
1746 */
1747 void brw_CMP(struct brw_compile *p,
1748 struct brw_reg dest,
1749 unsigned conditional,
1750 struct brw_reg src0,
1751 struct brw_reg src1)
1752 {
1753 struct brw_context *brw = p->brw;
1754 brw_inst *insn = next_insn(p, BRW_OPCODE_CMP);
1755
1756 brw_inst_set_cond_modifier(brw, insn, conditional);
1757 brw_set_dest(p, insn, dest);
1758 brw_set_src0(p, insn, src0);
1759 brw_set_src1(p, insn, src1);
1760
1761 /* Item WaCMPInstNullDstForcesThreadSwitch in the Haswell Bspec workarounds
1762 * page says:
1763 * "Any CMP instruction with a null destination must use a {switch}."
1764 *
1765 * It also applies to other Gen7 platforms (IVB, BYT) even though it isn't
1766 * mentioned on their work-arounds pages.
1767 */
1768 if (brw->gen == 7) {
1769 if (dest.file == BRW_ARCHITECTURE_REGISTER_FILE &&
1770 dest.nr == BRW_ARF_NULL) {
1771 brw_inst_set_thread_control(brw, insn, BRW_THREAD_SWITCH);
1772 }
1773 }
1774 }
1775
1776 /***********************************************************************
1777 * Helpers for the various SEND message types:
1778 */
1779
1780 /** Extended math function, float[8].
1781 */
1782 void gen4_math(struct brw_compile *p,
1783 struct brw_reg dest,
1784 unsigned function,
1785 unsigned msg_reg_nr,
1786 struct brw_reg src,
1787 unsigned data_type,
1788 unsigned precision )
1789 {
1790 struct brw_context *brw = p->brw;
1791 brw_inst *insn = next_insn(p, BRW_OPCODE_SEND);
1792
1793 assert(brw->gen < 6);
1794
1795 /* Example code doesn't set predicate_control for send
1796 * instructions.
1797 */
1798 brw_inst_set_pred_control(brw, insn, 0);
1799 brw_inst_set_base_mrf(brw, insn, msg_reg_nr);
1800
1801 brw_set_dest(p, insn, dest);
1802 brw_set_src0(p, insn, src);
1803 brw_set_math_message(p,
1804 insn,
1805 function,
1806 src.type == BRW_REGISTER_TYPE_D,
1807 precision,
1808 data_type);
1809 }
1810
1811 void gen6_math(struct brw_compile *p,
1812 struct brw_reg dest,
1813 unsigned function,
1814 struct brw_reg src0,
1815 struct brw_reg src1)
1816 {
1817 struct brw_context *brw = p->brw;
1818 brw_inst *insn = next_insn(p, BRW_OPCODE_MATH);
1819
1820 assert(brw->gen >= 6);
1821
1822 assert(dest.file == BRW_GENERAL_REGISTER_FILE ||
1823 (brw->gen >= 7 && dest.file == BRW_MESSAGE_REGISTER_FILE));
1824 assert(src0.file == BRW_GENERAL_REGISTER_FILE);
1825
1826 assert(dest.hstride == BRW_HORIZONTAL_STRIDE_1);
1827 if (brw->gen == 6) {
1828 assert(src0.hstride == BRW_HORIZONTAL_STRIDE_1);
1829 assert(src1.hstride == BRW_HORIZONTAL_STRIDE_1);
1830 }
1831
1832 if (function == BRW_MATH_FUNCTION_INT_DIV_QUOTIENT ||
1833 function == BRW_MATH_FUNCTION_INT_DIV_REMAINDER ||
1834 function == BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER) {
1835 assert(src0.type != BRW_REGISTER_TYPE_F);
1836 assert(src1.type != BRW_REGISTER_TYPE_F);
1837 assert(src1.file == BRW_GENERAL_REGISTER_FILE);
1838 } else {
1839 assert(src0.type == BRW_REGISTER_TYPE_F);
1840 assert(src1.type == BRW_REGISTER_TYPE_F);
1841 if (function == BRW_MATH_FUNCTION_POW) {
1842 assert(src1.file == BRW_GENERAL_REGISTER_FILE);
1843 } else {
1844 assert(src1.file == BRW_ARCHITECTURE_REGISTER_FILE &&
1845 src1.nr == BRW_ARF_NULL);
1846 }
1847 }
1848
1849 /* Source modifiers are ignored for extended math instructions on Gen6. */
1850 if (brw->gen == 6) {
1851 assert(!src0.negate);
1852 assert(!src0.abs);
1853 assert(!src1.negate);
1854 assert(!src1.abs);
1855 }
1856
1857 brw_inst_set_math_function(brw, insn, function);
1858
1859 brw_set_dest(p, insn, dest);
1860 brw_set_src0(p, insn, src0);
1861 brw_set_src1(p, insn, src1);
1862 }
1863
1864
1865 /**
1866 * Write a block of OWORDs (half a GRF each) from the scratch buffer,
1867 * using a constant offset per channel.
1868 *
1869 * The offset must be aligned to oword size (16 bytes). Used for
1870 * register spilling.
1871 */
1872 void brw_oword_block_write_scratch(struct brw_compile *p,
1873 struct brw_reg mrf,
1874 int num_regs,
1875 unsigned offset)
1876 {
1877 struct brw_context *brw = p->brw;
1878 uint32_t msg_control, msg_type;
1879 int mlen;
1880
1881 if (brw->gen >= 6)
1882 offset /= 16;
1883
1884 mrf = retype(mrf, BRW_REGISTER_TYPE_UD);
1885
1886 if (num_regs == 1) {
1887 msg_control = BRW_DATAPORT_OWORD_BLOCK_2_OWORDS;
1888 mlen = 2;
1889 } else {
1890 msg_control = BRW_DATAPORT_OWORD_BLOCK_4_OWORDS;
1891 mlen = 3;
1892 }
1893
1894 /* Set up the message header. This is g0, with g0.2 filled with
1895 * the offset. We don't want to leave our offset around in g0 or
1896 * it'll screw up texture samples, so set it up inside the message
1897 * reg.
1898 */
1899 {
1900 brw_push_insn_state(p);
1901 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1902 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1903
1904 brw_MOV(p, mrf, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
1905
1906 /* set message header global offset field (reg 0, element 2) */
1907 brw_MOV(p,
1908 retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE,
1909 mrf.nr,
1910 2), BRW_REGISTER_TYPE_UD),
1911 brw_imm_ud(offset));
1912
1913 brw_pop_insn_state(p);
1914 }
1915
1916 {
1917 struct brw_reg dest;
1918 brw_inst *insn = next_insn(p, BRW_OPCODE_SEND);
1919 int send_commit_msg;
1920 struct brw_reg src_header = retype(brw_vec8_grf(0, 0),
1921 BRW_REGISTER_TYPE_UW);
1922
1923 if (brw_inst_qtr_control(brw, insn) != BRW_COMPRESSION_NONE) {
1924 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
1925 src_header = vec16(src_header);
1926 }
1927 assert(brw_inst_pred_control(brw, insn) == BRW_PREDICATE_NONE);
1928 if (brw->gen < 6)
1929 brw_inst_set_base_mrf(brw, insn, mrf.nr);
1930
1931 /* Until gen6, writes followed by reads from the same location
1932 * are not guaranteed to be ordered unless write_commit is set.
1933 * If set, then a no-op write is issued to the destination
1934 * register to set a dependency, and a read from the destination
1935 * can be used to ensure the ordering.
1936 *
1937 * For gen6, only writes between different threads need ordering
1938 * protection. Our use of DP writes is all about register
1939 * spilling within a thread.
1940 */
1941 if (brw->gen >= 6) {
1942 dest = retype(vec16(brw_null_reg()), BRW_REGISTER_TYPE_UW);
1943 send_commit_msg = 0;
1944 } else {
1945 dest = src_header;
1946 send_commit_msg = 1;
1947 }
1948
1949 brw_set_dest(p, insn, dest);
1950 if (brw->gen >= 6) {
1951 brw_set_src0(p, insn, mrf);
1952 } else {
1953 brw_set_src0(p, insn, brw_null_reg());
1954 }
1955
1956 if (brw->gen >= 6)
1957 msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE;
1958 else
1959 msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE;
1960
1961 brw_set_dp_write_message(p,
1962 insn,
1963 255, /* binding table index (255=stateless) */
1964 msg_control,
1965 msg_type,
1966 mlen,
1967 true, /* header_present */
1968 0, /* not a render target */
1969 send_commit_msg, /* response_length */
1970 0, /* eot */
1971 send_commit_msg);
1972 }
1973 }
1974
1975
1976 /**
1977 * Read a block of owords (half a GRF each) from the scratch buffer
1978 * using a constant index per channel.
1979 *
1980 * Offset must be aligned to oword size (16 bytes). Used for register
1981 * spilling.
1982 */
1983 void
1984 brw_oword_block_read_scratch(struct brw_compile *p,
1985 struct brw_reg dest,
1986 struct brw_reg mrf,
1987 int num_regs,
1988 unsigned offset)
1989 {
1990 struct brw_context *brw = p->brw;
1991 uint32_t msg_control;
1992 int rlen;
1993
1994 if (brw->gen >= 6)
1995 offset /= 16;
1996
1997 mrf = retype(mrf, BRW_REGISTER_TYPE_UD);
1998 dest = retype(dest, BRW_REGISTER_TYPE_UW);
1999
2000 if (num_regs == 1) {
2001 msg_control = BRW_DATAPORT_OWORD_BLOCK_2_OWORDS;
2002 rlen = 1;
2003 } else {
2004 msg_control = BRW_DATAPORT_OWORD_BLOCK_4_OWORDS;
2005 rlen = 2;
2006 }
2007
2008 {
2009 brw_push_insn_state(p);
2010 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
2011 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2012
2013 brw_MOV(p, mrf, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
2014
2015 /* set message header global offset field (reg 0, element 2) */
2016 brw_MOV(p,
2017 retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE,
2018 mrf.nr,
2019 2), BRW_REGISTER_TYPE_UD),
2020 brw_imm_ud(offset));
2021
2022 brw_pop_insn_state(p);
2023 }
2024
2025 {
2026 brw_inst *insn = next_insn(p, BRW_OPCODE_SEND);
2027
2028 assert(brw_inst_pred_control(brw, insn) == 0);
2029 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
2030
2031 brw_set_dest(p, insn, dest); /* UW? */
2032 if (brw->gen >= 6) {
2033 brw_set_src0(p, insn, mrf);
2034 } else {
2035 brw_set_src0(p, insn, brw_null_reg());
2036 brw_inst_set_base_mrf(brw, insn, mrf.nr);
2037 }
2038
2039 brw_set_dp_read_message(p,
2040 insn,
2041 255, /* binding table index (255=stateless) */
2042 msg_control,
2043 BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ, /* msg_type */
2044 BRW_DATAPORT_READ_TARGET_RENDER_CACHE,
2045 1, /* msg_length */
2046 true, /* header_present */
2047 rlen);
2048 }
2049 }
2050
2051 void
2052 gen7_block_read_scratch(struct brw_compile *p,
2053 struct brw_reg dest,
2054 int num_regs,
2055 unsigned offset)
2056 {
2057 const struct brw_context *brw = p->brw;
2058 brw_inst *insn = next_insn(p, BRW_OPCODE_SEND);
2059 assert(brw_inst_pred_control(brw, insn) == BRW_PREDICATE_NONE);
2060
2061 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
2062 brw_set_dest(p, insn, retype(dest, BRW_REGISTER_TYPE_UW));
2063
2064 /* The HW requires that the header is present; this is to get the g0.5
2065 * scratch offset.
2066 */
2067 brw_set_src0(p, insn, brw_vec8_grf(0, 0));
2068
2069 /* According to the docs, offset is "A 12-bit HWord offset into the memory
2070 * Immediate Memory buffer as specified by binding table 0xFF." An HWORD
2071 * is 32 bytes, which happens to be the size of a register.
2072 */
2073 offset /= REG_SIZE;
2074 assert(offset < (1 << 12));
2075
2076 gen7_set_dp_scratch_message(p, insn,
2077 false, /* scratch read */
2078 false, /* OWords */
2079 false, /* invalidate after read */
2080 num_regs,
2081 offset,
2082 1, /* mlen: just g0 */
2083 num_regs, /* rlen */
2084 true); /* header present */
2085 }
2086
2087 /**
2088 * Read a float[4] vector from the data port Data Cache (const buffer).
2089 * Location (in buffer) should be a multiple of 16.
2090 * Used for fetching shader constants.
2091 */
2092 void brw_oword_block_read(struct brw_compile *p,
2093 struct brw_reg dest,
2094 struct brw_reg mrf,
2095 uint32_t offset,
2096 uint32_t bind_table_index)
2097 {
2098 struct brw_context *brw = p->brw;
2099
2100 /* On newer hardware, offset is in units of owords. */
2101 if (brw->gen >= 6)
2102 offset /= 16;
2103
2104 mrf = retype(mrf, BRW_REGISTER_TYPE_UD);
2105
2106 brw_push_insn_state(p);
2107 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
2108 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
2109 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2110
2111 brw_MOV(p, mrf, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
2112
2113 /* set message header global offset field (reg 0, element 2) */
2114 brw_MOV(p,
2115 retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE,
2116 mrf.nr,
2117 2), BRW_REGISTER_TYPE_UD),
2118 brw_imm_ud(offset));
2119
2120 brw_inst *insn = next_insn(p, BRW_OPCODE_SEND);
2121
2122 /* cast dest to a uword[8] vector */
2123 dest = retype(vec8(dest), BRW_REGISTER_TYPE_UW);
2124
2125 brw_set_dest(p, insn, dest);
2126 if (brw->gen >= 6) {
2127 brw_set_src0(p, insn, mrf);
2128 } else {
2129 brw_set_src0(p, insn, brw_null_reg());
2130 brw_inst_set_base_mrf(brw, insn, mrf.nr);
2131 }
2132
2133 brw_set_dp_read_message(p,
2134 insn,
2135 bind_table_index,
2136 BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW,
2137 BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
2138 BRW_DATAPORT_READ_TARGET_DATA_CACHE,
2139 1, /* msg_length */
2140 true, /* header_present */
2141 1); /* response_length (1 reg, 2 owords!) */
2142
2143 brw_pop_insn_state(p);
2144 }
2145
2146
2147 void brw_fb_WRITE(struct brw_compile *p,
2148 int dispatch_width,
2149 unsigned msg_reg_nr,
2150 struct brw_reg src0,
2151 unsigned msg_control,
2152 unsigned binding_table_index,
2153 unsigned msg_length,
2154 unsigned response_length,
2155 bool eot,
2156 bool header_present)
2157 {
2158 struct brw_context *brw = p->brw;
2159 brw_inst *insn;
2160 unsigned msg_type;
2161 struct brw_reg dest;
2162
2163 if (dispatch_width == 16)
2164 dest = retype(vec16(brw_null_reg()), BRW_REGISTER_TYPE_UW);
2165 else
2166 dest = retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW);
2167
2168 if (brw->gen >= 6) {
2169 insn = next_insn(p, BRW_OPCODE_SENDC);
2170 } else {
2171 insn = next_insn(p, BRW_OPCODE_SEND);
2172 }
2173 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
2174
2175 if (brw->gen >= 6) {
2176 /* headerless version, just submit color payload */
2177 src0 = brw_message_reg(msg_reg_nr);
2178
2179 msg_type = GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE;
2180 } else {
2181 brw_inst_set_base_mrf(brw, insn, msg_reg_nr);
2182
2183 msg_type = BRW_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE;
2184 }
2185
2186 brw_set_dest(p, insn, dest);
2187 brw_set_src0(p, insn, src0);
2188 brw_set_dp_write_message(p,
2189 insn,
2190 binding_table_index,
2191 msg_control,
2192 msg_type,
2193 msg_length,
2194 header_present,
2195 eot, /* last render target write */
2196 response_length,
2197 eot,
2198 0 /* send_commit_msg */);
2199 }
2200
2201
2202 /**
2203 * Texture sample instruction.
2204 * Note: the msg_type plus msg_length values determine exactly what kind
2205 * of sampling operation is performed. See volume 4, page 161 of docs.
2206 */
2207 void brw_SAMPLE(struct brw_compile *p,
2208 struct brw_reg dest,
2209 unsigned msg_reg_nr,
2210 struct brw_reg src0,
2211 unsigned binding_table_index,
2212 unsigned sampler,
2213 unsigned msg_type,
2214 unsigned response_length,
2215 unsigned msg_length,
2216 unsigned header_present,
2217 unsigned simd_mode,
2218 unsigned return_format)
2219 {
2220 struct brw_context *brw = p->brw;
2221 brw_inst *insn;
2222
2223 if (msg_reg_nr != -1)
2224 gen6_resolve_implied_move(p, &src0, msg_reg_nr);
2225
2226 insn = next_insn(p, BRW_OPCODE_SEND);
2227 brw_inst_set_pred_control(brw, insn, BRW_PREDICATE_NONE); /* XXX */
2228
2229 /* From the 965 PRM (volume 4, part 1, section 14.2.41):
2230 *
2231 * "Instruction compression is not allowed for this instruction (that
2232 * is, send). The hardware behavior is undefined if this instruction is
2233 * set as compressed. However, compress control can be set to "SecHalf"
2234 * to affect the EMask generation."
2235 *
2236 * No similar wording is found in later PRMs, but there are examples
2237 * utilizing send with SecHalf. More importantly, SIMD8 sampler messages
2238 * are allowed in SIMD16 mode and they could not work without SecHalf. For
2239 * these reasons, we allow BRW_COMPRESSION_2NDHALF here.
2240 */
2241 if (brw_inst_qtr_control(brw, insn) != BRW_COMPRESSION_2NDHALF)
2242 brw_inst_set_qtr_control(brw, insn, BRW_COMPRESSION_NONE);
2243
2244 if (brw->gen < 6)
2245 brw_inst_set_base_mrf(brw, insn, msg_reg_nr);
2246
2247 brw_set_dest(p, insn, dest);
2248 brw_set_src0(p, insn, src0);
2249 brw_set_sampler_message(p, insn,
2250 binding_table_index,
2251 sampler,
2252 msg_type,
2253 response_length,
2254 msg_length,
2255 header_present,
2256 simd_mode,
2257 return_format);
2258 }
2259
2260 /* All these variables are pretty confusing - we might be better off
2261 * using bitmasks and macros for this, in the old style. Or perhaps
2262 * just having the caller instantiate the fields in dword3 itself.
2263 */
2264 void brw_urb_WRITE(struct brw_compile *p,
2265 struct brw_reg dest,
2266 unsigned msg_reg_nr,
2267 struct brw_reg src0,
2268 enum brw_urb_write_flags flags,
2269 unsigned msg_length,
2270 unsigned response_length,
2271 unsigned offset,
2272 unsigned swizzle)
2273 {
2274 struct brw_context *brw = p->brw;
2275 brw_inst *insn;
2276
2277 gen6_resolve_implied_move(p, &src0, msg_reg_nr);
2278
2279 if (brw->gen == 7 && !(flags & BRW_URB_WRITE_USE_CHANNEL_MASKS)) {
2280 /* Enable Channel Masks in the URB_WRITE_HWORD message header */
2281 brw_push_insn_state(p);
2282 brw_set_default_access_mode(p, BRW_ALIGN_1);
2283 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2284 brw_OR(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, msg_reg_nr, 5),
2285 BRW_REGISTER_TYPE_UD),
2286 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
2287 brw_imm_ud(0xff00));
2288 brw_pop_insn_state(p);
2289 }
2290
2291 insn = next_insn(p, BRW_OPCODE_SEND);
2292
2293 assert(msg_length < BRW_MAX_MRF);
2294
2295 brw_set_dest(p, insn, dest);
2296 brw_set_src0(p, insn, src0);
2297 brw_set_src1(p, insn, brw_imm_d(0));
2298
2299 if (brw->gen < 6)
2300 brw_inst_set_base_mrf(brw, insn, msg_reg_nr);
2301
2302 brw_set_urb_message(p,
2303 insn,
2304 flags,
2305 msg_length,
2306 response_length,
2307 offset,
2308 swizzle);
2309 }
2310
2311 static int
2312 brw_find_next_block_end(struct brw_compile *p, int start_offset)
2313 {
2314 int offset;
2315 void *store = p->store;
2316 const struct brw_context *brw = p->brw;
2317
2318 for (offset = next_offset(brw, store, start_offset);
2319 offset < p->next_insn_offset;
2320 offset = next_offset(brw, store, offset)) {
2321 brw_inst *insn = store + offset;
2322
2323 switch (brw_inst_opcode(brw, insn)) {
2324 case BRW_OPCODE_ENDIF:
2325 case BRW_OPCODE_ELSE:
2326 case BRW_OPCODE_WHILE:
2327 case BRW_OPCODE_HALT:
2328 return offset;
2329 }
2330 }
2331
2332 return 0;
2333 }
2334
2335 /* There is no DO instruction on gen6, so to find the end of the loop
2336 * we have to see if the loop is jumping back before our start
2337 * instruction.
2338 */
2339 static int
2340 brw_find_loop_end(struct brw_compile *p, int start_offset)
2341 {
2342 struct brw_context *brw = p->brw;
2343 int offset;
2344 int scale = 8;
2345 void *store = p->store;
2346
2347 /* Always start after the instruction (such as a WHILE) we're trying to fix
2348 * up.
2349 */
2350 for (offset = next_offset(brw, store, start_offset);
2351 offset < p->next_insn_offset;
2352 offset = next_offset(brw, store, offset)) {
2353 brw_inst *insn = store + offset;
2354
2355 if (brw_inst_opcode(brw, insn) == BRW_OPCODE_WHILE) {
2356 int jip = brw->gen == 6 ? brw_inst_gen6_jump_count(brw, insn)
2357 : brw_inst_jip(brw, insn);
2358 if (offset + jip * scale <= start_offset)
2359 return offset;
2360 }
2361 }
2362 assert(!"not reached");
2363 return start_offset;
2364 }
2365
2366 /* After program generation, go back and update the UIP and JIP of
2367 * BREAK, CONT, and HALT instructions to their correct locations.
2368 */
2369 void
2370 brw_set_uip_jip(struct brw_compile *p)
2371 {
2372 struct brw_context *brw = p->brw;
2373 int offset;
2374 int scale = 8;
2375 void *store = p->store;
2376
2377 if (brw->gen < 6)
2378 return;
2379
2380 for (offset = 0; offset < p->next_insn_offset;
2381 offset = next_offset(brw, store, offset)) {
2382 brw_inst *insn = store + offset;
2383
2384 if (brw_inst_cmpt_control(brw, insn)) {
2385 /* Fixups for compacted BREAK/CONTINUE not supported yet. */
2386 assert(brw_inst_opcode(brw, insn) != BRW_OPCODE_BREAK &&
2387 brw_inst_opcode(brw, insn) != BRW_OPCODE_CONTINUE &&
2388 brw_inst_opcode(brw, insn) != BRW_OPCODE_HALT);
2389 continue;
2390 }
2391
2392 int block_end_offset = brw_find_next_block_end(p, offset);
2393 switch (brw_inst_opcode(brw, insn)) {
2394 case BRW_OPCODE_BREAK:
2395 assert(block_end_offset != 0);
2396 brw_inst_set_jip(brw, insn, (block_end_offset - offset) / scale);
2397 /* Gen7 UIP points to WHILE; Gen6 points just after it */
2398 brw_inst_set_uip(brw, insn,
2399 (brw_find_loop_end(p, offset) - offset +
2400 (brw->gen == 6 ? 16 : 0)) / scale);
2401 break;
2402 case BRW_OPCODE_CONTINUE:
2403 assert(block_end_offset != 0);
2404 brw_inst_set_jip(brw, insn, (block_end_offset - offset) / scale);
2405 brw_inst_set_uip(brw, insn,
2406 (brw_find_loop_end(p, offset) - offset) / scale);
2407
2408 assert(brw_inst_uip(brw, insn) != 0);
2409 assert(brw_inst_jip(brw, insn) != 0);
2410 break;
2411
2412 case BRW_OPCODE_ENDIF:
2413 if (block_end_offset == 0)
2414 brw_inst_set_jip(brw, insn, 2);
2415 else
2416 brw_inst_set_jip(brw, insn, (block_end_offset - offset) / scale);
2417 break;
2418
2419 case BRW_OPCODE_HALT:
2420 /* From the Sandy Bridge PRM (volume 4, part 2, section 8.3.19):
2421 *
2422 * "In case of the halt instruction not inside any conditional
2423 * code block, the value of <JIP> and <UIP> should be the
2424 * same. In case of the halt instruction inside conditional code
2425 * block, the <UIP> should be the end of the program, and the
2426 * <JIP> should be end of the most inner conditional code block."
2427 *
2428 * The uip will have already been set by whoever set up the
2429 * instruction.
2430 */
2431 if (block_end_offset == 0) {
2432 brw_inst_set_jip(brw, insn, brw_inst_uip(brw, insn));
2433 } else {
2434 brw_inst_set_jip(brw, insn, (block_end_offset - offset) / scale);
2435 }
2436 assert(brw_inst_uip(brw, insn) != 0);
2437 assert(brw_inst_jip(brw, insn) != 0);
2438 break;
2439 }
2440 }
2441 }
2442
2443 void brw_ff_sync(struct brw_compile *p,
2444 struct brw_reg dest,
2445 unsigned msg_reg_nr,
2446 struct brw_reg src0,
2447 bool allocate,
2448 unsigned response_length,
2449 bool eot)
2450 {
2451 struct brw_context *brw = p->brw;
2452 brw_inst *insn;
2453
2454 gen6_resolve_implied_move(p, &src0, msg_reg_nr);
2455
2456 insn = next_insn(p, BRW_OPCODE_SEND);
2457 brw_set_dest(p, insn, dest);
2458 brw_set_src0(p, insn, src0);
2459 brw_set_src1(p, insn, brw_imm_d(0));
2460
2461 if (brw->gen < 6)
2462 brw_inst_set_base_mrf(brw, insn, msg_reg_nr);
2463
2464 brw_set_ff_sync_message(p,
2465 insn,
2466 allocate,
2467 response_length,
2468 eot);
2469 }
2470
2471 /**
2472 * Emit the SEND instruction necessary to generate stream output data on Gen6
2473 * (for transform feedback).
2474 *
2475 * If send_commit_msg is true, this is the last piece of stream output data
2476 * from this thread, so send the data as a committed write. According to the
2477 * Sandy Bridge PRM (volume 2 part 1, section 4.5.1):
2478 *
2479 * "Prior to End of Thread with a URB_WRITE, the kernel must ensure all
2480 * writes are complete by sending the final write as a committed write."
2481 */
2482 void
2483 brw_svb_write(struct brw_compile *p,
2484 struct brw_reg dest,
2485 unsigned msg_reg_nr,
2486 struct brw_reg src0,
2487 unsigned binding_table_index,
2488 bool send_commit_msg)
2489 {
2490 brw_inst *insn;
2491
2492 gen6_resolve_implied_move(p, &src0, msg_reg_nr);
2493
2494 insn = next_insn(p, BRW_OPCODE_SEND);
2495 brw_set_dest(p, insn, dest);
2496 brw_set_src0(p, insn, src0);
2497 brw_set_src1(p, insn, brw_imm_d(0));
2498 brw_set_dp_write_message(p, insn,
2499 binding_table_index,
2500 0, /* msg_control: ignored */
2501 GEN6_DATAPORT_WRITE_MESSAGE_STREAMED_VB_WRITE,
2502 1, /* msg_length */
2503 true, /* header_present */
2504 0, /* last_render_target: ignored */
2505 send_commit_msg, /* response_length */
2506 0, /* end_of_thread */
2507 send_commit_msg); /* send_commit_msg */
2508 }
2509
2510 static void
2511 brw_set_dp_untyped_atomic_message(struct brw_compile *p,
2512 brw_inst *insn,
2513 unsigned atomic_op,
2514 unsigned bind_table_index,
2515 unsigned msg_length,
2516 unsigned response_length,
2517 bool header_present)
2518 {
2519 const struct brw_context *brw = p->brw;
2520
2521 unsigned msg_control =
2522 atomic_op | /* Atomic Operation Type: BRW_AOP_* */
2523 (response_length ? 1 << 5 : 0); /* Return data expected */
2524
2525 if (brw->is_haswell) {
2526 brw_set_message_descriptor(p, insn, HSW_SFID_DATAPORT_DATA_CACHE_1,
2527 msg_length, response_length,
2528 header_present, false);
2529
2530
2531 if (brw_inst_access_mode(brw, insn) == BRW_ALIGN_1) {
2532 if (brw_inst_exec_size(brw, insn) != BRW_EXECUTE_16)
2533 msg_control |= 1 << 4; /* SIMD8 mode */
2534
2535 brw_inst_set_dp_msg_type(brw, insn,
2536 HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP);
2537 } else {
2538 brw_inst_set_dp_msg_type(brw, insn,
2539 HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2);
2540 }
2541 } else {
2542 brw_set_message_descriptor(p, insn, GEN7_SFID_DATAPORT_DATA_CACHE,
2543 msg_length, response_length,
2544 header_present, false);
2545
2546 brw_inst_set_dp_msg_type(brw, insn, GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP);
2547
2548 if (brw_inst_exec_size(brw, insn) != BRW_EXECUTE_16)
2549 msg_control |= 1 << 4; /* SIMD8 mode */
2550 }
2551
2552 brw_inst_set_binding_table_index(brw, insn, bind_table_index);
2553 brw_inst_set_dp_msg_control(brw, insn, msg_control);
2554 }
2555
2556 void
2557 brw_untyped_atomic(struct brw_compile *p,
2558 struct brw_reg dest,
2559 struct brw_reg mrf,
2560 unsigned atomic_op,
2561 unsigned bind_table_index,
2562 unsigned msg_length,
2563 unsigned response_length) {
2564 const struct brw_context *brw = p->brw;
2565 brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
2566
2567 brw_set_dest(p, insn, retype(dest, BRW_REGISTER_TYPE_UD));
2568 brw_set_src0(p, insn, retype(mrf, BRW_REGISTER_TYPE_UD));
2569 brw_set_src1(p, insn, brw_imm_d(0));
2570 brw_set_dp_untyped_atomic_message(
2571 p, insn, atomic_op, bind_table_index, msg_length, response_length,
2572 brw_inst_access_mode(brw, insn) == BRW_ALIGN_1);
2573 }
2574
2575 static void
2576 brw_set_dp_untyped_surface_read_message(struct brw_compile *p,
2577 brw_inst *insn,
2578 unsigned bind_table_index,
2579 unsigned msg_length,
2580 unsigned response_length,
2581 bool header_present)
2582 {
2583 const struct brw_context *brw = p->brw;
2584 const unsigned dispatch_width =
2585 (brw_inst_exec_size(brw, insn) == BRW_EXECUTE_16 ? 16 : 8);
2586 const unsigned num_channels = response_length / (dispatch_width / 8);
2587
2588 if (brw->is_haswell) {
2589 brw_set_message_descriptor(p, insn, HSW_SFID_DATAPORT_DATA_CACHE_1,
2590 msg_length, response_length,
2591 header_present, false);
2592
2593 brw_inst_set_dp_msg_type(brw, insn,
2594 HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ);
2595 } else {
2596 brw_set_message_descriptor(p, insn, GEN7_SFID_DATAPORT_DATA_CACHE,
2597 msg_length, response_length,
2598 header_present, false);
2599
2600 brw_inst_set_dp_msg_type(brw, insn,
2601 GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ);
2602 }
2603
2604 /* Set mask of 32-bit channels to drop. */
2605 unsigned msg_control = (0xf & (0xf << num_channels));
2606
2607 if (brw_inst_access_mode(brw, insn) == BRW_ALIGN_1) {
2608 if (dispatch_width == 16)
2609 msg_control |= 1 << 4; /* SIMD16 mode */
2610 else
2611 msg_control |= 2 << 4; /* SIMD8 mode */
2612 }
2613
2614 brw_inst_set_binding_table_index(brw, insn, bind_table_index);
2615 brw_inst_set_dp_msg_control(brw, insn, msg_control);
2616 }
2617
2618 void
2619 brw_untyped_surface_read(struct brw_compile *p,
2620 struct brw_reg dest,
2621 struct brw_reg mrf,
2622 unsigned bind_table_index,
2623 unsigned msg_length,
2624 unsigned response_length)
2625 {
2626 const struct brw_context *brw = p->brw;
2627 brw_inst *insn = next_insn(p, BRW_OPCODE_SEND);
2628
2629 brw_set_dest(p, insn, retype(dest, BRW_REGISTER_TYPE_UD));
2630 brw_set_src0(p, insn, retype(mrf, BRW_REGISTER_TYPE_UD));
2631 brw_set_dp_untyped_surface_read_message(
2632 p, insn, bind_table_index, msg_length, response_length,
2633 brw_inst_access_mode(brw, insn) == BRW_ALIGN_1);
2634 }
2635
2636 /**
2637 * This instruction is generated as a single-channel align1 instruction by
2638 * both the VS and FS stages when using INTEL_DEBUG=shader_time.
2639 *
2640 * We can't use the typed atomic op in the FS because that has the execution
2641 * mask ANDed with the pixel mask, but we just want to write the one dword for
2642 * all the pixels.
2643 *
2644 * We don't use the SIMD4x2 atomic ops in the VS because want to just write
2645 * one u32. So we use the same untyped atomic write message as the pixel
2646 * shader.
2647 *
2648 * The untyped atomic operation requires a BUFFER surface type with RAW
2649 * format, and is only accessible through the legacy DATA_CACHE dataport
2650 * messages.
2651 */
2652 void brw_shader_time_add(struct brw_compile *p,
2653 struct brw_reg payload,
2654 uint32_t surf_index)
2655 {
2656 assert(p->brw->gen >= 7);
2657
2658 brw_push_insn_state(p);
2659 brw_set_default_access_mode(p, BRW_ALIGN_1);
2660 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2661 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
2662 brw_pop_insn_state(p);
2663
2664 /* We use brw_vec1_reg and unmasked because we want to increment the given
2665 * offset only once.
2666 */
2667 brw_set_dest(p, send, brw_vec1_reg(BRW_ARCHITECTURE_REGISTER_FILE,
2668 BRW_ARF_NULL, 0));
2669 brw_set_src0(p, send, brw_vec1_reg(payload.file,
2670 payload.nr, 0));
2671 brw_set_dp_untyped_atomic_message(p, send, BRW_AOP_ADD, surf_index,
2672 2 /* message length */,
2673 0 /* response length */,
2674 false /* header present */);
2675 }