nir/i965: use two slots from inputs_read for dvec3/dvec4 vertex input attributes
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 bool
439 fs_reg::is_contiguous() const
440 {
441 return stride == 1;
442 }
443
444 unsigned
445 fs_reg::component_size(unsigned width) const
446 {
447 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448 hstride == 0 ? 0 :
449 1 << (hstride - 1));
450 return MAX2(width * stride, 1) * type_sz(type);
451 }
452
453 extern "C" int
454 type_size_scalar(const struct glsl_type *type)
455 {
456 unsigned int size, i;
457
458 switch (type->base_type) {
459 case GLSL_TYPE_UINT:
460 case GLSL_TYPE_INT:
461 case GLSL_TYPE_FLOAT:
462 case GLSL_TYPE_BOOL:
463 return type->components();
464 case GLSL_TYPE_DOUBLE:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /**
496 * Create a MOV to read the timestamp register.
497 *
498 * The caller is responsible for emitting the MOV. The return value is
499 * the destination of the MOV, with extra parameters set.
500 */
501 fs_reg
502 fs_visitor::get_timestamp(const fs_builder &bld)
503 {
504 assert(devinfo->gen >= 7);
505
506 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
507 BRW_ARF_TIMESTAMP,
508 0),
509 BRW_REGISTER_TYPE_UD));
510
511 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
512
513 /* We want to read the 3 fields we care about even if it's not enabled in
514 * the dispatch.
515 */
516 bld.group(4, 0).exec_all().MOV(dst, ts);
517
518 return dst;
519 }
520
521 void
522 fs_visitor::emit_shader_time_begin()
523 {
524 /* We want only the low 32 bits of the timestamp. Since it's running
525 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526 * which is plenty of time for our purposes. It is identical across the
527 * EUs, but since it's tracking GPU core speed it will increment at a
528 * varying rate as render P-states change.
529 */
530 shader_start_time = component(
531 get_timestamp(bld.annotate("shader time start")), 0);
532 }
533
534 void
535 fs_visitor::emit_shader_time_end()
536 {
537 /* Insert our code just before the final SEND with EOT. */
538 exec_node *end = this->instructions.get_tail();
539 assert(end && ((fs_inst *) end)->eot);
540 const fs_builder ibld = bld.annotate("shader time end")
541 .exec_all().at(NULL, end);
542 const fs_reg timestamp = get_timestamp(ibld);
543
544 /* We only use the low 32 bits of the timestamp - see
545 * emit_shader_time_begin()).
546 *
547 * We could also check if render P-states have changed (or anything
548 * else that might disrupt timing) by setting smear to 2 and checking if
549 * that field is != 0.
550 */
551 const fs_reg shader_end_time = component(timestamp, 0);
552
553 /* Check that there weren't any timestamp reset events (assuming these
554 * were the only two timestamp reads that happened).
555 */
556 const fs_reg reset = component(timestamp, 2);
557 set_condmod(BRW_CONDITIONAL_Z,
558 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
559 ibld.IF(BRW_PREDICATE_NORMAL);
560
561 fs_reg start = shader_start_time;
562 start.negate = true;
563 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
564 BRW_REGISTER_TYPE_UD),
565 0);
566 const fs_builder cbld = ibld.group(1, 0);
567 cbld.group(1, 0).ADD(diff, start, shader_end_time);
568
569 /* If there were no instructions between the two timestamp gets, the diff
570 * is 2 cycles. Remove that overhead, so I can forget about that when
571 * trying to determine the time taken for single instructions.
572 */
573 cbld.ADD(diff, diff, brw_imm_ud(-2u));
574 SHADER_TIME_ADD(cbld, 0, diff);
575 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
576 ibld.emit(BRW_OPCODE_ELSE);
577 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
578 ibld.emit(BRW_OPCODE_ENDIF);
579 }
580
581 void
582 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
583 int shader_time_subindex,
584 fs_reg value)
585 {
586 int index = shader_time_index * 3 + shader_time_subindex;
587 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
588
589 fs_reg payload;
590 if (dispatch_width == 8)
591 payload = vgrf(glsl_type::uvec2_type);
592 else
593 payload = vgrf(glsl_type::uint_type);
594
595 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
596 }
597
598 void
599 fs_visitor::vfail(const char *format, va_list va)
600 {
601 char *msg;
602
603 if (failed)
604 return;
605
606 failed = true;
607
608 msg = ralloc_vasprintf(mem_ctx, format, va);
609 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
610
611 this->fail_msg = msg;
612
613 if (debug_enabled) {
614 fprintf(stderr, "%s", msg);
615 }
616 }
617
618 void
619 fs_visitor::fail(const char *format, ...)
620 {
621 va_list va;
622
623 va_start(va, format);
624 vfail(format, va);
625 va_end(va);
626 }
627
628 /**
629 * Mark this program as impossible to compile with dispatch width greater
630 * than n.
631 *
632 * During the SIMD8 compile (which happens first), we can detect and flag
633 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
634 * SIMD16+ compile altogether.
635 *
636 * During a compile of dispatch width greater than n (if one happens anyway),
637 * this just calls fail().
638 */
639 void
640 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
641 {
642 if (dispatch_width > n) {
643 fail("%s", msg);
644 } else {
645 max_dispatch_width = n;
646 compiler->shader_perf_log(log_data,
647 "Shader dispatch width limited to SIMD%d: %s",
648 n, msg);
649 }
650 }
651
652 /**
653 * Returns true if the instruction has a flag that means it won't
654 * update an entire destination register.
655 *
656 * For example, dead code elimination and live variable analysis want to know
657 * when a write to a variable screens off any preceding values that were in
658 * it.
659 */
660 bool
661 fs_inst::is_partial_write() const
662 {
663 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
664 (this->exec_size * type_sz(this->dst.type)) < 32 ||
665 !this->dst.is_contiguous() ||
666 this->dst.offset % REG_SIZE != 0);
667 }
668
669 unsigned
670 fs_inst::components_read(unsigned i) const
671 {
672 /* Return zero if the source is not present. */
673 if (src[i].file == BAD_FILE)
674 return 0;
675
676 switch (opcode) {
677 case FS_OPCODE_LINTERP:
678 if (i == 0)
679 return 2;
680 else
681 return 1;
682
683 case FS_OPCODE_PIXEL_X:
684 case FS_OPCODE_PIXEL_Y:
685 assert(i == 0);
686 return 2;
687
688 case FS_OPCODE_FB_WRITE_LOGICAL:
689 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
690 /* First/second FB write color. */
691 if (i < 2)
692 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
693 else
694 return 1;
695
696 case SHADER_OPCODE_TEX_LOGICAL:
697 case SHADER_OPCODE_TXD_LOGICAL:
698 case SHADER_OPCODE_TXF_LOGICAL:
699 case SHADER_OPCODE_TXL_LOGICAL:
700 case SHADER_OPCODE_TXS_LOGICAL:
701 case FS_OPCODE_TXB_LOGICAL:
702 case SHADER_OPCODE_TXF_CMS_LOGICAL:
703 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
704 case SHADER_OPCODE_TXF_UMS_LOGICAL:
705 case SHADER_OPCODE_TXF_MCS_LOGICAL:
706 case SHADER_OPCODE_LOD_LOGICAL:
707 case SHADER_OPCODE_TG4_LOGICAL:
708 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
709 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
710 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
711 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
712 /* Texture coordinates. */
713 if (i == TEX_LOGICAL_SRC_COORDINATE)
714 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
715 /* Texture derivatives. */
716 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
717 opcode == SHADER_OPCODE_TXD_LOGICAL)
718 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
719 /* Texture offset. */
720 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
721 return 2;
722 /* MCS */
723 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
724 return 2;
725 else
726 return 1;
727
728 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
729 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
730 assert(src[3].file == IMM);
731 /* Surface coordinates. */
732 if (i == 0)
733 return src[3].ud;
734 /* Surface operation source (ignored for reads). */
735 else if (i == 1)
736 return 0;
737 else
738 return 1;
739
740 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
741 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
742 assert(src[3].file == IMM &&
743 src[4].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source. */
748 else if (i == 1)
749 return src[4].ud;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
754 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 const unsigned op = src[4].ud;
758 /* Surface coordinates. */
759 if (i == 0)
760 return src[3].ud;
761 /* Surface operation source. */
762 else if (i == 1 && op == BRW_AOP_CMPWR)
763 return 2;
764 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
765 op == BRW_AOP_PREDEC))
766 return 0;
767 else
768 return 1;
769 }
770
771 default:
772 return 1;
773 }
774 }
775
776 unsigned
777 fs_inst::size_read(int arg) const
778 {
779 switch (opcode) {
780 case FS_OPCODE_FB_WRITE:
781 case FS_OPCODE_FB_READ:
782 case SHADER_OPCODE_URB_WRITE_SIMD8:
783 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
784 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
785 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
786 case SHADER_OPCODE_URB_READ_SIMD8:
787 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
788 case SHADER_OPCODE_UNTYPED_ATOMIC:
789 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
790 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
791 case SHADER_OPCODE_TYPED_ATOMIC:
792 case SHADER_OPCODE_TYPED_SURFACE_READ:
793 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
794 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
795 if (arg == 0)
796 return mlen * REG_SIZE;
797 break;
798
799 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
800 /* The payload is actually stored in src1 */
801 if (arg == 1)
802 return mlen * REG_SIZE;
803 break;
804
805 case FS_OPCODE_LINTERP:
806 if (arg == 1)
807 return 16;
808 break;
809
810 case SHADER_OPCODE_LOAD_PAYLOAD:
811 if (arg < this->header_size)
812 return REG_SIZE;
813 break;
814
815 case CS_OPCODE_CS_TERMINATE:
816 case SHADER_OPCODE_BARRIER:
817 return REG_SIZE;
818
819 case SHADER_OPCODE_MOV_INDIRECT:
820 if (arg == 0) {
821 assert(src[2].file == IMM);
822 return src[2].ud;
823 }
824 break;
825
826 default:
827 if (is_tex() && arg == 0 && src[0].file == VGRF)
828 return mlen * REG_SIZE;
829 break;
830 }
831
832 switch (src[arg].file) {
833 case UNIFORM:
834 case IMM:
835 return components_read(arg) * type_sz(src[arg].type);
836 case BAD_FILE:
837 case ARF:
838 case FIXED_GRF:
839 case VGRF:
840 case ATTR:
841 return components_read(arg) * src[arg].component_size(exec_size);
842 case MRF:
843 unreachable("MRF registers are not allowed as sources");
844 }
845 return 0;
846 }
847
848 namespace {
849 /* Return the subset of flag registers that an instruction could
850 * potentially read or write based on the execution controls and flag
851 * subregister number of the instruction.
852 */
853 unsigned
854 flag_mask(const fs_inst *inst)
855 {
856 const unsigned start = inst->flag_subreg * 16 + inst->group;
857 const unsigned end = start + inst->exec_size;
858 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
859 }
860 }
861
862 unsigned
863 fs_inst::flags_read(const gen_device_info *devinfo) const
864 {
865 /* XXX - This doesn't consider explicit uses of the flag register as source
866 * region.
867 */
868 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
869 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
870 /* The vertical predication modes combine corresponding bits from
871 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
872 */
873 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
874 return flag_mask(this) << shift | flag_mask(this);
875 } else if (predicate) {
876 return flag_mask(this);
877 } else {
878 return 0;
879 }
880 }
881
882 unsigned
883 fs_inst::flags_written() const
884 {
885 /* XXX - This doesn't consider explicit uses of the flag register as
886 * destination region.
887 */
888 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
889 opcode != BRW_OPCODE_IF &&
890 opcode != BRW_OPCODE_WHILE)) ||
891 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
892 return flag_mask(this);
893 } else {
894 return 0;
895 }
896 }
897
898 /**
899 * Returns how many MRFs an FS opcode will write over.
900 *
901 * Note that this is not the 0 or 1 implied writes in an actual gen
902 * instruction -- the FS opcodes often generate MOVs in addition.
903 */
904 int
905 fs_visitor::implied_mrf_writes(fs_inst *inst)
906 {
907 if (inst->mlen == 0)
908 return 0;
909
910 if (inst->base_mrf == -1)
911 return 0;
912
913 switch (inst->opcode) {
914 case SHADER_OPCODE_RCP:
915 case SHADER_OPCODE_RSQ:
916 case SHADER_OPCODE_SQRT:
917 case SHADER_OPCODE_EXP2:
918 case SHADER_OPCODE_LOG2:
919 case SHADER_OPCODE_SIN:
920 case SHADER_OPCODE_COS:
921 return 1 * dispatch_width / 8;
922 case SHADER_OPCODE_POW:
923 case SHADER_OPCODE_INT_QUOTIENT:
924 case SHADER_OPCODE_INT_REMAINDER:
925 return 2 * dispatch_width / 8;
926 case SHADER_OPCODE_TEX:
927 case FS_OPCODE_TXB:
928 case SHADER_OPCODE_TXD:
929 case SHADER_OPCODE_TXF:
930 case SHADER_OPCODE_TXF_CMS:
931 case SHADER_OPCODE_TXF_MCS:
932 case SHADER_OPCODE_TG4:
933 case SHADER_OPCODE_TG4_OFFSET:
934 case SHADER_OPCODE_TXL:
935 case SHADER_OPCODE_TXS:
936 case SHADER_OPCODE_LOD:
937 case SHADER_OPCODE_SAMPLEINFO:
938 return 1;
939 case FS_OPCODE_FB_WRITE:
940 return 2;
941 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
942 case SHADER_OPCODE_GEN4_SCRATCH_READ:
943 return 1;
944 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
945 return inst->mlen;
946 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
947 return inst->mlen;
948 default:
949 unreachable("not reached");
950 }
951 }
952
953 fs_reg
954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956 int reg_width = dispatch_width / 8;
957 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958 brw_type_for_base_type(type));
959 }
960
961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963 init();
964 this->file = file;
965 this->nr = nr;
966 this->type = BRW_REGISTER_TYPE_F;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972 init();
973 this->file = file;
974 this->nr = nr;
975 this->type = type;
976 this->stride = (file == UNIFORM ? 0 : 1);
977 }
978
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982 void
983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985 this->push_constant_loc = v->push_constant_loc;
986 this->pull_constant_loc = v->pull_constant_loc;
987 this->uniforms = v->uniforms;
988 }
989
990 void
991 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
992 {
993 assert(stage == MESA_SHADER_FRAGMENT);
994
995 /* gl_FragCoord.x */
996 bld.MOV(wpos, this->pixel_x);
997 wpos = offset(wpos, bld, 1);
998
999 /* gl_FragCoord.y */
1000 bld.MOV(wpos, this->pixel_y);
1001 wpos = offset(wpos, bld, 1);
1002
1003 /* gl_FragCoord.z */
1004 if (devinfo->gen >= 6) {
1005 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1006 } else {
1007 bld.emit(FS_OPCODE_LINTERP, wpos,
1008 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1009 interp_reg(VARYING_SLOT_POS, 2));
1010 }
1011 wpos = offset(wpos, bld, 1);
1012
1013 /* gl_FragCoord.w: Already set up in emit_interpolation */
1014 bld.MOV(wpos, this->wpos_w);
1015 }
1016
1017 enum brw_barycentric_mode
1018 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1019 {
1020 /* Barycentric modes don't make sense for flat inputs. */
1021 assert(mode != INTERP_MODE_FLAT);
1022
1023 unsigned bary;
1024 switch (op) {
1025 case nir_intrinsic_load_barycentric_pixel:
1026 case nir_intrinsic_load_barycentric_at_offset:
1027 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1028 break;
1029 case nir_intrinsic_load_barycentric_centroid:
1030 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1031 break;
1032 case nir_intrinsic_load_barycentric_sample:
1033 case nir_intrinsic_load_barycentric_at_sample:
1034 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1035 break;
1036 default:
1037 unreachable("invalid intrinsic");
1038 }
1039
1040 if (mode == INTERP_MODE_NOPERSPECTIVE)
1041 bary += 3;
1042
1043 return (enum brw_barycentric_mode) bary;
1044 }
1045
1046 /**
1047 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1048 */
1049 static enum brw_barycentric_mode
1050 centroid_to_pixel(enum brw_barycentric_mode bary)
1051 {
1052 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1053 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1054 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1055 }
1056
1057 fs_reg *
1058 fs_visitor::emit_frontfacing_interpolation()
1059 {
1060 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1061
1062 if (devinfo->gen >= 6) {
1063 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1064 * a boolean result from this (~0/true or 0/false).
1065 *
1066 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1067 * this task in only one instruction:
1068 * - a negation source modifier will flip the bit; and
1069 * - a W -> D type conversion will sign extend the bit into the high
1070 * word of the destination.
1071 *
1072 * An ASR 15 fills the low word of the destination.
1073 */
1074 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1075 g0.negate = true;
1076
1077 bld.ASR(*reg, g0, brw_imm_d(15));
1078 } else {
1079 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1080 * a boolean result from this (1/true or 0/false).
1081 *
1082 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1083 * the negation source modifier to flip it. Unfortunately the SHR
1084 * instruction only operates on UD (or D with an abs source modifier)
1085 * sources without negation.
1086 *
1087 * Instead, use ASR (which will give ~0/true or 0/false).
1088 */
1089 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1090 g1_6.negate = true;
1091
1092 bld.ASR(*reg, g1_6, brw_imm_d(31));
1093 }
1094
1095 return reg;
1096 }
1097
1098 void
1099 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1100 {
1101 assert(stage == MESA_SHADER_FRAGMENT);
1102 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1103 assert(dst.type == BRW_REGISTER_TYPE_F);
1104
1105 if (wm_prog_data->persample_dispatch) {
1106 /* Convert int_sample_pos to floating point */
1107 bld.MOV(dst, int_sample_pos);
1108 /* Scale to the range [0, 1] */
1109 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1110 }
1111 else {
1112 /* From ARB_sample_shading specification:
1113 * "When rendering to a non-multisample buffer, or if multisample
1114 * rasterization is disabled, gl_SamplePosition will always be
1115 * (0.5, 0.5).
1116 */
1117 bld.MOV(dst, brw_imm_f(0.5f));
1118 }
1119 }
1120
1121 fs_reg *
1122 fs_visitor::emit_samplepos_setup()
1123 {
1124 assert(devinfo->gen >= 6);
1125
1126 const fs_builder abld = bld.annotate("compute sample position");
1127 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1128 fs_reg pos = *reg;
1129 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1130 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1131
1132 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1133 * mode will be enabled.
1134 *
1135 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1136 * R31.1:0 Position Offset X/Y for Slot[3:0]
1137 * R31.3:2 Position Offset X/Y for Slot[7:4]
1138 * .....
1139 *
1140 * The X, Y sample positions come in as bytes in thread payload. So, read
1141 * the positions using vstride=16, width=8, hstride=2.
1142 */
1143 struct brw_reg sample_pos_reg =
1144 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1145 BRW_REGISTER_TYPE_B), 16, 8, 2);
1146
1147 if (dispatch_width == 8) {
1148 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1149 } else {
1150 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1151 abld.half(1).MOV(half(int_sample_x, 1),
1152 fs_reg(suboffset(sample_pos_reg, 16)));
1153 }
1154 /* Compute gl_SamplePosition.x */
1155 compute_sample_position(pos, int_sample_x);
1156 pos = offset(pos, abld, 1);
1157 if (dispatch_width == 8) {
1158 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1159 } else {
1160 abld.half(0).MOV(half(int_sample_y, 0),
1161 fs_reg(suboffset(sample_pos_reg, 1)));
1162 abld.half(1).MOV(half(int_sample_y, 1),
1163 fs_reg(suboffset(sample_pos_reg, 17)));
1164 }
1165 /* Compute gl_SamplePosition.y */
1166 compute_sample_position(pos, int_sample_y);
1167 return reg;
1168 }
1169
1170 fs_reg *
1171 fs_visitor::emit_sampleid_setup()
1172 {
1173 assert(stage == MESA_SHADER_FRAGMENT);
1174 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1175 assert(devinfo->gen >= 6);
1176
1177 const fs_builder abld = bld.annotate("compute sample id");
1178 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1179
1180 if (!key->multisample_fbo) {
1181 /* As per GL_ARB_sample_shading specification:
1182 * "When rendering to a non-multisample buffer, or if multisample
1183 * rasterization is disabled, gl_SampleID will always be zero."
1184 */
1185 abld.MOV(*reg, brw_imm_d(0));
1186 } else if (devinfo->gen >= 8) {
1187 /* Sample ID comes in as 4-bit numbers in g1.0:
1188 *
1189 * 15:12 Slot 3 SampleID (only used in SIMD16)
1190 * 11:8 Slot 2 SampleID (only used in SIMD16)
1191 * 7:4 Slot 1 SampleID
1192 * 3:0 Slot 0 SampleID
1193 *
1194 * Each slot corresponds to four channels, so we want to replicate each
1195 * half-byte value to 4 channels in a row:
1196 *
1197 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1198 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1199 *
1200 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1201 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1202 *
1203 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1204 * channels to read the first byte (7:0), and the second group of 8
1205 * channels to read the second byte (15:8). Then, we shift right by
1206 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1207 * values into place. Finally, we AND with 0xf to keep the low nibble.
1208 *
1209 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1210 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1211 *
1212 * TODO: These payload bits exist on Gen7 too, but they appear to always
1213 * be zero, so this code fails to work. We should find out why.
1214 */
1215 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1216
1217 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1218 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1219 brw_imm_v(0x44440000));
1220 abld.AND(*reg, tmp, brw_imm_w(0xf));
1221 } else {
1222 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1223 BRW_REGISTER_TYPE_D), 0);
1224 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1225
1226 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1227 * 8x multisampling, subspan 0 will represent sample N (where N
1228 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1229 * 7. We can find the value of N by looking at R0.0 bits 7:6
1230 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1231 * (since samples are always delivered in pairs). That is, we
1232 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1233 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1234 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1235 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1236 * populating a temporary variable with the sequence (0, 1, 2, 3),
1237 * and then reading from it using vstride=1, width=4, hstride=0.
1238 * These computations hold good for 4x multisampling as well.
1239 *
1240 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1241 * the first four slots are sample 0 of subspan 0; the next four
1242 * are sample 1 of subspan 0; the third group is sample 0 of
1243 * subspan 1, and finally sample 1 of subspan 1.
1244 */
1245
1246 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1247 * accomodate 16x MSAA.
1248 */
1249 abld.exec_all().group(1, 0)
1250 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1251 brw_imm_ud(0xc0));
1252 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1253
1254 /* This works for both SIMD8 and SIMD16 */
1255 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1256
1257 /* This special instruction takes care of setting vstride=1,
1258 * width=4, hstride=0 of t2 during an ADD instruction.
1259 */
1260 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1261 }
1262
1263 return reg;
1264 }
1265
1266 fs_reg *
1267 fs_visitor::emit_samplemaskin_setup()
1268 {
1269 assert(stage == MESA_SHADER_FRAGMENT);
1270 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1271 assert(devinfo->gen >= 6);
1272
1273 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1274
1275 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1276 BRW_REGISTER_TYPE_D));
1277
1278 if (wm_prog_data->persample_dispatch) {
1279 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1280 * and a mask representing which sample is being processed by the
1281 * current shader invocation.
1282 *
1283 * From the OES_sample_variables specification:
1284 * "When per-sample shading is active due to the use of a fragment input
1285 * qualified by "sample" or due to the use of the gl_SampleID or
1286 * gl_SamplePosition variables, only the bit for the current sample is
1287 * set in gl_SampleMaskIn."
1288 */
1289 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1290
1291 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1292 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1293
1294 fs_reg one = vgrf(glsl_type::int_type);
1295 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1296 abld.MOV(one, brw_imm_d(1));
1297 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1298 abld.AND(*reg, enabled_mask, coverage_mask);
1299 } else {
1300 /* In per-pixel mode, the coverage mask is sufficient. */
1301 *reg = coverage_mask;
1302 }
1303 return reg;
1304 }
1305
1306 fs_reg
1307 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1308 {
1309 if (!src.abs && !src.negate)
1310 return src;
1311
1312 fs_reg temp = bld.vgrf(src.type);
1313 bld.MOV(temp, src);
1314
1315 return temp;
1316 }
1317
1318 void
1319 fs_visitor::emit_discard_jump()
1320 {
1321 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1322
1323 /* For performance, after a discard, jump to the end of the
1324 * shader if all relevant channels have been discarded.
1325 */
1326 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1327 discard_jump->flag_subreg = 1;
1328
1329 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1330 discard_jump->predicate_inverse = true;
1331 }
1332
1333 void
1334 fs_visitor::emit_gs_thread_end()
1335 {
1336 assert(stage == MESA_SHADER_GEOMETRY);
1337
1338 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1339
1340 if (gs_compile->control_data_header_size_bits > 0) {
1341 emit_gs_control_data_bits(this->final_gs_vertex_count);
1342 }
1343
1344 const fs_builder abld = bld.annotate("thread end");
1345 fs_inst *inst;
1346
1347 if (gs_prog_data->static_vertex_count != -1) {
1348 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1349 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1350 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1351 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1352 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1353 prev->eot = true;
1354
1355 /* Delete now dead instructions. */
1356 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1357 if (dead == prev)
1358 break;
1359 dead->remove();
1360 }
1361 return;
1362 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1363 break;
1364 }
1365 }
1366 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1367 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1368 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1369 inst->mlen = 1;
1370 } else {
1371 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1372 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1373 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1374 sources[1] = this->final_gs_vertex_count;
1375 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1376 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1377 inst->mlen = 2;
1378 }
1379 inst->eot = true;
1380 inst->offset = 0;
1381 }
1382
1383 void
1384 fs_visitor::assign_curb_setup()
1385 {
1386 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1387
1388 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1389 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1390 for (unsigned int i = 0; i < inst->sources; i++) {
1391 if (inst->src[i].file == UNIFORM) {
1392 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1393 int constant_nr;
1394 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1395 constant_nr = push_constant_loc[uniform_nr];
1396 } else {
1397 /* Section 5.11 of the OpenGL 4.1 spec says:
1398 * "Out-of-bounds reads return undefined values, which include
1399 * values from other variables of the active program or zero."
1400 * Just return the first push constant.
1401 */
1402 constant_nr = 0;
1403 }
1404
1405 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1406 constant_nr / 8,
1407 constant_nr % 8);
1408 brw_reg.abs = inst->src[i].abs;
1409 brw_reg.negate = inst->src[i].negate;
1410
1411 assert(inst->src[i].stride == 0);
1412 inst->src[i] = byte_offset(
1413 retype(brw_reg, inst->src[i].type),
1414 inst->src[i].offset % 4);
1415 }
1416 }
1417 }
1418
1419 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1420 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1421 }
1422
1423 void
1424 fs_visitor::calculate_urb_setup()
1425 {
1426 assert(stage == MESA_SHADER_FRAGMENT);
1427 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1428 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1429
1430 memset(prog_data->urb_setup, -1,
1431 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1432
1433 int urb_next = 0;
1434 /* Figure out where each of the incoming setup attributes lands. */
1435 if (devinfo->gen >= 6) {
1436 if (_mesa_bitcount_64(nir->info->inputs_read &
1437 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1438 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1439 * first 16 varying inputs, so we can put them wherever we want.
1440 * Just put them in order.
1441 *
1442 * This is useful because it means that (a) inputs not used by the
1443 * fragment shader won't take up valuable register space, and (b) we
1444 * won't have to recompile the fragment shader if it gets paired with
1445 * a different vertex (or geometry) shader.
1446 */
1447 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1448 if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1449 BITFIELD64_BIT(i)) {
1450 prog_data->urb_setup[i] = urb_next++;
1451 }
1452 }
1453 } else {
1454 bool include_vue_header =
1455 nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1456
1457 /* We have enough input varyings that the SF/SBE pipeline stage can't
1458 * arbitrarily rearrange them to suit our whim; we have to put them
1459 * in an order that matches the output of the previous pipeline stage
1460 * (geometry or vertex shader).
1461 */
1462 struct brw_vue_map prev_stage_vue_map;
1463 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1464 key->input_slots_valid,
1465 nir->info->separate_shader);
1466 int first_slot =
1467 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1468
1469 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1470 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1471 slot++) {
1472 int varying = prev_stage_vue_map.slot_to_varying[slot];
1473 if (varying != BRW_VARYING_SLOT_PAD &&
1474 (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1475 BITFIELD64_BIT(varying))) {
1476 prog_data->urb_setup[varying] = slot - first_slot;
1477 }
1478 }
1479 urb_next = prev_stage_vue_map.num_slots - first_slot;
1480 }
1481 } else {
1482 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1483 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1484 /* Point size is packed into the header, not as a general attribute */
1485 if (i == VARYING_SLOT_PSIZ)
1486 continue;
1487
1488 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1489 /* The back color slot is skipped when the front color is
1490 * also written to. In addition, some slots can be
1491 * written in the vertex shader and not read in the
1492 * fragment shader. So the register number must always be
1493 * incremented, mapped or not.
1494 */
1495 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1496 prog_data->urb_setup[i] = urb_next;
1497 urb_next++;
1498 }
1499 }
1500
1501 /*
1502 * It's a FS only attribute, and we did interpolation for this attribute
1503 * in SF thread. So, count it here, too.
1504 *
1505 * See compile_sf_prog() for more info.
1506 */
1507 if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1508 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1509 }
1510
1511 prog_data->num_varying_inputs = urb_next;
1512 }
1513
1514 void
1515 fs_visitor::assign_urb_setup()
1516 {
1517 assert(stage == MESA_SHADER_FRAGMENT);
1518 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1519
1520 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1521
1522 /* Offset all the urb_setup[] index by the actual position of the
1523 * setup regs, now that the location of the constants has been chosen.
1524 */
1525 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1526 if (inst->opcode == FS_OPCODE_LINTERP) {
1527 assert(inst->src[1].file == FIXED_GRF);
1528 inst->src[1].nr += urb_start;
1529 }
1530
1531 if (inst->opcode == FS_OPCODE_CINTERP) {
1532 assert(inst->src[0].file == FIXED_GRF);
1533 inst->src[0].nr += urb_start;
1534 }
1535 }
1536
1537 /* Each attribute is 4 setup channels, each of which is half a reg. */
1538 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1539 }
1540
1541 void
1542 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1543 {
1544 for (int i = 0; i < inst->sources; i++) {
1545 if (inst->src[i].file == ATTR) {
1546 int grf = payload.num_regs +
1547 prog_data->curb_read_length +
1548 inst->src[i].nr +
1549 inst->src[i].offset / REG_SIZE;
1550
1551 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1552 *
1553 * VertStride must be used to cross GRF register boundaries. This
1554 * rule implies that elements within a 'Width' cannot cross GRF
1555 * boundaries.
1556 *
1557 * So, for registers that are large enough, we have to split the exec
1558 * size in two and trust the compression state to sort it out.
1559 */
1560 unsigned total_size = inst->exec_size *
1561 inst->src[i].stride *
1562 type_sz(inst->src[i].type);
1563
1564 assert(total_size <= 2 * REG_SIZE);
1565 const unsigned exec_size =
1566 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1567
1568 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1569 struct brw_reg reg =
1570 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1571 inst->src[i].offset % REG_SIZE),
1572 exec_size * inst->src[i].stride,
1573 width, inst->src[i].stride);
1574 reg.abs = inst->src[i].abs;
1575 reg.negate = inst->src[i].negate;
1576
1577 inst->src[i] = reg;
1578 }
1579 }
1580 }
1581
1582 void
1583 fs_visitor::assign_vs_urb_setup()
1584 {
1585 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1586
1587 assert(stage == MESA_SHADER_VERTEX);
1588
1589 /* Each attribute is 4 regs. */
1590 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1591
1592 assert(vs_prog_data->base.urb_read_length <= 15);
1593
1594 /* Rewrite all ATTR file references to the hw grf that they land in. */
1595 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1596 convert_attr_sources_to_hw_regs(inst);
1597 }
1598 }
1599
1600 void
1601 fs_visitor::assign_tcs_single_patch_urb_setup()
1602 {
1603 assert(stage == MESA_SHADER_TESS_CTRL);
1604
1605 /* Rewrite all ATTR file references to HW_REGs. */
1606 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1607 convert_attr_sources_to_hw_regs(inst);
1608 }
1609 }
1610
1611 void
1612 fs_visitor::assign_tes_urb_setup()
1613 {
1614 assert(stage == MESA_SHADER_TESS_EVAL);
1615
1616 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1617
1618 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1619
1620 /* Rewrite all ATTR file references to HW_REGs. */
1621 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1622 convert_attr_sources_to_hw_regs(inst);
1623 }
1624 }
1625
1626 void
1627 fs_visitor::assign_gs_urb_setup()
1628 {
1629 assert(stage == MESA_SHADER_GEOMETRY);
1630
1631 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1632
1633 first_non_payload_grf +=
1634 8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
1635
1636 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1637 /* Rewrite all ATTR file references to GRFs. */
1638 convert_attr_sources_to_hw_regs(inst);
1639 }
1640 }
1641
1642
1643 /**
1644 * Split large virtual GRFs into separate components if we can.
1645 *
1646 * This is mostly duplicated with what brw_fs_vector_splitting does,
1647 * but that's really conservative because it's afraid of doing
1648 * splitting that doesn't result in real progress after the rest of
1649 * the optimization phases, which would cause infinite looping in
1650 * optimization. We can do it once here, safely. This also has the
1651 * opportunity to split interpolated values, or maybe even uniforms,
1652 * which we don't have at the IR level.
1653 *
1654 * We want to split, because virtual GRFs are what we register
1655 * allocate and spill (due to contiguousness requirements for some
1656 * instructions), and they're what we naturally generate in the
1657 * codegen process, but most virtual GRFs don't actually need to be
1658 * contiguous sets of GRFs. If we split, we'll end up with reduced
1659 * live intervals and better dead code elimination and coalescing.
1660 */
1661 void
1662 fs_visitor::split_virtual_grfs()
1663 {
1664 /* Compact the register file so we eliminate dead vgrfs. This
1665 * only defines split points for live registers, so if we have
1666 * too large dead registers they will hit assertions later.
1667 */
1668 compact_virtual_grfs();
1669
1670 int num_vars = this->alloc.count;
1671
1672 /* Count the total number of registers */
1673 int reg_count = 0;
1674 int vgrf_to_reg[num_vars];
1675 for (int i = 0; i < num_vars; i++) {
1676 vgrf_to_reg[i] = reg_count;
1677 reg_count += alloc.sizes[i];
1678 }
1679
1680 /* An array of "split points". For each register slot, this indicates
1681 * if this slot can be separated from the previous slot. Every time an
1682 * instruction uses multiple elements of a register (as a source or
1683 * destination), we mark the used slots as inseparable. Then we go
1684 * through and split the registers into the smallest pieces we can.
1685 */
1686 bool split_points[reg_count];
1687 memset(split_points, 0, sizeof(split_points));
1688
1689 /* Mark all used registers as fully splittable */
1690 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1691 if (inst->dst.file == VGRF) {
1692 int reg = vgrf_to_reg[inst->dst.nr];
1693 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1694 split_points[reg + j] = true;
1695 }
1696
1697 for (int i = 0; i < inst->sources; i++) {
1698 if (inst->src[i].file == VGRF) {
1699 int reg = vgrf_to_reg[inst->src[i].nr];
1700 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1701 split_points[reg + j] = true;
1702 }
1703 }
1704 }
1705
1706 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1707 if (inst->dst.file == VGRF) {
1708 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1709 for (unsigned j = 1; j < regs_written(inst); j++)
1710 split_points[reg + j] = false;
1711 }
1712 for (int i = 0; i < inst->sources; i++) {
1713 if (inst->src[i].file == VGRF) {
1714 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1715 for (unsigned j = 1; j < regs_read(inst, i); j++)
1716 split_points[reg + j] = false;
1717 }
1718 }
1719 }
1720
1721 int new_virtual_grf[reg_count];
1722 int new_reg_offset[reg_count];
1723
1724 int reg = 0;
1725 for (int i = 0; i < num_vars; i++) {
1726 /* The first one should always be 0 as a quick sanity check. */
1727 assert(split_points[reg] == false);
1728
1729 /* j = 0 case */
1730 new_reg_offset[reg] = 0;
1731 reg++;
1732 int offset = 1;
1733
1734 /* j > 0 case */
1735 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1736 /* If this is a split point, reset the offset to 0 and allocate a
1737 * new virtual GRF for the previous offset many registers
1738 */
1739 if (split_points[reg]) {
1740 assert(offset <= MAX_VGRF_SIZE);
1741 int grf = alloc.allocate(offset);
1742 for (int k = reg - offset; k < reg; k++)
1743 new_virtual_grf[k] = grf;
1744 offset = 0;
1745 }
1746 new_reg_offset[reg] = offset;
1747 offset++;
1748 reg++;
1749 }
1750
1751 /* The last one gets the original register number */
1752 assert(offset <= MAX_VGRF_SIZE);
1753 alloc.sizes[i] = offset;
1754 for (int k = reg - offset; k < reg; k++)
1755 new_virtual_grf[k] = i;
1756 }
1757 assert(reg == reg_count);
1758
1759 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1760 if (inst->dst.file == VGRF) {
1761 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1762 inst->dst.nr = new_virtual_grf[reg];
1763 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1764 inst->dst.offset % REG_SIZE;
1765 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1766 }
1767 for (int i = 0; i < inst->sources; i++) {
1768 if (inst->src[i].file == VGRF) {
1769 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1770 inst->src[i].nr = new_virtual_grf[reg];
1771 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1772 inst->src[i].offset % REG_SIZE;
1773 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1774 }
1775 }
1776 }
1777 invalidate_live_intervals();
1778 }
1779
1780 /**
1781 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1782 *
1783 * During code generation, we create tons of temporary variables, many of
1784 * which get immediately killed and are never used again. Yet, in later
1785 * optimization and analysis passes, such as compute_live_intervals, we need
1786 * to loop over all the virtual GRFs. Compacting them can save a lot of
1787 * overhead.
1788 */
1789 bool
1790 fs_visitor::compact_virtual_grfs()
1791 {
1792 bool progress = false;
1793 int remap_table[this->alloc.count];
1794 memset(remap_table, -1, sizeof(remap_table));
1795
1796 /* Mark which virtual GRFs are used. */
1797 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1798 if (inst->dst.file == VGRF)
1799 remap_table[inst->dst.nr] = 0;
1800
1801 for (int i = 0; i < inst->sources; i++) {
1802 if (inst->src[i].file == VGRF)
1803 remap_table[inst->src[i].nr] = 0;
1804 }
1805 }
1806
1807 /* Compact the GRF arrays. */
1808 int new_index = 0;
1809 for (unsigned i = 0; i < this->alloc.count; i++) {
1810 if (remap_table[i] == -1) {
1811 /* We just found an unused register. This means that we are
1812 * actually going to compact something.
1813 */
1814 progress = true;
1815 } else {
1816 remap_table[i] = new_index;
1817 alloc.sizes[new_index] = alloc.sizes[i];
1818 invalidate_live_intervals();
1819 ++new_index;
1820 }
1821 }
1822
1823 this->alloc.count = new_index;
1824
1825 /* Patch all the instructions to use the newly renumbered registers */
1826 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1827 if (inst->dst.file == VGRF)
1828 inst->dst.nr = remap_table[inst->dst.nr];
1829
1830 for (int i = 0; i < inst->sources; i++) {
1831 if (inst->src[i].file == VGRF)
1832 inst->src[i].nr = remap_table[inst->src[i].nr];
1833 }
1834 }
1835
1836 /* Patch all the references to delta_xy, since they're used in register
1837 * allocation. If they're unused, switch them to BAD_FILE so we don't
1838 * think some random VGRF is delta_xy.
1839 */
1840 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1841 if (delta_xy[i].file == VGRF) {
1842 if (remap_table[delta_xy[i].nr] != -1) {
1843 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1844 } else {
1845 delta_xy[i].file = BAD_FILE;
1846 }
1847 }
1848 }
1849
1850 return progress;
1851 }
1852
1853 static void
1854 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1855 int *push_constant_loc, int *pull_constant_loc,
1856 unsigned *num_push_constants,
1857 unsigned *num_pull_constants,
1858 const unsigned max_push_components,
1859 const unsigned max_chunk_size,
1860 struct brw_stage_prog_data *stage_prog_data)
1861 {
1862 /* This is the first live uniform in the chunk */
1863 if (*chunk_start < 0)
1864 *chunk_start = uniform;
1865
1866 /* If this element does not need to be contiguous with the next, we
1867 * split at this point and everything between chunk_start and u forms a
1868 * single chunk.
1869 */
1870 if (!contiguous) {
1871 unsigned chunk_size = uniform - *chunk_start + 1;
1872
1873 /* Decide whether we should push or pull this parameter. In the
1874 * Vulkan driver, push constants are explicitly exposed via the API
1875 * so we push everything. In GL, we only push small arrays.
1876 */
1877 if (stage_prog_data->pull_param == NULL ||
1878 (*num_push_constants + chunk_size <= max_push_components &&
1879 chunk_size <= max_chunk_size)) {
1880 assert(*num_push_constants + chunk_size <= max_push_components);
1881 for (unsigned j = *chunk_start; j <= uniform; j++)
1882 push_constant_loc[j] = (*num_push_constants)++;
1883 } else {
1884 for (unsigned j = *chunk_start; j <= uniform; j++)
1885 pull_constant_loc[j] = (*num_pull_constants)++;
1886 }
1887
1888 *chunk_start = -1;
1889 }
1890 }
1891
1892 /**
1893 * Assign UNIFORM file registers to either push constants or pull constants.
1894 *
1895 * We allow a fragment shader to have more than the specified minimum
1896 * maximum number of fragment shader uniform components (64). If
1897 * there are too many of these, they'd fill up all of register space.
1898 * So, this will push some of them out to the pull constant buffer and
1899 * update the program to load them.
1900 */
1901 void
1902 fs_visitor::assign_constant_locations()
1903 {
1904 /* Only the first compile gets to decide on locations. */
1905 if (dispatch_width != min_dispatch_width)
1906 return;
1907
1908 bool is_live[uniforms];
1909 memset(is_live, 0, sizeof(is_live));
1910 bool is_live_64bit[uniforms];
1911 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1912
1913 /* For each uniform slot, a value of true indicates that the given slot and
1914 * the next slot must remain contiguous. This is used to keep us from
1915 * splitting arrays apart.
1916 */
1917 bool contiguous[uniforms];
1918 memset(contiguous, 0, sizeof(contiguous));
1919
1920 int thread_local_id_index =
1921 (stage == MESA_SHADER_COMPUTE) ?
1922 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1923
1924 /* First, we walk through the instructions and do two things:
1925 *
1926 * 1) Figure out which uniforms are live.
1927 *
1928 * 2) Mark any indirectly used ranges of registers as contiguous.
1929 *
1930 * Note that we don't move constant-indexed accesses to arrays. No
1931 * testing has been done of the performance impact of this choice.
1932 */
1933 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1934 for (int i = 0 ; i < inst->sources; i++) {
1935 if (inst->src[i].file != UNIFORM)
1936 continue;
1937
1938 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1939
1940 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1941 assert(inst->src[2].ud % 4 == 0);
1942 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1943 assert(last < uniforms);
1944
1945 for (unsigned j = constant_nr; j < last; j++) {
1946 is_live[j] = true;
1947 contiguous[j] = true;
1948 if (type_sz(inst->src[i].type) == 8) {
1949 is_live_64bit[j] = true;
1950 }
1951 }
1952 is_live[last] = true;
1953 } else {
1954 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1955 int regs_read = inst->components_read(i) *
1956 type_sz(inst->src[i].type) / 4;
1957 for (int j = 0; j < regs_read; j++) {
1958 is_live[constant_nr + j] = true;
1959 if (type_sz(inst->src[i].type) == 8) {
1960 is_live_64bit[constant_nr + j] = true;
1961 }
1962 }
1963 }
1964 }
1965 }
1966 }
1967
1968 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1969 thread_local_id_index = -1;
1970
1971 /* Only allow 16 registers (128 uniform components) as push constants.
1972 *
1973 * Just demote the end of the list. We could probably do better
1974 * here, demoting things that are rarely used in the program first.
1975 *
1976 * If changing this value, note the limitation about total_regs in
1977 * brw_curbe.c.
1978 */
1979 unsigned int max_push_components = 16 * 8;
1980 if (thread_local_id_index >= 0)
1981 max_push_components--; /* Save a slot for the thread ID */
1982
1983 /* We push small arrays, but no bigger than 16 floats. This is big enough
1984 * for a vec4 but hopefully not large enough to push out other stuff. We
1985 * should probably use a better heuristic at some point.
1986 */
1987 const unsigned int max_chunk_size = 16;
1988
1989 unsigned int num_push_constants = 0;
1990 unsigned int num_pull_constants = 0;
1991
1992 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1993 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1994
1995 /* Default to -1 meaning no location */
1996 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
1997 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
1998
1999 int chunk_start = -1;
2000
2001 /* First push 64-bit uniforms to ensure they are properly aligned */
2002 for (unsigned u = 0; u < uniforms; u++) {
2003 if (!is_live[u] || !is_live_64bit[u])
2004 continue;
2005
2006 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2007 push_constant_loc, pull_constant_loc,
2008 &num_push_constants, &num_pull_constants,
2009 max_push_components, max_chunk_size,
2010 stage_prog_data);
2011
2012 }
2013
2014 /* Then push the rest of uniforms */
2015 for (unsigned u = 0; u < uniforms; u++) {
2016 if (!is_live[u] || is_live_64bit[u])
2017 continue;
2018
2019 /* Skip thread_local_id_index to put it in the last push register. */
2020 if (thread_local_id_index == (int)u)
2021 continue;
2022
2023 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2024 push_constant_loc, pull_constant_loc,
2025 &num_push_constants, &num_pull_constants,
2026 max_push_components, max_chunk_size,
2027 stage_prog_data);
2028 }
2029
2030 /* Add the CS local thread ID uniform at the end of the push constants */
2031 if (thread_local_id_index >= 0)
2032 push_constant_loc[thread_local_id_index] = num_push_constants++;
2033
2034 /* As the uniforms are going to be reordered, take the data from a temporary
2035 * copy of the original param[].
2036 */
2037 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2038 stage_prog_data->nr_params);
2039 memcpy(param, stage_prog_data->param,
2040 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2041 stage_prog_data->nr_params = num_push_constants;
2042 stage_prog_data->nr_pull_params = num_pull_constants;
2043
2044 /* Up until now, the param[] array has been indexed by reg + offset
2045 * of UNIFORM registers. Move pull constants into pull_param[] and
2046 * condense param[] to only contain the uniforms we chose to push.
2047 *
2048 * NOTE: Because we are condensing the params[] array, we know that
2049 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2050 * having to make a copy.
2051 */
2052 int new_thread_local_id_index = -1;
2053 for (unsigned int i = 0; i < uniforms; i++) {
2054 const gl_constant_value *value = param[i];
2055
2056 if (pull_constant_loc[i] != -1) {
2057 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2058 } else if (push_constant_loc[i] != -1) {
2059 stage_prog_data->param[push_constant_loc[i]] = value;
2060 if (thread_local_id_index == (int)i)
2061 new_thread_local_id_index = push_constant_loc[i];
2062 }
2063 }
2064 ralloc_free(param);
2065
2066 if (stage == MESA_SHADER_COMPUTE)
2067 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2068 new_thread_local_id_index;
2069 }
2070
2071 /**
2072 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2073 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2074 */
2075 void
2076 fs_visitor::lower_constant_loads()
2077 {
2078 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2079
2080 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2081 /* Set up the annotation tracking for new generated instructions. */
2082 const fs_builder ibld(this, block, inst);
2083
2084 for (int i = 0; i < inst->sources; i++) {
2085 if (inst->src[i].file != UNIFORM)
2086 continue;
2087
2088 /* We'll handle this case later */
2089 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2090 continue;
2091
2092 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2093 if (location >= uniforms)
2094 continue; /* Out of bounds access */
2095
2096 int pull_index = pull_constant_loc[location];
2097
2098 if (pull_index == -1)
2099 continue;
2100
2101 assert(inst->src[i].stride == 0);
2102
2103 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2104 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2105 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2106 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2107 const unsigned base = pull_index * 4;
2108
2109 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2110 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2111
2112 /* Rewrite the instruction to use the temporary VGRF. */
2113 inst->src[i].file = VGRF;
2114 inst->src[i].nr = dst.nr;
2115 inst->src[i].offset = (base & (block_sz - 1)) +
2116 inst->src[i].offset % 4;
2117
2118 brw_mark_surface_used(prog_data, index);
2119 }
2120
2121 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2122 inst->src[0].file == UNIFORM) {
2123
2124 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2125 if (location >= uniforms)
2126 continue; /* Out of bounds access */
2127
2128 int pull_index = pull_constant_loc[location];
2129
2130 if (pull_index == -1)
2131 continue;
2132
2133 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2134 brw_imm_ud(index),
2135 inst->src[1],
2136 pull_index * 4);
2137 inst->remove(block);
2138
2139 brw_mark_surface_used(prog_data, index);
2140 }
2141 }
2142 invalidate_live_intervals();
2143 }
2144
2145 bool
2146 fs_visitor::opt_algebraic()
2147 {
2148 bool progress = false;
2149
2150 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2151 switch (inst->opcode) {
2152 case BRW_OPCODE_MOV:
2153 if (inst->src[0].file != IMM)
2154 break;
2155
2156 if (inst->saturate) {
2157 if (inst->dst.type != inst->src[0].type)
2158 assert(!"unimplemented: saturate mixed types");
2159
2160 if (brw_saturate_immediate(inst->dst.type,
2161 &inst->src[0].as_brw_reg())) {
2162 inst->saturate = false;
2163 progress = true;
2164 }
2165 }
2166 break;
2167
2168 case BRW_OPCODE_MUL:
2169 if (inst->src[1].file != IMM)
2170 continue;
2171
2172 /* a * 1.0 = a */
2173 if (inst->src[1].is_one()) {
2174 inst->opcode = BRW_OPCODE_MOV;
2175 inst->src[1] = reg_undef;
2176 progress = true;
2177 break;
2178 }
2179
2180 /* a * -1.0 = -a */
2181 if (inst->src[1].is_negative_one()) {
2182 inst->opcode = BRW_OPCODE_MOV;
2183 inst->src[0].negate = !inst->src[0].negate;
2184 inst->src[1] = reg_undef;
2185 progress = true;
2186 break;
2187 }
2188
2189 /* a * 0.0 = 0.0 */
2190 if (inst->src[1].is_zero()) {
2191 inst->opcode = BRW_OPCODE_MOV;
2192 inst->src[0] = inst->src[1];
2193 inst->src[1] = reg_undef;
2194 progress = true;
2195 break;
2196 }
2197
2198 if (inst->src[0].file == IMM) {
2199 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2200 inst->opcode = BRW_OPCODE_MOV;
2201 inst->src[0].f *= inst->src[1].f;
2202 inst->src[1] = reg_undef;
2203 progress = true;
2204 break;
2205 }
2206 break;
2207 case BRW_OPCODE_ADD:
2208 if (inst->src[1].file != IMM)
2209 continue;
2210
2211 /* a + 0.0 = a */
2212 if (inst->src[1].is_zero()) {
2213 inst->opcode = BRW_OPCODE_MOV;
2214 inst->src[1] = reg_undef;
2215 progress = true;
2216 break;
2217 }
2218
2219 if (inst->src[0].file == IMM) {
2220 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2221 inst->opcode = BRW_OPCODE_MOV;
2222 inst->src[0].f += inst->src[1].f;
2223 inst->src[1] = reg_undef;
2224 progress = true;
2225 break;
2226 }
2227 break;
2228 case BRW_OPCODE_OR:
2229 if (inst->src[0].equals(inst->src[1])) {
2230 inst->opcode = BRW_OPCODE_MOV;
2231 inst->src[1] = reg_undef;
2232 progress = true;
2233 break;
2234 }
2235 break;
2236 case BRW_OPCODE_LRP:
2237 if (inst->src[1].equals(inst->src[2])) {
2238 inst->opcode = BRW_OPCODE_MOV;
2239 inst->src[0] = inst->src[1];
2240 inst->src[1] = reg_undef;
2241 inst->src[2] = reg_undef;
2242 progress = true;
2243 break;
2244 }
2245 break;
2246 case BRW_OPCODE_CMP:
2247 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2248 inst->src[0].abs &&
2249 inst->src[0].negate &&
2250 inst->src[1].is_zero()) {
2251 inst->src[0].abs = false;
2252 inst->src[0].negate = false;
2253 inst->conditional_mod = BRW_CONDITIONAL_Z;
2254 progress = true;
2255 break;
2256 }
2257 break;
2258 case BRW_OPCODE_SEL:
2259 if (inst->src[0].equals(inst->src[1])) {
2260 inst->opcode = BRW_OPCODE_MOV;
2261 inst->src[1] = reg_undef;
2262 inst->predicate = BRW_PREDICATE_NONE;
2263 inst->predicate_inverse = false;
2264 progress = true;
2265 } else if (inst->saturate && inst->src[1].file == IMM) {
2266 switch (inst->conditional_mod) {
2267 case BRW_CONDITIONAL_LE:
2268 case BRW_CONDITIONAL_L:
2269 switch (inst->src[1].type) {
2270 case BRW_REGISTER_TYPE_F:
2271 if (inst->src[1].f >= 1.0f) {
2272 inst->opcode = BRW_OPCODE_MOV;
2273 inst->src[1] = reg_undef;
2274 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2275 progress = true;
2276 }
2277 break;
2278 default:
2279 break;
2280 }
2281 break;
2282 case BRW_CONDITIONAL_GE:
2283 case BRW_CONDITIONAL_G:
2284 switch (inst->src[1].type) {
2285 case BRW_REGISTER_TYPE_F:
2286 if (inst->src[1].f <= 0.0f) {
2287 inst->opcode = BRW_OPCODE_MOV;
2288 inst->src[1] = reg_undef;
2289 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2290 progress = true;
2291 }
2292 break;
2293 default:
2294 break;
2295 }
2296 default:
2297 break;
2298 }
2299 }
2300 break;
2301 case BRW_OPCODE_MAD:
2302 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2303 inst->opcode = BRW_OPCODE_MOV;
2304 inst->src[1] = reg_undef;
2305 inst->src[2] = reg_undef;
2306 progress = true;
2307 } else if (inst->src[0].is_zero()) {
2308 inst->opcode = BRW_OPCODE_MUL;
2309 inst->src[0] = inst->src[2];
2310 inst->src[2] = reg_undef;
2311 progress = true;
2312 } else if (inst->src[1].is_one()) {
2313 inst->opcode = BRW_OPCODE_ADD;
2314 inst->src[1] = inst->src[2];
2315 inst->src[2] = reg_undef;
2316 progress = true;
2317 } else if (inst->src[2].is_one()) {
2318 inst->opcode = BRW_OPCODE_ADD;
2319 inst->src[2] = reg_undef;
2320 progress = true;
2321 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2322 inst->opcode = BRW_OPCODE_ADD;
2323 inst->src[1].f *= inst->src[2].f;
2324 inst->src[2] = reg_undef;
2325 progress = true;
2326 }
2327 break;
2328 case SHADER_OPCODE_BROADCAST:
2329 if (is_uniform(inst->src[0])) {
2330 inst->opcode = BRW_OPCODE_MOV;
2331 inst->sources = 1;
2332 inst->force_writemask_all = true;
2333 progress = true;
2334 } else if (inst->src[1].file == IMM) {
2335 inst->opcode = BRW_OPCODE_MOV;
2336 inst->src[0] = component(inst->src[0],
2337 inst->src[1].ud);
2338 inst->sources = 1;
2339 inst->force_writemask_all = true;
2340 progress = true;
2341 }
2342 break;
2343
2344 default:
2345 break;
2346 }
2347
2348 /* Swap if src[0] is immediate. */
2349 if (progress && inst->is_commutative()) {
2350 if (inst->src[0].file == IMM) {
2351 fs_reg tmp = inst->src[1];
2352 inst->src[1] = inst->src[0];
2353 inst->src[0] = tmp;
2354 }
2355 }
2356 }
2357 return progress;
2358 }
2359
2360 /**
2361 * Optimize sample messages that have constant zero values for the trailing
2362 * texture coordinates. We can just reduce the message length for these
2363 * instructions instead of reserving a register for it. Trailing parameters
2364 * that aren't sent default to zero anyway. This will cause the dead code
2365 * eliminator to remove the MOV instruction that would otherwise be emitted to
2366 * set up the zero value.
2367 */
2368 bool
2369 fs_visitor::opt_zero_samples()
2370 {
2371 /* Gen4 infers the texturing opcode based on the message length so we can't
2372 * change it.
2373 */
2374 if (devinfo->gen < 5)
2375 return false;
2376
2377 bool progress = false;
2378
2379 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2380 if (!inst->is_tex())
2381 continue;
2382
2383 fs_inst *load_payload = (fs_inst *) inst->prev;
2384
2385 if (load_payload->is_head_sentinel() ||
2386 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2387 continue;
2388
2389 /* We don't want to remove the message header or the first parameter.
2390 * Removing the first parameter is not allowed, see the Haswell PRM
2391 * volume 7, page 149:
2392 *
2393 * "Parameter 0 is required except for the sampleinfo message, which
2394 * has no parameter 0"
2395 */
2396 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2397 load_payload->src[(inst->mlen - inst->header_size) /
2398 (inst->exec_size / 8) +
2399 inst->header_size - 1].is_zero()) {
2400 inst->mlen -= inst->exec_size / 8;
2401 progress = true;
2402 }
2403 }
2404
2405 if (progress)
2406 invalidate_live_intervals();
2407
2408 return progress;
2409 }
2410
2411 /**
2412 * Optimize sample messages which are followed by the final RT write.
2413 *
2414 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2415 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2416 * final texturing results copied to the framebuffer write payload and modify
2417 * them to write to the framebuffer directly.
2418 */
2419 bool
2420 fs_visitor::opt_sampler_eot()
2421 {
2422 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2423
2424 if (stage != MESA_SHADER_FRAGMENT)
2425 return false;
2426
2427 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2428 return false;
2429
2430 /* FINISHME: It should be possible to implement this optimization when there
2431 * are multiple drawbuffers.
2432 */
2433 if (key->nr_color_regions != 1)
2434 return false;
2435
2436 /* Requires emitting a bunch of saturating MOV instructions during logical
2437 * send lowering to clamp the color payload, which the sampler unit isn't
2438 * going to do for us.
2439 */
2440 if (key->clamp_fragment_color)
2441 return false;
2442
2443 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2444 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2445 fs_inst *fb_write = (fs_inst *)block->end();
2446 assert(fb_write->eot);
2447 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2448
2449 /* There wasn't one; nothing to do. */
2450 if (unlikely(fb_write->prev->is_head_sentinel()))
2451 return false;
2452
2453 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2454
2455 /* 3D Sampler » Messages » Message Format
2456 *
2457 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2458 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2459 */
2460 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2461 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2462 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2463 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2464 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2465 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2466 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2467 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2468 return false;
2469
2470 /* XXX - This shouldn't be necessary. */
2471 if (tex_inst->prev->is_head_sentinel())
2472 return false;
2473
2474 /* Check that the FB write sources are fully initialized by the single
2475 * texturing instruction.
2476 */
2477 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2478 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2479 if (!fb_write->src[i].equals(tex_inst->dst) ||
2480 fb_write->size_read(i) != tex_inst->size_written)
2481 return false;
2482 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2483 if (fb_write->src[i].file != BAD_FILE)
2484 return false;
2485 }
2486 }
2487
2488 assert(!tex_inst->eot); /* We can't get here twice */
2489 assert((tex_inst->offset & (0xff << 24)) == 0);
2490
2491 const fs_builder ibld(this, block, tex_inst);
2492
2493 tex_inst->offset |= fb_write->target << 24;
2494 tex_inst->eot = true;
2495 tex_inst->dst = ibld.null_reg_ud();
2496 tex_inst->size_written = 0;
2497 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2498
2499 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2500 * flag and submit a header together with the sampler message as required
2501 * by the hardware.
2502 */
2503 invalidate_live_intervals();
2504 return true;
2505 }
2506
2507 bool
2508 fs_visitor::opt_register_renaming()
2509 {
2510 bool progress = false;
2511 int depth = 0;
2512
2513 int remap[alloc.count];
2514 memset(remap, -1, sizeof(int) * alloc.count);
2515
2516 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2517 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2518 depth++;
2519 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2520 inst->opcode == BRW_OPCODE_WHILE) {
2521 depth--;
2522 }
2523
2524 /* Rewrite instruction sources. */
2525 for (int i = 0; i < inst->sources; i++) {
2526 if (inst->src[i].file == VGRF &&
2527 remap[inst->src[i].nr] != -1 &&
2528 remap[inst->src[i].nr] != inst->src[i].nr) {
2529 inst->src[i].nr = remap[inst->src[i].nr];
2530 progress = true;
2531 }
2532 }
2533
2534 const int dst = inst->dst.nr;
2535
2536 if (depth == 0 &&
2537 inst->dst.file == VGRF &&
2538 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2539 !inst->is_partial_write()) {
2540 if (remap[dst] == -1) {
2541 remap[dst] = dst;
2542 } else {
2543 remap[dst] = alloc.allocate(regs_written(inst));
2544 inst->dst.nr = remap[dst];
2545 progress = true;
2546 }
2547 } else if (inst->dst.file == VGRF &&
2548 remap[dst] != -1 &&
2549 remap[dst] != dst) {
2550 inst->dst.nr = remap[dst];
2551 progress = true;
2552 }
2553 }
2554
2555 if (progress) {
2556 invalidate_live_intervals();
2557
2558 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2559 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2560 delta_xy[i].nr = remap[delta_xy[i].nr];
2561 }
2562 }
2563 }
2564
2565 return progress;
2566 }
2567
2568 /**
2569 * Remove redundant or useless discard jumps.
2570 *
2571 * For example, we can eliminate jumps in the following sequence:
2572 *
2573 * discard-jump (redundant with the next jump)
2574 * discard-jump (useless; jumps to the next instruction)
2575 * placeholder-halt
2576 */
2577 bool
2578 fs_visitor::opt_redundant_discard_jumps()
2579 {
2580 bool progress = false;
2581
2582 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2583
2584 fs_inst *placeholder_halt = NULL;
2585 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2586 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2587 placeholder_halt = inst;
2588 break;
2589 }
2590 }
2591
2592 if (!placeholder_halt)
2593 return false;
2594
2595 /* Delete any HALTs immediately before the placeholder halt. */
2596 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2597 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2598 prev = (fs_inst *) placeholder_halt->prev) {
2599 prev->remove(last_bblock);
2600 progress = true;
2601 }
2602
2603 if (progress)
2604 invalidate_live_intervals();
2605
2606 return progress;
2607 }
2608
2609 /**
2610 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2611 * from \p r.offset which overlaps the region starting at \p s.offset and
2612 * spanning \p ds bytes.
2613 */
2614 static inline unsigned
2615 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2616 {
2617 const int rel_offset = reg_offset(s) - reg_offset(r);
2618 const int shift = rel_offset / REG_SIZE;
2619 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2620 assert(reg_space(r) == reg_space(s) &&
2621 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2622 return ((1 << n) - 1) << shift;
2623 }
2624
2625 bool
2626 fs_visitor::compute_to_mrf()
2627 {
2628 bool progress = false;
2629 int next_ip = 0;
2630
2631 /* No MRFs on Gen >= 7. */
2632 if (devinfo->gen >= 7)
2633 return false;
2634
2635 calculate_live_intervals();
2636
2637 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2638 int ip = next_ip;
2639 next_ip++;
2640
2641 if (inst->opcode != BRW_OPCODE_MOV ||
2642 inst->is_partial_write() ||
2643 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2644 inst->dst.type != inst->src[0].type ||
2645 inst->src[0].abs || inst->src[0].negate ||
2646 !inst->src[0].is_contiguous() ||
2647 inst->src[0].offset % REG_SIZE != 0)
2648 continue;
2649
2650 /* Can't compute-to-MRF this GRF if someone else was going to
2651 * read it later.
2652 */
2653 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2654 continue;
2655
2656 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2657 * things that computed the value of all GRFs of the source region. The
2658 * regs_left bitset keeps track of the registers we haven't yet found a
2659 * generating instruction for.
2660 */
2661 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2662
2663 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2664 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2665 inst->src[0], inst->size_read(0))) {
2666 /* Found the last thing to write our reg we want to turn
2667 * into a compute-to-MRF.
2668 */
2669
2670 /* If this one instruction didn't populate all the
2671 * channels, bail. We might be able to rewrite everything
2672 * that writes that reg, but it would require smarter
2673 * tracking.
2674 */
2675 if (scan_inst->is_partial_write())
2676 break;
2677
2678 /* Handling things not fully contained in the source of the copy
2679 * would need us to understand coalescing out more than one MOV at
2680 * a time.
2681 */
2682 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2683 inst->src[0], inst->size_read(0)))
2684 break;
2685
2686 /* SEND instructions can't have MRF as a destination. */
2687 if (scan_inst->mlen)
2688 break;
2689
2690 if (devinfo->gen == 6) {
2691 /* gen6 math instructions must have the destination be
2692 * GRF, so no compute-to-MRF for them.
2693 */
2694 if (scan_inst->is_math()) {
2695 break;
2696 }
2697 }
2698
2699 /* Clear the bits for any registers this instruction overwrites. */
2700 regs_left &= ~mask_relative_to(
2701 inst->src[0], scan_inst->dst, scan_inst->size_written);
2702 if (!regs_left)
2703 break;
2704 }
2705
2706 /* We don't handle control flow here. Most computation of
2707 * values that end up in MRFs are shortly before the MRF
2708 * write anyway.
2709 */
2710 if (block->start() == scan_inst)
2711 break;
2712
2713 /* You can't read from an MRF, so if someone else reads our
2714 * MRF's source GRF that we wanted to rewrite, that stops us.
2715 */
2716 bool interfered = false;
2717 for (int i = 0; i < scan_inst->sources; i++) {
2718 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2719 inst->src[0], inst->size_read(0))) {
2720 interfered = true;
2721 }
2722 }
2723 if (interfered)
2724 break;
2725
2726 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2727 inst->dst, inst->size_written)) {
2728 /* If somebody else writes our MRF here, we can't
2729 * compute-to-MRF before that.
2730 */
2731 break;
2732 }
2733
2734 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2735 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2736 inst->dst, inst->size_written)) {
2737 /* Found a SEND instruction, which means that there are
2738 * live values in MRFs from base_mrf to base_mrf +
2739 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2740 * above it.
2741 */
2742 break;
2743 }
2744 }
2745
2746 if (regs_left)
2747 continue;
2748
2749 /* Found all generating instructions of our MRF's source value, so it
2750 * should be safe to rewrite them to point to the MRF directly.
2751 */
2752 regs_left = (1 << regs_read(inst, 0)) - 1;
2753
2754 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2755 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2756 inst->src[0], inst->size_read(0))) {
2757 /* Clear the bits for any registers this instruction overwrites. */
2758 regs_left &= ~mask_relative_to(
2759 inst->src[0], scan_inst->dst, scan_inst->size_written);
2760
2761 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2762 reg_offset(inst->src[0]);
2763
2764 if (inst->dst.nr & BRW_MRF_COMPR4) {
2765 /* Apply the same address transformation done by the hardware
2766 * for COMPR4 MRF writes.
2767 */
2768 assert(rel_offset < 2 * REG_SIZE);
2769 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2770
2771 /* Clear the COMPR4 bit if the generating instruction is not
2772 * compressed.
2773 */
2774 if (scan_inst->size_written < 2 * REG_SIZE)
2775 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2776
2777 } else {
2778 /* Calculate the MRF number the result of this instruction is
2779 * ultimately written to.
2780 */
2781 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2782 }
2783
2784 scan_inst->dst.file = MRF;
2785 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2786 scan_inst->saturate |= inst->saturate;
2787 if (!regs_left)
2788 break;
2789 }
2790 }
2791
2792 assert(!regs_left);
2793 inst->remove(block);
2794 progress = true;
2795 }
2796
2797 if (progress)
2798 invalidate_live_intervals();
2799
2800 return progress;
2801 }
2802
2803 /**
2804 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2805 * flow. We could probably do better here with some form of divergence
2806 * analysis.
2807 */
2808 bool
2809 fs_visitor::eliminate_find_live_channel()
2810 {
2811 bool progress = false;
2812 unsigned depth = 0;
2813
2814 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2815 /* The optimization below assumes that channel zero is live on thread
2816 * dispatch, which may not be the case if the fixed function dispatches
2817 * threads sparsely.
2818 */
2819 return false;
2820 }
2821
2822 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2823 switch (inst->opcode) {
2824 case BRW_OPCODE_IF:
2825 case BRW_OPCODE_DO:
2826 depth++;
2827 break;
2828
2829 case BRW_OPCODE_ENDIF:
2830 case BRW_OPCODE_WHILE:
2831 depth--;
2832 break;
2833
2834 case FS_OPCODE_DISCARD_JUMP:
2835 /* This can potentially make control flow non-uniform until the end
2836 * of the program.
2837 */
2838 return progress;
2839
2840 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2841 if (depth == 0) {
2842 inst->opcode = BRW_OPCODE_MOV;
2843 inst->src[0] = brw_imm_ud(0u);
2844 inst->sources = 1;
2845 inst->force_writemask_all = true;
2846 progress = true;
2847 }
2848 break;
2849
2850 default:
2851 break;
2852 }
2853 }
2854
2855 return progress;
2856 }
2857
2858 /**
2859 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2860 * instructions to FS_OPCODE_REP_FB_WRITE.
2861 */
2862 void
2863 fs_visitor::emit_repclear_shader()
2864 {
2865 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2866 int base_mrf = 0;
2867 int color_mrf = base_mrf + 2;
2868 fs_inst *mov;
2869
2870 if (uniforms > 0) {
2871 mov = bld.exec_all().group(4, 0)
2872 .MOV(brw_message_reg(color_mrf),
2873 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2874 } else {
2875 struct brw_reg reg =
2876 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2877 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2878 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2879
2880 mov = bld.exec_all().group(4, 0)
2881 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2882 }
2883
2884 fs_inst *write;
2885 if (key->nr_color_regions == 1) {
2886 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2887 write->saturate = key->clamp_fragment_color;
2888 write->base_mrf = color_mrf;
2889 write->target = 0;
2890 write->header_size = 0;
2891 write->mlen = 1;
2892 } else {
2893 assume(key->nr_color_regions > 0);
2894 for (int i = 0; i < key->nr_color_regions; ++i) {
2895 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2896 write->saturate = key->clamp_fragment_color;
2897 write->base_mrf = base_mrf;
2898 write->target = i;
2899 write->header_size = 2;
2900 write->mlen = 3;
2901 }
2902 }
2903 write->eot = true;
2904
2905 calculate_cfg();
2906
2907 assign_constant_locations();
2908 assign_curb_setup();
2909
2910 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2911 if (uniforms > 0) {
2912 assert(mov->src[0].file == FIXED_GRF);
2913 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2914 }
2915 }
2916
2917 /**
2918 * Walks through basic blocks, looking for repeated MRF writes and
2919 * removing the later ones.
2920 */
2921 bool
2922 fs_visitor::remove_duplicate_mrf_writes()
2923 {
2924 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2925 bool progress = false;
2926
2927 /* Need to update the MRF tracking for compressed instructions. */
2928 if (dispatch_width >= 16)
2929 return false;
2930
2931 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2932
2933 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2934 if (inst->is_control_flow()) {
2935 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2936 }
2937
2938 if (inst->opcode == BRW_OPCODE_MOV &&
2939 inst->dst.file == MRF) {
2940 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2941 if (prev_inst && inst->equals(prev_inst)) {
2942 inst->remove(block);
2943 progress = true;
2944 continue;
2945 }
2946 }
2947
2948 /* Clear out the last-write records for MRFs that were overwritten. */
2949 if (inst->dst.file == MRF) {
2950 last_mrf_move[inst->dst.nr] = NULL;
2951 }
2952
2953 if (inst->mlen > 0 && inst->base_mrf != -1) {
2954 /* Found a SEND instruction, which will include two or fewer
2955 * implied MRF writes. We could do better here.
2956 */
2957 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2958 last_mrf_move[inst->base_mrf + i] = NULL;
2959 }
2960 }
2961
2962 /* Clear out any MRF move records whose sources got overwritten. */
2963 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2964 if (last_mrf_move[i] &&
2965 regions_overlap(inst->dst, inst->size_written,
2966 last_mrf_move[i]->src[0],
2967 last_mrf_move[i]->size_read(0))) {
2968 last_mrf_move[i] = NULL;
2969 }
2970 }
2971
2972 if (inst->opcode == BRW_OPCODE_MOV &&
2973 inst->dst.file == MRF &&
2974 inst->src[0].file != ARF &&
2975 !inst->is_partial_write()) {
2976 last_mrf_move[inst->dst.nr] = inst;
2977 }
2978 }
2979
2980 if (progress)
2981 invalidate_live_intervals();
2982
2983 return progress;
2984 }
2985
2986 static void
2987 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2988 {
2989 /* Clear the flag for registers that actually got read (as expected). */
2990 for (int i = 0; i < inst->sources; i++) {
2991 int grf;
2992 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2993 grf = inst->src[i].nr;
2994 } else {
2995 continue;
2996 }
2997
2998 if (grf >= first_grf &&
2999 grf < first_grf + grf_len) {
3000 deps[grf - first_grf] = false;
3001 if (inst->exec_size == 16)
3002 deps[grf - first_grf + 1] = false;
3003 }
3004 }
3005 }
3006
3007 /**
3008 * Implements this workaround for the original 965:
3009 *
3010 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3011 * check for post destination dependencies on this instruction, software
3012 * must ensure that there is no destination hazard for the case of ‘write
3013 * followed by a posted write’ shown in the following example.
3014 *
3015 * 1. mov r3 0
3016 * 2. send r3.xy <rest of send instruction>
3017 * 3. mov r2 r3
3018 *
3019 * Due to no post-destination dependency check on the ‘send’, the above
3020 * code sequence could have two instructions (1 and 2) in flight at the
3021 * same time that both consider ‘r3’ as the target of their final writes.
3022 */
3023 void
3024 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3025 fs_inst *inst)
3026 {
3027 int write_len = regs_written(inst);
3028 int first_write_grf = inst->dst.nr;
3029 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3030 assert(write_len < (int)sizeof(needs_dep) - 1);
3031
3032 memset(needs_dep, false, sizeof(needs_dep));
3033 memset(needs_dep, true, write_len);
3034
3035 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3036
3037 /* Walk backwards looking for writes to registers we're writing which
3038 * aren't read since being written. If we hit the start of the program,
3039 * we assume that there are no outstanding dependencies on entry to the
3040 * program.
3041 */
3042 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3043 /* If we hit control flow, assume that there *are* outstanding
3044 * dependencies, and force their cleanup before our instruction.
3045 */
3046 if (block->start() == scan_inst && block->num != 0) {
3047 for (int i = 0; i < write_len; i++) {
3048 if (needs_dep[i])
3049 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3050 first_write_grf + i);
3051 }
3052 return;
3053 }
3054
3055 /* We insert our reads as late as possible on the assumption that any
3056 * instruction but a MOV that might have left us an outstanding
3057 * dependency has more latency than a MOV.
3058 */
3059 if (scan_inst->dst.file == VGRF) {
3060 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3061 int reg = scan_inst->dst.nr + i;
3062
3063 if (reg >= first_write_grf &&
3064 reg < first_write_grf + write_len &&
3065 needs_dep[reg - first_write_grf]) {
3066 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3067 needs_dep[reg - first_write_grf] = false;
3068 if (scan_inst->exec_size == 16)
3069 needs_dep[reg - first_write_grf + 1] = false;
3070 }
3071 }
3072 }
3073
3074 /* Clear the flag for registers that actually got read (as expected). */
3075 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3076
3077 /* Continue the loop only if we haven't resolved all the dependencies */
3078 int i;
3079 for (i = 0; i < write_len; i++) {
3080 if (needs_dep[i])
3081 break;
3082 }
3083 if (i == write_len)
3084 return;
3085 }
3086 }
3087
3088 /**
3089 * Implements this workaround for the original 965:
3090 *
3091 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3092 * used as a destination register until after it has been sourced by an
3093 * instruction with a different destination register.
3094 */
3095 void
3096 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3097 {
3098 int write_len = regs_written(inst);
3099 int first_write_grf = inst->dst.nr;
3100 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3101 assert(write_len < (int)sizeof(needs_dep) - 1);
3102
3103 memset(needs_dep, false, sizeof(needs_dep));
3104 memset(needs_dep, true, write_len);
3105 /* Walk forwards looking for writes to registers we're writing which aren't
3106 * read before being written.
3107 */
3108 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3109 /* If we hit control flow, force resolve all remaining dependencies. */
3110 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3111 for (int i = 0; i < write_len; i++) {
3112 if (needs_dep[i])
3113 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3114 first_write_grf + i);
3115 }
3116 return;
3117 }
3118
3119 /* Clear the flag for registers that actually got read (as expected). */
3120 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3121
3122 /* We insert our reads as late as possible since they're reading the
3123 * result of a SEND, which has massive latency.
3124 */
3125 if (scan_inst->dst.file == VGRF &&
3126 scan_inst->dst.nr >= first_write_grf &&
3127 scan_inst->dst.nr < first_write_grf + write_len &&
3128 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3129 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3130 scan_inst->dst.nr);
3131 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3132 }
3133
3134 /* Continue the loop only if we haven't resolved all the dependencies */
3135 int i;
3136 for (i = 0; i < write_len; i++) {
3137 if (needs_dep[i])
3138 break;
3139 }
3140 if (i == write_len)
3141 return;
3142 }
3143 }
3144
3145 void
3146 fs_visitor::insert_gen4_send_dependency_workarounds()
3147 {
3148 if (devinfo->gen != 4 || devinfo->is_g4x)
3149 return;
3150
3151 bool progress = false;
3152
3153 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3154 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3155 insert_gen4_pre_send_dependency_workarounds(block, inst);
3156 insert_gen4_post_send_dependency_workarounds(block, inst);
3157 progress = true;
3158 }
3159 }
3160
3161 if (progress)
3162 invalidate_live_intervals();
3163 }
3164
3165 /**
3166 * Turns the generic expression-style uniform pull constant load instruction
3167 * into a hardware-specific series of instructions for loading a pull
3168 * constant.
3169 *
3170 * The expression style allows the CSE pass before this to optimize out
3171 * repeated loads from the same offset, and gives the pre-register-allocation
3172 * scheduling full flexibility, while the conversion to native instructions
3173 * allows the post-register-allocation scheduler the best information
3174 * possible.
3175 *
3176 * Note that execution masking for setting up pull constant loads is special:
3177 * the channels that need to be written are unrelated to the current execution
3178 * mask, since a later instruction will use one of the result channels as a
3179 * source operand for all 8 or 16 of its channels.
3180 */
3181 void
3182 fs_visitor::lower_uniform_pull_constant_loads()
3183 {
3184 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3185 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3186 continue;
3187
3188 if (devinfo->gen >= 7) {
3189 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3190 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3191
3192 ubld.group(8, 0).MOV(payload,
3193 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3194 ubld.group(1, 0).MOV(component(payload, 2),
3195 brw_imm_ud(inst->src[1].ud / 16));
3196
3197 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3198 inst->src[1] = payload;
3199 inst->header_size = 1;
3200 inst->mlen = 1;
3201
3202 invalidate_live_intervals();
3203 } else {
3204 /* Before register allocation, we didn't tell the scheduler about the
3205 * MRF we use. We know it's safe to use this MRF because nothing
3206 * else does except for register spill/unspill, which generates and
3207 * uses its MRF within a single IR instruction.
3208 */
3209 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3210 inst->mlen = 1;
3211 }
3212 }
3213 }
3214
3215 bool
3216 fs_visitor::lower_load_payload()
3217 {
3218 bool progress = false;
3219
3220 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3221 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3222 continue;
3223
3224 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3225 assert(inst->saturate == false);
3226 fs_reg dst = inst->dst;
3227
3228 /* Get rid of COMPR4. We'll add it back in if we need it */
3229 if (dst.file == MRF)
3230 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3231
3232 const fs_builder ibld(this, block, inst);
3233 const fs_builder hbld = ibld.exec_all().group(8, 0);
3234
3235 for (uint8_t i = 0; i < inst->header_size; i++) {
3236 if (inst->src[i].file != BAD_FILE) {
3237 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3238 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3239 hbld.MOV(mov_dst, mov_src);
3240 }
3241 dst = offset(dst, hbld, 1);
3242 }
3243
3244 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3245 inst->exec_size > 8) {
3246 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3247 * a straightforward copy. Instead, the result of the
3248 * LOAD_PAYLOAD is treated as interleaved and the first four
3249 * non-header sources are unpacked as:
3250 *
3251 * m + 0: r0
3252 * m + 1: g0
3253 * m + 2: b0
3254 * m + 3: a0
3255 * m + 4: r1
3256 * m + 5: g1
3257 * m + 6: b1
3258 * m + 7: a1
3259 *
3260 * This is used for gen <= 5 fb writes.
3261 */
3262 assert(inst->exec_size == 16);
3263 assert(inst->header_size + 4 <= inst->sources);
3264 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3265 if (inst->src[i].file != BAD_FILE) {
3266 if (devinfo->has_compr4) {
3267 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3268 compr4_dst.nr |= BRW_MRF_COMPR4;
3269 ibld.MOV(compr4_dst, inst->src[i]);
3270 } else {
3271 /* Platform doesn't have COMPR4. We have to fake it */
3272 fs_reg mov_dst = retype(dst, inst->src[i].type);
3273 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3274 mov_dst.nr += 4;
3275 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3276 }
3277 }
3278
3279 dst.nr++;
3280 }
3281
3282 /* The loop above only ever incremented us through the first set
3283 * of 4 registers. However, thanks to the magic of COMPR4, we
3284 * actually wrote to the first 8 registers, so we need to take
3285 * that into account now.
3286 */
3287 dst.nr += 4;
3288
3289 /* The COMPR4 code took care of the first 4 sources. We'll let
3290 * the regular path handle any remaining sources. Yes, we are
3291 * modifying the instruction but we're about to delete it so
3292 * this really doesn't hurt anything.
3293 */
3294 inst->header_size += 4;
3295 }
3296
3297 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3298 if (inst->src[i].file != BAD_FILE)
3299 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3300 dst = offset(dst, ibld, 1);
3301 }
3302
3303 inst->remove(block);
3304 progress = true;
3305 }
3306
3307 if (progress)
3308 invalidate_live_intervals();
3309
3310 return progress;
3311 }
3312
3313 bool
3314 fs_visitor::lower_integer_multiplication()
3315 {
3316 bool progress = false;
3317
3318 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3319 const fs_builder ibld(this, block, inst);
3320
3321 if (inst->opcode == BRW_OPCODE_MUL) {
3322 if (inst->dst.is_accumulator() ||
3323 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3324 inst->dst.type != BRW_REGISTER_TYPE_UD))
3325 continue;
3326
3327 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3328 * operation directly, but CHV/BXT cannot.
3329 */
3330 if (devinfo->gen >= 8 &&
3331 !devinfo->is_cherryview && !devinfo->is_broxton)
3332 continue;
3333
3334 if (inst->src[1].file == IMM &&
3335 inst->src[1].ud < (1 << 16)) {
3336 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3337 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3338 * src1 are used.
3339 *
3340 * If multiplying by an immediate value that fits in 16-bits, do a
3341 * single MUL instruction with that value in the proper location.
3342 */
3343 if (devinfo->gen < 7) {
3344 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3345 inst->dst.type);
3346 ibld.MOV(imm, inst->src[1]);
3347 ibld.MUL(inst->dst, imm, inst->src[0]);
3348 } else {
3349 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3350 ibld.MUL(inst->dst, inst->src[0],
3351 ud ? brw_imm_uw(inst->src[1].ud)
3352 : brw_imm_w(inst->src[1].d));
3353 }
3354 } else {
3355 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3356 * do 32-bit integer multiplication in one instruction, but instead
3357 * must do a sequence (which actually calculates a 64-bit result):
3358 *
3359 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3360 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3361 * mov(8) g2<1>D acc0<8,8,1>D
3362 *
3363 * But on Gen > 6, the ability to use second accumulator register
3364 * (acc1) for non-float data types was removed, preventing a simple
3365 * implementation in SIMD16. A 16-channel result can be calculated by
3366 * executing the three instructions twice in SIMD8, once with quarter
3367 * control of 1Q for the first eight channels and again with 2Q for
3368 * the second eight channels.
3369 *
3370 * Which accumulator register is implicitly accessed (by AccWrEnable
3371 * for instance) is determined by the quarter control. Unfortunately
3372 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3373 * implicit accumulator access by an instruction with 2Q will access
3374 * acc1 regardless of whether the data type is usable in acc1.
3375 *
3376 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3377 * integer data types.
3378 *
3379 * Since we only want the low 32-bits of the result, we can do two
3380 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3381 * adjust the high result and add them (like the mach is doing):
3382 *
3383 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3384 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3385 * shl(8) g9<1>D g8<8,8,1>D 16D
3386 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3387 *
3388 * We avoid the shl instruction by realizing that we only want to add
3389 * the low 16-bits of the "high" result to the high 16-bits of the
3390 * "low" result and using proper regioning on the add:
3391 *
3392 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3393 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3394 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3395 *
3396 * Since it does not use the (single) accumulator register, we can
3397 * schedule multi-component multiplications much better.
3398 */
3399
3400 fs_reg orig_dst = inst->dst;
3401 if (orig_dst.is_null() || orig_dst.file == MRF) {
3402 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3403 inst->dst.type);
3404 }
3405 fs_reg low = inst->dst;
3406 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3407 inst->dst.type);
3408
3409 if (devinfo->gen >= 7) {
3410 if (inst->src[1].file == IMM) {
3411 ibld.MUL(low, inst->src[0],
3412 brw_imm_uw(inst->src[1].ud & 0xffff));
3413 ibld.MUL(high, inst->src[0],
3414 brw_imm_uw(inst->src[1].ud >> 16));
3415 } else {
3416 ibld.MUL(low, inst->src[0],
3417 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3418 ibld.MUL(high, inst->src[0],
3419 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3420 }
3421 } else {
3422 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3423 inst->src[1]);
3424 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3425 inst->src[1]);
3426 }
3427
3428 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3429 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3430 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3431
3432 if (inst->conditional_mod || orig_dst.file == MRF) {
3433 set_condmod(inst->conditional_mod,
3434 ibld.MOV(orig_dst, inst->dst));
3435 }
3436 }
3437
3438 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3439 /* Should have been lowered to 8-wide. */
3440 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3441 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3442 inst->dst.type);
3443 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3444 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3445
3446 if (devinfo->gen >= 8) {
3447 /* Until Gen8, integer multiplies read 32-bits from one source,
3448 * and 16-bits from the other, and relying on the MACH instruction
3449 * to generate the high bits of the result.
3450 *
3451 * On Gen8, the multiply instruction does a full 32x32-bit
3452 * multiply, but in order to do a 64-bit multiply we can simulate
3453 * the previous behavior and then use a MACH instruction.
3454 *
3455 * FINISHME: Don't use source modifiers on src1.
3456 */
3457 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3458 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3459 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3460 mul->src[1].stride *= 2;
3461
3462 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3463 inst->group > 0) {
3464 /* Among other things the quarter control bits influence which
3465 * accumulator register is used by the hardware for instructions
3466 * that access the accumulator implicitly (e.g. MACH). A
3467 * second-half instruction would normally map to acc1, which
3468 * doesn't exist on Gen7 and up (the hardware does emulate it for
3469 * floating-point instructions *only* by taking advantage of the
3470 * extra precision of acc0 not normally used for floating point
3471 * arithmetic).
3472 *
3473 * HSW and up are careful enough not to try to access an
3474 * accumulator register that doesn't exist, but on earlier Gen7
3475 * hardware we need to make sure that the quarter control bits are
3476 * zero to avoid non-deterministic behaviour and emit an extra MOV
3477 * to get the result masked correctly according to the current
3478 * channel enables.
3479 */
3480 mach->group = 0;
3481 mach->force_writemask_all = true;
3482 mach->dst = ibld.vgrf(inst->dst.type);
3483 ibld.MOV(inst->dst, mach->dst);
3484 }
3485 } else {
3486 continue;
3487 }
3488
3489 inst->remove(block);
3490 progress = true;
3491 }
3492
3493 if (progress)
3494 invalidate_live_intervals();
3495
3496 return progress;
3497 }
3498
3499 bool
3500 fs_visitor::lower_minmax()
3501 {
3502 assert(devinfo->gen < 6);
3503
3504 bool progress = false;
3505
3506 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3507 const fs_builder ibld(this, block, inst);
3508
3509 if (inst->opcode == BRW_OPCODE_SEL &&
3510 inst->predicate == BRW_PREDICATE_NONE) {
3511 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3512 * the original SEL.L/GE instruction
3513 */
3514 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3515 inst->conditional_mod);
3516 inst->predicate = BRW_PREDICATE_NORMAL;
3517 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3518
3519 progress = true;
3520 }
3521 }
3522
3523 if (progress)
3524 invalidate_live_intervals();
3525
3526 return progress;
3527 }
3528
3529 static void
3530 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3531 fs_reg *dst, fs_reg color, unsigned components)
3532 {
3533 if (key->clamp_fragment_color) {
3534 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3535 assert(color.type == BRW_REGISTER_TYPE_F);
3536
3537 for (unsigned i = 0; i < components; i++)
3538 set_saturate(true,
3539 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3540
3541 color = tmp;
3542 }
3543
3544 for (unsigned i = 0; i < components; i++)
3545 dst[i] = offset(color, bld, i);
3546 }
3547
3548 static void
3549 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3550 const struct brw_wm_prog_data *prog_data,
3551 const brw_wm_prog_key *key,
3552 const fs_visitor::thread_payload &payload)
3553 {
3554 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3555 const gen_device_info *devinfo = bld.shader->devinfo;
3556 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3557 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3558 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3559 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3560 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3561 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3562 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3563 const unsigned components =
3564 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3565
3566 /* We can potentially have a message length of up to 15, so we have to set
3567 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3568 */
3569 fs_reg sources[15];
3570 int header_size = 2, payload_header_size;
3571 unsigned length = 0;
3572
3573 /* From the Sandy Bridge PRM, volume 4, page 198:
3574 *
3575 * "Dispatched Pixel Enables. One bit per pixel indicating
3576 * which pixels were originally enabled when the thread was
3577 * dispatched. This field is only required for the end-of-
3578 * thread message and on all dual-source messages."
3579 */
3580 if (devinfo->gen >= 6 &&
3581 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3582 color1.file == BAD_FILE &&
3583 key->nr_color_regions == 1) {
3584 header_size = 0;
3585 }
3586
3587 if (header_size != 0) {
3588 assert(header_size == 2);
3589 /* Allocate 2 registers for a header */
3590 length += 2;
3591 }
3592
3593 if (payload.aa_dest_stencil_reg) {
3594 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3595 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3596 .MOV(sources[length],
3597 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3598 length++;
3599 }
3600
3601 if (sample_mask.file != BAD_FILE) {
3602 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3603 BRW_REGISTER_TYPE_UD);
3604
3605 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3606 * relevant. Since it's unsigned single words one vgrf is always
3607 * 16-wide, but only the lower or higher 8 channels will be used by the
3608 * hardware when doing a SIMD8 write depending on whether we have
3609 * selected the subspans for the first or second half respectively.
3610 */
3611 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3612 sample_mask.type = BRW_REGISTER_TYPE_UW;
3613 sample_mask.stride *= 2;
3614
3615 bld.exec_all().annotate("FB write oMask")
3616 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3617 inst->group),
3618 sample_mask);
3619 length++;
3620 }
3621
3622 payload_header_size = length;
3623
3624 if (src0_alpha.file != BAD_FILE) {
3625 /* FIXME: This is being passed at the wrong location in the payload and
3626 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3627 * It's supposed to be immediately before oMask but there seems to be no
3628 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3629 * requires header sources to form a contiguous segment at the beginning
3630 * of the message and src0_alpha has per-channel semantics.
3631 */
3632 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3633 length++;
3634 } else if (key->replicate_alpha && inst->target != 0) {
3635 /* Handle the case when fragment shader doesn't write to draw buffer
3636 * zero. No need to call setup_color_payload() for src0_alpha because
3637 * alpha value will be undefined.
3638 */
3639 length++;
3640 }
3641
3642 setup_color_payload(bld, key, &sources[length], color0, components);
3643 length += 4;
3644
3645 if (color1.file != BAD_FILE) {
3646 setup_color_payload(bld, key, &sources[length], color1, components);
3647 length += 4;
3648 }
3649
3650 if (src_depth.file != BAD_FILE) {
3651 sources[length] = src_depth;
3652 length++;
3653 }
3654
3655 if (dst_depth.file != BAD_FILE) {
3656 sources[length] = dst_depth;
3657 length++;
3658 }
3659
3660 if (src_stencil.file != BAD_FILE) {
3661 assert(devinfo->gen >= 9);
3662 assert(bld.dispatch_width() != 16);
3663
3664 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3665 * available on gen9+. As such it's impossible to have both enabled at the
3666 * same time and therefore length cannot overrun the array.
3667 */
3668 assert(length < 15);
3669
3670 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3671 bld.exec_all().annotate("FB write OS")
3672 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3673 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3674 length++;
3675 }
3676
3677 fs_inst *load;
3678 if (devinfo->gen >= 7) {
3679 /* Send from the GRF */
3680 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3681 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3682 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3683 load->dst = payload;
3684
3685 inst->src[0] = payload;
3686 inst->resize_sources(1);
3687 } else {
3688 /* Send from the MRF */
3689 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3690 sources, length, payload_header_size);
3691
3692 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3693 * will do this for us if we just give it a COMPR4 destination.
3694 */
3695 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3696 load->dst.nr |= BRW_MRF_COMPR4;
3697
3698 inst->resize_sources(0);
3699 inst->base_mrf = 1;
3700 }
3701
3702 inst->opcode = FS_OPCODE_FB_WRITE;
3703 inst->mlen = regs_written(load);
3704 inst->header_size = header_size;
3705 }
3706
3707 static void
3708 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3709 {
3710 const fs_builder &ubld = bld.exec_all();
3711 const unsigned length = 2;
3712 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3713
3714 ubld.group(16, 0)
3715 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3716
3717 inst->resize_sources(1);
3718 inst->src[0] = header;
3719 inst->opcode = FS_OPCODE_FB_READ;
3720 inst->mlen = length;
3721 inst->header_size = length;
3722 }
3723
3724 static void
3725 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3726 const fs_reg &coordinate,
3727 const fs_reg &shadow_c,
3728 const fs_reg &lod, const fs_reg &lod2,
3729 const fs_reg &surface,
3730 const fs_reg &sampler,
3731 unsigned coord_components,
3732 unsigned grad_components)
3733 {
3734 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3735 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3736 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3737 fs_reg msg_end = msg_begin;
3738
3739 /* g0 header. */
3740 msg_end = offset(msg_end, bld.group(8, 0), 1);
3741
3742 for (unsigned i = 0; i < coord_components; i++)
3743 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3744 offset(coordinate, bld, i));
3745
3746 msg_end = offset(msg_end, bld, coord_components);
3747
3748 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3749 * require all three components to be present and zero if they are unused.
3750 */
3751 if (coord_components > 0 &&
3752 (has_lod || shadow_c.file != BAD_FILE ||
3753 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3754 for (unsigned i = coord_components; i < 3; i++)
3755 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3756
3757 msg_end = offset(msg_end, bld, 3 - coord_components);
3758 }
3759
3760 if (op == SHADER_OPCODE_TXD) {
3761 /* TXD unsupported in SIMD16 mode. */
3762 assert(bld.dispatch_width() == 8);
3763
3764 /* the slots for u and v are always present, but r is optional */
3765 if (coord_components < 2)
3766 msg_end = offset(msg_end, bld, 2 - coord_components);
3767
3768 /* P = u, v, r
3769 * dPdx = dudx, dvdx, drdx
3770 * dPdy = dudy, dvdy, drdy
3771 *
3772 * 1-arg: Does not exist.
3773 *
3774 * 2-arg: dudx dvdx dudy dvdy
3775 * dPdx.x dPdx.y dPdy.x dPdy.y
3776 * m4 m5 m6 m7
3777 *
3778 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3779 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3780 * m5 m6 m7 m8 m9 m10
3781 */
3782 for (unsigned i = 0; i < grad_components; i++)
3783 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3784
3785 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3786
3787 for (unsigned i = 0; i < grad_components; i++)
3788 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3789
3790 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3791 }
3792
3793 if (has_lod) {
3794 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3795 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3796 */
3797 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3798 bld.dispatch_width() == 16);
3799
3800 const brw_reg_type type =
3801 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3802 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3803 bld.MOV(retype(msg_end, type), lod);
3804 msg_end = offset(msg_end, bld, 1);
3805 }
3806
3807 if (shadow_c.file != BAD_FILE) {
3808 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3809 /* There's no plain shadow compare message, so we use shadow
3810 * compare with a bias of 0.0.
3811 */
3812 bld.MOV(msg_end, brw_imm_f(0.0f));
3813 msg_end = offset(msg_end, bld, 1);
3814 }
3815
3816 bld.MOV(msg_end, shadow_c);
3817 msg_end = offset(msg_end, bld, 1);
3818 }
3819
3820 inst->opcode = op;
3821 inst->src[0] = reg_undef;
3822 inst->src[1] = surface;
3823 inst->src[2] = sampler;
3824 inst->resize_sources(3);
3825 inst->base_mrf = msg_begin.nr;
3826 inst->mlen = msg_end.nr - msg_begin.nr;
3827 inst->header_size = 1;
3828 }
3829
3830 static void
3831 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3832 const fs_reg &coordinate,
3833 const fs_reg &shadow_c,
3834 const fs_reg &lod, const fs_reg &lod2,
3835 const fs_reg &sample_index,
3836 const fs_reg &surface,
3837 const fs_reg &sampler,
3838 unsigned coord_components,
3839 unsigned grad_components)
3840 {
3841 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3842 fs_reg msg_coords = message;
3843 unsigned header_size = 0;
3844
3845 if (inst->offset != 0) {
3846 /* The offsets set up by the visitor are in the m1 header, so we can't
3847 * go headerless.
3848 */
3849 header_size = 1;
3850 message.nr--;
3851 }
3852
3853 for (unsigned i = 0; i < coord_components; i++)
3854 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3855 offset(coordinate, bld, i));
3856
3857 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3858 fs_reg msg_lod = offset(msg_coords, bld, 4);
3859
3860 if (shadow_c.file != BAD_FILE) {
3861 fs_reg msg_shadow = msg_lod;
3862 bld.MOV(msg_shadow, shadow_c);
3863 msg_lod = offset(msg_shadow, bld, 1);
3864 msg_end = msg_lod;
3865 }
3866
3867 switch (op) {
3868 case SHADER_OPCODE_TXL:
3869 case FS_OPCODE_TXB:
3870 bld.MOV(msg_lod, lod);
3871 msg_end = offset(msg_lod, bld, 1);
3872 break;
3873 case SHADER_OPCODE_TXD:
3874 /**
3875 * P = u, v, r
3876 * dPdx = dudx, dvdx, drdx
3877 * dPdy = dudy, dvdy, drdy
3878 *
3879 * Load up these values:
3880 * - dudx dudy dvdx dvdy drdx drdy
3881 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3882 */
3883 msg_end = msg_lod;
3884 for (unsigned i = 0; i < grad_components; i++) {
3885 bld.MOV(msg_end, offset(lod, bld, i));
3886 msg_end = offset(msg_end, bld, 1);
3887
3888 bld.MOV(msg_end, offset(lod2, bld, i));
3889 msg_end = offset(msg_end, bld, 1);
3890 }
3891 break;
3892 case SHADER_OPCODE_TXS:
3893 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3894 bld.MOV(msg_lod, lod);
3895 msg_end = offset(msg_lod, bld, 1);
3896 break;
3897 case SHADER_OPCODE_TXF:
3898 msg_lod = offset(msg_coords, bld, 3);
3899 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3900 msg_end = offset(msg_lod, bld, 1);
3901 break;
3902 case SHADER_OPCODE_TXF_CMS:
3903 msg_lod = offset(msg_coords, bld, 3);
3904 /* lod */
3905 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3906 /* sample index */
3907 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3908 msg_end = offset(msg_lod, bld, 2);
3909 break;
3910 default:
3911 break;
3912 }
3913
3914 inst->opcode = op;
3915 inst->src[0] = reg_undef;
3916 inst->src[1] = surface;
3917 inst->src[2] = sampler;
3918 inst->resize_sources(3);
3919 inst->base_mrf = message.nr;
3920 inst->mlen = msg_end.nr - message.nr;
3921 inst->header_size = header_size;
3922
3923 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3924 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3925 }
3926
3927 static bool
3928 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3929 {
3930 if (devinfo->gen < 8 && !devinfo->is_haswell)
3931 return false;
3932
3933 return sampler.file != IMM || sampler.ud >= 16;
3934 }
3935
3936 static void
3937 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3938 const fs_reg &coordinate,
3939 const fs_reg &shadow_c,
3940 fs_reg lod, const fs_reg &lod2,
3941 const fs_reg &sample_index,
3942 const fs_reg &mcs,
3943 const fs_reg &surface,
3944 const fs_reg &sampler,
3945 const fs_reg &tg4_offset,
3946 unsigned coord_components,
3947 unsigned grad_components)
3948 {
3949 const gen_device_info *devinfo = bld.shader->devinfo;
3950 unsigned reg_width = bld.dispatch_width() / 8;
3951 unsigned header_size = 0, length = 0;
3952 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3953 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3954 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3955
3956 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3957 inst->offset != 0 || inst->eot ||
3958 op == SHADER_OPCODE_SAMPLEINFO ||
3959 is_high_sampler(devinfo, sampler)) {
3960 /* For general texture offsets (no txf workaround), we need a header to
3961 * put them in. Note that we're only reserving space for it in the
3962 * message payload as it will be initialized implicitly by the
3963 * generator.
3964 *
3965 * TG4 needs to place its channel select in the header, for interaction
3966 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3967 * larger sampler numbers we need to offset the Sampler State Pointer in
3968 * the header.
3969 */
3970 header_size = 1;
3971 sources[0] = fs_reg();
3972 length++;
3973
3974 /* If we're requesting fewer than four channels worth of response,
3975 * and we have an explicit header, we need to set up the sampler
3976 * writemask. It's reversed from normal: 1 means "don't write".
3977 */
3978 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
3979 assert(regs_written(inst) % reg_width == 0);
3980 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
3981 inst->offset |= mask << 12;
3982 }
3983 }
3984
3985 if (shadow_c.file != BAD_FILE) {
3986 bld.MOV(sources[length], shadow_c);
3987 length++;
3988 }
3989
3990 bool coordinate_done = false;
3991
3992 /* Set up the LOD info */
3993 switch (op) {
3994 case FS_OPCODE_TXB:
3995 case SHADER_OPCODE_TXL:
3996 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
3997 op = SHADER_OPCODE_TXL_LZ;
3998 break;
3999 }
4000 bld.MOV(sources[length], lod);
4001 length++;
4002 break;
4003 case SHADER_OPCODE_TXD:
4004 /* TXD should have been lowered in SIMD16 mode. */
4005 assert(bld.dispatch_width() == 8);
4006
4007 /* Load dPdx and the coordinate together:
4008 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4009 */
4010 for (unsigned i = 0; i < coord_components; i++) {
4011 bld.MOV(sources[length++], offset(coordinate, bld, i));
4012
4013 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4014 * only derivatives for (u, v, r).
4015 */
4016 if (i < grad_components) {
4017 bld.MOV(sources[length++], offset(lod, bld, i));
4018 bld.MOV(sources[length++], offset(lod2, bld, i));
4019 }
4020 }
4021
4022 coordinate_done = true;
4023 break;
4024 case SHADER_OPCODE_TXS:
4025 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4026 length++;
4027 break;
4028 case SHADER_OPCODE_TXF:
4029 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4030 * On Gen9 they are u, v, lod, r
4031 */
4032 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4033
4034 if (devinfo->gen >= 9) {
4035 if (coord_components >= 2) {
4036 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4037 offset(coordinate, bld, 1));
4038 } else {
4039 sources[length] = brw_imm_d(0);
4040 }
4041 length++;
4042 }
4043
4044 if (devinfo->gen >= 9 && lod.is_zero()) {
4045 op = SHADER_OPCODE_TXF_LZ;
4046 } else {
4047 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4048 length++;
4049 }
4050
4051 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4052 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4053 offset(coordinate, bld, i));
4054
4055 coordinate_done = true;
4056 break;
4057
4058 case SHADER_OPCODE_TXF_CMS:
4059 case SHADER_OPCODE_TXF_CMS_W:
4060 case SHADER_OPCODE_TXF_UMS:
4061 case SHADER_OPCODE_TXF_MCS:
4062 if (op == SHADER_OPCODE_TXF_UMS ||
4063 op == SHADER_OPCODE_TXF_CMS ||
4064 op == SHADER_OPCODE_TXF_CMS_W) {
4065 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4066 length++;
4067 }
4068
4069 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4070 /* Data from the multisample control surface. */
4071 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4072 length++;
4073
4074 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4075 * the MCS data.
4076 */
4077 if (op == SHADER_OPCODE_TXF_CMS_W) {
4078 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4079 mcs.file == IMM ?
4080 mcs :
4081 offset(mcs, bld, 1));
4082 length++;
4083 }
4084 }
4085
4086 /* There is no offsetting for this message; just copy in the integer
4087 * texture coordinates.
4088 */
4089 for (unsigned i = 0; i < coord_components; i++)
4090 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4091 offset(coordinate, bld, i));
4092
4093 coordinate_done = true;
4094 break;
4095 case SHADER_OPCODE_TG4_OFFSET:
4096 /* More crazy intermixing */
4097 for (unsigned i = 0; i < 2; i++) /* u, v */
4098 bld.MOV(sources[length++], offset(coordinate, bld, i));
4099
4100 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4101 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4102 offset(tg4_offset, bld, i));
4103
4104 if (coord_components == 3) /* r if present */
4105 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4106
4107 coordinate_done = true;
4108 break;
4109 default:
4110 break;
4111 }
4112
4113 /* Set up the coordinate (except for cases where it was done above) */
4114 if (!coordinate_done) {
4115 for (unsigned i = 0; i < coord_components; i++)
4116 bld.MOV(sources[length++], offset(coordinate, bld, i));
4117 }
4118
4119 int mlen;
4120 if (reg_width == 2)
4121 mlen = length * reg_width - header_size;
4122 else
4123 mlen = length * reg_width;
4124
4125 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4126 BRW_REGISTER_TYPE_F);
4127 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4128
4129 /* Generate the SEND. */
4130 inst->opcode = op;
4131 inst->src[0] = src_payload;
4132 inst->src[1] = surface;
4133 inst->src[2] = sampler;
4134 inst->resize_sources(3);
4135 inst->mlen = mlen;
4136 inst->header_size = header_size;
4137
4138 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4139 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4140 }
4141
4142 static void
4143 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4144 {
4145 const gen_device_info *devinfo = bld.shader->devinfo;
4146 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4147 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4148 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4149 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4150 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4151 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4152 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4153 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4154 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4155 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4156 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4157 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4158 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4159
4160 if (devinfo->gen >= 7) {
4161 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4162 shadow_c, lod, lod2, sample_index,
4163 mcs, surface, sampler, tg4_offset,
4164 coord_components, grad_components);
4165 } else if (devinfo->gen >= 5) {
4166 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4167 shadow_c, lod, lod2, sample_index,
4168 surface, sampler,
4169 coord_components, grad_components);
4170 } else {
4171 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4172 shadow_c, lod, lod2,
4173 surface, sampler,
4174 coord_components, grad_components);
4175 }
4176 }
4177
4178 /**
4179 * Initialize the header present in some typed and untyped surface
4180 * messages.
4181 */
4182 static fs_reg
4183 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4184 {
4185 fs_builder ubld = bld.exec_all().group(8, 0);
4186 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4187 ubld.MOV(dst, brw_imm_d(0));
4188 ubld.MOV(component(dst, 7), sample_mask);
4189 return dst;
4190 }
4191
4192 static void
4193 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4194 const fs_reg &sample_mask)
4195 {
4196 /* Get the logical send arguments. */
4197 const fs_reg &addr = inst->src[0];
4198 const fs_reg &src = inst->src[1];
4199 const fs_reg &surface = inst->src[2];
4200 const UNUSED fs_reg &dims = inst->src[3];
4201 const fs_reg &arg = inst->src[4];
4202
4203 /* Calculate the total number of components of the payload. */
4204 const unsigned addr_sz = inst->components_read(0);
4205 const unsigned src_sz = inst->components_read(1);
4206 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4207 const unsigned sz = header_sz + addr_sz + src_sz;
4208
4209 /* Allocate space for the payload. */
4210 fs_reg *const components = new fs_reg[sz];
4211 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4212 unsigned n = 0;
4213
4214 /* Construct the payload. */
4215 if (header_sz)
4216 components[n++] = emit_surface_header(bld, sample_mask);
4217
4218 for (unsigned i = 0; i < addr_sz; i++)
4219 components[n++] = offset(addr, bld, i);
4220
4221 for (unsigned i = 0; i < src_sz; i++)
4222 components[n++] = offset(src, bld, i);
4223
4224 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4225
4226 /* Update the original instruction. */
4227 inst->opcode = op;
4228 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4229 inst->header_size = header_sz;
4230
4231 inst->src[0] = payload;
4232 inst->src[1] = surface;
4233 inst->src[2] = arg;
4234 inst->resize_sources(3);
4235
4236 delete[] components;
4237 }
4238
4239 static void
4240 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4241 {
4242 const gen_device_info *devinfo = bld.shader->devinfo;
4243
4244 if (devinfo->gen >= 7) {
4245 /* We are switching the instruction from an ALU-like instruction to a
4246 * send-from-grf instruction. Since sends can't handle strides or
4247 * source modifiers, we have to make a copy of the offset source.
4248 */
4249 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4250 bld.MOV(tmp, inst->src[1]);
4251 inst->src[1] = tmp;
4252
4253 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4254
4255 } else {
4256 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4257 BRW_REGISTER_TYPE_UD);
4258
4259 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4260
4261 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4262 inst->resize_sources(1);
4263 inst->base_mrf = payload.nr;
4264 inst->header_size = 1;
4265 inst->mlen = 1 + inst->exec_size / 8;
4266 }
4267 }
4268
4269 static void
4270 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4271 {
4272 assert(bld.shader->devinfo->gen < 6);
4273
4274 inst->base_mrf = 2;
4275 inst->mlen = inst->sources * inst->exec_size / 8;
4276
4277 if (inst->sources > 1) {
4278 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4279 * "Message Payload":
4280 *
4281 * "Operand0[7]. For the INT DIV functions, this operand is the
4282 * denominator."
4283 * ...
4284 * "Operand1[7]. For the INT DIV functions, this operand is the
4285 * numerator."
4286 */
4287 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4288 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4289 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4290
4291 inst->resize_sources(1);
4292 inst->src[0] = src0;
4293
4294 assert(inst->exec_size == 8);
4295 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4296 }
4297 }
4298
4299 bool
4300 fs_visitor::lower_logical_sends()
4301 {
4302 bool progress = false;
4303
4304 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4305 const fs_builder ibld(this, block, inst);
4306
4307 switch (inst->opcode) {
4308 case FS_OPCODE_FB_WRITE_LOGICAL:
4309 assert(stage == MESA_SHADER_FRAGMENT);
4310 lower_fb_write_logical_send(ibld, inst,
4311 brw_wm_prog_data(prog_data),
4312 (const brw_wm_prog_key *)key,
4313 payload);
4314 break;
4315
4316 case FS_OPCODE_FB_READ_LOGICAL:
4317 lower_fb_read_logical_send(ibld, inst);
4318 break;
4319
4320 case SHADER_OPCODE_TEX_LOGICAL:
4321 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4322 break;
4323
4324 case SHADER_OPCODE_TXD_LOGICAL:
4325 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4326 break;
4327
4328 case SHADER_OPCODE_TXF_LOGICAL:
4329 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4330 break;
4331
4332 case SHADER_OPCODE_TXL_LOGICAL:
4333 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4334 break;
4335
4336 case SHADER_OPCODE_TXS_LOGICAL:
4337 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4338 break;
4339
4340 case FS_OPCODE_TXB_LOGICAL:
4341 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4342 break;
4343
4344 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4345 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4346 break;
4347
4348 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4349 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4350 break;
4351
4352 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4353 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4354 break;
4355
4356 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4357 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4358 break;
4359
4360 case SHADER_OPCODE_LOD_LOGICAL:
4361 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4362 break;
4363
4364 case SHADER_OPCODE_TG4_LOGICAL:
4365 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4366 break;
4367
4368 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4369 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4370 break;
4371
4372 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4373 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4374 break;
4375
4376 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4377 lower_surface_logical_send(ibld, inst,
4378 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4379 fs_reg());
4380 break;
4381
4382 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4383 lower_surface_logical_send(ibld, inst,
4384 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4385 ibld.sample_mask_reg());
4386 break;
4387
4388 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4389 lower_surface_logical_send(ibld, inst,
4390 SHADER_OPCODE_UNTYPED_ATOMIC,
4391 ibld.sample_mask_reg());
4392 break;
4393
4394 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4395 lower_surface_logical_send(ibld, inst,
4396 SHADER_OPCODE_TYPED_SURFACE_READ,
4397 brw_imm_d(0xffff));
4398 break;
4399
4400 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4401 lower_surface_logical_send(ibld, inst,
4402 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4403 ibld.sample_mask_reg());
4404 break;
4405
4406 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4407 lower_surface_logical_send(ibld, inst,
4408 SHADER_OPCODE_TYPED_ATOMIC,
4409 ibld.sample_mask_reg());
4410 break;
4411
4412 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4413 lower_varying_pull_constant_logical_send(ibld, inst);
4414 break;
4415
4416 case SHADER_OPCODE_RCP:
4417 case SHADER_OPCODE_RSQ:
4418 case SHADER_OPCODE_SQRT:
4419 case SHADER_OPCODE_EXP2:
4420 case SHADER_OPCODE_LOG2:
4421 case SHADER_OPCODE_SIN:
4422 case SHADER_OPCODE_COS:
4423 case SHADER_OPCODE_POW:
4424 case SHADER_OPCODE_INT_QUOTIENT:
4425 case SHADER_OPCODE_INT_REMAINDER:
4426 /* The math opcodes are overloaded for the send-like and
4427 * expression-like instructions which seems kind of icky. Gen6+ has
4428 * a native (but rather quirky) MATH instruction so we don't need to
4429 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4430 * logical instructions (which we can easily recognize because they
4431 * have mlen = 0) into send-like virtual instructions.
4432 */
4433 if (devinfo->gen < 6 && inst->mlen == 0) {
4434 lower_math_logical_send(ibld, inst);
4435 break;
4436
4437 } else {
4438 continue;
4439 }
4440
4441 default:
4442 continue;
4443 }
4444
4445 progress = true;
4446 }
4447
4448 if (progress)
4449 invalidate_live_intervals();
4450
4451 return progress;
4452 }
4453
4454 /**
4455 * Get the closest allowed SIMD width for instruction \p inst accounting for
4456 * some common regioning and execution control restrictions that apply to FPU
4457 * instructions. These restrictions don't necessarily have any relevance to
4458 * instructions not executed by the FPU pipeline like extended math, control
4459 * flow or send message instructions.
4460 *
4461 * For virtual opcodes it's really up to the instruction -- In some cases
4462 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4463 * instructions) it may simplify virtual instruction lowering if we can
4464 * enforce FPU-like regioning restrictions already on the virtual instruction,
4465 * in other cases (e.g. virtual send-like instructions) this may be
4466 * excessively restrictive.
4467 */
4468 static unsigned
4469 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4470 const fs_inst *inst)
4471 {
4472 /* Maximum execution size representable in the instruction controls. */
4473 unsigned max_width = MIN2(32, inst->exec_size);
4474
4475 /* According to the PRMs:
4476 * "A. In Direct Addressing mode, a source cannot span more than 2
4477 * adjacent GRF registers.
4478 * B. A destination cannot span more than 2 adjacent GRF registers."
4479 *
4480 * Look for the source or destination with the largest register region
4481 * which is the one that is going to limit the overall execution size of
4482 * the instruction due to this rule.
4483 */
4484 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4485
4486 for (unsigned i = 0; i < inst->sources; i++)
4487 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4488
4489 /* Calculate the maximum execution size of the instruction based on the
4490 * factor by which it goes over the hardware limit of 2 GRFs.
4491 */
4492 if (reg_count > 2)
4493 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4494
4495 /* According to the IVB PRMs:
4496 * "When destination spans two registers, the source MUST span two
4497 * registers. The exception to the above rule:
4498 *
4499 * - When source is scalar, the source registers are not incremented.
4500 * - When source is packed integer Word and destination is packed
4501 * integer DWord, the source register is not incremented but the
4502 * source sub register is incremented."
4503 *
4504 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4505 * restrictions. The code below intentionally doesn't check whether the
4506 * destination type is integer because empirically the hardware doesn't
4507 * seem to care what the actual type is as long as it's dword-aligned.
4508 */
4509 if (devinfo->gen < 8) {
4510 for (unsigned i = 0; i < inst->sources; i++) {
4511 if (inst->size_written > REG_SIZE &&
4512 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4513 !is_uniform(inst->src[i]) &&
4514 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4515 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4516 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4517 max_width = MIN2(max_width, inst->exec_size / reg_count);
4518 }
4519 }
4520 }
4521
4522 /* From the IVB PRMs:
4523 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4524 * are applied for both halves of the SIMD32 instruction. If different
4525 * execution mask channels are required, split the instruction into two
4526 * SIMD16 instructions."
4527 *
4528 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4529 * 32-wide control flow support in hardware and will behave similarly.
4530 */
4531 if (devinfo->gen < 8 && !inst->force_writemask_all)
4532 max_width = MIN2(max_width, 16);
4533
4534 /* From the IVB PRMs (applies to HSW too):
4535 * "Instructions with condition modifiers must not use SIMD32."
4536 *
4537 * From the BDW PRMs (applies to later hardware too):
4538 * "Ternary instruction with condition modifiers must not use SIMD32."
4539 */
4540 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4541 max_width = MIN2(max_width, 16);
4542
4543 /* From the IVB PRMs (applies to other devices that don't have the
4544 * gen_device_info::supports_simd16_3src flag set):
4545 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4546 * SIMD8 is not allowed for DF operations."
4547 */
4548 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4549 max_width = MIN2(max_width, inst->exec_size / reg_count);
4550
4551 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4552 * the 8-bit quarter of the execution mask signals specified in the
4553 * instruction control fields) for the second compressed half of any
4554 * single-precision instruction (for double-precision instructions
4555 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4556 * the EU will apply the wrong execution controls for the second
4557 * sequential GRF write if the number of channels per GRF is not exactly
4558 * eight in single-precision mode (or four in double-float mode).
4559 *
4560 * In this situation we calculate the maximum size of the split
4561 * instructions so they only ever write to a single register.
4562 */
4563 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4564 !inst->force_writemask_all) {
4565 const unsigned channels_per_grf = inst->exec_size /
4566 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4567 unsigned exec_type_size = 0;
4568 for (int i = 0; i < inst->sources; i++) {
4569 if (inst->src[i].file != BAD_FILE)
4570 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4571 }
4572 assert(exec_type_size);
4573
4574 /* The hardware shifts exactly 8 channels per compressed half of the
4575 * instruction in single-precision mode and exactly 4 in double-precision.
4576 */
4577 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4578 max_width = MIN2(max_width, channels_per_grf);
4579 }
4580
4581 /* Only power-of-two execution sizes are representable in the instruction
4582 * control fields.
4583 */
4584 return 1 << _mesa_logbase2(max_width);
4585 }
4586
4587 /**
4588 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4589 * various payload size restrictions that apply to sampler message
4590 * instructions.
4591 *
4592 * This is only intended to provide a maximum theoretical bound for the
4593 * execution size of the message based on the number of argument components
4594 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4595 * variant of the message can be used, though some messages may have
4596 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4597 * the message length to determine the exact SIMD width and argument count,
4598 * which makes a number of sampler message combinations impossible to
4599 * represent).
4600 */
4601 static unsigned
4602 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4603 const fs_inst *inst)
4604 {
4605 /* Calculate the number of coordinate components that have to be present
4606 * assuming that additional arguments follow the texel coordinates in the
4607 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4608 * need to pad to four or three components depending on the message,
4609 * pre-ILK we need to pad to at most three components.
4610 */
4611 const unsigned req_coord_components =
4612 (devinfo->gen >= 7 ||
4613 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4614 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4615 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4616 3;
4617
4618 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4619 * variant of the TXL or TXF message.
4620 */
4621 const bool implicit_lod = devinfo->gen >= 9 &&
4622 (inst->opcode == SHADER_OPCODE_TXL ||
4623 inst->opcode == SHADER_OPCODE_TXF) &&
4624 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4625
4626 /* Calculate the total number of argument components that need to be passed
4627 * to the sampler unit.
4628 */
4629 const unsigned num_payload_components =
4630 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4631 req_coord_components) +
4632 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4633 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4634 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4635 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4636 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4637 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4638 inst->components_read(TEX_LOGICAL_SRC_MCS);
4639
4640 /* SIMD16 messages with more than five arguments exceed the maximum message
4641 * size supported by the sampler, regardless of whether a header is
4642 * provided or not.
4643 */
4644 return MIN2(inst->exec_size,
4645 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4646 }
4647
4648 /**
4649 * Get the closest native SIMD width supported by the hardware for instruction
4650 * \p inst. The instruction will be left untouched by
4651 * fs_visitor::lower_simd_width() if the returned value is equal to the
4652 * original execution size.
4653 */
4654 static unsigned
4655 get_lowered_simd_width(const struct gen_device_info *devinfo,
4656 const fs_inst *inst)
4657 {
4658 switch (inst->opcode) {
4659 case BRW_OPCODE_MOV:
4660 case BRW_OPCODE_SEL:
4661 case BRW_OPCODE_NOT:
4662 case BRW_OPCODE_AND:
4663 case BRW_OPCODE_OR:
4664 case BRW_OPCODE_XOR:
4665 case BRW_OPCODE_SHR:
4666 case BRW_OPCODE_SHL:
4667 case BRW_OPCODE_ASR:
4668 case BRW_OPCODE_CMPN:
4669 case BRW_OPCODE_CSEL:
4670 case BRW_OPCODE_F32TO16:
4671 case BRW_OPCODE_F16TO32:
4672 case BRW_OPCODE_BFREV:
4673 case BRW_OPCODE_BFE:
4674 case BRW_OPCODE_ADD:
4675 case BRW_OPCODE_MUL:
4676 case BRW_OPCODE_AVG:
4677 case BRW_OPCODE_FRC:
4678 case BRW_OPCODE_RNDU:
4679 case BRW_OPCODE_RNDD:
4680 case BRW_OPCODE_RNDE:
4681 case BRW_OPCODE_RNDZ:
4682 case BRW_OPCODE_LZD:
4683 case BRW_OPCODE_FBH:
4684 case BRW_OPCODE_FBL:
4685 case BRW_OPCODE_CBIT:
4686 case BRW_OPCODE_SAD2:
4687 case BRW_OPCODE_MAD:
4688 case BRW_OPCODE_LRP:
4689 case FS_OPCODE_PACK:
4690 return get_fpu_lowered_simd_width(devinfo, inst);
4691
4692 case BRW_OPCODE_CMP: {
4693 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4694 * when the destination is a GRF the dependency-clear bit on the flag
4695 * register is cleared early.
4696 *
4697 * Suggested workarounds are to disable coissuing CMP instructions
4698 * or to split CMP(16) instructions into two CMP(8) instructions.
4699 *
4700 * We choose to split into CMP(8) instructions since disabling
4701 * coissuing would affect CMP instructions not otherwise affected by
4702 * the errata.
4703 */
4704 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4705 !inst->dst.is_null() ? 8 : ~0);
4706 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4707 }
4708 case BRW_OPCODE_BFI1:
4709 case BRW_OPCODE_BFI2:
4710 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4711 * should
4712 * "Force BFI instructions to be executed always in SIMD8."
4713 */
4714 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4715 get_fpu_lowered_simd_width(devinfo, inst));
4716
4717 case BRW_OPCODE_IF:
4718 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4719 return inst->exec_size;
4720
4721 case SHADER_OPCODE_RCP:
4722 case SHADER_OPCODE_RSQ:
4723 case SHADER_OPCODE_SQRT:
4724 case SHADER_OPCODE_EXP2:
4725 case SHADER_OPCODE_LOG2:
4726 case SHADER_OPCODE_SIN:
4727 case SHADER_OPCODE_COS:
4728 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4729 * Gen6.
4730 */
4731 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4732 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4733 MIN2(8, inst->exec_size));
4734
4735 case SHADER_OPCODE_POW:
4736 /* SIMD16 is only allowed on Gen7+. */
4737 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4738 MIN2(8, inst->exec_size));
4739
4740 case SHADER_OPCODE_INT_QUOTIENT:
4741 case SHADER_OPCODE_INT_REMAINDER:
4742 /* Integer division is limited to SIMD8 on all generations. */
4743 return MIN2(8, inst->exec_size);
4744
4745 case FS_OPCODE_LINTERP:
4746 case FS_OPCODE_GET_BUFFER_SIZE:
4747 case FS_OPCODE_DDX_COARSE:
4748 case FS_OPCODE_DDX_FINE:
4749 case FS_OPCODE_DDY_COARSE:
4750 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4751 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4752 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4753 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4754 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4755 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4756 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4757 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4758 return MIN2(16, inst->exec_size);
4759
4760 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4761 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4762 * message used to implement varying pull constant loads, so expand it
4763 * to SIMD16. An alternative with longer message payload length but
4764 * shorter return payload would be to use the SIMD8 sampler message that
4765 * takes (header, u, v, r) as parameters instead of (header, u).
4766 */
4767 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4768
4769 case FS_OPCODE_DDY_FINE:
4770 /* The implementation of this virtual opcode may require emitting
4771 * compressed Align16 instructions, which are severely limited on some
4772 * generations.
4773 *
4774 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4775 * Region Restrictions):
4776 *
4777 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4778 * and SIMD8 is not allowed for DF operations."
4779 *
4780 * In this context, "DW operations" means "operations acting on 32-bit
4781 * values", so it includes operations on floats.
4782 *
4783 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4784 * (Instruction Compression -> Rules and Restrictions):
4785 *
4786 * "A compressed instruction must be in Align1 access mode. Align16
4787 * mode instructions cannot be compressed."
4788 *
4789 * Similar text exists in the g45 PRM.
4790 *
4791 * Empirically, compressed align16 instructions using odd register
4792 * numbers don't appear to work on Sandybridge either.
4793 */
4794 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4795 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4796 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4797
4798 case SHADER_OPCODE_MULH:
4799 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4800 * is 8-wide on Gen7+.
4801 */
4802 return (devinfo->gen >= 7 ? 8 :
4803 get_fpu_lowered_simd_width(devinfo, inst));
4804
4805 case FS_OPCODE_FB_WRITE_LOGICAL:
4806 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4807 * here.
4808 */
4809 assert(devinfo->gen != 6 ||
4810 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4811 inst->exec_size == 8);
4812 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4813 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4814 8 : MIN2(16, inst->exec_size));
4815
4816 case FS_OPCODE_FB_READ_LOGICAL:
4817 return MIN2(16, inst->exec_size);
4818
4819 case SHADER_OPCODE_TEX_LOGICAL:
4820 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4821 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4822 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4823 case SHADER_OPCODE_LOD_LOGICAL:
4824 case SHADER_OPCODE_TG4_LOGICAL:
4825 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4826 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4827 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4828 return get_sampler_lowered_simd_width(devinfo, inst);
4829
4830 case SHADER_OPCODE_TXD_LOGICAL:
4831 /* TXD is unsupported in SIMD16 mode. */
4832 return 8;
4833
4834 case SHADER_OPCODE_TXL_LOGICAL:
4835 case FS_OPCODE_TXB_LOGICAL:
4836 /* Only one execution size is representable pre-ILK depending on whether
4837 * the shadow reference argument is present.
4838 */
4839 if (devinfo->gen == 4)
4840 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4841 else
4842 return get_sampler_lowered_simd_width(devinfo, inst);
4843
4844 case SHADER_OPCODE_TXF_LOGICAL:
4845 case SHADER_OPCODE_TXS_LOGICAL:
4846 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4847 * messages. Use SIMD16 instead.
4848 */
4849 if (devinfo->gen == 4)
4850 return 16;
4851 else
4852 return get_sampler_lowered_simd_width(devinfo, inst);
4853
4854 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4855 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4856 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4857 return 8;
4858
4859 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4860 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4861 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4862 return MIN2(16, inst->exec_size);
4863
4864 case SHADER_OPCODE_URB_READ_SIMD8:
4865 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4866 case SHADER_OPCODE_URB_WRITE_SIMD8:
4867 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4868 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4869 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4870 return MIN2(8, inst->exec_size);
4871
4872 case SHADER_OPCODE_MOV_INDIRECT:
4873 /* Prior to Broadwell, we only have 8 address subregisters */
4874 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4875 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4876 inst->exec_size);
4877
4878 case SHADER_OPCODE_LOAD_PAYLOAD: {
4879 const unsigned reg_count =
4880 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4881
4882 if (reg_count > 2) {
4883 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4884 * can be easily lowered (which excludes headers and heterogeneous
4885 * types).
4886 */
4887 assert(!inst->header_size);
4888 for (unsigned i = 0; i < inst->sources; i++)
4889 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4890 inst->src[i].file == BAD_FILE);
4891
4892 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4893 } else {
4894 return inst->exec_size;
4895 }
4896 }
4897 default:
4898 return inst->exec_size;
4899 }
4900 }
4901
4902 /**
4903 * Return true if splitting out the group of channels of instruction \p inst
4904 * given by lbld.group() requires allocating a temporary for the i-th source
4905 * of the lowered instruction.
4906 */
4907 static inline bool
4908 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4909 {
4910 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4911 (inst->components_read(i) == 1 &&
4912 lbld.dispatch_width() <= inst->exec_size));
4913 }
4914
4915 /**
4916 * Extract the data that would be consumed by the channel group given by
4917 * lbld.group() from the i-th source region of instruction \p inst and return
4918 * it as result in packed form. If any copy instructions are required they
4919 * will be emitted before the given \p inst in \p block.
4920 */
4921 static fs_reg
4922 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4923 unsigned i)
4924 {
4925 /* Specified channel group from the source region. */
4926 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4927
4928 if (needs_src_copy(lbld, inst, i)) {
4929 /* Builder of the right width to perform the copy avoiding uninitialized
4930 * data if the lowered execution size is greater than the original
4931 * execution size of the instruction.
4932 */
4933 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4934 inst->exec_size), 0);
4935 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4936
4937 for (unsigned k = 0; k < inst->components_read(i); ++k)
4938 cbld.at(block, inst)
4939 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4940
4941 return tmp;
4942
4943 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4944 /* The source is invariant for all dispatch_width-wide groups of the
4945 * original region.
4946 */
4947 return inst->src[i];
4948
4949 } else {
4950 /* We can just point the lowered instruction at the right channel group
4951 * from the original region.
4952 */
4953 return src;
4954 }
4955 }
4956
4957 /**
4958 * Return true if splitting out the group of channels of instruction \p inst
4959 * given by lbld.group() requires allocating a temporary for the destination
4960 * of the lowered instruction and copying the data back to the original
4961 * destination region.
4962 */
4963 static inline bool
4964 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
4965 {
4966 /* If the instruction writes more than one component we'll have to shuffle
4967 * the results of multiple lowered instructions in order to make sure that
4968 * they end up arranged correctly in the original destination region.
4969 */
4970 if (inst->size_written > inst->dst.component_size(inst->exec_size))
4971 return true;
4972
4973 /* If the lowered execution size is larger than the original the result of
4974 * the instruction won't fit in the original destination, so we'll have to
4975 * allocate a temporary in any case.
4976 */
4977 if (lbld.dispatch_width() > inst->exec_size)
4978 return true;
4979
4980 for (unsigned i = 0; i < inst->sources; i++) {
4981 /* If we already made a copy of the source for other reasons there won't
4982 * be any overlap with the destination.
4983 */
4984 if (needs_src_copy(lbld, inst, i))
4985 continue;
4986
4987 /* In order to keep the logic simple we emit a copy whenever the
4988 * destination region doesn't exactly match an overlapping source, which
4989 * may point at the source and destination not being aligned group by
4990 * group which could cause one of the lowered instructions to overwrite
4991 * the data read from the same source by other lowered instructions.
4992 */
4993 if (regions_overlap(inst->dst, inst->size_written,
4994 inst->src[i], inst->size_read(i)) &&
4995 !inst->dst.equals(inst->src[i]))
4996 return true;
4997 }
4998
4999 return false;
5000 }
5001
5002 /**
5003 * Insert data from a packed temporary into the channel group given by
5004 * lbld.group() of the destination region of instruction \p inst and return
5005 * the temporary as result. If any copy instructions are required they will
5006 * be emitted around the given \p inst in \p block.
5007 */
5008 static fs_reg
5009 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5010 {
5011 /* Builder of the right width to perform the copy avoiding uninitialized
5012 * data if the lowered execution size is greater than the original
5013 * execution size of the instruction.
5014 */
5015 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5016 inst->exec_size), 0);
5017
5018 /* Specified channel group from the destination region. */
5019 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5020 const unsigned dst_size = inst->size_written /
5021 inst->dst.component_size(inst->exec_size);
5022
5023 if (needs_dst_copy(lbld, inst)) {
5024 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5025
5026 if (inst->predicate) {
5027 /* Handle predication by copying the original contents of
5028 * the destination into the temporary before emitting the
5029 * lowered instruction.
5030 */
5031 for (unsigned k = 0; k < dst_size; ++k)
5032 cbld.at(block, inst)
5033 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5034 }
5035
5036 for (unsigned k = 0; k < dst_size; ++k)
5037 cbld.at(block, inst->next)
5038 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5039
5040 return tmp;
5041
5042 } else {
5043 /* No need to allocate a temporary for the lowered instruction, just
5044 * take the right group of channels from the original region.
5045 */
5046 return dst;
5047 }
5048 }
5049
5050 bool
5051 fs_visitor::lower_simd_width()
5052 {
5053 bool progress = false;
5054
5055 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5056 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5057
5058 if (lower_width != inst->exec_size) {
5059 /* Builder matching the original instruction. We may also need to
5060 * emit an instruction of width larger than the original, set the
5061 * execution size of the builder to the highest of both for now so
5062 * we're sure that both cases can be handled.
5063 */
5064 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5065 const fs_builder ibld = bld.at(block, inst)
5066 .exec_all(inst->force_writemask_all)
5067 .group(max_width, inst->group / max_width);
5068
5069 /* Split the copies in chunks of the execution width of either the
5070 * original or the lowered instruction, whichever is lower.
5071 */
5072 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5073 const unsigned dst_size = inst->size_written /
5074 inst->dst.component_size(inst->exec_size);
5075
5076 assert(!inst->writes_accumulator && !inst->mlen);
5077
5078 for (unsigned i = 0; i < n; i++) {
5079 /* Emit a copy of the original instruction with the lowered width.
5080 * If the EOT flag was set throw it away except for the last
5081 * instruction to avoid killing the thread prematurely.
5082 */
5083 fs_inst split_inst = *inst;
5084 split_inst.exec_size = lower_width;
5085 split_inst.eot = inst->eot && i == n - 1;
5086
5087 /* Select the correct channel enables for the i-th group, then
5088 * transform the sources and destination and emit the lowered
5089 * instruction.
5090 */
5091 const fs_builder lbld = ibld.group(lower_width, i);
5092
5093 for (unsigned j = 0; j < inst->sources; j++)
5094 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5095
5096 split_inst.dst = emit_zip(lbld, block, inst);
5097 split_inst.size_written =
5098 split_inst.dst.component_size(lower_width) * dst_size;
5099
5100 lbld.emit(split_inst);
5101 }
5102
5103 inst->remove(block);
5104 progress = true;
5105 }
5106 }
5107
5108 if (progress)
5109 invalidate_live_intervals();
5110
5111 return progress;
5112 }
5113
5114 void
5115 fs_visitor::dump_instructions()
5116 {
5117 dump_instructions(NULL);
5118 }
5119
5120 void
5121 fs_visitor::dump_instructions(const char *name)
5122 {
5123 FILE *file = stderr;
5124 if (name && geteuid() != 0) {
5125 file = fopen(name, "w");
5126 if (!file)
5127 file = stderr;
5128 }
5129
5130 if (cfg) {
5131 calculate_register_pressure();
5132 int ip = 0, max_pressure = 0;
5133 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5134 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5135 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5136 dump_instruction(inst, file);
5137 ip++;
5138 }
5139 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5140 } else {
5141 int ip = 0;
5142 foreach_in_list(backend_instruction, inst, &instructions) {
5143 fprintf(file, "%4d: ", ip++);
5144 dump_instruction(inst, file);
5145 }
5146 }
5147
5148 if (file != stderr) {
5149 fclose(file);
5150 }
5151 }
5152
5153 void
5154 fs_visitor::dump_instruction(backend_instruction *be_inst)
5155 {
5156 dump_instruction(be_inst, stderr);
5157 }
5158
5159 void
5160 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5161 {
5162 fs_inst *inst = (fs_inst *)be_inst;
5163
5164 if (inst->predicate) {
5165 fprintf(file, "(%cf0.%d) ",
5166 inst->predicate_inverse ? '-' : '+',
5167 inst->flag_subreg);
5168 }
5169
5170 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5171 if (inst->saturate)
5172 fprintf(file, ".sat");
5173 if (inst->conditional_mod) {
5174 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5175 if (!inst->predicate &&
5176 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5177 inst->opcode != BRW_OPCODE_IF &&
5178 inst->opcode != BRW_OPCODE_WHILE))) {
5179 fprintf(file, ".f0.%d", inst->flag_subreg);
5180 }
5181 }
5182 fprintf(file, "(%d) ", inst->exec_size);
5183
5184 if (inst->mlen) {
5185 fprintf(file, "(mlen: %d) ", inst->mlen);
5186 }
5187
5188 if (inst->eot) {
5189 fprintf(file, "(EOT) ");
5190 }
5191
5192 switch (inst->dst.file) {
5193 case VGRF:
5194 fprintf(file, "vgrf%d", inst->dst.nr);
5195 break;
5196 case FIXED_GRF:
5197 fprintf(file, "g%d", inst->dst.nr);
5198 break;
5199 case MRF:
5200 fprintf(file, "m%d", inst->dst.nr);
5201 break;
5202 case BAD_FILE:
5203 fprintf(file, "(null)");
5204 break;
5205 case UNIFORM:
5206 fprintf(file, "***u%d***", inst->dst.nr);
5207 break;
5208 case ATTR:
5209 fprintf(file, "***attr%d***", inst->dst.nr);
5210 break;
5211 case ARF:
5212 switch (inst->dst.nr) {
5213 case BRW_ARF_NULL:
5214 fprintf(file, "null");
5215 break;
5216 case BRW_ARF_ADDRESS:
5217 fprintf(file, "a0.%d", inst->dst.subnr);
5218 break;
5219 case BRW_ARF_ACCUMULATOR:
5220 fprintf(file, "acc%d", inst->dst.subnr);
5221 break;
5222 case BRW_ARF_FLAG:
5223 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5224 break;
5225 default:
5226 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5227 break;
5228 }
5229 break;
5230 case IMM:
5231 unreachable("not reached");
5232 }
5233
5234 if (inst->dst.offset ||
5235 (inst->dst.file == VGRF &&
5236 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5237 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5238 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5239 inst->dst.offset % reg_size);
5240 }
5241
5242 if (inst->dst.stride != 1)
5243 fprintf(file, "<%u>", inst->dst.stride);
5244 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5245
5246 for (int i = 0; i < inst->sources; i++) {
5247 if (inst->src[i].negate)
5248 fprintf(file, "-");
5249 if (inst->src[i].abs)
5250 fprintf(file, "|");
5251 switch (inst->src[i].file) {
5252 case VGRF:
5253 fprintf(file, "vgrf%d", inst->src[i].nr);
5254 break;
5255 case FIXED_GRF:
5256 fprintf(file, "g%d", inst->src[i].nr);
5257 break;
5258 case MRF:
5259 fprintf(file, "***m%d***", inst->src[i].nr);
5260 break;
5261 case ATTR:
5262 fprintf(file, "attr%d", inst->src[i].nr);
5263 break;
5264 case UNIFORM:
5265 fprintf(file, "u%d", inst->src[i].nr);
5266 break;
5267 case BAD_FILE:
5268 fprintf(file, "(null)");
5269 break;
5270 case IMM:
5271 switch (inst->src[i].type) {
5272 case BRW_REGISTER_TYPE_F:
5273 fprintf(file, "%-gf", inst->src[i].f);
5274 break;
5275 case BRW_REGISTER_TYPE_DF:
5276 fprintf(file, "%fdf", inst->src[i].df);
5277 break;
5278 case BRW_REGISTER_TYPE_W:
5279 case BRW_REGISTER_TYPE_D:
5280 fprintf(file, "%dd", inst->src[i].d);
5281 break;
5282 case BRW_REGISTER_TYPE_UW:
5283 case BRW_REGISTER_TYPE_UD:
5284 fprintf(file, "%uu", inst->src[i].ud);
5285 break;
5286 case BRW_REGISTER_TYPE_VF:
5287 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5288 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5289 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5290 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5291 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5292 break;
5293 default:
5294 fprintf(file, "???");
5295 break;
5296 }
5297 break;
5298 case ARF:
5299 switch (inst->src[i].nr) {
5300 case BRW_ARF_NULL:
5301 fprintf(file, "null");
5302 break;
5303 case BRW_ARF_ADDRESS:
5304 fprintf(file, "a0.%d", inst->src[i].subnr);
5305 break;
5306 case BRW_ARF_ACCUMULATOR:
5307 fprintf(file, "acc%d", inst->src[i].subnr);
5308 break;
5309 case BRW_ARF_FLAG:
5310 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5311 break;
5312 default:
5313 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5314 break;
5315 }
5316 break;
5317 }
5318
5319 if (inst->src[i].offset ||
5320 (inst->src[i].file == VGRF &&
5321 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5322 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5323 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5324 inst->src[i].offset % reg_size);
5325 }
5326
5327 if (inst->src[i].abs)
5328 fprintf(file, "|");
5329
5330 if (inst->src[i].file != IMM) {
5331 unsigned stride;
5332 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5333 unsigned hstride = inst->src[i].hstride;
5334 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5335 } else {
5336 stride = inst->src[i].stride;
5337 }
5338 if (stride != 1)
5339 fprintf(file, "<%u>", stride);
5340
5341 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5342 }
5343
5344 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5345 fprintf(file, ", ");
5346 }
5347
5348 fprintf(file, " ");
5349
5350 if (inst->force_writemask_all)
5351 fprintf(file, "NoMask ");
5352
5353 if (inst->exec_size != dispatch_width)
5354 fprintf(file, "group%d ", inst->group);
5355
5356 fprintf(file, "\n");
5357 }
5358
5359 /**
5360 * Possibly returns an instruction that set up @param reg.
5361 *
5362 * Sometimes we want to take the result of some expression/variable
5363 * dereference tree and rewrite the instruction generating the result
5364 * of the tree. When processing the tree, we know that the
5365 * instructions generated are all writing temporaries that are dead
5366 * outside of this tree. So, if we have some instructions that write
5367 * a temporary, we're free to point that temp write somewhere else.
5368 *
5369 * Note that this doesn't guarantee that the instruction generated
5370 * only reg -- it might be the size=4 destination of a texture instruction.
5371 */
5372 fs_inst *
5373 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5374 fs_inst *end,
5375 const fs_reg &reg)
5376 {
5377 if (end == start ||
5378 end->is_partial_write() ||
5379 !reg.equals(end->dst)) {
5380 return NULL;
5381 } else {
5382 return end;
5383 }
5384 }
5385
5386 void
5387 fs_visitor::setup_fs_payload_gen6()
5388 {
5389 assert(stage == MESA_SHADER_FRAGMENT);
5390 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5391
5392 assert(devinfo->gen >= 6);
5393
5394 /* R0-1: masks, pixel X/Y coordinates. */
5395 payload.num_regs = 2;
5396 /* R2: only for 32-pixel dispatch.*/
5397
5398 /* R3-26: barycentric interpolation coordinates. These appear in the
5399 * same order that they appear in the brw_barycentric_mode
5400 * enum. Each set of coordinates occupies 2 registers if dispatch width
5401 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5402 * appear if they were enabled using the "Barycentric Interpolation
5403 * Mode" bits in WM_STATE.
5404 */
5405 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5406 if (prog_data->barycentric_interp_modes & (1 << i)) {
5407 payload.barycentric_coord_reg[i] = payload.num_regs;
5408 payload.num_regs += 2;
5409 if (dispatch_width == 16) {
5410 payload.num_regs += 2;
5411 }
5412 }
5413 }
5414
5415 /* R27: interpolated depth if uses source depth */
5416 prog_data->uses_src_depth =
5417 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5418 if (prog_data->uses_src_depth) {
5419 payload.source_depth_reg = payload.num_regs;
5420 payload.num_regs++;
5421 if (dispatch_width == 16) {
5422 /* R28: interpolated depth if not SIMD8. */
5423 payload.num_regs++;
5424 }
5425 }
5426
5427 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5428 prog_data->uses_src_w =
5429 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5430 if (prog_data->uses_src_w) {
5431 payload.source_w_reg = payload.num_regs;
5432 payload.num_regs++;
5433 if (dispatch_width == 16) {
5434 /* R30: interpolated W if not SIMD8. */
5435 payload.num_regs++;
5436 }
5437 }
5438
5439 /* R31: MSAA position offsets. */
5440 if (prog_data->persample_dispatch &&
5441 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5442 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5443 *
5444 * "MSDISPMODE_PERSAMPLE is required in order to select
5445 * POSOFFSET_SAMPLE"
5446 *
5447 * So we can only really get sample positions if we are doing real
5448 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5449 * persample dispatch, we hard-code it to 0.5.
5450 */
5451 prog_data->uses_pos_offset = true;
5452 payload.sample_pos_reg = payload.num_regs;
5453 payload.num_regs++;
5454 }
5455
5456 /* R32: MSAA input coverage mask */
5457 prog_data->uses_sample_mask =
5458 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5459 if (prog_data->uses_sample_mask) {
5460 assert(devinfo->gen >= 7);
5461 payload.sample_mask_in_reg = payload.num_regs;
5462 payload.num_regs++;
5463 if (dispatch_width == 16) {
5464 /* R33: input coverage mask if not SIMD8. */
5465 payload.num_regs++;
5466 }
5467 }
5468
5469 /* R34-: bary for 32-pixel. */
5470 /* R58-59: interp W for 32-pixel. */
5471
5472 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5473 source_depth_to_render_target = true;
5474 }
5475 }
5476
5477 void
5478 fs_visitor::setup_vs_payload()
5479 {
5480 /* R0: thread header, R1: urb handles */
5481 payload.num_regs = 2;
5482 }
5483
5484 void
5485 fs_visitor::setup_gs_payload()
5486 {
5487 assert(stage == MESA_SHADER_GEOMETRY);
5488
5489 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5490 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5491
5492 /* R0: thread header, R1: output URB handles */
5493 payload.num_regs = 2;
5494
5495 if (gs_prog_data->include_primitive_id) {
5496 /* R2: Primitive ID 0..7 */
5497 payload.num_regs++;
5498 }
5499
5500 /* Use a maximum of 24 registers for push-model inputs. */
5501 const unsigned max_push_components = 24;
5502
5503 /* If pushing our inputs would take too many registers, reduce the URB read
5504 * length (which is in HWords, or 8 registers), and resort to pulling.
5505 *
5506 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5507 * have to multiply by VerticesIn to obtain the total storage requirement.
5508 */
5509 if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
5510 max_push_components || gs_prog_data->invocations > 1) {
5511 gs_prog_data->base.include_vue_handles = true;
5512
5513 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5514 payload.num_regs += nir->info->gs.vertices_in;
5515
5516 vue_prog_data->urb_read_length =
5517 ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
5518 }
5519 }
5520
5521 void
5522 fs_visitor::setup_cs_payload()
5523 {
5524 assert(devinfo->gen >= 7);
5525 payload.num_regs = 1;
5526 }
5527
5528 void
5529 fs_visitor::calculate_register_pressure()
5530 {
5531 invalidate_live_intervals();
5532 calculate_live_intervals();
5533
5534 unsigned num_instructions = 0;
5535 foreach_block(block, cfg)
5536 num_instructions += block->instructions.length();
5537
5538 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5539
5540 for (unsigned reg = 0; reg < alloc.count; reg++) {
5541 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5542 regs_live_at_ip[ip] += alloc.sizes[reg];
5543 }
5544 }
5545
5546 /**
5547 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5548 *
5549 * The needs_unlit_centroid_workaround ends up producing one of these per
5550 * channel of centroid input, so it's good to clean them up.
5551 *
5552 * An assumption here is that nothing ever modifies the dispatched pixels
5553 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5554 * dictates that anyway.
5555 */
5556 bool
5557 fs_visitor::opt_drop_redundant_mov_to_flags()
5558 {
5559 bool flag_mov_found[2] = {false};
5560 bool progress = false;
5561
5562 /* Instructions removed by this pass can only be added if this were true */
5563 if (!devinfo->needs_unlit_centroid_workaround)
5564 return false;
5565
5566 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5567 if (inst->is_control_flow()) {
5568 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5569 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5570 if (!flag_mov_found[inst->flag_subreg]) {
5571 flag_mov_found[inst->flag_subreg] = true;
5572 } else {
5573 inst->remove(block);
5574 progress = true;
5575 }
5576 } else if (inst->flags_written()) {
5577 flag_mov_found[inst->flag_subreg] = false;
5578 }
5579 }
5580
5581 return progress;
5582 }
5583
5584 void
5585 fs_visitor::optimize()
5586 {
5587 /* Start by validating the shader we currently have. */
5588 validate();
5589
5590 /* bld is the common builder object pointing at the end of the program we
5591 * used to translate it into i965 IR. For the optimization and lowering
5592 * passes coming next, any code added after the end of the program without
5593 * having explicitly called fs_builder::at() clearly points at a mistake.
5594 * Ideally optimization passes wouldn't be part of the visitor so they
5595 * wouldn't have access to bld at all, but they do, so just in case some
5596 * pass forgets to ask for a location explicitly set it to NULL here to
5597 * make it trip. The dispatch width is initialized to a bogus value to
5598 * make sure that optimizations set the execution controls explicitly to
5599 * match the code they are manipulating instead of relying on the defaults.
5600 */
5601 bld = fs_builder(this, 64);
5602
5603 assign_constant_locations();
5604 lower_constant_loads();
5605
5606 validate();
5607
5608 split_virtual_grfs();
5609 validate();
5610
5611 #define OPT(pass, args...) ({ \
5612 pass_num++; \
5613 bool this_progress = pass(args); \
5614 \
5615 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5616 char filename[64]; \
5617 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5618 stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
5619 \
5620 backend_shader::dump_instructions(filename); \
5621 } \
5622 \
5623 validate(); \
5624 \
5625 progress = progress || this_progress; \
5626 this_progress; \
5627 })
5628
5629 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5630 char filename[64];
5631 snprintf(filename, 64, "%s%d-%s-00-00-start",
5632 stage_abbrev, dispatch_width, nir->info->name);
5633
5634 backend_shader::dump_instructions(filename);
5635 }
5636
5637 bool progress = false;
5638 int iteration = 0;
5639 int pass_num = 0;
5640
5641 OPT(opt_drop_redundant_mov_to_flags);
5642
5643 do {
5644 progress = false;
5645 pass_num = 0;
5646 iteration++;
5647
5648 OPT(remove_duplicate_mrf_writes);
5649
5650 OPT(opt_algebraic);
5651 OPT(opt_cse);
5652 OPT(opt_copy_propagation);
5653 OPT(opt_predicated_break, this);
5654 OPT(opt_cmod_propagation);
5655 OPT(dead_code_eliminate);
5656 OPT(opt_peephole_sel);
5657 OPT(dead_control_flow_eliminate, this);
5658 OPT(opt_register_renaming);
5659 OPT(opt_saturate_propagation);
5660 OPT(register_coalesce);
5661 OPT(compute_to_mrf);
5662 OPT(eliminate_find_live_channel);
5663
5664 OPT(compact_virtual_grfs);
5665 } while (progress);
5666
5667 progress = false;
5668 pass_num = 0;
5669
5670 if (OPT(lower_pack)) {
5671 OPT(register_coalesce);
5672 OPT(dead_code_eliminate);
5673 }
5674
5675 if (OPT(lower_d2x)) {
5676 OPT(opt_copy_propagation);
5677 OPT(dead_code_eliminate);
5678 }
5679
5680 OPT(lower_simd_width);
5681
5682 /* After SIMD lowering just in case we had to unroll the EOT send. */
5683 OPT(opt_sampler_eot);
5684
5685 OPT(lower_logical_sends);
5686
5687 if (progress) {
5688 OPT(opt_copy_propagation);
5689 /* Only run after logical send lowering because it's easier to implement
5690 * in terms of physical sends.
5691 */
5692 if (OPT(opt_zero_samples))
5693 OPT(opt_copy_propagation);
5694 /* Run after logical send lowering to give it a chance to CSE the
5695 * LOAD_PAYLOAD instructions created to construct the payloads of
5696 * e.g. texturing messages in cases where it wasn't possible to CSE the
5697 * whole logical instruction.
5698 */
5699 OPT(opt_cse);
5700 OPT(register_coalesce);
5701 OPT(compute_to_mrf);
5702 OPT(dead_code_eliminate);
5703 OPT(remove_duplicate_mrf_writes);
5704 OPT(opt_peephole_sel);
5705 }
5706
5707 OPT(opt_redundant_discard_jumps);
5708
5709 if (OPT(lower_load_payload)) {
5710 split_virtual_grfs();
5711 OPT(register_coalesce);
5712 OPT(compute_to_mrf);
5713 OPT(dead_code_eliminate);
5714 }
5715
5716 OPT(opt_combine_constants);
5717 OPT(lower_integer_multiplication);
5718
5719 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5720 OPT(opt_cmod_propagation);
5721 OPT(opt_cse);
5722 OPT(opt_copy_propagation);
5723 OPT(dead_code_eliminate);
5724 }
5725
5726 lower_uniform_pull_constant_loads();
5727
5728 validate();
5729 }
5730
5731 /**
5732 * Three source instruction must have a GRF/MRF destination register.
5733 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5734 */
5735 void
5736 fs_visitor::fixup_3src_null_dest()
5737 {
5738 bool progress = false;
5739
5740 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5741 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5742 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5743 inst->dst.type);
5744 progress = true;
5745 }
5746 }
5747
5748 if (progress)
5749 invalidate_live_intervals();
5750 }
5751
5752 void
5753 fs_visitor::allocate_registers(bool allow_spilling)
5754 {
5755 bool allocated_without_spills;
5756
5757 static const enum instruction_scheduler_mode pre_modes[] = {
5758 SCHEDULE_PRE,
5759 SCHEDULE_PRE_NON_LIFO,
5760 SCHEDULE_PRE_LIFO,
5761 };
5762
5763 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5764
5765 /* Try each scheduling heuristic to see if it can successfully register
5766 * allocate without spilling. They should be ordered by decreasing
5767 * performance but increasing likelihood of allocating.
5768 */
5769 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5770 schedule_instructions(pre_modes[i]);
5771
5772 if (0) {
5773 assign_regs_trivial();
5774 allocated_without_spills = true;
5775 } else {
5776 allocated_without_spills = assign_regs(false, spill_all);
5777 }
5778 if (allocated_without_spills)
5779 break;
5780 }
5781
5782 if (!allocated_without_spills) {
5783 if (!allow_spilling)
5784 fail("Failure to register allocate and spilling is not allowed.");
5785
5786 /* We assume that any spilling is worse than just dropping back to
5787 * SIMD8. There's probably actually some intermediate point where
5788 * SIMD16 with a couple of spills is still better.
5789 */
5790 if (dispatch_width > min_dispatch_width) {
5791 fail("Failure to register allocate. Reduce number of "
5792 "live scalar values to avoid this.");
5793 } else {
5794 compiler->shader_perf_log(log_data,
5795 "%s shader triggered register spilling. "
5796 "Try reducing the number of live scalar "
5797 "values to improve performance.\n",
5798 stage_name);
5799 }
5800
5801 /* Since we're out of heuristics, just go spill registers until we
5802 * get an allocation.
5803 */
5804 while (!assign_regs(true, spill_all)) {
5805 if (failed)
5806 break;
5807 }
5808 }
5809
5810 /* This must come after all optimization and register allocation, since
5811 * it inserts dead code that happens to have side effects, and it does
5812 * so based on the actual physical registers in use.
5813 */
5814 insert_gen4_send_dependency_workarounds();
5815
5816 if (failed)
5817 return;
5818
5819 schedule_instructions(SCHEDULE_POST);
5820
5821 if (last_scratch > 0) {
5822 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5823
5824 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5825
5826 if (stage == MESA_SHADER_COMPUTE) {
5827 if (devinfo->is_haswell) {
5828 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5829 * field documentation, Haswell supports a minimum of 2kB of
5830 * scratch space for compute shaders, unlike every other stage
5831 * and platform.
5832 */
5833 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5834 } else if (devinfo->gen <= 7) {
5835 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5836 * field documentation, platforms prior to Haswell measure scratch
5837 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5838 */
5839 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5840 max_scratch_size = 12 * 1024;
5841 }
5842 }
5843
5844 /* We currently only support up to 2MB of scratch space. If we
5845 * need to support more eventually, the documentation suggests
5846 * that we could allocate a larger buffer, and partition it out
5847 * ourselves. We'd just have to undo the hardware's address
5848 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5849 * and then add FFTID * (Larger Per Thread Scratch Space).
5850 *
5851 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5852 * Thread Group Tracking > Local Memory/Scratch Space.
5853 */
5854 assert(prog_data->total_scratch < max_scratch_size);
5855 }
5856 }
5857
5858 bool
5859 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5860 {
5861 assert(stage == MESA_SHADER_VERTEX);
5862
5863 setup_vs_payload();
5864
5865 if (shader_time_index >= 0)
5866 emit_shader_time_begin();
5867
5868 emit_nir_code();
5869
5870 if (failed)
5871 return false;
5872
5873 compute_clip_distance(clip_planes);
5874
5875 emit_urb_writes();
5876
5877 if (shader_time_index >= 0)
5878 emit_shader_time_end();
5879
5880 calculate_cfg();
5881
5882 optimize();
5883
5884 assign_curb_setup();
5885 assign_vs_urb_setup();
5886
5887 fixup_3src_null_dest();
5888 allocate_registers(true);
5889
5890 return !failed;
5891 }
5892
5893 bool
5894 fs_visitor::run_tcs_single_patch()
5895 {
5896 assert(stage == MESA_SHADER_TESS_CTRL);
5897
5898 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5899
5900 /* r1-r4 contain the ICP handles. */
5901 payload.num_regs = 5;
5902
5903 if (shader_time_index >= 0)
5904 emit_shader_time_begin();
5905
5906 /* Initialize gl_InvocationID */
5907 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5908 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5909 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5910 bld.MOV(channels_ud, channels_uw);
5911
5912 if (tcs_prog_data->instances == 1) {
5913 invocation_id = channels_ud;
5914 } else {
5915 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5916
5917 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5918 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5919 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5920 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5921 brw_imm_ud(INTEL_MASK(23, 17)));
5922 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5923
5924 bld.ADD(invocation_id, instance_times_8, channels_ud);
5925 }
5926
5927 /* Fix the disptach mask */
5928 if (nir->info->tcs.vertices_out % 8) {
5929 bld.CMP(bld.null_reg_ud(), invocation_id,
5930 brw_imm_ud(nir->info->tcs.vertices_out), BRW_CONDITIONAL_L);
5931 bld.IF(BRW_PREDICATE_NORMAL);
5932 }
5933
5934 emit_nir_code();
5935
5936 if (nir->info->tcs.vertices_out % 8) {
5937 bld.emit(BRW_OPCODE_ENDIF);
5938 }
5939
5940 /* Emit EOT write; set TR DS Cache bit */
5941 fs_reg srcs[3] = {
5942 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5943 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5944 fs_reg(brw_imm_ud(0)),
5945 };
5946 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5947 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5948
5949 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5950 bld.null_reg_ud(), payload);
5951 inst->mlen = 3;
5952 inst->eot = true;
5953
5954 if (shader_time_index >= 0)
5955 emit_shader_time_end();
5956
5957 if (failed)
5958 return false;
5959
5960 calculate_cfg();
5961
5962 optimize();
5963
5964 assign_curb_setup();
5965 assign_tcs_single_patch_urb_setup();
5966
5967 fixup_3src_null_dest();
5968 allocate_registers(true);
5969
5970 return !failed;
5971 }
5972
5973 bool
5974 fs_visitor::run_tes()
5975 {
5976 assert(stage == MESA_SHADER_TESS_EVAL);
5977
5978 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5979 payload.num_regs = 5;
5980
5981 if (shader_time_index >= 0)
5982 emit_shader_time_begin();
5983
5984 emit_nir_code();
5985
5986 if (failed)
5987 return false;
5988
5989 emit_urb_writes();
5990
5991 if (shader_time_index >= 0)
5992 emit_shader_time_end();
5993
5994 calculate_cfg();
5995
5996 optimize();
5997
5998 assign_curb_setup();
5999 assign_tes_urb_setup();
6000
6001 fixup_3src_null_dest();
6002 allocate_registers(true);
6003
6004 return !failed;
6005 }
6006
6007 bool
6008 fs_visitor::run_gs()
6009 {
6010 assert(stage == MESA_SHADER_GEOMETRY);
6011
6012 setup_gs_payload();
6013
6014 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6015
6016 if (gs_compile->control_data_header_size_bits > 0) {
6017 /* Create a VGRF to store accumulated control data bits. */
6018 this->control_data_bits = vgrf(glsl_type::uint_type);
6019
6020 /* If we're outputting more than 32 control data bits, then EmitVertex()
6021 * will set control_data_bits to 0 after emitting the first vertex.
6022 * Otherwise, we need to initialize it to 0 here.
6023 */
6024 if (gs_compile->control_data_header_size_bits <= 32) {
6025 const fs_builder abld = bld.annotate("initialize control data bits");
6026 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6027 }
6028 }
6029
6030 if (shader_time_index >= 0)
6031 emit_shader_time_begin();
6032
6033 emit_nir_code();
6034
6035 emit_gs_thread_end();
6036
6037 if (shader_time_index >= 0)
6038 emit_shader_time_end();
6039
6040 if (failed)
6041 return false;
6042
6043 calculate_cfg();
6044
6045 optimize();
6046
6047 assign_curb_setup();
6048 assign_gs_urb_setup();
6049
6050 fixup_3src_null_dest();
6051 allocate_registers(true);
6052
6053 return !failed;
6054 }
6055
6056 bool
6057 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6058 {
6059 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6060 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6061
6062 assert(stage == MESA_SHADER_FRAGMENT);
6063
6064 if (devinfo->gen >= 6)
6065 setup_fs_payload_gen6();
6066 else
6067 setup_fs_payload_gen4();
6068
6069 if (0) {
6070 emit_dummy_fs();
6071 } else if (do_rep_send) {
6072 assert(dispatch_width == 16);
6073 emit_repclear_shader();
6074 } else {
6075 if (shader_time_index >= 0)
6076 emit_shader_time_begin();
6077
6078 calculate_urb_setup();
6079 if (nir->info->inputs_read > 0 ||
6080 (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6081 if (devinfo->gen < 6)
6082 emit_interpolation_setup_gen4();
6083 else
6084 emit_interpolation_setup_gen6();
6085 }
6086
6087 /* We handle discards by keeping track of the still-live pixels in f0.1.
6088 * Initialize it with the dispatched pixels.
6089 */
6090 if (wm_prog_data->uses_kill) {
6091 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6092 discard_init->flag_subreg = 1;
6093 }
6094
6095 /* Generate FS IR for main(). (the visitor only descends into
6096 * functions called "main").
6097 */
6098 emit_nir_code();
6099
6100 if (failed)
6101 return false;
6102
6103 if (wm_prog_data->uses_kill)
6104 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6105
6106 if (wm_key->alpha_test_func)
6107 emit_alpha_test();
6108
6109 emit_fb_writes();
6110
6111 if (shader_time_index >= 0)
6112 emit_shader_time_end();
6113
6114 calculate_cfg();
6115
6116 optimize();
6117
6118 assign_curb_setup();
6119 assign_urb_setup();
6120
6121 fixup_3src_null_dest();
6122 allocate_registers(allow_spilling);
6123
6124 if (failed)
6125 return false;
6126 }
6127
6128 return !failed;
6129 }
6130
6131 bool
6132 fs_visitor::run_cs()
6133 {
6134 assert(stage == MESA_SHADER_COMPUTE);
6135
6136 setup_cs_payload();
6137
6138 if (shader_time_index >= 0)
6139 emit_shader_time_begin();
6140
6141 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6142 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6143 const fs_builder abld = bld.exec_all().group(1, 0);
6144 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6145 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6146 }
6147
6148 emit_nir_code();
6149
6150 if (failed)
6151 return false;
6152
6153 emit_cs_terminate();
6154
6155 if (shader_time_index >= 0)
6156 emit_shader_time_end();
6157
6158 calculate_cfg();
6159
6160 optimize();
6161
6162 assign_curb_setup();
6163
6164 fixup_3src_null_dest();
6165 allocate_registers(true);
6166
6167 if (failed)
6168 return false;
6169
6170 return !failed;
6171 }
6172
6173 /**
6174 * Return a bitfield where bit n is set if barycentric interpolation mode n
6175 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6176 *
6177 * We examine the load_barycentric intrinsics rather than looking at input
6178 * variables so that we catch interpolateAtCentroid() messages too, which
6179 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6180 */
6181 static unsigned
6182 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6183 const nir_shader *shader)
6184 {
6185 unsigned barycentric_interp_modes = 0;
6186
6187 nir_foreach_function(f, shader) {
6188 if (!f->impl)
6189 continue;
6190
6191 nir_foreach_block(block, f->impl) {
6192 nir_foreach_instr(instr, block) {
6193 if (instr->type != nir_instr_type_intrinsic)
6194 continue;
6195
6196 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6197 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6198 continue;
6199
6200 /* Ignore WPOS; it doesn't require interpolation. */
6201 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6202 continue;
6203
6204 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6205 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6206 nir_intrinsic_interp_mode(intrin);
6207 nir_intrinsic_op bary_op = intrin->intrinsic;
6208 enum brw_barycentric_mode bary =
6209 brw_barycentric_mode(interp, bary_op);
6210
6211 barycentric_interp_modes |= 1 << bary;
6212
6213 if (devinfo->needs_unlit_centroid_workaround &&
6214 bary_op == nir_intrinsic_load_barycentric_centroid)
6215 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6216 }
6217 }
6218 }
6219
6220 return barycentric_interp_modes;
6221 }
6222
6223 static void
6224 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6225 const nir_shader *shader)
6226 {
6227 prog_data->flat_inputs = 0;
6228
6229 nir_foreach_variable(var, &shader->inputs) {
6230 int input_index = prog_data->urb_setup[var->data.location];
6231
6232 if (input_index < 0)
6233 continue;
6234
6235 /* flat shading */
6236 if (var->data.interpolation == INTERP_MODE_FLAT)
6237 prog_data->flat_inputs |= (1 << input_index);
6238 }
6239 }
6240
6241 static uint8_t
6242 computed_depth_mode(const nir_shader *shader)
6243 {
6244 if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6245 switch (shader->info->fs.depth_layout) {
6246 case FRAG_DEPTH_LAYOUT_NONE:
6247 case FRAG_DEPTH_LAYOUT_ANY:
6248 return BRW_PSCDEPTH_ON;
6249 case FRAG_DEPTH_LAYOUT_GREATER:
6250 return BRW_PSCDEPTH_ON_GE;
6251 case FRAG_DEPTH_LAYOUT_LESS:
6252 return BRW_PSCDEPTH_ON_LE;
6253 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6254 return BRW_PSCDEPTH_OFF;
6255 }
6256 }
6257 return BRW_PSCDEPTH_OFF;
6258 }
6259
6260 /**
6261 * Move load_interpolated_input with simple (payload-based) barycentric modes
6262 * to the top of the program so we don't emit multiple PLNs for the same input.
6263 *
6264 * This works around CSE not being able to handle non-dominating cases
6265 * such as:
6266 *
6267 * if (...) {
6268 * interpolate input
6269 * } else {
6270 * interpolate the same exact input
6271 * }
6272 *
6273 * This should be replaced by global value numbering someday.
6274 */
6275 void
6276 move_interpolation_to_top(nir_shader *nir)
6277 {
6278 nir_foreach_function(f, nir) {
6279 if (!f->impl)
6280 continue;
6281
6282 nir_block *top = nir_start_block(f->impl);
6283 exec_node *cursor_node = NULL;
6284
6285 nir_foreach_block(block, f->impl) {
6286 if (block == top)
6287 continue;
6288
6289 nir_foreach_instr_safe(instr, block) {
6290 if (instr->type != nir_instr_type_intrinsic)
6291 continue;
6292
6293 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6294 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6295 continue;
6296 nir_intrinsic_instr *bary_intrinsic =
6297 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6298 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6299
6300 /* Leave interpolateAtSample/Offset() where they are. */
6301 if (op == nir_intrinsic_load_barycentric_at_sample ||
6302 op == nir_intrinsic_load_barycentric_at_offset)
6303 continue;
6304
6305 nir_instr *move[3] = {
6306 &bary_intrinsic->instr,
6307 intrin->src[1].ssa->parent_instr,
6308 instr
6309 };
6310
6311 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6312 if (move[i]->block != top) {
6313 move[i]->block = top;
6314 exec_node_remove(&move[i]->node);
6315 if (cursor_node) {
6316 exec_node_insert_after(cursor_node, &move[i]->node);
6317 } else {
6318 exec_list_push_head(&top->instr_list, &move[i]->node);
6319 }
6320 cursor_node = &move[i]->node;
6321 }
6322 }
6323 }
6324 }
6325 nir_metadata_preserve(f->impl, (nir_metadata)
6326 ((unsigned) nir_metadata_block_index |
6327 (unsigned) nir_metadata_dominance));
6328 }
6329 }
6330
6331 /**
6332 * Demote per-sample barycentric intrinsics to centroid.
6333 *
6334 * Useful when rendering to a non-multisampled buffer.
6335 */
6336 static void
6337 demote_sample_qualifiers(nir_shader *nir)
6338 {
6339 nir_foreach_function(f, nir) {
6340 if (!f->impl)
6341 continue;
6342
6343 nir_builder b;
6344 nir_builder_init(&b, f->impl);
6345
6346 nir_foreach_block(block, f->impl) {
6347 nir_foreach_instr_safe(instr, block) {
6348 if (instr->type != nir_instr_type_intrinsic)
6349 continue;
6350
6351 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6352 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6353 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6354 continue;
6355
6356 b.cursor = nir_before_instr(instr);
6357 nir_ssa_def *centroid =
6358 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6359 nir_intrinsic_interp_mode(intrin));
6360 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6361 nir_src_for_ssa(centroid));
6362 nir_instr_remove(instr);
6363 }
6364 }
6365
6366 nir_metadata_preserve(f->impl, (nir_metadata)
6367 ((unsigned) nir_metadata_block_index |
6368 (unsigned) nir_metadata_dominance));
6369 }
6370 }
6371
6372 const unsigned *
6373 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6374 void *mem_ctx,
6375 const struct brw_wm_prog_key *key,
6376 struct brw_wm_prog_data *prog_data,
6377 const nir_shader *src_shader,
6378 struct gl_program *prog,
6379 int shader_time_index8, int shader_time_index16,
6380 bool allow_spilling,
6381 bool use_rep_send, struct brw_vue_map *vue_map,
6382 unsigned *final_assembly_size,
6383 char **error_str)
6384 {
6385 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6386 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6387 brw_nir_lower_fs_inputs(shader, vue_map, prog, compiler->devinfo, key);
6388 brw_nir_lower_fs_outputs(shader);
6389 if (!key->multisample_fbo)
6390 NIR_PASS_V(shader, demote_sample_qualifiers);
6391 NIR_PASS_V(shader, move_interpolation_to_top);
6392 shader = brw_postprocess_nir(shader, compiler, true);
6393
6394 /* key->alpha_test_func means simulating alpha testing via discards,
6395 * so the shader definitely kills pixels.
6396 */
6397 prog_data->uses_kill = shader->info->fs.uses_discard ||
6398 key->alpha_test_func;
6399 prog_data->uses_omask = key->multisample_fbo &&
6400 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6401 prog_data->computed_depth_mode = computed_depth_mode(shader);
6402 prog_data->computed_stencil =
6403 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6404
6405 prog_data->persample_dispatch =
6406 key->multisample_fbo &&
6407 (key->persample_interp ||
6408 (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6409 SYSTEM_BIT_SAMPLE_POS)) ||
6410 shader->info->fs.uses_sample_qualifier ||
6411 shader->info->outputs_read);
6412
6413 prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
6414 prog_data->post_depth_coverage = shader->info->fs.post_depth_coverage;
6415 prog_data->inner_coverage = shader->info->fs.inner_coverage;
6416
6417 prog_data->barycentric_interp_modes =
6418 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6419
6420 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6421 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6422 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6423
6424 fs_visitor v8(compiler, log_data, mem_ctx, key,
6425 &prog_data->base, prog, shader, 8,
6426 shader_time_index8);
6427 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6428 if (error_str)
6429 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6430
6431 return NULL;
6432 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6433 simd8_cfg = v8.cfg;
6434 simd8_grf_start = v8.payload.num_regs;
6435 simd8_grf_used = v8.grf_used;
6436 }
6437
6438 if (v8.max_dispatch_width >= 16 &&
6439 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6440 /* Try a SIMD16 compile */
6441 fs_visitor v16(compiler, log_data, mem_ctx, key,
6442 &prog_data->base, prog, shader, 16,
6443 shader_time_index16);
6444 v16.import_uniforms(&v8);
6445 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6446 compiler->shader_perf_log(log_data,
6447 "SIMD16 shader failed to compile: %s",
6448 v16.fail_msg);
6449 } else {
6450 simd16_cfg = v16.cfg;
6451 simd16_grf_start = v16.payload.num_regs;
6452 simd16_grf_used = v16.grf_used;
6453 }
6454 }
6455
6456 /* When the caller requests a repclear shader, they want SIMD16-only */
6457 if (use_rep_send)
6458 simd8_cfg = NULL;
6459
6460 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6461 * at the top to select the shader. We've never implemented that.
6462 * Instead, we just give them exactly one shader and we pick the widest one
6463 * available.
6464 */
6465 if (compiler->devinfo->gen < 5 && simd16_cfg)
6466 simd8_cfg = NULL;
6467
6468 if (prog_data->persample_dispatch) {
6469 /* Starting with SandyBridge (where we first get MSAA), the different
6470 * pixel dispatch combinations are grouped into classifications A
6471 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6472 * generations, the only configurations supporting persample dispatch
6473 * are are this in which only one dispatch width is enabled.
6474 *
6475 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6476 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6477 */
6478 if (compiler->devinfo->gen == 6 &&
6479 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6480 simd16_cfg = NULL;
6481 } else if (simd16_cfg) {
6482 simd8_cfg = NULL;
6483 }
6484 }
6485
6486 /* We have to compute the flat inputs after the visitor is finished running
6487 * because it relies on prog_data->urb_setup which is computed in
6488 * fs_visitor::calculate_urb_setup().
6489 */
6490 brw_compute_flat_inputs(prog_data, shader);
6491
6492 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6493 v8.promoted_constants, v8.runtime_check_aads_emit,
6494 MESA_SHADER_FRAGMENT);
6495
6496 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6497 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6498 shader->info->label ?
6499 shader->info->label : "unnamed",
6500 shader->info->name));
6501 }
6502
6503 if (simd8_cfg) {
6504 prog_data->dispatch_8 = true;
6505 g.generate_code(simd8_cfg, 8);
6506 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6507 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6508
6509 if (simd16_cfg) {
6510 prog_data->dispatch_16 = true;
6511 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6512 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6513 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6514 }
6515 } else if (simd16_cfg) {
6516 prog_data->dispatch_16 = true;
6517 g.generate_code(simd16_cfg, 16);
6518 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6519 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6520 }
6521
6522 return g.get_assembly(final_assembly_size);
6523 }
6524
6525 fs_reg *
6526 fs_visitor::emit_cs_work_group_id_setup()
6527 {
6528 assert(stage == MESA_SHADER_COMPUTE);
6529
6530 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6531
6532 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6533 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6534 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6535
6536 bld.MOV(*reg, r0_1);
6537 bld.MOV(offset(*reg, bld, 1), r0_6);
6538 bld.MOV(offset(*reg, bld, 2), r0_7);
6539
6540 return reg;
6541 }
6542
6543 static void
6544 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6545 {
6546 block->dwords = dwords;
6547 block->regs = DIV_ROUND_UP(dwords, 8);
6548 block->size = block->regs * 32;
6549 }
6550
6551 static void
6552 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6553 struct brw_cs_prog_data *cs_prog_data)
6554 {
6555 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6556 bool fill_thread_id =
6557 cs_prog_data->thread_local_id_index >= 0 &&
6558 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6559 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6560
6561 /* The thread ID should be stored in the last param dword */
6562 assert(prog_data->nr_params > 0 || !fill_thread_id);
6563 assert(!fill_thread_id ||
6564 cs_prog_data->thread_local_id_index ==
6565 (int)prog_data->nr_params - 1);
6566
6567 unsigned cross_thread_dwords, per_thread_dwords;
6568 if (!cross_thread_supported) {
6569 cross_thread_dwords = 0u;
6570 per_thread_dwords = prog_data->nr_params;
6571 } else if (fill_thread_id) {
6572 /* Fill all but the last register with cross-thread payload */
6573 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6574 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6575 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6576 } else {
6577 /* Fill all data using cross-thread payload */
6578 cross_thread_dwords = prog_data->nr_params;
6579 per_thread_dwords = 0u;
6580 }
6581
6582 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6583 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6584
6585 unsigned total_dwords =
6586 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6587 cs_prog_data->push.cross_thread.size) / 4;
6588 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6589
6590 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6591 cs_prog_data->push.per_thread.size == 0);
6592 assert(cs_prog_data->push.cross_thread.dwords +
6593 cs_prog_data->push.per_thread.dwords ==
6594 prog_data->nr_params);
6595 }
6596
6597 static void
6598 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6599 {
6600 cs_prog_data->simd_size = size;
6601 unsigned group_size = cs_prog_data->local_size[0] *
6602 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6603 cs_prog_data->threads = (group_size + size - 1) / size;
6604 }
6605
6606 const unsigned *
6607 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6608 void *mem_ctx,
6609 const struct brw_cs_prog_key *key,
6610 struct brw_cs_prog_data *prog_data,
6611 const nir_shader *src_shader,
6612 int shader_time_index,
6613 unsigned *final_assembly_size,
6614 char **error_str)
6615 {
6616 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6617 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
6618 brw_nir_lower_cs_shared(shader);
6619 prog_data->base.total_shared += shader->num_shared;
6620
6621 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6622 * the thread_local_id_index.
6623 */
6624 assert(prog_data->thread_local_id_index >= 0);
6625 shader->num_uniforms =
6626 MAX2(shader->num_uniforms,
6627 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6628
6629 brw_nir_lower_intrinsics(shader, &prog_data->base);
6630 shader = brw_postprocess_nir(shader, compiler, true);
6631
6632 prog_data->local_size[0] = shader->info->cs.local_size[0];
6633 prog_data->local_size[1] = shader->info->cs.local_size[1];
6634 prog_data->local_size[2] = shader->info->cs.local_size[2];
6635 unsigned local_workgroup_size =
6636 shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
6637 shader->info->cs.local_size[2];
6638
6639 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6640 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6641
6642 cfg_t *cfg = NULL;
6643 const char *fail_msg = NULL;
6644
6645 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6646 */
6647 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6648 NULL, /* Never used in core profile */
6649 shader, 8, shader_time_index);
6650 if (simd_required <= 8) {
6651 if (!v8.run_cs()) {
6652 fail_msg = v8.fail_msg;
6653 } else {
6654 cfg = v8.cfg;
6655 cs_set_simd_size(prog_data, 8);
6656 cs_fill_push_const_info(compiler->devinfo, prog_data);
6657 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6658 }
6659 }
6660
6661 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6662 NULL, /* Never used in core profile */
6663 shader, 16, shader_time_index);
6664 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6665 !fail_msg && v8.max_dispatch_width >= 16 &&
6666 simd_required <= 16) {
6667 /* Try a SIMD16 compile */
6668 if (simd_required <= 8)
6669 v16.import_uniforms(&v8);
6670 if (!v16.run_cs()) {
6671 compiler->shader_perf_log(log_data,
6672 "SIMD16 shader failed to compile: %s",
6673 v16.fail_msg);
6674 if (!cfg) {
6675 fail_msg =
6676 "Couldn't generate SIMD16 program and not "
6677 "enough threads for SIMD8";
6678 }
6679 } else {
6680 cfg = v16.cfg;
6681 cs_set_simd_size(prog_data, 16);
6682 cs_fill_push_const_info(compiler->devinfo, prog_data);
6683 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6684 }
6685 }
6686
6687 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6688 NULL, /* Never used in core profile */
6689 shader, 32, shader_time_index);
6690 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6691 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6692 /* Try a SIMD32 compile */
6693 if (simd_required <= 8)
6694 v32.import_uniforms(&v8);
6695 else if (simd_required <= 16)
6696 v32.import_uniforms(&v16);
6697
6698 if (!v32.run_cs()) {
6699 compiler->shader_perf_log(log_data,
6700 "SIMD32 shader failed to compile: %s",
6701 v16.fail_msg);
6702 if (!cfg) {
6703 fail_msg =
6704 "Couldn't generate SIMD32 program and not "
6705 "enough threads for SIMD16";
6706 }
6707 } else {
6708 cfg = v32.cfg;
6709 cs_set_simd_size(prog_data, 32);
6710 cs_fill_push_const_info(compiler->devinfo, prog_data);
6711 }
6712 }
6713
6714 if (unlikely(cfg == NULL)) {
6715 assert(fail_msg);
6716 if (error_str)
6717 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6718
6719 return NULL;
6720 }
6721
6722 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6723 v8.promoted_constants, v8.runtime_check_aads_emit,
6724 MESA_SHADER_COMPUTE);
6725 if (INTEL_DEBUG & DEBUG_CS) {
6726 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6727 shader->info->label ? shader->info->label :
6728 "unnamed",
6729 shader->info->name);
6730 g.enable_debug(name);
6731 }
6732
6733 g.generate_code(cfg, prog_data->simd_size);
6734
6735 return g.get_assembly(final_assembly_size);
6736 }
6737
6738 /**
6739 * Test the dispatch mask packing assumptions of
6740 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6741 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6742 * executed with an unexpected dispatch mask.
6743 */
6744 static UNUSED void
6745 brw_fs_test_dispatch_packing(const fs_builder &bld)
6746 {
6747 const gl_shader_stage stage = bld.shader->stage;
6748
6749 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6750 bld.shader->stage_prog_data)) {
6751 const fs_builder ubld = bld.exec_all().group(1, 0);
6752 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6753 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6754 brw_dmask_reg());
6755
6756 ubld.ADD(tmp, mask, brw_imm_ud(1));
6757 ubld.AND(tmp, mask, tmp);
6758
6759 /* This will loop forever if the dispatch mask doesn't have the expected
6760 * form '2^n-1', in which case tmp will be non-zero.
6761 */
6762 bld.emit(BRW_OPCODE_DO);
6763 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6764 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6765 }
6766 }