i965/fs: Add support for MOV_INDIRECT on pre-Broadwell hardware
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->reladdr = NULL;
437 this->stride = 1;
438 if (this->file == IMM &&
439 (this->type != BRW_REGISTER_TYPE_V &&
440 this->type != BRW_REGISTER_TYPE_UV &&
441 this->type != BRW_REGISTER_TYPE_VF)) {
442 this->stride = 0;
443 }
444 }
445
446 bool
447 fs_reg::equals(const fs_reg &r) const
448 {
449 return (this->backend_reg::equals(r) &&
450 subreg_offset == r.subreg_offset &&
451 !reladdr && !r.reladdr &&
452 stride == r.stride);
453 }
454
455 fs_reg &
456 fs_reg::set_smear(unsigned subreg)
457 {
458 assert(file != ARF && file != FIXED_GRF && file != IMM);
459 subreg_offset = subreg * type_sz(type);
460 stride = 0;
461 return *this;
462 }
463
464 bool
465 fs_reg::is_contiguous() const
466 {
467 return stride == 1;
468 }
469
470 unsigned
471 fs_reg::component_size(unsigned width) const
472 {
473 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
474 hstride == 0 ? 0 :
475 1 << (hstride - 1));
476 return MAX2(width * stride, 1) * type_sz(type);
477 }
478
479 extern "C" int
480 type_size_scalar(const struct glsl_type *type)
481 {
482 unsigned int size, i;
483
484 switch (type->base_type) {
485 case GLSL_TYPE_UINT:
486 case GLSL_TYPE_INT:
487 case GLSL_TYPE_FLOAT:
488 case GLSL_TYPE_BOOL:
489 return type->components();
490 case GLSL_TYPE_ARRAY:
491 return type_size_scalar(type->fields.array) * type->length;
492 case GLSL_TYPE_STRUCT:
493 size = 0;
494 for (i = 0; i < type->length; i++) {
495 size += type_size_scalar(type->fields.structure[i].type);
496 }
497 return size;
498 case GLSL_TYPE_SAMPLER:
499 /* Samplers take up no register space, since they're baked in at
500 * link time.
501 */
502 return 0;
503 case GLSL_TYPE_ATOMIC_UINT:
504 return 0;
505 case GLSL_TYPE_SUBROUTINE:
506 return 1;
507 case GLSL_TYPE_IMAGE:
508 return BRW_IMAGE_PARAM_SIZE;
509 case GLSL_TYPE_VOID:
510 case GLSL_TYPE_ERROR:
511 case GLSL_TYPE_INTERFACE:
512 case GLSL_TYPE_DOUBLE:
513 case GLSL_TYPE_FUNCTION:
514 unreachable("not reached");
515 }
516
517 return 0;
518 }
519
520 /**
521 * Returns the number of scalar components needed to store type, assuming
522 * that vectors are padded out to vec4.
523 *
524 * This has the packing rules of type_size_vec4(), but counts components
525 * similar to type_size_scalar().
526 */
527 extern "C" int
528 type_size_vec4_times_4(const struct glsl_type *type)
529 {
530 return 4 * type_size_vec4(type);
531 }
532
533 /**
534 * Create a MOV to read the timestamp register.
535 *
536 * The caller is responsible for emitting the MOV. The return value is
537 * the destination of the MOV, with extra parameters set.
538 */
539 fs_reg
540 fs_visitor::get_timestamp(const fs_builder &bld)
541 {
542 assert(devinfo->gen >= 7);
543
544 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
545 BRW_ARF_TIMESTAMP,
546 0),
547 BRW_REGISTER_TYPE_UD));
548
549 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
550
551 /* We want to read the 3 fields we care about even if it's not enabled in
552 * the dispatch.
553 */
554 bld.group(4, 0).exec_all().MOV(dst, ts);
555
556 return dst;
557 }
558
559 void
560 fs_visitor::emit_shader_time_begin()
561 {
562 shader_start_time = get_timestamp(bld.annotate("shader time start"));
563
564 /* We want only the low 32 bits of the timestamp. Since it's running
565 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
566 * which is plenty of time for our purposes. It is identical across the
567 * EUs, but since it's tracking GPU core speed it will increment at a
568 * varying rate as render P-states change.
569 */
570 shader_start_time.set_smear(0);
571 }
572
573 void
574 fs_visitor::emit_shader_time_end()
575 {
576 /* Insert our code just before the final SEND with EOT. */
577 exec_node *end = this->instructions.get_tail();
578 assert(end && ((fs_inst *) end)->eot);
579 const fs_builder ibld = bld.annotate("shader time end")
580 .exec_all().at(NULL, end);
581
582 fs_reg shader_end_time = get_timestamp(ibld);
583
584 /* We only use the low 32 bits of the timestamp - see
585 * emit_shader_time_begin()).
586 *
587 * We could also check if render P-states have changed (or anything
588 * else that might disrupt timing) by setting smear to 2 and checking if
589 * that field is != 0.
590 */
591 shader_end_time.set_smear(0);
592
593 /* Check that there weren't any timestamp reset events (assuming these
594 * were the only two timestamp reads that happened).
595 */
596 fs_reg reset = shader_end_time;
597 reset.set_smear(2);
598 set_condmod(BRW_CONDITIONAL_Z,
599 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
600 ibld.IF(BRW_PREDICATE_NORMAL);
601
602 fs_reg start = shader_start_time;
603 start.negate = true;
604 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
605 diff.set_smear(0);
606
607 const fs_builder cbld = ibld.group(1, 0);
608 cbld.group(1, 0).ADD(diff, start, shader_end_time);
609
610 /* If there were no instructions between the two timestamp gets, the diff
611 * is 2 cycles. Remove that overhead, so I can forget about that when
612 * trying to determine the time taken for single instructions.
613 */
614 cbld.ADD(diff, diff, brw_imm_ud(-2u));
615 SHADER_TIME_ADD(cbld, 0, diff);
616 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
617 ibld.emit(BRW_OPCODE_ELSE);
618 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
619 ibld.emit(BRW_OPCODE_ENDIF);
620 }
621
622 void
623 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
624 int shader_time_subindex,
625 fs_reg value)
626 {
627 int index = shader_time_index * 3 + shader_time_subindex;
628 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
629
630 fs_reg payload;
631 if (dispatch_width == 8)
632 payload = vgrf(glsl_type::uvec2_type);
633 else
634 payload = vgrf(glsl_type::uint_type);
635
636 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
637 }
638
639 void
640 fs_visitor::vfail(const char *format, va_list va)
641 {
642 char *msg;
643
644 if (failed)
645 return;
646
647 failed = true;
648
649 msg = ralloc_vasprintf(mem_ctx, format, va);
650 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
651
652 this->fail_msg = msg;
653
654 if (debug_enabled) {
655 fprintf(stderr, "%s", msg);
656 }
657 }
658
659 void
660 fs_visitor::fail(const char *format, ...)
661 {
662 va_list va;
663
664 va_start(va, format);
665 vfail(format, va);
666 va_end(va);
667 }
668
669 /**
670 * Mark this program as impossible to compile in SIMD16 mode.
671 *
672 * During the SIMD8 compile (which happens first), we can detect and flag
673 * things that are unsupported in SIMD16 mode, so the compiler can skip
674 * the SIMD16 compile altogether.
675 *
676 * During a SIMD16 compile (if one happens anyway), this just calls fail().
677 */
678 void
679 fs_visitor::no16(const char *msg)
680 {
681 if (dispatch_width == 16) {
682 fail("%s", msg);
683 } else {
684 simd16_unsupported = true;
685
686 compiler->shader_perf_log(log_data,
687 "SIMD16 shader failed to compile: %s", msg);
688 }
689 }
690
691 /**
692 * Returns true if the instruction has a flag that means it won't
693 * update an entire destination register.
694 *
695 * For example, dead code elimination and live variable analysis want to know
696 * when a write to a variable screens off any preceding values that were in
697 * it.
698 */
699 bool
700 fs_inst::is_partial_write() const
701 {
702 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
703 (this->exec_size * type_sz(this->dst.type)) < 32 ||
704 !this->dst.is_contiguous());
705 }
706
707 unsigned
708 fs_inst::components_read(unsigned i) const
709 {
710 switch (opcode) {
711 case FS_OPCODE_LINTERP:
712 if (i == 0)
713 return 2;
714 else
715 return 1;
716
717 case FS_OPCODE_PIXEL_X:
718 case FS_OPCODE_PIXEL_Y:
719 assert(i == 0);
720 return 2;
721
722 case FS_OPCODE_FB_WRITE_LOGICAL:
723 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
724 /* First/second FB write color. */
725 if (i < 2)
726 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
727 else
728 return 1;
729
730 case SHADER_OPCODE_TEX_LOGICAL:
731 case SHADER_OPCODE_TXD_LOGICAL:
732 case SHADER_OPCODE_TXF_LOGICAL:
733 case SHADER_OPCODE_TXL_LOGICAL:
734 case SHADER_OPCODE_TXS_LOGICAL:
735 case FS_OPCODE_TXB_LOGICAL:
736 case SHADER_OPCODE_TXF_CMS_LOGICAL:
737 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
738 case SHADER_OPCODE_TXF_UMS_LOGICAL:
739 case SHADER_OPCODE_TXF_MCS_LOGICAL:
740 case SHADER_OPCODE_LOD_LOGICAL:
741 case SHADER_OPCODE_TG4_LOGICAL:
742 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
743 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
744 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
745 /* Texture coordinates. */
746 if (i == TEX_LOGICAL_SRC_COORDINATE)
747 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
748 /* Texture derivatives. */
749 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
750 opcode == SHADER_OPCODE_TXD_LOGICAL)
751 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
752 /* Texture offset. */
753 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
754 return 2;
755 /* MCS */
756 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
757 return 2;
758 else
759 return 1;
760
761 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
762 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
763 assert(src[3].file == IMM);
764 /* Surface coordinates. */
765 if (i == 0)
766 return src[3].ud;
767 /* Surface operation source (ignored for reads). */
768 else if (i == 1)
769 return 0;
770 else
771 return 1;
772
773 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
774 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
775 assert(src[3].file == IMM &&
776 src[4].file == IMM);
777 /* Surface coordinates. */
778 if (i == 0)
779 return src[3].ud;
780 /* Surface operation source. */
781 else if (i == 1)
782 return src[4].ud;
783 else
784 return 1;
785
786 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
787 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
788 assert(src[3].file == IMM &&
789 src[4].file == IMM);
790 const unsigned op = src[4].ud;
791 /* Surface coordinates. */
792 if (i == 0)
793 return src[3].ud;
794 /* Surface operation source. */
795 else if (i == 1 && op == BRW_AOP_CMPWR)
796 return 2;
797 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
798 op == BRW_AOP_PREDEC))
799 return 0;
800 else
801 return 1;
802 }
803
804 default:
805 return 1;
806 }
807 }
808
809 int
810 fs_inst::regs_read(int arg) const
811 {
812 switch (opcode) {
813 case FS_OPCODE_FB_WRITE:
814 case SHADER_OPCODE_URB_WRITE_SIMD8:
815 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
816 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
817 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
818 case SHADER_OPCODE_URB_READ_SIMD8:
819 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
820 case SHADER_OPCODE_UNTYPED_ATOMIC:
821 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
822 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
823 case SHADER_OPCODE_TYPED_ATOMIC:
824 case SHADER_OPCODE_TYPED_SURFACE_READ:
825 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
826 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
827 if (arg == 0)
828 return mlen;
829 break;
830
831 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
832 /* The payload is actually stored in src1 */
833 if (arg == 1)
834 return mlen;
835 break;
836
837 case FS_OPCODE_LINTERP:
838 if (arg == 1)
839 return 1;
840 break;
841
842 case SHADER_OPCODE_LOAD_PAYLOAD:
843 if (arg < this->header_size)
844 return 1;
845 break;
846
847 case CS_OPCODE_CS_TERMINATE:
848 case SHADER_OPCODE_BARRIER:
849 return 1;
850
851 case SHADER_OPCODE_MOV_INDIRECT:
852 if (arg == 0) {
853 assert(src[2].file == IMM);
854 unsigned region_length = src[2].ud;
855
856 if (src[0].file == UNIFORM) {
857 assert(region_length % 4 == 0);
858 return region_length / 4;
859 } else if (src[0].file == FIXED_GRF) {
860 /* If the start of the region is not register aligned, then
861 * there's some portion of the register that's technically
862 * unread at the beginning.
863 *
864 * However, the register allocator works in terms of whole
865 * registers, and does not use subnr. It assumes that the
866 * read starts at the beginning of the register, and extends
867 * regs_read() whole registers beyond that.
868 *
869 * To compensate, we extend the region length to include this
870 * unread portion at the beginning.
871 */
872 if (src[0].subnr)
873 region_length += src[0].subnr;
874
875 return DIV_ROUND_UP(region_length, REG_SIZE);
876 } else {
877 assert(!"Invalid register file");
878 }
879 }
880 break;
881
882 default:
883 if (is_tex() && arg == 0 && src[0].file == VGRF)
884 return mlen;
885 break;
886 }
887
888 switch (src[arg].file) {
889 case BAD_FILE:
890 return 0;
891 case UNIFORM:
892 case IMM:
893 return 1;
894 case ARF:
895 case FIXED_GRF:
896 case VGRF:
897 case ATTR:
898 return DIV_ROUND_UP(components_read(arg) *
899 src[arg].component_size(exec_size),
900 REG_SIZE);
901 case MRF:
902 unreachable("MRF registers are not allowed as sources");
903 }
904 return 0;
905 }
906
907 bool
908 fs_inst::reads_flag() const
909 {
910 return predicate;
911 }
912
913 bool
914 fs_inst::writes_flag() const
915 {
916 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
917 opcode != BRW_OPCODE_IF &&
918 opcode != BRW_OPCODE_WHILE)) ||
919 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
920 }
921
922 /**
923 * Returns how many MRFs an FS opcode will write over.
924 *
925 * Note that this is not the 0 or 1 implied writes in an actual gen
926 * instruction -- the FS opcodes often generate MOVs in addition.
927 */
928 int
929 fs_visitor::implied_mrf_writes(fs_inst *inst)
930 {
931 if (inst->mlen == 0)
932 return 0;
933
934 if (inst->base_mrf == -1)
935 return 0;
936
937 switch (inst->opcode) {
938 case SHADER_OPCODE_RCP:
939 case SHADER_OPCODE_RSQ:
940 case SHADER_OPCODE_SQRT:
941 case SHADER_OPCODE_EXP2:
942 case SHADER_OPCODE_LOG2:
943 case SHADER_OPCODE_SIN:
944 case SHADER_OPCODE_COS:
945 return 1 * dispatch_width / 8;
946 case SHADER_OPCODE_POW:
947 case SHADER_OPCODE_INT_QUOTIENT:
948 case SHADER_OPCODE_INT_REMAINDER:
949 return 2 * dispatch_width / 8;
950 case SHADER_OPCODE_TEX:
951 case FS_OPCODE_TXB:
952 case SHADER_OPCODE_TXD:
953 case SHADER_OPCODE_TXF:
954 case SHADER_OPCODE_TXF_CMS:
955 case SHADER_OPCODE_TXF_CMS_W:
956 case SHADER_OPCODE_TXF_MCS:
957 case SHADER_OPCODE_TG4:
958 case SHADER_OPCODE_TG4_OFFSET:
959 case SHADER_OPCODE_TXL:
960 case SHADER_OPCODE_TXS:
961 case SHADER_OPCODE_LOD:
962 case SHADER_OPCODE_SAMPLEINFO:
963 return 1;
964 case FS_OPCODE_FB_WRITE:
965 return 2;
966 case FS_OPCODE_GET_BUFFER_SIZE:
967 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
968 case SHADER_OPCODE_GEN4_SCRATCH_READ:
969 return 1;
970 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
971 return inst->mlen;
972 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
973 return inst->mlen;
974 case SHADER_OPCODE_UNTYPED_ATOMIC:
975 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
976 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
977 case SHADER_OPCODE_TYPED_ATOMIC:
978 case SHADER_OPCODE_TYPED_SURFACE_READ:
979 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
980 case SHADER_OPCODE_URB_WRITE_SIMD8:
981 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
982 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
983 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
984 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
985 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
986 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
987 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
988 return 0;
989 default:
990 unreachable("not reached");
991 }
992 }
993
994 fs_reg
995 fs_visitor::vgrf(const glsl_type *const type)
996 {
997 int reg_width = dispatch_width / 8;
998 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
999 brw_type_for_base_type(type));
1000 }
1001
1002 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1003 {
1004 init();
1005 this->file = file;
1006 this->nr = nr;
1007 this->type = BRW_REGISTER_TYPE_F;
1008 this->stride = (file == UNIFORM ? 0 : 1);
1009 }
1010
1011 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1012 {
1013 init();
1014 this->file = file;
1015 this->nr = nr;
1016 this->type = type;
1017 this->stride = (file == UNIFORM ? 0 : 1);
1018 }
1019
1020 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1021 * This brings in those uniform definitions
1022 */
1023 void
1024 fs_visitor::import_uniforms(fs_visitor *v)
1025 {
1026 this->push_constant_loc = v->push_constant_loc;
1027 this->pull_constant_loc = v->pull_constant_loc;
1028 this->uniforms = v->uniforms;
1029 this->param_size = v->param_size;
1030 }
1031
1032 fs_reg *
1033 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1034 bool origin_upper_left)
1035 {
1036 assert(stage == MESA_SHADER_FRAGMENT);
1037 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1038 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1039 fs_reg wpos = *reg;
1040 bool flip = !origin_upper_left ^ key->render_to_fbo;
1041
1042 /* gl_FragCoord.x */
1043 if (pixel_center_integer) {
1044 bld.MOV(wpos, this->pixel_x);
1045 } else {
1046 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1047 }
1048 wpos = offset(wpos, bld, 1);
1049
1050 /* gl_FragCoord.y */
1051 if (!flip && pixel_center_integer) {
1052 bld.MOV(wpos, this->pixel_y);
1053 } else {
1054 fs_reg pixel_y = this->pixel_y;
1055 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1056
1057 if (flip) {
1058 pixel_y.negate = true;
1059 offset += key->drawable_height - 1.0f;
1060 }
1061
1062 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1063 }
1064 wpos = offset(wpos, bld, 1);
1065
1066 /* gl_FragCoord.z */
1067 if (devinfo->gen >= 6) {
1068 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1069 } else {
1070 bld.emit(FS_OPCODE_LINTERP, wpos,
1071 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1072 interp_reg(VARYING_SLOT_POS, 2));
1073 }
1074 wpos = offset(wpos, bld, 1);
1075
1076 /* gl_FragCoord.w: Already set up in emit_interpolation */
1077 bld.MOV(wpos, this->wpos_w);
1078
1079 return reg;
1080 }
1081
1082 fs_inst *
1083 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1084 glsl_interp_qualifier interpolation_mode,
1085 bool is_centroid, bool is_sample)
1086 {
1087 brw_wm_barycentric_interp_mode barycoord_mode;
1088 if (devinfo->gen >= 6) {
1089 if (is_centroid) {
1090 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1091 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1092 else
1093 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1094 } else if (is_sample) {
1095 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1096 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1097 else
1098 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1099 } else {
1100 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1101 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1102 else
1103 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1104 }
1105 } else {
1106 /* On Ironlake and below, there is only one interpolation mode.
1107 * Centroid interpolation doesn't mean anything on this hardware --
1108 * there is no multisampling.
1109 */
1110 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1111 }
1112 return bld.emit(FS_OPCODE_LINTERP, attr,
1113 this->delta_xy[barycoord_mode], interp);
1114 }
1115
1116 void
1117 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1118 const glsl_type *type,
1119 glsl_interp_qualifier interpolation_mode,
1120 int *location, bool mod_centroid,
1121 bool mod_sample)
1122 {
1123 assert(stage == MESA_SHADER_FRAGMENT);
1124 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1125 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1126
1127 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1128 bool is_gl_Color =
1129 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1130 if (key->flat_shade && is_gl_Color) {
1131 interpolation_mode = INTERP_QUALIFIER_FLAT;
1132 } else {
1133 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1134 }
1135 }
1136
1137 if (type->is_array() || type->is_matrix()) {
1138 const glsl_type *elem_type = glsl_get_array_element(type);
1139 const unsigned length = glsl_get_length(type);
1140
1141 for (unsigned i = 0; i < length; i++) {
1142 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1143 location, mod_centroid, mod_sample);
1144 }
1145 } else if (type->is_record()) {
1146 for (unsigned i = 0; i < type->length; i++) {
1147 const glsl_type *field_type = type->fields.structure[i].type;
1148 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1149 location, mod_centroid, mod_sample);
1150 }
1151 } else {
1152 assert(type->is_scalar() || type->is_vector());
1153
1154 if (prog_data->urb_setup[*location] == -1) {
1155 /* If there's no incoming setup data for this slot, don't
1156 * emit interpolation for it.
1157 */
1158 *attr = offset(*attr, bld, type->vector_elements);
1159 (*location)++;
1160 return;
1161 }
1162
1163 attr->type = brw_type_for_base_type(type->get_scalar_type());
1164
1165 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1166 /* Constant interpolation (flat shading) case. The SF has
1167 * handed us defined values in only the constant offset
1168 * field of the setup reg.
1169 */
1170 for (unsigned int i = 0; i < type->vector_elements; i++) {
1171 struct brw_reg interp = interp_reg(*location, i);
1172 interp = suboffset(interp, 3);
1173 interp.type = attr->type;
1174 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1175 *attr = offset(*attr, bld, 1);
1176 }
1177 } else {
1178 /* Smooth/noperspective interpolation case. */
1179 for (unsigned int i = 0; i < type->vector_elements; i++) {
1180 struct brw_reg interp = interp_reg(*location, i);
1181 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1182 /* Get the pixel/sample mask into f0 so that we know
1183 * which pixels are lit. Then, for each channel that is
1184 * unlit, replace the centroid data with non-centroid
1185 * data.
1186 */
1187 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1188
1189 fs_inst *inst;
1190 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1191 false, false);
1192 inst->predicate = BRW_PREDICATE_NORMAL;
1193 inst->predicate_inverse = true;
1194 if (devinfo->has_pln)
1195 inst->no_dd_clear = true;
1196
1197 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1198 mod_centroid && !key->persample_shading,
1199 mod_sample || key->persample_shading);
1200 inst->predicate = BRW_PREDICATE_NORMAL;
1201 inst->predicate_inverse = false;
1202 if (devinfo->has_pln)
1203 inst->no_dd_check = true;
1204
1205 } else {
1206 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1207 mod_centroid && !key->persample_shading,
1208 mod_sample || key->persample_shading);
1209 }
1210 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1211 bld.MUL(*attr, *attr, this->pixel_w);
1212 }
1213 *attr = offset(*attr, bld, 1);
1214 }
1215 }
1216 (*location)++;
1217 }
1218 }
1219
1220 fs_reg *
1221 fs_visitor::emit_frontfacing_interpolation()
1222 {
1223 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1224
1225 if (devinfo->gen >= 6) {
1226 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1227 * a boolean result from this (~0/true or 0/false).
1228 *
1229 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1230 * this task in only one instruction:
1231 * - a negation source modifier will flip the bit; and
1232 * - a W -> D type conversion will sign extend the bit into the high
1233 * word of the destination.
1234 *
1235 * An ASR 15 fills the low word of the destination.
1236 */
1237 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1238 g0.negate = true;
1239
1240 bld.ASR(*reg, g0, brw_imm_d(15));
1241 } else {
1242 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1243 * a boolean result from this (1/true or 0/false).
1244 *
1245 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1246 * the negation source modifier to flip it. Unfortunately the SHR
1247 * instruction only operates on UD (or D with an abs source modifier)
1248 * sources without negation.
1249 *
1250 * Instead, use ASR (which will give ~0/true or 0/false).
1251 */
1252 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1253 g1_6.negate = true;
1254
1255 bld.ASR(*reg, g1_6, brw_imm_d(31));
1256 }
1257
1258 return reg;
1259 }
1260
1261 void
1262 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1263 {
1264 assert(stage == MESA_SHADER_FRAGMENT);
1265 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1266 assert(dst.type == BRW_REGISTER_TYPE_F);
1267
1268 if (key->compute_pos_offset) {
1269 /* Convert int_sample_pos to floating point */
1270 bld.MOV(dst, int_sample_pos);
1271 /* Scale to the range [0, 1] */
1272 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1273 }
1274 else {
1275 /* From ARB_sample_shading specification:
1276 * "When rendering to a non-multisample buffer, or if multisample
1277 * rasterization is disabled, gl_SamplePosition will always be
1278 * (0.5, 0.5).
1279 */
1280 bld.MOV(dst, brw_imm_f(0.5f));
1281 }
1282 }
1283
1284 fs_reg *
1285 fs_visitor::emit_samplepos_setup()
1286 {
1287 assert(devinfo->gen >= 6);
1288
1289 const fs_builder abld = bld.annotate("compute sample position");
1290 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1291 fs_reg pos = *reg;
1292 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1293 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1294
1295 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1296 * mode will be enabled.
1297 *
1298 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1299 * R31.1:0 Position Offset X/Y for Slot[3:0]
1300 * R31.3:2 Position Offset X/Y for Slot[7:4]
1301 * .....
1302 *
1303 * The X, Y sample positions come in as bytes in thread payload. So, read
1304 * the positions using vstride=16, width=8, hstride=2.
1305 */
1306 struct brw_reg sample_pos_reg =
1307 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1308 BRW_REGISTER_TYPE_B), 16, 8, 2);
1309
1310 if (dispatch_width == 8) {
1311 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1312 } else {
1313 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1314 abld.half(1).MOV(half(int_sample_x, 1),
1315 fs_reg(suboffset(sample_pos_reg, 16)));
1316 }
1317 /* Compute gl_SamplePosition.x */
1318 compute_sample_position(pos, int_sample_x);
1319 pos = offset(pos, abld, 1);
1320 if (dispatch_width == 8) {
1321 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1322 } else {
1323 abld.half(0).MOV(half(int_sample_y, 0),
1324 fs_reg(suboffset(sample_pos_reg, 1)));
1325 abld.half(1).MOV(half(int_sample_y, 1),
1326 fs_reg(suboffset(sample_pos_reg, 17)));
1327 }
1328 /* Compute gl_SamplePosition.y */
1329 compute_sample_position(pos, int_sample_y);
1330 return reg;
1331 }
1332
1333 fs_reg *
1334 fs_visitor::emit_sampleid_setup()
1335 {
1336 assert(stage == MESA_SHADER_FRAGMENT);
1337 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1338 assert(devinfo->gen >= 6);
1339
1340 const fs_builder abld = bld.annotate("compute sample id");
1341 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1342
1343 if (key->compute_sample_id) {
1344 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1345 t1.set_smear(0);
1346 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1347
1348 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1349 * 8x multisampling, subspan 0 will represent sample N (where N
1350 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1351 * 7. We can find the value of N by looking at R0.0 bits 7:6
1352 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1353 * (since samples are always delivered in pairs). That is, we
1354 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1355 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1356 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1357 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1358 * populating a temporary variable with the sequence (0, 1, 2, 3),
1359 * and then reading from it using vstride=1, width=4, hstride=0.
1360 * These computations hold good for 4x multisampling as well.
1361 *
1362 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1363 * the first four slots are sample 0 of subspan 0; the next four
1364 * are sample 1 of subspan 0; the third group is sample 0 of
1365 * subspan 1, and finally sample 1 of subspan 1.
1366 */
1367
1368 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1369 * accomodate 16x MSAA.
1370 */
1371 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1372
1373 abld.exec_all().group(1, 0)
1374 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1375 brw_imm_ud(sspi_mask));
1376 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1377
1378 /* This works for both SIMD8 and SIMD16 */
1379 abld.exec_all().group(4, 0)
1380 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1381
1382 /* This special instruction takes care of setting vstride=1,
1383 * width=4, hstride=0 of t2 during an ADD instruction.
1384 */
1385 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1386 } else {
1387 /* As per GL_ARB_sample_shading specification:
1388 * "When rendering to a non-multisample buffer, or if multisample
1389 * rasterization is disabled, gl_SampleID will always be zero."
1390 */
1391 abld.MOV(*reg, brw_imm_d(0));
1392 }
1393
1394 return reg;
1395 }
1396
1397 fs_reg
1398 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1399 {
1400 if (!src.abs && !src.negate)
1401 return src;
1402
1403 fs_reg temp = bld.vgrf(src.type);
1404 bld.MOV(temp, src);
1405
1406 return temp;
1407 }
1408
1409 void
1410 fs_visitor::emit_discard_jump()
1411 {
1412 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1413
1414 /* For performance, after a discard, jump to the end of the
1415 * shader if all relevant channels have been discarded.
1416 */
1417 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1418 discard_jump->flag_subreg = 1;
1419
1420 discard_jump->predicate = (dispatch_width == 8)
1421 ? BRW_PREDICATE_ALIGN1_ANY8H
1422 : BRW_PREDICATE_ALIGN1_ANY16H;
1423 discard_jump->predicate_inverse = true;
1424 }
1425
1426 void
1427 fs_visitor::emit_gs_thread_end()
1428 {
1429 assert(stage == MESA_SHADER_GEOMETRY);
1430
1431 struct brw_gs_prog_data *gs_prog_data =
1432 (struct brw_gs_prog_data *) prog_data;
1433
1434 if (gs_compile->control_data_header_size_bits > 0) {
1435 emit_gs_control_data_bits(this->final_gs_vertex_count);
1436 }
1437
1438 const fs_builder abld = bld.annotate("thread end");
1439 fs_inst *inst;
1440
1441 if (gs_prog_data->static_vertex_count != -1) {
1442 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1443 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1444 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1445 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1446 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1447 prev->eot = true;
1448
1449 /* Delete now dead instructions. */
1450 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1451 if (dead == prev)
1452 break;
1453 dead->remove();
1454 }
1455 return;
1456 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1457 break;
1458 }
1459 }
1460 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1461 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1462 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1463 inst->mlen = 1;
1464 } else {
1465 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1466 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1467 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1468 sources[1] = this->final_gs_vertex_count;
1469 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1470 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1471 inst->mlen = 2;
1472 }
1473 inst->eot = true;
1474 inst->offset = 0;
1475 }
1476
1477 void
1478 fs_visitor::assign_curb_setup()
1479 {
1480 if (dispatch_width == 8) {
1481 prog_data->dispatch_grf_start_reg = payload.num_regs;
1482 } else {
1483 if (stage == MESA_SHADER_FRAGMENT) {
1484 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1485 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1486 } else if (stage == MESA_SHADER_COMPUTE) {
1487 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1488 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1489 } else {
1490 unreachable("Unsupported shader type!");
1491 }
1492 }
1493
1494 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1495
1496 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1497 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1498 for (unsigned int i = 0; i < inst->sources; i++) {
1499 if (inst->src[i].file == UNIFORM) {
1500 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1501 int constant_nr;
1502 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1503 constant_nr = push_constant_loc[uniform_nr];
1504 } else {
1505 /* Section 5.11 of the OpenGL 4.1 spec says:
1506 * "Out-of-bounds reads return undefined values, which include
1507 * values from other variables of the active program or zero."
1508 * Just return the first push constant.
1509 */
1510 constant_nr = 0;
1511 }
1512
1513 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1514 constant_nr / 8,
1515 constant_nr % 8);
1516 brw_reg.abs = inst->src[i].abs;
1517 brw_reg.negate = inst->src[i].negate;
1518
1519 assert(inst->src[i].stride == 0);
1520 inst->src[i] = byte_offset(
1521 retype(brw_reg, inst->src[i].type),
1522 inst->src[i].subreg_offset);
1523 }
1524 }
1525 }
1526
1527 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1528 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1529 }
1530
1531 void
1532 fs_visitor::calculate_urb_setup()
1533 {
1534 assert(stage == MESA_SHADER_FRAGMENT);
1535 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1536 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1537
1538 memset(prog_data->urb_setup, -1,
1539 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1540
1541 int urb_next = 0;
1542 /* Figure out where each of the incoming setup attributes lands. */
1543 if (devinfo->gen >= 6) {
1544 if (_mesa_bitcount_64(nir->info.inputs_read &
1545 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1546 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1547 * first 16 varying inputs, so we can put them wherever we want.
1548 * Just put them in order.
1549 *
1550 * This is useful because it means that (a) inputs not used by the
1551 * fragment shader won't take up valuable register space, and (b) we
1552 * won't have to recompile the fragment shader if it gets paired with
1553 * a different vertex (or geometry) shader.
1554 */
1555 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1556 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1557 BITFIELD64_BIT(i)) {
1558 prog_data->urb_setup[i] = urb_next++;
1559 }
1560 }
1561 } else {
1562 bool include_vue_header =
1563 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1564
1565 /* We have enough input varyings that the SF/SBE pipeline stage can't
1566 * arbitrarily rearrange them to suit our whim; we have to put them
1567 * in an order that matches the output of the previous pipeline stage
1568 * (geometry or vertex shader).
1569 */
1570 struct brw_vue_map prev_stage_vue_map;
1571 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1572 key->input_slots_valid,
1573 nir->info.separate_shader);
1574 int first_slot =
1575 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1576
1577 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1578 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1579 slot++) {
1580 int varying = prev_stage_vue_map.slot_to_varying[slot];
1581 if (varying != BRW_VARYING_SLOT_PAD &&
1582 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1583 BITFIELD64_BIT(varying))) {
1584 prog_data->urb_setup[varying] = slot - first_slot;
1585 }
1586 }
1587 urb_next = prev_stage_vue_map.num_slots - first_slot;
1588 }
1589 } else {
1590 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1591 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1592 /* Point size is packed into the header, not as a general attribute */
1593 if (i == VARYING_SLOT_PSIZ)
1594 continue;
1595
1596 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1597 /* The back color slot is skipped when the front color is
1598 * also written to. In addition, some slots can be
1599 * written in the vertex shader and not read in the
1600 * fragment shader. So the register number must always be
1601 * incremented, mapped or not.
1602 */
1603 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1604 prog_data->urb_setup[i] = urb_next;
1605 urb_next++;
1606 }
1607 }
1608
1609 /*
1610 * It's a FS only attribute, and we did interpolation for this attribute
1611 * in SF thread. So, count it here, too.
1612 *
1613 * See compile_sf_prog() for more info.
1614 */
1615 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1616 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1617 }
1618
1619 prog_data->num_varying_inputs = urb_next;
1620 }
1621
1622 void
1623 fs_visitor::assign_urb_setup()
1624 {
1625 assert(stage == MESA_SHADER_FRAGMENT);
1626 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1627
1628 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1629
1630 /* Offset all the urb_setup[] index by the actual position of the
1631 * setup regs, now that the location of the constants has been chosen.
1632 */
1633 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1634 if (inst->opcode == FS_OPCODE_LINTERP) {
1635 assert(inst->src[1].file == FIXED_GRF);
1636 inst->src[1].nr += urb_start;
1637 }
1638
1639 if (inst->opcode == FS_OPCODE_CINTERP) {
1640 assert(inst->src[0].file == FIXED_GRF);
1641 inst->src[0].nr += urb_start;
1642 }
1643 }
1644
1645 /* Each attribute is 4 setup channels, each of which is half a reg. */
1646 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1647 }
1648
1649 void
1650 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1651 {
1652 for (int i = 0; i < inst->sources; i++) {
1653 if (inst->src[i].file == ATTR) {
1654 int grf = payload.num_regs +
1655 prog_data->curb_read_length +
1656 inst->src[i].nr +
1657 inst->src[i].reg_offset;
1658
1659 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1660 struct brw_reg reg =
1661 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1662 inst->src[i].subreg_offset),
1663 inst->exec_size * inst->src[i].stride,
1664 width, inst->src[i].stride);
1665 reg.abs = inst->src[i].abs;
1666 reg.negate = inst->src[i].negate;
1667
1668 inst->src[i] = reg;
1669 }
1670 }
1671 }
1672
1673 void
1674 fs_visitor::assign_vs_urb_setup()
1675 {
1676 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1677
1678 assert(stage == MESA_SHADER_VERTEX);
1679
1680 /* Each attribute is 4 regs. */
1681 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1682
1683 assert(vs_prog_data->base.urb_read_length <= 15);
1684
1685 /* Rewrite all ATTR file references to the hw grf that they land in. */
1686 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1687 convert_attr_sources_to_hw_regs(inst);
1688 }
1689 }
1690
1691 void
1692 fs_visitor::assign_tes_urb_setup()
1693 {
1694 assert(stage == MESA_SHADER_TESS_EVAL);
1695
1696 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1697
1698 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1699
1700 /* Rewrite all ATTR file references to HW_REGs. */
1701 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1702 convert_attr_sources_to_hw_regs(inst);
1703 }
1704 }
1705
1706 void
1707 fs_visitor::assign_gs_urb_setup()
1708 {
1709 assert(stage == MESA_SHADER_GEOMETRY);
1710
1711 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1712
1713 first_non_payload_grf +=
1714 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1715
1716 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1717 /* Rewrite all ATTR file references to GRFs. */
1718 convert_attr_sources_to_hw_regs(inst);
1719 }
1720 }
1721
1722
1723 /**
1724 * Split large virtual GRFs into separate components if we can.
1725 *
1726 * This is mostly duplicated with what brw_fs_vector_splitting does,
1727 * but that's really conservative because it's afraid of doing
1728 * splitting that doesn't result in real progress after the rest of
1729 * the optimization phases, which would cause infinite looping in
1730 * optimization. We can do it once here, safely. This also has the
1731 * opportunity to split interpolated values, or maybe even uniforms,
1732 * which we don't have at the IR level.
1733 *
1734 * We want to split, because virtual GRFs are what we register
1735 * allocate and spill (due to contiguousness requirements for some
1736 * instructions), and they're what we naturally generate in the
1737 * codegen process, but most virtual GRFs don't actually need to be
1738 * contiguous sets of GRFs. If we split, we'll end up with reduced
1739 * live intervals and better dead code elimination and coalescing.
1740 */
1741 void
1742 fs_visitor::split_virtual_grfs()
1743 {
1744 int num_vars = this->alloc.count;
1745
1746 /* Count the total number of registers */
1747 int reg_count = 0;
1748 int vgrf_to_reg[num_vars];
1749 for (int i = 0; i < num_vars; i++) {
1750 vgrf_to_reg[i] = reg_count;
1751 reg_count += alloc.sizes[i];
1752 }
1753
1754 /* An array of "split points". For each register slot, this indicates
1755 * if this slot can be separated from the previous slot. Every time an
1756 * instruction uses multiple elements of a register (as a source or
1757 * destination), we mark the used slots as inseparable. Then we go
1758 * through and split the registers into the smallest pieces we can.
1759 */
1760 bool split_points[reg_count];
1761 memset(split_points, 0, sizeof(split_points));
1762
1763 /* Mark all used registers as fully splittable */
1764 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1765 if (inst->dst.file == VGRF) {
1766 int reg = vgrf_to_reg[inst->dst.nr];
1767 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1768 split_points[reg + j] = true;
1769 }
1770
1771 for (int i = 0; i < inst->sources; i++) {
1772 if (inst->src[i].file == VGRF) {
1773 int reg = vgrf_to_reg[inst->src[i].nr];
1774 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1775 split_points[reg + j] = true;
1776 }
1777 }
1778 }
1779
1780 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1781 if (inst->dst.file == VGRF) {
1782 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1783 for (int j = 1; j < inst->regs_written; j++)
1784 split_points[reg + j] = false;
1785 }
1786 for (int i = 0; i < inst->sources; i++) {
1787 if (inst->src[i].file == VGRF) {
1788 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1789 for (int j = 1; j < inst->regs_read(i); j++)
1790 split_points[reg + j] = false;
1791 }
1792 }
1793 }
1794
1795 int new_virtual_grf[reg_count];
1796 int new_reg_offset[reg_count];
1797
1798 int reg = 0;
1799 for (int i = 0; i < num_vars; i++) {
1800 /* The first one should always be 0 as a quick sanity check. */
1801 assert(split_points[reg] == false);
1802
1803 /* j = 0 case */
1804 new_reg_offset[reg] = 0;
1805 reg++;
1806 int offset = 1;
1807
1808 /* j > 0 case */
1809 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1810 /* If this is a split point, reset the offset to 0 and allocate a
1811 * new virtual GRF for the previous offset many registers
1812 */
1813 if (split_points[reg]) {
1814 assert(offset <= MAX_VGRF_SIZE);
1815 int grf = alloc.allocate(offset);
1816 for (int k = reg - offset; k < reg; k++)
1817 new_virtual_grf[k] = grf;
1818 offset = 0;
1819 }
1820 new_reg_offset[reg] = offset;
1821 offset++;
1822 reg++;
1823 }
1824
1825 /* The last one gets the original register number */
1826 assert(offset <= MAX_VGRF_SIZE);
1827 alloc.sizes[i] = offset;
1828 for (int k = reg - offset; k < reg; k++)
1829 new_virtual_grf[k] = i;
1830 }
1831 assert(reg == reg_count);
1832
1833 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1834 if (inst->dst.file == VGRF) {
1835 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1836 inst->dst.nr = new_virtual_grf[reg];
1837 inst->dst.reg_offset = new_reg_offset[reg];
1838 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1839 }
1840 for (int i = 0; i < inst->sources; i++) {
1841 if (inst->src[i].file == VGRF) {
1842 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1843 inst->src[i].nr = new_virtual_grf[reg];
1844 inst->src[i].reg_offset = new_reg_offset[reg];
1845 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1846 }
1847 }
1848 }
1849 invalidate_live_intervals();
1850 }
1851
1852 /**
1853 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1854 *
1855 * During code generation, we create tons of temporary variables, many of
1856 * which get immediately killed and are never used again. Yet, in later
1857 * optimization and analysis passes, such as compute_live_intervals, we need
1858 * to loop over all the virtual GRFs. Compacting them can save a lot of
1859 * overhead.
1860 */
1861 bool
1862 fs_visitor::compact_virtual_grfs()
1863 {
1864 bool progress = false;
1865 int remap_table[this->alloc.count];
1866 memset(remap_table, -1, sizeof(remap_table));
1867
1868 /* Mark which virtual GRFs are used. */
1869 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1870 if (inst->dst.file == VGRF)
1871 remap_table[inst->dst.nr] = 0;
1872
1873 for (int i = 0; i < inst->sources; i++) {
1874 if (inst->src[i].file == VGRF)
1875 remap_table[inst->src[i].nr] = 0;
1876 }
1877 }
1878
1879 /* Compact the GRF arrays. */
1880 int new_index = 0;
1881 for (unsigned i = 0; i < this->alloc.count; i++) {
1882 if (remap_table[i] == -1) {
1883 /* We just found an unused register. This means that we are
1884 * actually going to compact something.
1885 */
1886 progress = true;
1887 } else {
1888 remap_table[i] = new_index;
1889 alloc.sizes[new_index] = alloc.sizes[i];
1890 invalidate_live_intervals();
1891 ++new_index;
1892 }
1893 }
1894
1895 this->alloc.count = new_index;
1896
1897 /* Patch all the instructions to use the newly renumbered registers */
1898 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1899 if (inst->dst.file == VGRF)
1900 inst->dst.nr = remap_table[inst->dst.nr];
1901
1902 for (int i = 0; i < inst->sources; i++) {
1903 if (inst->src[i].file == VGRF)
1904 inst->src[i].nr = remap_table[inst->src[i].nr];
1905 }
1906 }
1907
1908 /* Patch all the references to delta_xy, since they're used in register
1909 * allocation. If they're unused, switch them to BAD_FILE so we don't
1910 * think some random VGRF is delta_xy.
1911 */
1912 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1913 if (delta_xy[i].file == VGRF) {
1914 if (remap_table[delta_xy[i].nr] != -1) {
1915 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1916 } else {
1917 delta_xy[i].file = BAD_FILE;
1918 }
1919 }
1920 }
1921
1922 return progress;
1923 }
1924
1925 /**
1926 * Assign UNIFORM file registers to either push constants or pull constants.
1927 *
1928 * We allow a fragment shader to have more than the specified minimum
1929 * maximum number of fragment shader uniform components (64). If
1930 * there are too many of these, they'd fill up all of register space.
1931 * So, this will push some of them out to the pull constant buffer and
1932 * update the program to load them. We also use pull constants for all
1933 * indirect constant loads because we don't support indirect accesses in
1934 * registers yet.
1935 */
1936 void
1937 fs_visitor::assign_constant_locations()
1938 {
1939 /* Only the first compile gets to decide on locations. */
1940 if (dispatch_width != min_dispatch_width)
1941 return;
1942
1943 unsigned int num_pull_constants = 0;
1944
1945 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1946 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1947
1948 bool is_live[uniforms];
1949 memset(is_live, 0, sizeof(is_live));
1950
1951 /* First, we walk through the instructions and do two things:
1952 *
1953 * 1) Figure out which uniforms are live.
1954 *
1955 * 2) Find all indirect access of uniform arrays and flag them as needing
1956 * to go into the pull constant buffer.
1957 *
1958 * Note that we don't move constant-indexed accesses to arrays. No
1959 * testing has been done of the performance impact of this choice.
1960 */
1961 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1962 for (int i = 0 ; i < inst->sources; i++) {
1963 if (inst->src[i].file != UNIFORM)
1964 continue;
1965
1966 if (inst->src[i].reladdr) {
1967 int uniform = inst->src[i].nr;
1968
1969 /* If this array isn't already present in the pull constant buffer,
1970 * add it.
1971 */
1972 if (pull_constant_loc[uniform] == -1) {
1973 assert(param_size[uniform]);
1974 for (int j = 0; j < param_size[uniform]; j++)
1975 pull_constant_loc[uniform + j] = num_pull_constants++;
1976 }
1977 } else {
1978 /* Mark the the one accessed uniform as live */
1979 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1980 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1981 is_live[constant_nr] = true;
1982 }
1983 }
1984 }
1985
1986 /* Only allow 16 registers (128 uniform components) as push constants.
1987 *
1988 * Just demote the end of the list. We could probably do better
1989 * here, demoting things that are rarely used in the program first.
1990 *
1991 * If changing this value, note the limitation about total_regs in
1992 * brw_curbe.c.
1993 */
1994 unsigned int max_push_components = 16 * 8;
1995 unsigned int num_push_constants = 0;
1996
1997 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1998
1999 for (unsigned int i = 0; i < uniforms; i++) {
2000 if (!is_live[i] || pull_constant_loc[i] != -1) {
2001 /* This UNIFORM register is either dead, or has already been demoted
2002 * to a pull const. Mark it as no longer living in the param[] array.
2003 */
2004 push_constant_loc[i] = -1;
2005 continue;
2006 }
2007
2008 if (num_push_constants < max_push_components) {
2009 /* Retain as a push constant. Record the location in the params[]
2010 * array.
2011 */
2012 push_constant_loc[i] = num_push_constants++;
2013 } else {
2014 /* Demote to a pull constant. */
2015 push_constant_loc[i] = -1;
2016 pull_constant_loc[i] = num_pull_constants++;
2017 }
2018 }
2019
2020 stage_prog_data->nr_params = num_push_constants;
2021 stage_prog_data->nr_pull_params = num_pull_constants;
2022
2023 /* Up until now, the param[] array has been indexed by reg + reg_offset
2024 * of UNIFORM registers. Move pull constants into pull_param[] and
2025 * condense param[] to only contain the uniforms we chose to push.
2026 *
2027 * NOTE: Because we are condensing the params[] array, we know that
2028 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2029 * having to make a copy.
2030 */
2031 for (unsigned int i = 0; i < uniforms; i++) {
2032 const gl_constant_value *value = stage_prog_data->param[i];
2033
2034 if (pull_constant_loc[i] != -1) {
2035 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2036 } else if (push_constant_loc[i] != -1) {
2037 stage_prog_data->param[push_constant_loc[i]] = value;
2038 }
2039 }
2040 }
2041
2042 /**
2043 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2044 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2045 */
2046 void
2047 fs_visitor::demote_pull_constants()
2048 {
2049 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2050 for (int i = 0; i < inst->sources; i++) {
2051 if (inst->src[i].file != UNIFORM)
2052 continue;
2053
2054 int pull_index;
2055 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2056 if (location >= uniforms) /* Out of bounds access */
2057 pull_index = -1;
2058 else
2059 pull_index = pull_constant_loc[location];
2060
2061 if (pull_index == -1)
2062 continue;
2063
2064 /* Set up the annotation tracking for new generated instructions. */
2065 const fs_builder ibld(this, block, inst);
2066 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2067 fs_reg dst = vgrf(glsl_type::float_type);
2068
2069 assert(inst->src[i].stride == 0);
2070
2071 /* Generate a pull load into dst. */
2072 if (inst->src[i].reladdr) {
2073 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2074 brw_imm_ud(index),
2075 *inst->src[i].reladdr,
2076 pull_index * 4);
2077 inst->src[i].reladdr = NULL;
2078 inst->src[i].stride = 1;
2079 } else {
2080 const fs_builder ubld = ibld.exec_all().group(8, 0);
2081 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2082 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2083 dst, brw_imm_ud(index), offset);
2084 inst->src[i].set_smear(pull_index & 3);
2085 }
2086 brw_mark_surface_used(prog_data, index);
2087
2088 /* Rewrite the instruction to use the temporary VGRF. */
2089 inst->src[i].file = VGRF;
2090 inst->src[i].nr = dst.nr;
2091 inst->src[i].reg_offset = 0;
2092 }
2093 }
2094 invalidate_live_intervals();
2095 }
2096
2097 bool
2098 fs_visitor::opt_algebraic()
2099 {
2100 bool progress = false;
2101
2102 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2103 switch (inst->opcode) {
2104 case BRW_OPCODE_MOV:
2105 if (inst->src[0].file != IMM)
2106 break;
2107
2108 if (inst->saturate) {
2109 if (inst->dst.type != inst->src[0].type)
2110 assert(!"unimplemented: saturate mixed types");
2111
2112 if (brw_saturate_immediate(inst->dst.type,
2113 &inst->src[0].as_brw_reg())) {
2114 inst->saturate = false;
2115 progress = true;
2116 }
2117 }
2118 break;
2119
2120 case BRW_OPCODE_MUL:
2121 if (inst->src[1].file != IMM)
2122 continue;
2123
2124 /* a * 1.0 = a */
2125 if (inst->src[1].is_one()) {
2126 inst->opcode = BRW_OPCODE_MOV;
2127 inst->src[1] = reg_undef;
2128 progress = true;
2129 break;
2130 }
2131
2132 /* a * -1.0 = -a */
2133 if (inst->src[1].is_negative_one()) {
2134 inst->opcode = BRW_OPCODE_MOV;
2135 inst->src[0].negate = !inst->src[0].negate;
2136 inst->src[1] = reg_undef;
2137 progress = true;
2138 break;
2139 }
2140
2141 /* a * 0.0 = 0.0 */
2142 if (inst->src[1].is_zero()) {
2143 inst->opcode = BRW_OPCODE_MOV;
2144 inst->src[0] = inst->src[1];
2145 inst->src[1] = reg_undef;
2146 progress = true;
2147 break;
2148 }
2149
2150 if (inst->src[0].file == IMM) {
2151 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2152 inst->opcode = BRW_OPCODE_MOV;
2153 inst->src[0].f *= inst->src[1].f;
2154 inst->src[1] = reg_undef;
2155 progress = true;
2156 break;
2157 }
2158 break;
2159 case BRW_OPCODE_ADD:
2160 if (inst->src[1].file != IMM)
2161 continue;
2162
2163 /* a + 0.0 = a */
2164 if (inst->src[1].is_zero()) {
2165 inst->opcode = BRW_OPCODE_MOV;
2166 inst->src[1] = reg_undef;
2167 progress = true;
2168 break;
2169 }
2170
2171 if (inst->src[0].file == IMM) {
2172 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2173 inst->opcode = BRW_OPCODE_MOV;
2174 inst->src[0].f += inst->src[1].f;
2175 inst->src[1] = reg_undef;
2176 progress = true;
2177 break;
2178 }
2179 break;
2180 case BRW_OPCODE_OR:
2181 if (inst->src[0].equals(inst->src[1])) {
2182 inst->opcode = BRW_OPCODE_MOV;
2183 inst->src[1] = reg_undef;
2184 progress = true;
2185 break;
2186 }
2187 break;
2188 case BRW_OPCODE_LRP:
2189 if (inst->src[1].equals(inst->src[2])) {
2190 inst->opcode = BRW_OPCODE_MOV;
2191 inst->src[0] = inst->src[1];
2192 inst->src[1] = reg_undef;
2193 inst->src[2] = reg_undef;
2194 progress = true;
2195 break;
2196 }
2197 break;
2198 case BRW_OPCODE_CMP:
2199 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2200 inst->src[0].abs &&
2201 inst->src[0].negate &&
2202 inst->src[1].is_zero()) {
2203 inst->src[0].abs = false;
2204 inst->src[0].negate = false;
2205 inst->conditional_mod = BRW_CONDITIONAL_Z;
2206 progress = true;
2207 break;
2208 }
2209 break;
2210 case BRW_OPCODE_SEL:
2211 if (inst->src[0].equals(inst->src[1])) {
2212 inst->opcode = BRW_OPCODE_MOV;
2213 inst->src[1] = reg_undef;
2214 inst->predicate = BRW_PREDICATE_NONE;
2215 inst->predicate_inverse = false;
2216 progress = true;
2217 } else if (inst->saturate && inst->src[1].file == IMM) {
2218 switch (inst->conditional_mod) {
2219 case BRW_CONDITIONAL_LE:
2220 case BRW_CONDITIONAL_L:
2221 switch (inst->src[1].type) {
2222 case BRW_REGISTER_TYPE_F:
2223 if (inst->src[1].f >= 1.0f) {
2224 inst->opcode = BRW_OPCODE_MOV;
2225 inst->src[1] = reg_undef;
2226 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2227 progress = true;
2228 }
2229 break;
2230 default:
2231 break;
2232 }
2233 break;
2234 case BRW_CONDITIONAL_GE:
2235 case BRW_CONDITIONAL_G:
2236 switch (inst->src[1].type) {
2237 case BRW_REGISTER_TYPE_F:
2238 if (inst->src[1].f <= 0.0f) {
2239 inst->opcode = BRW_OPCODE_MOV;
2240 inst->src[1] = reg_undef;
2241 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2242 progress = true;
2243 }
2244 break;
2245 default:
2246 break;
2247 }
2248 default:
2249 break;
2250 }
2251 }
2252 break;
2253 case BRW_OPCODE_MAD:
2254 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2255 inst->opcode = BRW_OPCODE_MOV;
2256 inst->src[1] = reg_undef;
2257 inst->src[2] = reg_undef;
2258 progress = true;
2259 } else if (inst->src[0].is_zero()) {
2260 inst->opcode = BRW_OPCODE_MUL;
2261 inst->src[0] = inst->src[2];
2262 inst->src[2] = reg_undef;
2263 progress = true;
2264 } else if (inst->src[1].is_one()) {
2265 inst->opcode = BRW_OPCODE_ADD;
2266 inst->src[1] = inst->src[2];
2267 inst->src[2] = reg_undef;
2268 progress = true;
2269 } else if (inst->src[2].is_one()) {
2270 inst->opcode = BRW_OPCODE_ADD;
2271 inst->src[2] = reg_undef;
2272 progress = true;
2273 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2274 inst->opcode = BRW_OPCODE_ADD;
2275 inst->src[1].f *= inst->src[2].f;
2276 inst->src[2] = reg_undef;
2277 progress = true;
2278 }
2279 break;
2280 case SHADER_OPCODE_BROADCAST:
2281 if (is_uniform(inst->src[0])) {
2282 inst->opcode = BRW_OPCODE_MOV;
2283 inst->sources = 1;
2284 inst->force_writemask_all = true;
2285 progress = true;
2286 } else if (inst->src[1].file == IMM) {
2287 inst->opcode = BRW_OPCODE_MOV;
2288 inst->src[0] = component(inst->src[0],
2289 inst->src[1].ud);
2290 inst->sources = 1;
2291 inst->force_writemask_all = true;
2292 progress = true;
2293 }
2294 break;
2295
2296 default:
2297 break;
2298 }
2299
2300 /* Swap if src[0] is immediate. */
2301 if (progress && inst->is_commutative()) {
2302 if (inst->src[0].file == IMM) {
2303 fs_reg tmp = inst->src[1];
2304 inst->src[1] = inst->src[0];
2305 inst->src[0] = tmp;
2306 }
2307 }
2308 }
2309 return progress;
2310 }
2311
2312 /**
2313 * Optimize sample messages that have constant zero values for the trailing
2314 * texture coordinates. We can just reduce the message length for these
2315 * instructions instead of reserving a register for it. Trailing parameters
2316 * that aren't sent default to zero anyway. This will cause the dead code
2317 * eliminator to remove the MOV instruction that would otherwise be emitted to
2318 * set up the zero value.
2319 */
2320 bool
2321 fs_visitor::opt_zero_samples()
2322 {
2323 /* Gen4 infers the texturing opcode based on the message length so we can't
2324 * change it.
2325 */
2326 if (devinfo->gen < 5)
2327 return false;
2328
2329 bool progress = false;
2330
2331 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2332 if (!inst->is_tex())
2333 continue;
2334
2335 fs_inst *load_payload = (fs_inst *) inst->prev;
2336
2337 if (load_payload->is_head_sentinel() ||
2338 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2339 continue;
2340
2341 /* We don't want to remove the message header or the first parameter.
2342 * Removing the first parameter is not allowed, see the Haswell PRM
2343 * volume 7, page 149:
2344 *
2345 * "Parameter 0 is required except for the sampleinfo message, which
2346 * has no parameter 0"
2347 */
2348 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2349 load_payload->src[(inst->mlen - inst->header_size) /
2350 (inst->exec_size / 8) +
2351 inst->header_size - 1].is_zero()) {
2352 inst->mlen -= inst->exec_size / 8;
2353 progress = true;
2354 }
2355 }
2356
2357 if (progress)
2358 invalidate_live_intervals();
2359
2360 return progress;
2361 }
2362
2363 /**
2364 * Optimize sample messages which are followed by the final RT write.
2365 *
2366 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2367 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2368 * final texturing results copied to the framebuffer write payload and modify
2369 * them to write to the framebuffer directly.
2370 */
2371 bool
2372 fs_visitor::opt_sampler_eot()
2373 {
2374 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2375
2376 if (stage != MESA_SHADER_FRAGMENT)
2377 return false;
2378
2379 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2380 return false;
2381
2382 /* FINISHME: It should be possible to implement this optimization when there
2383 * are multiple drawbuffers.
2384 */
2385 if (key->nr_color_regions != 1)
2386 return false;
2387
2388 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2389 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2390 fs_inst *fb_write = (fs_inst *)block->end();
2391 assert(fb_write->eot);
2392 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2393
2394 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2395
2396 /* There wasn't one; nothing to do. */
2397 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2398 return false;
2399
2400 /* 3D Sampler » Messages » Message Format
2401 *
2402 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2403 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2404 */
2405 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2406 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2407 tex_inst->opcode == SHADER_OPCODE_LOD ||
2408 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2409 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2410 return false;
2411
2412 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2413 * It's very likely to be the previous instruction.
2414 */
2415 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2416 if (load_payload->is_head_sentinel() ||
2417 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2418 return false;
2419
2420 assert(!tex_inst->eot); /* We can't get here twice */
2421 assert((tex_inst->offset & (0xff << 24)) == 0);
2422
2423 const fs_builder ibld(this, block, tex_inst);
2424
2425 tex_inst->offset |= fb_write->target << 24;
2426 tex_inst->eot = true;
2427 tex_inst->dst = ibld.null_reg_ud();
2428 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2429
2430 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2431 * to create a new LOAD_PAYLOAD command with the same sources and a space
2432 * saved for the header. Using a new destination register not only makes sure
2433 * we have enough space, but it will make sure the dead code eliminator kills
2434 * the instruction that this will replace.
2435 */
2436 if (tex_inst->header_size != 0) {
2437 invalidate_live_intervals();
2438 return true;
2439 }
2440
2441 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2442 load_payload->sources + 1);
2443 fs_reg *new_sources =
2444 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2445
2446 new_sources[0] = fs_reg();
2447 for (int i = 0; i < load_payload->sources; i++)
2448 new_sources[i+1] = load_payload->src[i];
2449
2450 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2451 * requires a lot of information about the sources to appropriately figure
2452 * out the number of registers needed to be used. Given this stage in our
2453 * optimization, we may not have the appropriate GRFs required by
2454 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2455 * manually emit the instruction.
2456 */
2457 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2458 load_payload->exec_size,
2459 send_header,
2460 new_sources,
2461 load_payload->sources + 1);
2462
2463 new_load_payload->regs_written = load_payload->regs_written + 1;
2464 new_load_payload->header_size = 1;
2465 tex_inst->mlen++;
2466 tex_inst->header_size = 1;
2467 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2468 tex_inst->src[0] = send_header;
2469
2470 invalidate_live_intervals();
2471 return true;
2472 }
2473
2474 bool
2475 fs_visitor::opt_register_renaming()
2476 {
2477 bool progress = false;
2478 int depth = 0;
2479
2480 int remap[alloc.count];
2481 memset(remap, -1, sizeof(int) * alloc.count);
2482
2483 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2484 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2485 depth++;
2486 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2487 inst->opcode == BRW_OPCODE_WHILE) {
2488 depth--;
2489 }
2490
2491 /* Rewrite instruction sources. */
2492 for (int i = 0; i < inst->sources; i++) {
2493 if (inst->src[i].file == VGRF &&
2494 remap[inst->src[i].nr] != -1 &&
2495 remap[inst->src[i].nr] != inst->src[i].nr) {
2496 inst->src[i].nr = remap[inst->src[i].nr];
2497 progress = true;
2498 }
2499 }
2500
2501 const int dst = inst->dst.nr;
2502
2503 if (depth == 0 &&
2504 inst->dst.file == VGRF &&
2505 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2506 !inst->is_partial_write()) {
2507 if (remap[dst] == -1) {
2508 remap[dst] = dst;
2509 } else {
2510 remap[dst] = alloc.allocate(inst->exec_size / 8);
2511 inst->dst.nr = remap[dst];
2512 progress = true;
2513 }
2514 } else if (inst->dst.file == VGRF &&
2515 remap[dst] != -1 &&
2516 remap[dst] != dst) {
2517 inst->dst.nr = remap[dst];
2518 progress = true;
2519 }
2520 }
2521
2522 if (progress) {
2523 invalidate_live_intervals();
2524
2525 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2526 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2527 delta_xy[i].nr = remap[delta_xy[i].nr];
2528 }
2529 }
2530 }
2531
2532 return progress;
2533 }
2534
2535 /**
2536 * Remove redundant or useless discard jumps.
2537 *
2538 * For example, we can eliminate jumps in the following sequence:
2539 *
2540 * discard-jump (redundant with the next jump)
2541 * discard-jump (useless; jumps to the next instruction)
2542 * placeholder-halt
2543 */
2544 bool
2545 fs_visitor::opt_redundant_discard_jumps()
2546 {
2547 bool progress = false;
2548
2549 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2550
2551 fs_inst *placeholder_halt = NULL;
2552 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2553 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2554 placeholder_halt = inst;
2555 break;
2556 }
2557 }
2558
2559 if (!placeholder_halt)
2560 return false;
2561
2562 /* Delete any HALTs immediately before the placeholder halt. */
2563 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2564 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2565 prev = (fs_inst *) placeholder_halt->prev) {
2566 prev->remove(last_bblock);
2567 progress = true;
2568 }
2569
2570 if (progress)
2571 invalidate_live_intervals();
2572
2573 return progress;
2574 }
2575
2576 bool
2577 fs_visitor::compute_to_mrf()
2578 {
2579 bool progress = false;
2580 int next_ip = 0;
2581
2582 /* No MRFs on Gen >= 7. */
2583 if (devinfo->gen >= 7)
2584 return false;
2585
2586 calculate_live_intervals();
2587
2588 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2589 int ip = next_ip;
2590 next_ip++;
2591
2592 if (inst->opcode != BRW_OPCODE_MOV ||
2593 inst->is_partial_write() ||
2594 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2595 inst->dst.type != inst->src[0].type ||
2596 inst->src[0].abs || inst->src[0].negate ||
2597 !inst->src[0].is_contiguous() ||
2598 inst->src[0].subreg_offset)
2599 continue;
2600
2601 /* Work out which hardware MRF registers are written by this
2602 * instruction.
2603 */
2604 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2605 int mrf_high;
2606 if (inst->dst.nr & BRW_MRF_COMPR4) {
2607 mrf_high = mrf_low + 4;
2608 } else if (inst->exec_size == 16) {
2609 mrf_high = mrf_low + 1;
2610 } else {
2611 mrf_high = mrf_low;
2612 }
2613
2614 /* Can't compute-to-MRF this GRF if someone else was going to
2615 * read it later.
2616 */
2617 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2618 continue;
2619
2620 /* Found a move of a GRF to a MRF. Let's see if we can go
2621 * rewrite the thing that made this GRF to write into the MRF.
2622 */
2623 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2624 if (scan_inst->dst.file == VGRF &&
2625 scan_inst->dst.nr == inst->src[0].nr) {
2626 /* Found the last thing to write our reg we want to turn
2627 * into a compute-to-MRF.
2628 */
2629
2630 /* If this one instruction didn't populate all the
2631 * channels, bail. We might be able to rewrite everything
2632 * that writes that reg, but it would require smarter
2633 * tracking to delay the rewriting until complete success.
2634 */
2635 if (scan_inst->is_partial_write())
2636 break;
2637
2638 /* Things returning more than one register would need us to
2639 * understand coalescing out more than one MOV at a time.
2640 */
2641 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2642 break;
2643
2644 /* SEND instructions can't have MRF as a destination. */
2645 if (scan_inst->mlen)
2646 break;
2647
2648 if (devinfo->gen == 6) {
2649 /* gen6 math instructions must have the destination be
2650 * GRF, so no compute-to-MRF for them.
2651 */
2652 if (scan_inst->is_math()) {
2653 break;
2654 }
2655 }
2656
2657 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2658 /* Found the creator of our MRF's source value. */
2659 scan_inst->dst.file = MRF;
2660 scan_inst->dst.nr = inst->dst.nr;
2661 scan_inst->saturate |= inst->saturate;
2662 inst->remove(block);
2663 progress = true;
2664 }
2665 break;
2666 }
2667
2668 /* We don't handle control flow here. Most computation of
2669 * values that end up in MRFs are shortly before the MRF
2670 * write anyway.
2671 */
2672 if (block->start() == scan_inst)
2673 break;
2674
2675 /* You can't read from an MRF, so if someone else reads our
2676 * MRF's source GRF that we wanted to rewrite, that stops us.
2677 */
2678 bool interfered = false;
2679 for (int i = 0; i < scan_inst->sources; i++) {
2680 if (scan_inst->src[i].file == VGRF &&
2681 scan_inst->src[i].nr == inst->src[0].nr &&
2682 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2683 interfered = true;
2684 }
2685 }
2686 if (interfered)
2687 break;
2688
2689 if (scan_inst->dst.file == MRF) {
2690 /* If somebody else writes our MRF here, we can't
2691 * compute-to-MRF before that.
2692 */
2693 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2694 int scan_mrf_high;
2695
2696 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2697 scan_mrf_high = scan_mrf_low + 4;
2698 } else if (scan_inst->exec_size == 16) {
2699 scan_mrf_high = scan_mrf_low + 1;
2700 } else {
2701 scan_mrf_high = scan_mrf_low;
2702 }
2703
2704 if (mrf_low == scan_mrf_low ||
2705 mrf_low == scan_mrf_high ||
2706 mrf_high == scan_mrf_low ||
2707 mrf_high == scan_mrf_high) {
2708 break;
2709 }
2710 }
2711
2712 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2713 /* Found a SEND instruction, which means that there are
2714 * live values in MRFs from base_mrf to base_mrf +
2715 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2716 * above it.
2717 */
2718 if (mrf_low >= scan_inst->base_mrf &&
2719 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2720 break;
2721 }
2722 if (mrf_high >= scan_inst->base_mrf &&
2723 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2724 break;
2725 }
2726 }
2727 }
2728 }
2729
2730 if (progress)
2731 invalidate_live_intervals();
2732
2733 return progress;
2734 }
2735
2736 /**
2737 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2738 * flow. We could probably do better here with some form of divergence
2739 * analysis.
2740 */
2741 bool
2742 fs_visitor::eliminate_find_live_channel()
2743 {
2744 bool progress = false;
2745 unsigned depth = 0;
2746
2747 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2748 switch (inst->opcode) {
2749 case BRW_OPCODE_IF:
2750 case BRW_OPCODE_DO:
2751 depth++;
2752 break;
2753
2754 case BRW_OPCODE_ENDIF:
2755 case BRW_OPCODE_WHILE:
2756 depth--;
2757 break;
2758
2759 case FS_OPCODE_DISCARD_JUMP:
2760 /* This can potentially make control flow non-uniform until the end
2761 * of the program.
2762 */
2763 return progress;
2764
2765 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2766 if (depth == 0) {
2767 inst->opcode = BRW_OPCODE_MOV;
2768 inst->src[0] = brw_imm_ud(0u);
2769 inst->sources = 1;
2770 inst->force_writemask_all = true;
2771 progress = true;
2772 }
2773 break;
2774
2775 default:
2776 break;
2777 }
2778 }
2779
2780 return progress;
2781 }
2782
2783 /**
2784 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2785 * instructions to FS_OPCODE_REP_FB_WRITE.
2786 */
2787 void
2788 fs_visitor::emit_repclear_shader()
2789 {
2790 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2791 int base_mrf = 1;
2792 int color_mrf = base_mrf + 2;
2793 fs_inst *mov;
2794
2795 if (uniforms > 0) {
2796 mov = bld.exec_all().group(4, 0)
2797 .MOV(brw_message_reg(color_mrf),
2798 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2799 } else {
2800 struct brw_reg reg =
2801 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2802 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2803 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2804
2805 mov = bld.exec_all().group(4, 0)
2806 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2807 }
2808
2809 fs_inst *write;
2810 if (key->nr_color_regions == 1) {
2811 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2812 write->saturate = key->clamp_fragment_color;
2813 write->base_mrf = color_mrf;
2814 write->target = 0;
2815 write->header_size = 0;
2816 write->mlen = 1;
2817 } else {
2818 assume(key->nr_color_regions > 0);
2819 for (int i = 0; i < key->nr_color_regions; ++i) {
2820 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2821 write->saturate = key->clamp_fragment_color;
2822 write->base_mrf = base_mrf;
2823 write->target = i;
2824 write->header_size = 2;
2825 write->mlen = 3;
2826 }
2827 }
2828 write->eot = true;
2829
2830 calculate_cfg();
2831
2832 assign_constant_locations();
2833 assign_curb_setup();
2834
2835 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2836 if (uniforms > 0) {
2837 assert(mov->src[0].file == FIXED_GRF);
2838 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2839 }
2840 }
2841
2842 /**
2843 * Walks through basic blocks, looking for repeated MRF writes and
2844 * removing the later ones.
2845 */
2846 bool
2847 fs_visitor::remove_duplicate_mrf_writes()
2848 {
2849 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2850 bool progress = false;
2851
2852 /* Need to update the MRF tracking for compressed instructions. */
2853 if (dispatch_width == 16)
2854 return false;
2855
2856 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2857
2858 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2859 if (inst->is_control_flow()) {
2860 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2861 }
2862
2863 if (inst->opcode == BRW_OPCODE_MOV &&
2864 inst->dst.file == MRF) {
2865 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2866 if (prev_inst && inst->equals(prev_inst)) {
2867 inst->remove(block);
2868 progress = true;
2869 continue;
2870 }
2871 }
2872
2873 /* Clear out the last-write records for MRFs that were overwritten. */
2874 if (inst->dst.file == MRF) {
2875 last_mrf_move[inst->dst.nr] = NULL;
2876 }
2877
2878 if (inst->mlen > 0 && inst->base_mrf != -1) {
2879 /* Found a SEND instruction, which will include two or fewer
2880 * implied MRF writes. We could do better here.
2881 */
2882 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2883 last_mrf_move[inst->base_mrf + i] = NULL;
2884 }
2885 }
2886
2887 /* Clear out any MRF move records whose sources got overwritten. */
2888 if (inst->dst.file == VGRF) {
2889 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2890 if (last_mrf_move[i] &&
2891 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2892 last_mrf_move[i] = NULL;
2893 }
2894 }
2895 }
2896
2897 if (inst->opcode == BRW_OPCODE_MOV &&
2898 inst->dst.file == MRF &&
2899 inst->src[0].file == VGRF &&
2900 !inst->is_partial_write()) {
2901 last_mrf_move[inst->dst.nr] = inst;
2902 }
2903 }
2904
2905 if (progress)
2906 invalidate_live_intervals();
2907
2908 return progress;
2909 }
2910
2911 static void
2912 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2913 {
2914 /* Clear the flag for registers that actually got read (as expected). */
2915 for (int i = 0; i < inst->sources; i++) {
2916 int grf;
2917 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2918 grf = inst->src[i].nr;
2919 } else {
2920 continue;
2921 }
2922
2923 if (grf >= first_grf &&
2924 grf < first_grf + grf_len) {
2925 deps[grf - first_grf] = false;
2926 if (inst->exec_size == 16)
2927 deps[grf - first_grf + 1] = false;
2928 }
2929 }
2930 }
2931
2932 /**
2933 * Implements this workaround for the original 965:
2934 *
2935 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2936 * check for post destination dependencies on this instruction, software
2937 * must ensure that there is no destination hazard for the case of ‘write
2938 * followed by a posted write’ shown in the following example.
2939 *
2940 * 1. mov r3 0
2941 * 2. send r3.xy <rest of send instruction>
2942 * 3. mov r2 r3
2943 *
2944 * Due to no post-destination dependency check on the ‘send’, the above
2945 * code sequence could have two instructions (1 and 2) in flight at the
2946 * same time that both consider ‘r3’ as the target of their final writes.
2947 */
2948 void
2949 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2950 fs_inst *inst)
2951 {
2952 int write_len = inst->regs_written;
2953 int first_write_grf = inst->dst.nr;
2954 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2955 assert(write_len < (int)sizeof(needs_dep) - 1);
2956
2957 memset(needs_dep, false, sizeof(needs_dep));
2958 memset(needs_dep, true, write_len);
2959
2960 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2961
2962 /* Walk backwards looking for writes to registers we're writing which
2963 * aren't read since being written. If we hit the start of the program,
2964 * we assume that there are no outstanding dependencies on entry to the
2965 * program.
2966 */
2967 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2968 /* If we hit control flow, assume that there *are* outstanding
2969 * dependencies, and force their cleanup before our instruction.
2970 */
2971 if (block->start() == scan_inst) {
2972 for (int i = 0; i < write_len; i++) {
2973 if (needs_dep[i])
2974 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2975 first_write_grf + i);
2976 }
2977 return;
2978 }
2979
2980 /* We insert our reads as late as possible on the assumption that any
2981 * instruction but a MOV that might have left us an outstanding
2982 * dependency has more latency than a MOV.
2983 */
2984 if (scan_inst->dst.file == VGRF) {
2985 for (int i = 0; i < scan_inst->regs_written; i++) {
2986 int reg = scan_inst->dst.nr + i;
2987
2988 if (reg >= first_write_grf &&
2989 reg < first_write_grf + write_len &&
2990 needs_dep[reg - first_write_grf]) {
2991 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2992 needs_dep[reg - first_write_grf] = false;
2993 if (scan_inst->exec_size == 16)
2994 needs_dep[reg - first_write_grf + 1] = false;
2995 }
2996 }
2997 }
2998
2999 /* Clear the flag for registers that actually got read (as expected). */
3000 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3001
3002 /* Continue the loop only if we haven't resolved all the dependencies */
3003 int i;
3004 for (i = 0; i < write_len; i++) {
3005 if (needs_dep[i])
3006 break;
3007 }
3008 if (i == write_len)
3009 return;
3010 }
3011 }
3012
3013 /**
3014 * Implements this workaround for the original 965:
3015 *
3016 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3017 * used as a destination register until after it has been sourced by an
3018 * instruction with a different destination register.
3019 */
3020 void
3021 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3022 {
3023 int write_len = inst->regs_written;
3024 int first_write_grf = inst->dst.nr;
3025 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3026 assert(write_len < (int)sizeof(needs_dep) - 1);
3027
3028 memset(needs_dep, false, sizeof(needs_dep));
3029 memset(needs_dep, true, write_len);
3030 /* Walk forwards looking for writes to registers we're writing which aren't
3031 * read before being written.
3032 */
3033 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3034 /* If we hit control flow, force resolve all remaining dependencies. */
3035 if (block->end() == scan_inst) {
3036 for (int i = 0; i < write_len; i++) {
3037 if (needs_dep[i])
3038 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3039 first_write_grf + i);
3040 }
3041 return;
3042 }
3043
3044 /* Clear the flag for registers that actually got read (as expected). */
3045 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3046
3047 /* We insert our reads as late as possible since they're reading the
3048 * result of a SEND, which has massive latency.
3049 */
3050 if (scan_inst->dst.file == VGRF &&
3051 scan_inst->dst.nr >= first_write_grf &&
3052 scan_inst->dst.nr < first_write_grf + write_len &&
3053 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3054 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3055 scan_inst->dst.nr);
3056 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3057 }
3058
3059 /* Continue the loop only if we haven't resolved all the dependencies */
3060 int i;
3061 for (i = 0; i < write_len; i++) {
3062 if (needs_dep[i])
3063 break;
3064 }
3065 if (i == write_len)
3066 return;
3067 }
3068 }
3069
3070 void
3071 fs_visitor::insert_gen4_send_dependency_workarounds()
3072 {
3073 if (devinfo->gen != 4 || devinfo->is_g4x)
3074 return;
3075
3076 bool progress = false;
3077
3078 /* Note that we're done with register allocation, so GRF fs_regs always
3079 * have a .reg_offset of 0.
3080 */
3081
3082 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3083 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3084 insert_gen4_pre_send_dependency_workarounds(block, inst);
3085 insert_gen4_post_send_dependency_workarounds(block, inst);
3086 progress = true;
3087 }
3088 }
3089
3090 if (progress)
3091 invalidate_live_intervals();
3092 }
3093
3094 /**
3095 * Turns the generic expression-style uniform pull constant load instruction
3096 * into a hardware-specific series of instructions for loading a pull
3097 * constant.
3098 *
3099 * The expression style allows the CSE pass before this to optimize out
3100 * repeated loads from the same offset, and gives the pre-register-allocation
3101 * scheduling full flexibility, while the conversion to native instructions
3102 * allows the post-register-allocation scheduler the best information
3103 * possible.
3104 *
3105 * Note that execution masking for setting up pull constant loads is special:
3106 * the channels that need to be written are unrelated to the current execution
3107 * mask, since a later instruction will use one of the result channels as a
3108 * source operand for all 8 or 16 of its channels.
3109 */
3110 void
3111 fs_visitor::lower_uniform_pull_constant_loads()
3112 {
3113 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3114 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3115 continue;
3116
3117 if (devinfo->gen >= 7) {
3118 /* The offset arg is a vec4-aligned immediate byte offset. */
3119 fs_reg const_offset_reg = inst->src[1];
3120 assert(const_offset_reg.file == IMM &&
3121 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3122 assert(const_offset_reg.ud % 16 == 0);
3123
3124 fs_reg payload, offset;
3125 if (devinfo->gen >= 9) {
3126 /* We have to use a message header on Skylake to get SIMD4x2
3127 * mode. Reserve space for the register.
3128 */
3129 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3130 offset.reg_offset++;
3131 inst->mlen = 2;
3132 } else {
3133 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3134 inst->mlen = 1;
3135 }
3136
3137 /* This is actually going to be a MOV, but since only the first dword
3138 * is accessed, we have a special opcode to do just that one. Note
3139 * that this needs to be an operation that will be considered a def
3140 * by live variable analysis, or register allocation will explode.
3141 */
3142 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3143 8, offset, const_offset_reg);
3144 setup->force_writemask_all = true;
3145
3146 setup->ir = inst->ir;
3147 setup->annotation = inst->annotation;
3148 inst->insert_before(block, setup);
3149
3150 /* Similarly, this will only populate the first 4 channels of the
3151 * result register (since we only use smear values from 0-3), but we
3152 * don't tell the optimizer.
3153 */
3154 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3155 inst->src[1] = payload;
3156 inst->base_mrf = -1;
3157
3158 invalidate_live_intervals();
3159 } else {
3160 /* Before register allocation, we didn't tell the scheduler about the
3161 * MRF we use. We know it's safe to use this MRF because nothing
3162 * else does except for register spill/unspill, which generates and
3163 * uses its MRF within a single IR instruction.
3164 */
3165 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3166 inst->mlen = 1;
3167 }
3168 }
3169 }
3170
3171 bool
3172 fs_visitor::lower_load_payload()
3173 {
3174 bool progress = false;
3175
3176 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3177 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3178 continue;
3179
3180 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3181 assert(inst->saturate == false);
3182 fs_reg dst = inst->dst;
3183
3184 /* Get rid of COMPR4. We'll add it back in if we need it */
3185 if (dst.file == MRF)
3186 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3187
3188 const fs_builder ibld(this, block, inst);
3189 const fs_builder hbld = ibld.exec_all().group(8, 0);
3190
3191 for (uint8_t i = 0; i < inst->header_size; i++) {
3192 if (inst->src[i].file != BAD_FILE) {
3193 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3194 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3195 hbld.MOV(mov_dst, mov_src);
3196 }
3197 dst = offset(dst, hbld, 1);
3198 }
3199
3200 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3201 inst->exec_size > 8) {
3202 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3203 * a straightforward copy. Instead, the result of the
3204 * LOAD_PAYLOAD is treated as interleaved and the first four
3205 * non-header sources are unpacked as:
3206 *
3207 * m + 0: r0
3208 * m + 1: g0
3209 * m + 2: b0
3210 * m + 3: a0
3211 * m + 4: r1
3212 * m + 5: g1
3213 * m + 6: b1
3214 * m + 7: a1
3215 *
3216 * This is used for gen <= 5 fb writes.
3217 */
3218 assert(inst->exec_size == 16);
3219 assert(inst->header_size + 4 <= inst->sources);
3220 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3221 if (inst->src[i].file != BAD_FILE) {
3222 if (devinfo->has_compr4) {
3223 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3224 compr4_dst.nr |= BRW_MRF_COMPR4;
3225 ibld.MOV(compr4_dst, inst->src[i]);
3226 } else {
3227 /* Platform doesn't have COMPR4. We have to fake it */
3228 fs_reg mov_dst = retype(dst, inst->src[i].type);
3229 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3230 mov_dst.nr += 4;
3231 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3232 }
3233 }
3234
3235 dst.nr++;
3236 }
3237
3238 /* The loop above only ever incremented us through the first set
3239 * of 4 registers. However, thanks to the magic of COMPR4, we
3240 * actually wrote to the first 8 registers, so we need to take
3241 * that into account now.
3242 */
3243 dst.nr += 4;
3244
3245 /* The COMPR4 code took care of the first 4 sources. We'll let
3246 * the regular path handle any remaining sources. Yes, we are
3247 * modifying the instruction but we're about to delete it so
3248 * this really doesn't hurt anything.
3249 */
3250 inst->header_size += 4;
3251 }
3252
3253 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3254 if (inst->src[i].file != BAD_FILE)
3255 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3256 dst = offset(dst, ibld, 1);
3257 }
3258
3259 inst->remove(block);
3260 progress = true;
3261 }
3262
3263 if (progress)
3264 invalidate_live_intervals();
3265
3266 return progress;
3267 }
3268
3269 bool
3270 fs_visitor::lower_integer_multiplication()
3271 {
3272 bool progress = false;
3273
3274 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3275 const fs_builder ibld(this, block, inst);
3276
3277 if (inst->opcode == BRW_OPCODE_MUL) {
3278 if (inst->dst.is_accumulator() ||
3279 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3280 inst->dst.type != BRW_REGISTER_TYPE_UD))
3281 continue;
3282
3283 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3284 * operation directly, but CHV/BXT cannot.
3285 */
3286 if (devinfo->gen >= 8 &&
3287 !devinfo->is_cherryview && !devinfo->is_broxton)
3288 continue;
3289
3290 if (inst->src[1].file == IMM &&
3291 inst->src[1].ud < (1 << 16)) {
3292 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3293 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3294 * src1 are used.
3295 *
3296 * If multiplying by an immediate value that fits in 16-bits, do a
3297 * single MUL instruction with that value in the proper location.
3298 */
3299 if (devinfo->gen < 7) {
3300 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3301 inst->dst.type);
3302 ibld.MOV(imm, inst->src[1]);
3303 ibld.MUL(inst->dst, imm, inst->src[0]);
3304 } else {
3305 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3306 }
3307 } else {
3308 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3309 * do 32-bit integer multiplication in one instruction, but instead
3310 * must do a sequence (which actually calculates a 64-bit result):
3311 *
3312 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3313 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3314 * mov(8) g2<1>D acc0<8,8,1>D
3315 *
3316 * But on Gen > 6, the ability to use second accumulator register
3317 * (acc1) for non-float data types was removed, preventing a simple
3318 * implementation in SIMD16. A 16-channel result can be calculated by
3319 * executing the three instructions twice in SIMD8, once with quarter
3320 * control of 1Q for the first eight channels and again with 2Q for
3321 * the second eight channels.
3322 *
3323 * Which accumulator register is implicitly accessed (by AccWrEnable
3324 * for instance) is determined by the quarter control. Unfortunately
3325 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3326 * implicit accumulator access by an instruction with 2Q will access
3327 * acc1 regardless of whether the data type is usable in acc1.
3328 *
3329 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3330 * integer data types.
3331 *
3332 * Since we only want the low 32-bits of the result, we can do two
3333 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3334 * adjust the high result and add them (like the mach is doing):
3335 *
3336 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3337 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3338 * shl(8) g9<1>D g8<8,8,1>D 16D
3339 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3340 *
3341 * We avoid the shl instruction by realizing that we only want to add
3342 * the low 16-bits of the "high" result to the high 16-bits of the
3343 * "low" result and using proper regioning on the add:
3344 *
3345 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3346 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3347 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3348 *
3349 * Since it does not use the (single) accumulator register, we can
3350 * schedule multi-component multiplications much better.
3351 */
3352
3353 fs_reg orig_dst = inst->dst;
3354 if (orig_dst.is_null() || orig_dst.file == MRF) {
3355 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3356 inst->dst.type);
3357 }
3358 fs_reg low = inst->dst;
3359 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3360 inst->dst.type);
3361
3362 if (devinfo->gen >= 7) {
3363 fs_reg src1_0_w = inst->src[1];
3364 fs_reg src1_1_w = inst->src[1];
3365
3366 if (inst->src[1].file == IMM) {
3367 src1_0_w.ud &= 0xffff;
3368 src1_1_w.ud >>= 16;
3369 } else {
3370 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3371 if (src1_0_w.stride != 0) {
3372 assert(src1_0_w.stride == 1);
3373 src1_0_w.stride = 2;
3374 }
3375
3376 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3377 if (src1_1_w.stride != 0) {
3378 assert(src1_1_w.stride == 1);
3379 src1_1_w.stride = 2;
3380 }
3381 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3382 }
3383 ibld.MUL(low, inst->src[0], src1_0_w);
3384 ibld.MUL(high, inst->src[0], src1_1_w);
3385 } else {
3386 fs_reg src0_0_w = inst->src[0];
3387 fs_reg src0_1_w = inst->src[0];
3388
3389 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3390 if (src0_0_w.stride != 0) {
3391 assert(src0_0_w.stride == 1);
3392 src0_0_w.stride = 2;
3393 }
3394
3395 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3396 if (src0_1_w.stride != 0) {
3397 assert(src0_1_w.stride == 1);
3398 src0_1_w.stride = 2;
3399 }
3400 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3401
3402 ibld.MUL(low, src0_0_w, inst->src[1]);
3403 ibld.MUL(high, src0_1_w, inst->src[1]);
3404 }
3405
3406 fs_reg dst = inst->dst;
3407 dst.type = BRW_REGISTER_TYPE_UW;
3408 dst.subreg_offset = 2;
3409 dst.stride = 2;
3410
3411 high.type = BRW_REGISTER_TYPE_UW;
3412 high.stride = 2;
3413
3414 low.type = BRW_REGISTER_TYPE_UW;
3415 low.subreg_offset = 2;
3416 low.stride = 2;
3417
3418 ibld.ADD(dst, low, high);
3419
3420 if (inst->conditional_mod || orig_dst.file == MRF) {
3421 set_condmod(inst->conditional_mod,
3422 ibld.MOV(orig_dst, inst->dst));
3423 }
3424 }
3425
3426 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3427 /* Should have been lowered to 8-wide. */
3428 assert(inst->exec_size <= 8);
3429 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3430 inst->dst.type);
3431 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3432 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3433
3434 if (devinfo->gen >= 8) {
3435 /* Until Gen8, integer multiplies read 32-bits from one source,
3436 * and 16-bits from the other, and relying on the MACH instruction
3437 * to generate the high bits of the result.
3438 *
3439 * On Gen8, the multiply instruction does a full 32x32-bit
3440 * multiply, but in order to do a 64-bit multiply we can simulate
3441 * the previous behavior and then use a MACH instruction.
3442 *
3443 * FINISHME: Don't use source modifiers on src1.
3444 */
3445 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3446 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3447 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3448 mul->src[1].stride *= 2;
3449
3450 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3451 inst->force_sechalf) {
3452 /* Among other things the quarter control bits influence which
3453 * accumulator register is used by the hardware for instructions
3454 * that access the accumulator implicitly (e.g. MACH). A
3455 * second-half instruction would normally map to acc1, which
3456 * doesn't exist on Gen7 and up (the hardware does emulate it for
3457 * floating-point instructions *only* by taking advantage of the
3458 * extra precision of acc0 not normally used for floating point
3459 * arithmetic).
3460 *
3461 * HSW and up are careful enough not to try to access an
3462 * accumulator register that doesn't exist, but on earlier Gen7
3463 * hardware we need to make sure that the quarter control bits are
3464 * zero to avoid non-deterministic behaviour and emit an extra MOV
3465 * to get the result masked correctly according to the current
3466 * channel enables.
3467 */
3468 mach->force_sechalf = false;
3469 mach->force_writemask_all = true;
3470 mach->dst = ibld.vgrf(inst->dst.type);
3471 ibld.MOV(inst->dst, mach->dst);
3472 }
3473 } else {
3474 continue;
3475 }
3476
3477 inst->remove(block);
3478 progress = true;
3479 }
3480
3481 if (progress)
3482 invalidate_live_intervals();
3483
3484 return progress;
3485 }
3486
3487 bool
3488 fs_visitor::lower_minmax()
3489 {
3490 assert(devinfo->gen < 6);
3491
3492 bool progress = false;
3493
3494 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3495 const fs_builder ibld(this, block, inst);
3496
3497 if (inst->opcode == BRW_OPCODE_SEL &&
3498 inst->predicate == BRW_PREDICATE_NONE) {
3499 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3500 * the original SEL.L/GE instruction
3501 */
3502 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3503 inst->conditional_mod);
3504 inst->predicate = BRW_PREDICATE_NORMAL;
3505 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3506
3507 progress = true;
3508 }
3509 }
3510
3511 if (progress)
3512 invalidate_live_intervals();
3513
3514 return progress;
3515 }
3516
3517 static void
3518 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3519 fs_reg *dst, fs_reg color, unsigned components)
3520 {
3521 if (key->clamp_fragment_color) {
3522 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3523 assert(color.type == BRW_REGISTER_TYPE_F);
3524
3525 for (unsigned i = 0; i < components; i++)
3526 set_saturate(true,
3527 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3528
3529 color = tmp;
3530 }
3531
3532 for (unsigned i = 0; i < components; i++)
3533 dst[i] = offset(color, bld, i);
3534 }
3535
3536 static void
3537 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3538 const brw_wm_prog_data *prog_data,
3539 const brw_wm_prog_key *key,
3540 const fs_visitor::thread_payload &payload)
3541 {
3542 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3543 const brw_device_info *devinfo = bld.shader->devinfo;
3544 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3545 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3546 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3547 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3548 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3549 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3550 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3551 const unsigned components =
3552 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3553
3554 /* We can potentially have a message length of up to 15, so we have to set
3555 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3556 */
3557 fs_reg sources[15];
3558 int header_size = 2, payload_header_size;
3559 unsigned length = 0;
3560
3561 /* From the Sandy Bridge PRM, volume 4, page 198:
3562 *
3563 * "Dispatched Pixel Enables. One bit per pixel indicating
3564 * which pixels were originally enabled when the thread was
3565 * dispatched. This field is only required for the end-of-
3566 * thread message and on all dual-source messages."
3567 */
3568 if (devinfo->gen >= 6 &&
3569 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3570 color1.file == BAD_FILE &&
3571 key->nr_color_regions == 1) {
3572 header_size = 0;
3573 }
3574
3575 if (header_size != 0) {
3576 assert(header_size == 2);
3577 /* Allocate 2 registers for a header */
3578 length += 2;
3579 }
3580
3581 if (payload.aa_dest_stencil_reg) {
3582 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3583 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3584 .MOV(sources[length],
3585 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3586 length++;
3587 }
3588
3589 if (prog_data->uses_omask) {
3590 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3591 BRW_REGISTER_TYPE_UD);
3592
3593 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3594 * relevant. Since it's unsigned single words one vgrf is always
3595 * 16-wide, but only the lower or higher 8 channels will be used by the
3596 * hardware when doing a SIMD8 write depending on whether we have
3597 * selected the subspans for the first or second half respectively.
3598 */
3599 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3600 sample_mask.type = BRW_REGISTER_TYPE_UW;
3601 sample_mask.stride *= 2;
3602
3603 bld.exec_all().annotate("FB write oMask")
3604 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3605 inst->force_sechalf),
3606 sample_mask);
3607 length++;
3608 }
3609
3610 payload_header_size = length;
3611
3612 if (src0_alpha.file != BAD_FILE) {
3613 /* FIXME: This is being passed at the wrong location in the payload and
3614 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3615 * It's supposed to be immediately before oMask but there seems to be no
3616 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3617 * requires header sources to form a contiguous segment at the beginning
3618 * of the message and src0_alpha has per-channel semantics.
3619 */
3620 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3621 length++;
3622 }
3623
3624 setup_color_payload(bld, key, &sources[length], color0, components);
3625 length += 4;
3626
3627 if (color1.file != BAD_FILE) {
3628 setup_color_payload(bld, key, &sources[length], color1, components);
3629 length += 4;
3630 }
3631
3632 if (src_depth.file != BAD_FILE) {
3633 sources[length] = src_depth;
3634 length++;
3635 }
3636
3637 if (dst_depth.file != BAD_FILE) {
3638 sources[length] = dst_depth;
3639 length++;
3640 }
3641
3642 if (src_stencil.file != BAD_FILE) {
3643 assert(devinfo->gen >= 9);
3644 assert(bld.dispatch_width() != 16);
3645
3646 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3647 * available on gen9+. As such it's impossible to have both enabled at the
3648 * same time and therefore length cannot overrun the array.
3649 */
3650 assert(length < 15);
3651
3652 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3653 bld.exec_all().annotate("FB write OS")
3654 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3655 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3656 length++;
3657 }
3658
3659 fs_inst *load;
3660 if (devinfo->gen >= 7) {
3661 /* Send from the GRF */
3662 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3663 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3664 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3665 load->dst = payload;
3666
3667 inst->src[0] = payload;
3668 inst->resize_sources(1);
3669 inst->base_mrf = -1;
3670 } else {
3671 /* Send from the MRF */
3672 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3673 sources, length, payload_header_size);
3674
3675 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3676 * will do this for us if we just give it a COMPR4 destination.
3677 */
3678 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3679 load->dst.nr |= BRW_MRF_COMPR4;
3680
3681 inst->resize_sources(0);
3682 inst->base_mrf = 1;
3683 }
3684
3685 inst->opcode = FS_OPCODE_FB_WRITE;
3686 inst->mlen = load->regs_written;
3687 inst->header_size = header_size;
3688 }
3689
3690 static void
3691 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3692 const fs_reg &coordinate,
3693 const fs_reg &shadow_c,
3694 const fs_reg &lod, const fs_reg &lod2,
3695 const fs_reg &surface,
3696 const fs_reg &sampler,
3697 unsigned coord_components,
3698 unsigned grad_components)
3699 {
3700 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3701 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3702 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3703 fs_reg msg_end = msg_begin;
3704
3705 /* g0 header. */
3706 msg_end = offset(msg_end, bld.group(8, 0), 1);
3707
3708 for (unsigned i = 0; i < coord_components; i++)
3709 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3710 offset(coordinate, bld, i));
3711
3712 msg_end = offset(msg_end, bld, coord_components);
3713
3714 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3715 * require all three components to be present and zero if they are unused.
3716 */
3717 if (coord_components > 0 &&
3718 (has_lod || shadow_c.file != BAD_FILE ||
3719 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3720 for (unsigned i = coord_components; i < 3; i++)
3721 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3722
3723 msg_end = offset(msg_end, bld, 3 - coord_components);
3724 }
3725
3726 if (op == SHADER_OPCODE_TXD) {
3727 /* TXD unsupported in SIMD16 mode. */
3728 assert(bld.dispatch_width() == 8);
3729
3730 /* the slots for u and v are always present, but r is optional */
3731 if (coord_components < 2)
3732 msg_end = offset(msg_end, bld, 2 - coord_components);
3733
3734 /* P = u, v, r
3735 * dPdx = dudx, dvdx, drdx
3736 * dPdy = dudy, dvdy, drdy
3737 *
3738 * 1-arg: Does not exist.
3739 *
3740 * 2-arg: dudx dvdx dudy dvdy
3741 * dPdx.x dPdx.y dPdy.x dPdy.y
3742 * m4 m5 m6 m7
3743 *
3744 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3745 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3746 * m5 m6 m7 m8 m9 m10
3747 */
3748 for (unsigned i = 0; i < grad_components; i++)
3749 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3750
3751 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3752
3753 for (unsigned i = 0; i < grad_components; i++)
3754 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3755
3756 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3757 }
3758
3759 if (has_lod) {
3760 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3761 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3762 */
3763 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3764 bld.dispatch_width() == 16);
3765
3766 const brw_reg_type type =
3767 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3768 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3769 bld.MOV(retype(msg_end, type), lod);
3770 msg_end = offset(msg_end, bld, 1);
3771 }
3772
3773 if (shadow_c.file != BAD_FILE) {
3774 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3775 /* There's no plain shadow compare message, so we use shadow
3776 * compare with a bias of 0.0.
3777 */
3778 bld.MOV(msg_end, brw_imm_f(0.0f));
3779 msg_end = offset(msg_end, bld, 1);
3780 }
3781
3782 bld.MOV(msg_end, shadow_c);
3783 msg_end = offset(msg_end, bld, 1);
3784 }
3785
3786 inst->opcode = op;
3787 inst->src[0] = reg_undef;
3788 inst->src[1] = surface;
3789 inst->src[2] = sampler;
3790 inst->resize_sources(3);
3791 inst->base_mrf = msg_begin.nr;
3792 inst->mlen = msg_end.nr - msg_begin.nr;
3793 inst->header_size = 1;
3794 }
3795
3796 static void
3797 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3798 fs_reg coordinate,
3799 const fs_reg &shadow_c,
3800 fs_reg lod, fs_reg lod2,
3801 const fs_reg &sample_index,
3802 const fs_reg &surface,
3803 const fs_reg &sampler,
3804 const fs_reg &offset_value,
3805 unsigned coord_components,
3806 unsigned grad_components)
3807 {
3808 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3809 fs_reg msg_coords = message;
3810 unsigned header_size = 0;
3811
3812 if (offset_value.file != BAD_FILE) {
3813 /* The offsets set up by the visitor are in the m1 header, so we can't
3814 * go headerless.
3815 */
3816 header_size = 1;
3817 message.nr--;
3818 }
3819
3820 for (unsigned i = 0; i < coord_components; i++) {
3821 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3822 coordinate = offset(coordinate, bld, 1);
3823 }
3824 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3825 fs_reg msg_lod = offset(msg_coords, bld, 4);
3826
3827 if (shadow_c.file != BAD_FILE) {
3828 fs_reg msg_shadow = msg_lod;
3829 bld.MOV(msg_shadow, shadow_c);
3830 msg_lod = offset(msg_shadow, bld, 1);
3831 msg_end = msg_lod;
3832 }
3833
3834 switch (op) {
3835 case SHADER_OPCODE_TXL:
3836 case FS_OPCODE_TXB:
3837 bld.MOV(msg_lod, lod);
3838 msg_end = offset(msg_lod, bld, 1);
3839 break;
3840 case SHADER_OPCODE_TXD:
3841 /**
3842 * P = u, v, r
3843 * dPdx = dudx, dvdx, drdx
3844 * dPdy = dudy, dvdy, drdy
3845 *
3846 * Load up these values:
3847 * - dudx dudy dvdx dvdy drdx drdy
3848 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3849 */
3850 msg_end = msg_lod;
3851 for (unsigned i = 0; i < grad_components; i++) {
3852 bld.MOV(msg_end, lod);
3853 lod = offset(lod, bld, 1);
3854 msg_end = offset(msg_end, bld, 1);
3855
3856 bld.MOV(msg_end, lod2);
3857 lod2 = offset(lod2, bld, 1);
3858 msg_end = offset(msg_end, bld, 1);
3859 }
3860 break;
3861 case SHADER_OPCODE_TXS:
3862 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3863 bld.MOV(msg_lod, lod);
3864 msg_end = offset(msg_lod, bld, 1);
3865 break;
3866 case SHADER_OPCODE_TXF:
3867 msg_lod = offset(msg_coords, bld, 3);
3868 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3869 msg_end = offset(msg_lod, bld, 1);
3870 break;
3871 case SHADER_OPCODE_TXF_CMS:
3872 msg_lod = offset(msg_coords, bld, 3);
3873 /* lod */
3874 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3875 /* sample index */
3876 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3877 msg_end = offset(msg_lod, bld, 2);
3878 break;
3879 default:
3880 break;
3881 }
3882
3883 inst->opcode = op;
3884 inst->src[0] = reg_undef;
3885 inst->src[1] = surface;
3886 inst->src[2] = sampler;
3887 inst->resize_sources(3);
3888 inst->base_mrf = message.nr;
3889 inst->mlen = msg_end.nr - message.nr;
3890 inst->header_size = header_size;
3891
3892 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3893 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3894 }
3895
3896 static bool
3897 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3898 {
3899 if (devinfo->gen < 8 && !devinfo->is_haswell)
3900 return false;
3901
3902 return sampler.file != IMM || sampler.ud >= 16;
3903 }
3904
3905 static void
3906 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3907 fs_reg coordinate,
3908 const fs_reg &shadow_c,
3909 fs_reg lod, fs_reg lod2,
3910 const fs_reg &sample_index,
3911 const fs_reg &mcs,
3912 const fs_reg &surface,
3913 const fs_reg &sampler,
3914 fs_reg offset_value,
3915 unsigned coord_components,
3916 unsigned grad_components)
3917 {
3918 const brw_device_info *devinfo = bld.shader->devinfo;
3919 int reg_width = bld.dispatch_width() / 8;
3920 unsigned header_size = 0, length = 0;
3921 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3922 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3923 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3924
3925 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3926 offset_value.file != BAD_FILE ||
3927 is_high_sampler(devinfo, sampler)) {
3928 /* For general texture offsets (no txf workaround), we need a header to
3929 * put them in. Note that we're only reserving space for it in the
3930 * message payload as it will be initialized implicitly by the
3931 * generator.
3932 *
3933 * TG4 needs to place its channel select in the header, for interaction
3934 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3935 * larger sampler numbers we need to offset the Sampler State Pointer in
3936 * the header.
3937 */
3938 header_size = 1;
3939 sources[0] = fs_reg();
3940 length++;
3941 }
3942
3943 if (shadow_c.file != BAD_FILE) {
3944 bld.MOV(sources[length], shadow_c);
3945 length++;
3946 }
3947
3948 bool coordinate_done = false;
3949
3950 /* The sampler can only meaningfully compute LOD for fragment shader
3951 * messages. For all other stages, we change the opcode to TXL and
3952 * hardcode the LOD to 0.
3953 */
3954 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3955 op == SHADER_OPCODE_TEX) {
3956 op = SHADER_OPCODE_TXL;
3957 lod = brw_imm_f(0.0f);
3958 }
3959
3960 /* Set up the LOD info */
3961 switch (op) {
3962 case FS_OPCODE_TXB:
3963 case SHADER_OPCODE_TXL:
3964 bld.MOV(sources[length], lod);
3965 length++;
3966 break;
3967 case SHADER_OPCODE_TXD:
3968 /* TXD should have been lowered in SIMD16 mode. */
3969 assert(bld.dispatch_width() == 8);
3970
3971 /* Load dPdx and the coordinate together:
3972 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3973 */
3974 for (unsigned i = 0; i < coord_components; i++) {
3975 bld.MOV(sources[length], coordinate);
3976 coordinate = offset(coordinate, bld, 1);
3977 length++;
3978
3979 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3980 * only derivatives for (u, v, r).
3981 */
3982 if (i < grad_components) {
3983 bld.MOV(sources[length], lod);
3984 lod = offset(lod, bld, 1);
3985 length++;
3986
3987 bld.MOV(sources[length], lod2);
3988 lod2 = offset(lod2, bld, 1);
3989 length++;
3990 }
3991 }
3992
3993 coordinate_done = true;
3994 break;
3995 case SHADER_OPCODE_TXS:
3996 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3997 length++;
3998 break;
3999 case SHADER_OPCODE_TXF:
4000 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4001 * On Gen9 they are u, v, lod, r
4002 */
4003 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4004 coordinate = offset(coordinate, bld, 1);
4005 length++;
4006
4007 if (devinfo->gen >= 9) {
4008 if (coord_components >= 2) {
4009 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4010 coordinate = offset(coordinate, bld, 1);
4011 }
4012 length++;
4013 }
4014
4015 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4016 length++;
4017
4018 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
4019 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4020 coordinate = offset(coordinate, bld, 1);
4021 length++;
4022 }
4023
4024 coordinate_done = true;
4025 break;
4026 case SHADER_OPCODE_TXF_CMS:
4027 case SHADER_OPCODE_TXF_CMS_W:
4028 case SHADER_OPCODE_TXF_UMS:
4029 case SHADER_OPCODE_TXF_MCS:
4030 if (op == SHADER_OPCODE_TXF_UMS ||
4031 op == SHADER_OPCODE_TXF_CMS ||
4032 op == SHADER_OPCODE_TXF_CMS_W) {
4033 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4034 length++;
4035 }
4036
4037 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4038 /* Data from the multisample control surface. */
4039 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4040 length++;
4041
4042 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4043 * the MCS data.
4044 */
4045 if (op == SHADER_OPCODE_TXF_CMS_W) {
4046 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4047 mcs.file == IMM ?
4048 mcs :
4049 offset(mcs, bld, 1));
4050 length++;
4051 }
4052 }
4053
4054 /* There is no offsetting for this message; just copy in the integer
4055 * texture coordinates.
4056 */
4057 for (unsigned i = 0; i < coord_components; i++) {
4058 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4059 coordinate = offset(coordinate, bld, 1);
4060 length++;
4061 }
4062
4063 coordinate_done = true;
4064 break;
4065 case SHADER_OPCODE_TG4_OFFSET:
4066 /* gather4_po_c should have been lowered in SIMD16 mode. */
4067 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4068
4069 /* More crazy intermixing */
4070 for (unsigned i = 0; i < 2; i++) { /* u, v */
4071 bld.MOV(sources[length], coordinate);
4072 coordinate = offset(coordinate, bld, 1);
4073 length++;
4074 }
4075
4076 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4077 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4078 offset_value = offset(offset_value, bld, 1);
4079 length++;
4080 }
4081
4082 if (coord_components == 3) { /* r if present */
4083 bld.MOV(sources[length], coordinate);
4084 coordinate = offset(coordinate, bld, 1);
4085 length++;
4086 }
4087
4088 coordinate_done = true;
4089 break;
4090 default:
4091 break;
4092 }
4093
4094 /* Set up the coordinate (except for cases where it was done above) */
4095 if (!coordinate_done) {
4096 for (unsigned i = 0; i < coord_components; i++) {
4097 bld.MOV(sources[length], coordinate);
4098 coordinate = offset(coordinate, bld, 1);
4099 length++;
4100 }
4101 }
4102
4103 int mlen;
4104 if (reg_width == 2)
4105 mlen = length * reg_width - header_size;
4106 else
4107 mlen = length * reg_width;
4108
4109 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4110 BRW_REGISTER_TYPE_F);
4111 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4112
4113 /* Generate the SEND. */
4114 inst->opcode = op;
4115 inst->src[0] = src_payload;
4116 inst->src[1] = surface;
4117 inst->src[2] = sampler;
4118 inst->resize_sources(3);
4119 inst->base_mrf = -1;
4120 inst->mlen = mlen;
4121 inst->header_size = header_size;
4122
4123 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4124 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4125 }
4126
4127 static void
4128 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4129 {
4130 const brw_device_info *devinfo = bld.shader->devinfo;
4131 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4132 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4133 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4134 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4135 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4136 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4137 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4138 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4139 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4140 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4141 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4142 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4143 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4144
4145 if (devinfo->gen >= 7) {
4146 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4147 shadow_c, lod, lod2, sample_index,
4148 mcs, surface, sampler, offset_value,
4149 coord_components, grad_components);
4150 } else if (devinfo->gen >= 5) {
4151 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4152 shadow_c, lod, lod2, sample_index,
4153 surface, sampler, offset_value,
4154 coord_components, grad_components);
4155 } else {
4156 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4157 shadow_c, lod, lod2,
4158 surface, sampler,
4159 coord_components, grad_components);
4160 }
4161 }
4162
4163 /**
4164 * Initialize the header present in some typed and untyped surface
4165 * messages.
4166 */
4167 static fs_reg
4168 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4169 {
4170 fs_builder ubld = bld.exec_all().group(8, 0);
4171 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4172 ubld.MOV(dst, brw_imm_d(0));
4173 ubld.MOV(component(dst, 7), sample_mask);
4174 return dst;
4175 }
4176
4177 static void
4178 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4179 const fs_reg &sample_mask)
4180 {
4181 /* Get the logical send arguments. */
4182 const fs_reg &addr = inst->src[0];
4183 const fs_reg &src = inst->src[1];
4184 const fs_reg &surface = inst->src[2];
4185 const UNUSED fs_reg &dims = inst->src[3];
4186 const fs_reg &arg = inst->src[4];
4187
4188 /* Calculate the total number of components of the payload. */
4189 const unsigned addr_sz = inst->components_read(0);
4190 const unsigned src_sz = inst->components_read(1);
4191 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4192 const unsigned sz = header_sz + addr_sz + src_sz;
4193
4194 /* Allocate space for the payload. */
4195 fs_reg *const components = new fs_reg[sz];
4196 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4197 unsigned n = 0;
4198
4199 /* Construct the payload. */
4200 if (header_sz)
4201 components[n++] = emit_surface_header(bld, sample_mask);
4202
4203 for (unsigned i = 0; i < addr_sz; i++)
4204 components[n++] = offset(addr, bld, i);
4205
4206 for (unsigned i = 0; i < src_sz; i++)
4207 components[n++] = offset(src, bld, i);
4208
4209 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4210
4211 /* Update the original instruction. */
4212 inst->opcode = op;
4213 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4214 inst->header_size = header_sz;
4215
4216 inst->src[0] = payload;
4217 inst->src[1] = surface;
4218 inst->src[2] = arg;
4219 inst->resize_sources(3);
4220
4221 delete[] components;
4222 }
4223
4224 bool
4225 fs_visitor::lower_logical_sends()
4226 {
4227 bool progress = false;
4228
4229 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4230 const fs_builder ibld(this, block, inst);
4231
4232 switch (inst->opcode) {
4233 case FS_OPCODE_FB_WRITE_LOGICAL:
4234 assert(stage == MESA_SHADER_FRAGMENT);
4235 lower_fb_write_logical_send(ibld, inst,
4236 (const brw_wm_prog_data *)prog_data,
4237 (const brw_wm_prog_key *)key,
4238 payload);
4239 break;
4240
4241 case SHADER_OPCODE_TEX_LOGICAL:
4242 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4243 break;
4244
4245 case SHADER_OPCODE_TXD_LOGICAL:
4246 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4247 break;
4248
4249 case SHADER_OPCODE_TXF_LOGICAL:
4250 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4251 break;
4252
4253 case SHADER_OPCODE_TXL_LOGICAL:
4254 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4255 break;
4256
4257 case SHADER_OPCODE_TXS_LOGICAL:
4258 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4259 break;
4260
4261 case FS_OPCODE_TXB_LOGICAL:
4262 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4263 break;
4264
4265 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4266 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4267 break;
4268
4269 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4270 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4271 break;
4272
4273 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4274 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4275 break;
4276
4277 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4278 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4279 break;
4280
4281 case SHADER_OPCODE_LOD_LOGICAL:
4282 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4283 break;
4284
4285 case SHADER_OPCODE_TG4_LOGICAL:
4286 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4287 break;
4288
4289 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4290 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4291 break;
4292
4293 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4294 lower_surface_logical_send(ibld, inst,
4295 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4296 fs_reg());
4297 break;
4298
4299 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4300 lower_surface_logical_send(ibld, inst,
4301 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4302 ibld.sample_mask_reg());
4303 break;
4304
4305 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4306 lower_surface_logical_send(ibld, inst,
4307 SHADER_OPCODE_UNTYPED_ATOMIC,
4308 ibld.sample_mask_reg());
4309 break;
4310
4311 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4312 lower_surface_logical_send(ibld, inst,
4313 SHADER_OPCODE_TYPED_SURFACE_READ,
4314 brw_imm_d(0xffff));
4315 break;
4316
4317 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4318 lower_surface_logical_send(ibld, inst,
4319 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4320 ibld.sample_mask_reg());
4321 break;
4322
4323 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4324 lower_surface_logical_send(ibld, inst,
4325 SHADER_OPCODE_TYPED_ATOMIC,
4326 ibld.sample_mask_reg());
4327 break;
4328
4329 default:
4330 continue;
4331 }
4332
4333 progress = true;
4334 }
4335
4336 if (progress)
4337 invalidate_live_intervals();
4338
4339 return progress;
4340 }
4341
4342 /**
4343 * Get the closest native SIMD width supported by the hardware for instruction
4344 * \p inst. The instruction will be left untouched by
4345 * fs_visitor::lower_simd_width() if the returned value is equal to the
4346 * original execution size.
4347 */
4348 static unsigned
4349 get_lowered_simd_width(const struct brw_device_info *devinfo,
4350 const fs_inst *inst)
4351 {
4352 switch (inst->opcode) {
4353 case BRW_OPCODE_MOV:
4354 case BRW_OPCODE_SEL:
4355 case BRW_OPCODE_NOT:
4356 case BRW_OPCODE_AND:
4357 case BRW_OPCODE_OR:
4358 case BRW_OPCODE_XOR:
4359 case BRW_OPCODE_SHR:
4360 case BRW_OPCODE_SHL:
4361 case BRW_OPCODE_ASR:
4362 case BRW_OPCODE_CMP:
4363 case BRW_OPCODE_CMPN:
4364 case BRW_OPCODE_CSEL:
4365 case BRW_OPCODE_F32TO16:
4366 case BRW_OPCODE_F16TO32:
4367 case BRW_OPCODE_BFREV:
4368 case BRW_OPCODE_BFE:
4369 case BRW_OPCODE_BFI1:
4370 case BRW_OPCODE_BFI2:
4371 case BRW_OPCODE_ADD:
4372 case BRW_OPCODE_MUL:
4373 case BRW_OPCODE_AVG:
4374 case BRW_OPCODE_FRC:
4375 case BRW_OPCODE_RNDU:
4376 case BRW_OPCODE_RNDD:
4377 case BRW_OPCODE_RNDE:
4378 case BRW_OPCODE_RNDZ:
4379 case BRW_OPCODE_LZD:
4380 case BRW_OPCODE_FBH:
4381 case BRW_OPCODE_FBL:
4382 case BRW_OPCODE_CBIT:
4383 case BRW_OPCODE_SAD2:
4384 case BRW_OPCODE_MAD:
4385 case BRW_OPCODE_LRP:
4386 case SHADER_OPCODE_RCP:
4387 case SHADER_OPCODE_RSQ:
4388 case SHADER_OPCODE_SQRT:
4389 case SHADER_OPCODE_EXP2:
4390 case SHADER_OPCODE_LOG2:
4391 case SHADER_OPCODE_POW:
4392 case SHADER_OPCODE_INT_QUOTIENT:
4393 case SHADER_OPCODE_INT_REMAINDER:
4394 case SHADER_OPCODE_SIN:
4395 case SHADER_OPCODE_COS: {
4396 /* According to the PRMs:
4397 * "A. In Direct Addressing mode, a source cannot span more than 2
4398 * adjacent GRF registers.
4399 * B. A destination cannot span more than 2 adjacent GRF registers."
4400 *
4401 * Look for the source or destination with the largest register region
4402 * which is the one that is going to limit the overal execution size of
4403 * the instruction due to this rule.
4404 */
4405 unsigned reg_count = inst->regs_written;
4406
4407 for (unsigned i = 0; i < inst->sources; i++)
4408 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4409
4410 /* Calculate the maximum execution size of the instruction based on the
4411 * factor by which it goes over the hardware limit of 2 GRFs.
4412 */
4413 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4414 }
4415 case SHADER_OPCODE_MULH:
4416 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4417 * is 8-wide on Gen7+.
4418 */
4419 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4420
4421 case FS_OPCODE_FB_WRITE_LOGICAL:
4422 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4423 * here.
4424 */
4425 assert(devinfo->gen != 6 ||
4426 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4427 inst->exec_size == 8);
4428 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4429 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4430 8 : inst->exec_size);
4431
4432 case SHADER_OPCODE_TXD_LOGICAL:
4433 /* TXD is unsupported in SIMD16 mode. */
4434 return 8;
4435
4436 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4437 /* gather4_po_c is unsupported in SIMD16 mode. */
4438 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4439 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4440 }
4441 case SHADER_OPCODE_TXL_LOGICAL:
4442 case FS_OPCODE_TXB_LOGICAL: {
4443 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4444 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4445 * mode because the message exceeds the maximum length of 11.
4446 */
4447 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4448 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4449 return 16;
4450 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4451 return 8;
4452 else
4453 return inst->exec_size;
4454 }
4455 case SHADER_OPCODE_TXF_LOGICAL:
4456 case SHADER_OPCODE_TXS_LOGICAL:
4457 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4458 * messages. Use SIMD16 instead.
4459 */
4460 if (devinfo->gen == 4)
4461 return 16;
4462 else
4463 return inst->exec_size;
4464
4465 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4466 /* This opcode can take up to 6 arguments which means that in some
4467 * circumstances it can end up with a message that is too long in SIMD16
4468 * mode.
4469 */
4470 const unsigned coord_components =
4471 inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4472 /* First three arguments are the sample index and the two arguments for
4473 * the MCS data.
4474 */
4475 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4476 return 8;
4477 else
4478 return inst->exec_size;
4479 }
4480
4481 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4482 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4483 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4484 return 8;
4485
4486 case SHADER_OPCODE_MOV_INDIRECT:
4487 /* Prior to Broadwell, we only have 8 address subregisters */
4488 return devinfo->gen < 8 ? 8 : MIN2(inst->exec_size, 16);
4489
4490 default:
4491 return inst->exec_size;
4492 }
4493 }
4494
4495 /**
4496 * The \p rows array of registers represents a \p num_rows by \p num_columns
4497 * matrix in row-major order, write it in column-major order into the register
4498 * passed as destination. \p stride gives the separation between matrix
4499 * elements in the input in fs_builder::dispatch_width() units.
4500 */
4501 static void
4502 emit_transpose(const fs_builder &bld,
4503 const fs_reg &dst, const fs_reg *rows,
4504 unsigned num_rows, unsigned num_columns, unsigned stride)
4505 {
4506 fs_reg *const components = new fs_reg[num_rows * num_columns];
4507
4508 for (unsigned i = 0; i < num_columns; ++i) {
4509 for (unsigned j = 0; j < num_rows; ++j)
4510 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4511 }
4512
4513 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4514
4515 delete[] components;
4516 }
4517
4518 bool
4519 fs_visitor::lower_simd_width()
4520 {
4521 bool progress = false;
4522
4523 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4524 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4525
4526 if (lower_width != inst->exec_size) {
4527 /* Builder matching the original instruction. We may also need to
4528 * emit an instruction of width larger than the original, set the
4529 * execution size of the builder to the highest of both for now so
4530 * we're sure that both cases can be handled.
4531 */
4532 const fs_builder ibld = bld.at(block, inst)
4533 .exec_all(inst->force_writemask_all)
4534 .group(MAX2(inst->exec_size, lower_width),
4535 inst->force_sechalf);
4536
4537 /* Split the copies in chunks of the execution width of either the
4538 * original or the lowered instruction, whichever is lower.
4539 */
4540 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4541 const unsigned n = inst->exec_size / copy_width;
4542 const unsigned dst_size = inst->regs_written * REG_SIZE /
4543 inst->dst.component_size(inst->exec_size);
4544 fs_reg dsts[4];
4545
4546 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4547 !inst->writes_accumulator && !inst->mlen);
4548
4549 for (unsigned i = 0; i < n; i++) {
4550 /* Emit a copy of the original instruction with the lowered width.
4551 * If the EOT flag was set throw it away except for the last
4552 * instruction to avoid killing the thread prematurely.
4553 */
4554 fs_inst split_inst = *inst;
4555 split_inst.exec_size = lower_width;
4556 split_inst.eot = inst->eot && i == n - 1;
4557
4558 /* Select the correct channel enables for the i-th group, then
4559 * transform the sources and destination and emit the lowered
4560 * instruction.
4561 */
4562 const fs_builder lbld = ibld.group(lower_width, i);
4563
4564 for (unsigned j = 0; j < inst->sources; j++) {
4565 if (inst->src[j].file != BAD_FILE &&
4566 !is_uniform(inst->src[j])) {
4567 /* Get the i-th copy_width-wide chunk of the source. */
4568 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4569 const unsigned src_size = inst->components_read(j);
4570
4571 /* Use a trivial transposition to copy one every n
4572 * copy_width-wide components of the register into a
4573 * temporary passed as source to the lowered instruction.
4574 */
4575 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4576 emit_transpose(lbld.group(copy_width, 0),
4577 split_inst.src[j], &src, 1, src_size, n);
4578 }
4579 }
4580
4581 if (inst->regs_written) {
4582 /* Allocate enough space to hold the result of the lowered
4583 * instruction and fix up the number of registers written.
4584 */
4585 split_inst.dst = dsts[i] =
4586 lbld.vgrf(inst->dst.type, dst_size);
4587 split_inst.regs_written =
4588 DIV_ROUND_UP(inst->regs_written * lower_width,
4589 inst->exec_size);
4590 }
4591
4592 lbld.emit(split_inst);
4593 }
4594
4595 if (inst->regs_written) {
4596 /* Distance between useful channels in the temporaries, skipping
4597 * garbage if the lowered instruction is wider than the original.
4598 */
4599 const unsigned m = lower_width / copy_width;
4600
4601 /* Interleave the components of the result from the lowered
4602 * instructions. We need to set exec_all() when copying more than
4603 * one half per component, because LOAD_PAYLOAD (in terms of which
4604 * emit_transpose is implemented) can only use the same channel
4605 * enable signals for all of its non-header sources.
4606 */
4607 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4608 .group(copy_width, 0),
4609 inst->dst, dsts, n, dst_size, m);
4610 }
4611
4612 inst->remove(block);
4613 progress = true;
4614 }
4615 }
4616
4617 if (progress)
4618 invalidate_live_intervals();
4619
4620 return progress;
4621 }
4622
4623 void
4624 fs_visitor::dump_instructions()
4625 {
4626 dump_instructions(NULL);
4627 }
4628
4629 void
4630 fs_visitor::dump_instructions(const char *name)
4631 {
4632 FILE *file = stderr;
4633 if (name && geteuid() != 0) {
4634 file = fopen(name, "w");
4635 if (!file)
4636 file = stderr;
4637 }
4638
4639 if (cfg) {
4640 calculate_register_pressure();
4641 int ip = 0, max_pressure = 0;
4642 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4643 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4644 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4645 dump_instruction(inst, file);
4646 ip++;
4647 }
4648 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4649 } else {
4650 int ip = 0;
4651 foreach_in_list(backend_instruction, inst, &instructions) {
4652 fprintf(file, "%4d: ", ip++);
4653 dump_instruction(inst, file);
4654 }
4655 }
4656
4657 if (file != stderr) {
4658 fclose(file);
4659 }
4660 }
4661
4662 void
4663 fs_visitor::dump_instruction(backend_instruction *be_inst)
4664 {
4665 dump_instruction(be_inst, stderr);
4666 }
4667
4668 void
4669 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4670 {
4671 fs_inst *inst = (fs_inst *)be_inst;
4672
4673 if (inst->predicate) {
4674 fprintf(file, "(%cf0.%d) ",
4675 inst->predicate_inverse ? '-' : '+',
4676 inst->flag_subreg);
4677 }
4678
4679 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4680 if (inst->saturate)
4681 fprintf(file, ".sat");
4682 if (inst->conditional_mod) {
4683 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4684 if (!inst->predicate &&
4685 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4686 inst->opcode != BRW_OPCODE_IF &&
4687 inst->opcode != BRW_OPCODE_WHILE))) {
4688 fprintf(file, ".f0.%d", inst->flag_subreg);
4689 }
4690 }
4691 fprintf(file, "(%d) ", inst->exec_size);
4692
4693 if (inst->mlen) {
4694 fprintf(file, "(mlen: %d) ", inst->mlen);
4695 }
4696
4697 switch (inst->dst.file) {
4698 case VGRF:
4699 fprintf(file, "vgrf%d", inst->dst.nr);
4700 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4701 inst->dst.subreg_offset)
4702 fprintf(file, "+%d.%d",
4703 inst->dst.reg_offset, inst->dst.subreg_offset);
4704 break;
4705 case FIXED_GRF:
4706 fprintf(file, "g%d", inst->dst.nr);
4707 break;
4708 case MRF:
4709 fprintf(file, "m%d", inst->dst.nr);
4710 break;
4711 case BAD_FILE:
4712 fprintf(file, "(null)");
4713 break;
4714 case UNIFORM:
4715 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4716 break;
4717 case ATTR:
4718 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4719 break;
4720 case ARF:
4721 switch (inst->dst.nr) {
4722 case BRW_ARF_NULL:
4723 fprintf(file, "null");
4724 break;
4725 case BRW_ARF_ADDRESS:
4726 fprintf(file, "a0.%d", inst->dst.subnr);
4727 break;
4728 case BRW_ARF_ACCUMULATOR:
4729 fprintf(file, "acc%d", inst->dst.subnr);
4730 break;
4731 case BRW_ARF_FLAG:
4732 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4733 break;
4734 default:
4735 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4736 break;
4737 }
4738 if (inst->dst.subnr)
4739 fprintf(file, "+%d", inst->dst.subnr);
4740 break;
4741 case IMM:
4742 unreachable("not reached");
4743 }
4744 if (inst->dst.stride != 1)
4745 fprintf(file, "<%u>", inst->dst.stride);
4746 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4747
4748 for (int i = 0; i < inst->sources; i++) {
4749 if (inst->src[i].negate)
4750 fprintf(file, "-");
4751 if (inst->src[i].abs)
4752 fprintf(file, "|");
4753 switch (inst->src[i].file) {
4754 case VGRF:
4755 fprintf(file, "vgrf%d", inst->src[i].nr);
4756 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4757 inst->src[i].subreg_offset)
4758 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4759 inst->src[i].subreg_offset);
4760 break;
4761 case FIXED_GRF:
4762 fprintf(file, "g%d", inst->src[i].nr);
4763 break;
4764 case MRF:
4765 fprintf(file, "***m%d***", inst->src[i].nr);
4766 break;
4767 case ATTR:
4768 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4769 break;
4770 case UNIFORM:
4771 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4772 if (inst->src[i].reladdr) {
4773 fprintf(file, "+reladdr");
4774 } else if (inst->src[i].subreg_offset) {
4775 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4776 inst->src[i].subreg_offset);
4777 }
4778 break;
4779 case BAD_FILE:
4780 fprintf(file, "(null)");
4781 break;
4782 case IMM:
4783 switch (inst->src[i].type) {
4784 case BRW_REGISTER_TYPE_F:
4785 fprintf(file, "%-gf", inst->src[i].f);
4786 break;
4787 case BRW_REGISTER_TYPE_W:
4788 case BRW_REGISTER_TYPE_D:
4789 fprintf(file, "%dd", inst->src[i].d);
4790 break;
4791 case BRW_REGISTER_TYPE_UW:
4792 case BRW_REGISTER_TYPE_UD:
4793 fprintf(file, "%uu", inst->src[i].ud);
4794 break;
4795 case BRW_REGISTER_TYPE_VF:
4796 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4797 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4798 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4799 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4800 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4801 break;
4802 default:
4803 fprintf(file, "???");
4804 break;
4805 }
4806 break;
4807 case ARF:
4808 switch (inst->src[i].nr) {
4809 case BRW_ARF_NULL:
4810 fprintf(file, "null");
4811 break;
4812 case BRW_ARF_ADDRESS:
4813 fprintf(file, "a0.%d", inst->src[i].subnr);
4814 break;
4815 case BRW_ARF_ACCUMULATOR:
4816 fprintf(file, "acc%d", inst->src[i].subnr);
4817 break;
4818 case BRW_ARF_FLAG:
4819 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4820 break;
4821 default:
4822 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4823 break;
4824 }
4825 if (inst->src[i].subnr)
4826 fprintf(file, "+%d", inst->src[i].subnr);
4827 break;
4828 }
4829 if (inst->src[i].abs)
4830 fprintf(file, "|");
4831
4832 if (inst->src[i].file != IMM) {
4833 unsigned stride;
4834 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4835 unsigned hstride = inst->src[i].hstride;
4836 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4837 } else {
4838 stride = inst->src[i].stride;
4839 }
4840 if (stride != 1)
4841 fprintf(file, "<%u>", stride);
4842
4843 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4844 }
4845
4846 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4847 fprintf(file, ", ");
4848 }
4849
4850 fprintf(file, " ");
4851
4852 if (inst->force_writemask_all)
4853 fprintf(file, "NoMask ");
4854
4855 if (dispatch_width == 16 && inst->exec_size == 8) {
4856 if (inst->force_sechalf)
4857 fprintf(file, "2ndhalf ");
4858 else
4859 fprintf(file, "1sthalf ");
4860 }
4861
4862 fprintf(file, "\n");
4863 }
4864
4865 /**
4866 * Possibly returns an instruction that set up @param reg.
4867 *
4868 * Sometimes we want to take the result of some expression/variable
4869 * dereference tree and rewrite the instruction generating the result
4870 * of the tree. When processing the tree, we know that the
4871 * instructions generated are all writing temporaries that are dead
4872 * outside of this tree. So, if we have some instructions that write
4873 * a temporary, we're free to point that temp write somewhere else.
4874 *
4875 * Note that this doesn't guarantee that the instruction generated
4876 * only reg -- it might be the size=4 destination of a texture instruction.
4877 */
4878 fs_inst *
4879 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4880 fs_inst *end,
4881 const fs_reg &reg)
4882 {
4883 if (end == start ||
4884 end->is_partial_write() ||
4885 reg.reladdr ||
4886 !reg.equals(end->dst)) {
4887 return NULL;
4888 } else {
4889 return end;
4890 }
4891 }
4892
4893 void
4894 fs_visitor::setup_fs_payload_gen6()
4895 {
4896 assert(stage == MESA_SHADER_FRAGMENT);
4897 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4898 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4899
4900 unsigned barycentric_interp_modes =
4901 (stage == MESA_SHADER_FRAGMENT) ?
4902 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4903
4904 assert(devinfo->gen >= 6);
4905
4906 /* R0-1: masks, pixel X/Y coordinates. */
4907 payload.num_regs = 2;
4908 /* R2: only for 32-pixel dispatch.*/
4909
4910 /* R3-26: barycentric interpolation coordinates. These appear in the
4911 * same order that they appear in the brw_wm_barycentric_interp_mode
4912 * enum. Each set of coordinates occupies 2 registers if dispatch width
4913 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4914 * appear if they were enabled using the "Barycentric Interpolation
4915 * Mode" bits in WM_STATE.
4916 */
4917 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4918 if (barycentric_interp_modes & (1 << i)) {
4919 payload.barycentric_coord_reg[i] = payload.num_regs;
4920 payload.num_regs += 2;
4921 if (dispatch_width == 16) {
4922 payload.num_regs += 2;
4923 }
4924 }
4925 }
4926
4927 /* R27: interpolated depth if uses source depth */
4928 prog_data->uses_src_depth =
4929 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4930 if (prog_data->uses_src_depth) {
4931 payload.source_depth_reg = payload.num_regs;
4932 payload.num_regs++;
4933 if (dispatch_width == 16) {
4934 /* R28: interpolated depth if not SIMD8. */
4935 payload.num_regs++;
4936 }
4937 }
4938
4939 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4940 prog_data->uses_src_w =
4941 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4942 if (prog_data->uses_src_w) {
4943 payload.source_w_reg = payload.num_regs;
4944 payload.num_regs++;
4945 if (dispatch_width == 16) {
4946 /* R30: interpolated W if not SIMD8. */
4947 payload.num_regs++;
4948 }
4949 }
4950
4951 prog_data->uses_pos_offset = key->compute_pos_offset;
4952 /* R31: MSAA position offsets. */
4953 if (prog_data->uses_pos_offset) {
4954 payload.sample_pos_reg = payload.num_regs;
4955 payload.num_regs++;
4956 }
4957
4958 /* R32: MSAA input coverage mask */
4959 prog_data->uses_sample_mask =
4960 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
4961 if (prog_data->uses_sample_mask) {
4962 assert(devinfo->gen >= 7);
4963 payload.sample_mask_in_reg = payload.num_regs;
4964 payload.num_regs++;
4965 if (dispatch_width == 16) {
4966 /* R33: input coverage mask if not SIMD8. */
4967 payload.num_regs++;
4968 }
4969 }
4970
4971 /* R34-: bary for 32-pixel. */
4972 /* R58-59: interp W for 32-pixel. */
4973
4974 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4975 source_depth_to_render_target = true;
4976 }
4977 }
4978
4979 void
4980 fs_visitor::setup_vs_payload()
4981 {
4982 /* R0: thread header, R1: urb handles */
4983 payload.num_regs = 2;
4984 }
4985
4986 /**
4987 * We are building the local ID push constant data using the simplest possible
4988 * method. We simply push the local IDs directly as they should appear in the
4989 * registers for the uvec3 gl_LocalInvocationID variable.
4990 *
4991 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4992 * registers worth of push constant space.
4993 *
4994 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4995 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4996 * to coordinated.
4997 *
4998 * FINISHME: There are a few easy optimizations to consider.
4999 *
5000 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
5001 * no need for using push constant space for that dimension.
5002 *
5003 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
5004 * easily use 16-bit words rather than 32-bit dwords in the push constant
5005 * data.
5006 *
5007 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
5008 * conveying the data, and thereby reduce push constant usage.
5009 *
5010 */
5011 void
5012 fs_visitor::setup_gs_payload()
5013 {
5014 assert(stage == MESA_SHADER_GEOMETRY);
5015
5016 struct brw_gs_prog_data *gs_prog_data =
5017 (struct brw_gs_prog_data *) prog_data;
5018 struct brw_vue_prog_data *vue_prog_data =
5019 (struct brw_vue_prog_data *) prog_data;
5020
5021 /* R0: thread header, R1: output URB handles */
5022 payload.num_regs = 2;
5023
5024 if (gs_prog_data->include_primitive_id) {
5025 /* R2: Primitive ID 0..7 */
5026 payload.num_regs++;
5027 }
5028
5029 /* Use a maximum of 32 registers for push-model inputs. */
5030 const unsigned max_push_components = 32;
5031
5032 /* If pushing our inputs would take too many registers, reduce the URB read
5033 * length (which is in HWords, or 8 registers), and resort to pulling.
5034 *
5035 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5036 * have to multiply by VerticesIn to obtain the total storage requirement.
5037 */
5038 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5039 max_push_components) {
5040 gs_prog_data->base.include_vue_handles = true;
5041
5042 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5043 payload.num_regs += nir->info.gs.vertices_in;
5044
5045 vue_prog_data->urb_read_length =
5046 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5047 }
5048 }
5049
5050 void
5051 fs_visitor::setup_cs_payload()
5052 {
5053 assert(devinfo->gen >= 7);
5054 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
5055
5056 payload.num_regs = 1;
5057
5058 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5059 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5060 payload.local_invocation_id_reg = payload.num_regs;
5061 payload.num_regs += prog_data->local_invocation_id_regs;
5062 }
5063 }
5064
5065 void
5066 fs_visitor::calculate_register_pressure()
5067 {
5068 invalidate_live_intervals();
5069 calculate_live_intervals();
5070
5071 unsigned num_instructions = 0;
5072 foreach_block(block, cfg)
5073 num_instructions += block->instructions.length();
5074
5075 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5076
5077 for (unsigned reg = 0; reg < alloc.count; reg++) {
5078 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5079 regs_live_at_ip[ip] += alloc.sizes[reg];
5080 }
5081 }
5082
5083 void
5084 fs_visitor::optimize()
5085 {
5086 /* Start by validating the shader we currently have. */
5087 validate();
5088
5089 /* bld is the common builder object pointing at the end of the program we
5090 * used to translate it into i965 IR. For the optimization and lowering
5091 * passes coming next, any code added after the end of the program without
5092 * having explicitly called fs_builder::at() clearly points at a mistake.
5093 * Ideally optimization passes wouldn't be part of the visitor so they
5094 * wouldn't have access to bld at all, but they do, so just in case some
5095 * pass forgets to ask for a location explicitly set it to NULL here to
5096 * make it trip. The dispatch width is initialized to a bogus value to
5097 * make sure that optimizations set the execution controls explicitly to
5098 * match the code they are manipulating instead of relying on the defaults.
5099 */
5100 bld = fs_builder(this, 64);
5101
5102 assign_constant_locations();
5103 demote_pull_constants();
5104
5105 validate();
5106
5107 split_virtual_grfs();
5108 validate();
5109
5110 #define OPT(pass, args...) ({ \
5111 pass_num++; \
5112 bool this_progress = pass(args); \
5113 \
5114 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5115 char filename[64]; \
5116 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5117 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5118 \
5119 backend_shader::dump_instructions(filename); \
5120 } \
5121 \
5122 validate(); \
5123 \
5124 progress = progress || this_progress; \
5125 this_progress; \
5126 })
5127
5128 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5129 char filename[64];
5130 snprintf(filename, 64, "%s%d-%s-00-00-start",
5131 stage_abbrev, dispatch_width, nir->info.name);
5132
5133 backend_shader::dump_instructions(filename);
5134 }
5135
5136 bool progress = false;
5137 int iteration = 0;
5138 int pass_num = 0;
5139
5140 OPT(lower_simd_width);
5141 OPT(lower_logical_sends);
5142
5143 do {
5144 progress = false;
5145 pass_num = 0;
5146 iteration++;
5147
5148 OPT(remove_duplicate_mrf_writes);
5149
5150 OPT(opt_algebraic);
5151 OPT(opt_cse);
5152 OPT(opt_copy_propagate);
5153 OPT(opt_predicated_break, this);
5154 OPT(opt_cmod_propagation);
5155 OPT(dead_code_eliminate);
5156 OPT(opt_peephole_sel);
5157 OPT(dead_control_flow_eliminate, this);
5158 OPT(opt_register_renaming);
5159 OPT(opt_redundant_discard_jumps);
5160 OPT(opt_saturate_propagation);
5161 OPT(opt_zero_samples);
5162 OPT(register_coalesce);
5163 OPT(compute_to_mrf);
5164 OPT(eliminate_find_live_channel);
5165
5166 OPT(compact_virtual_grfs);
5167 } while (progress);
5168
5169 pass_num = 0;
5170
5171 OPT(opt_sampler_eot);
5172
5173 if (OPT(lower_load_payload)) {
5174 split_virtual_grfs();
5175 OPT(register_coalesce);
5176 OPT(compute_to_mrf);
5177 OPT(dead_code_eliminate);
5178 }
5179
5180 OPT(opt_combine_constants);
5181 OPT(lower_integer_multiplication);
5182
5183 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5184 OPT(opt_cmod_propagation);
5185 OPT(opt_cse);
5186 OPT(opt_copy_propagate);
5187 OPT(dead_code_eliminate);
5188 }
5189
5190 lower_uniform_pull_constant_loads();
5191
5192 validate();
5193 }
5194
5195 /**
5196 * Three source instruction must have a GRF/MRF destination register.
5197 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5198 */
5199 void
5200 fs_visitor::fixup_3src_null_dest()
5201 {
5202 bool progress = false;
5203
5204 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5205 if (inst->is_3src() && inst->dst.is_null()) {
5206 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5207 inst->dst.type);
5208 progress = true;
5209 }
5210 }
5211
5212 if (progress)
5213 invalidate_live_intervals();
5214 }
5215
5216 void
5217 fs_visitor::allocate_registers()
5218 {
5219 bool allocated_without_spills;
5220
5221 static const enum instruction_scheduler_mode pre_modes[] = {
5222 SCHEDULE_PRE,
5223 SCHEDULE_PRE_NON_LIFO,
5224 SCHEDULE_PRE_LIFO,
5225 };
5226
5227 /* Try each scheduling heuristic to see if it can successfully register
5228 * allocate without spilling. They should be ordered by decreasing
5229 * performance but increasing likelihood of allocating.
5230 */
5231 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5232 schedule_instructions(pre_modes[i]);
5233
5234 if (0) {
5235 assign_regs_trivial();
5236 allocated_without_spills = true;
5237 } else {
5238 allocated_without_spills = assign_regs(false);
5239 }
5240 if (allocated_without_spills)
5241 break;
5242 }
5243
5244 if (!allocated_without_spills) {
5245 /* We assume that any spilling is worse than just dropping back to
5246 * SIMD8. There's probably actually some intermediate point where
5247 * SIMD16 with a couple of spills is still better.
5248 */
5249 if (dispatch_width == 16 && min_dispatch_width <= 8) {
5250 fail("Failure to register allocate. Reduce number of "
5251 "live scalar values to avoid this.");
5252 } else {
5253 compiler->shader_perf_log(log_data,
5254 "%s shader triggered register spilling. "
5255 "Try reducing the number of live scalar "
5256 "values to improve performance.\n",
5257 stage_name);
5258 }
5259
5260 /* Since we're out of heuristics, just go spill registers until we
5261 * get an allocation.
5262 */
5263 while (!assign_regs(true)) {
5264 if (failed)
5265 break;
5266 }
5267 }
5268
5269 /* This must come after all optimization and register allocation, since
5270 * it inserts dead code that happens to have side effects, and it does
5271 * so based on the actual physical registers in use.
5272 */
5273 insert_gen4_send_dependency_workarounds();
5274
5275 if (failed)
5276 return;
5277
5278 schedule_instructions(SCHEDULE_POST);
5279
5280 if (last_scratch > 0)
5281 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5282 }
5283
5284 bool
5285 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5286 {
5287 assert(stage == MESA_SHADER_VERTEX);
5288
5289 setup_vs_payload();
5290
5291 if (shader_time_index >= 0)
5292 emit_shader_time_begin();
5293
5294 emit_nir_code();
5295
5296 if (failed)
5297 return false;
5298
5299 compute_clip_distance(clip_planes);
5300
5301 emit_urb_writes();
5302
5303 if (shader_time_index >= 0)
5304 emit_shader_time_end();
5305
5306 calculate_cfg();
5307
5308 optimize();
5309
5310 assign_curb_setup();
5311 assign_vs_urb_setup();
5312
5313 fixup_3src_null_dest();
5314 allocate_registers();
5315
5316 return !failed;
5317 }
5318
5319 bool
5320 fs_visitor::run_tes()
5321 {
5322 assert(stage == MESA_SHADER_TESS_EVAL);
5323
5324 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5325 payload.num_regs = 5;
5326
5327 if (shader_time_index >= 0)
5328 emit_shader_time_begin();
5329
5330 emit_nir_code();
5331
5332 if (failed)
5333 return false;
5334
5335 emit_urb_writes();
5336
5337 if (shader_time_index >= 0)
5338 emit_shader_time_end();
5339
5340 calculate_cfg();
5341
5342 optimize();
5343
5344 assign_curb_setup();
5345 assign_tes_urb_setup();
5346
5347 fixup_3src_null_dest();
5348 allocate_registers();
5349
5350 return !failed;
5351 }
5352
5353 bool
5354 fs_visitor::run_gs()
5355 {
5356 assert(stage == MESA_SHADER_GEOMETRY);
5357
5358 setup_gs_payload();
5359
5360 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5361
5362 if (gs_compile->control_data_header_size_bits > 0) {
5363 /* Create a VGRF to store accumulated control data bits. */
5364 this->control_data_bits = vgrf(glsl_type::uint_type);
5365
5366 /* If we're outputting more than 32 control data bits, then EmitVertex()
5367 * will set control_data_bits to 0 after emitting the first vertex.
5368 * Otherwise, we need to initialize it to 0 here.
5369 */
5370 if (gs_compile->control_data_header_size_bits <= 32) {
5371 const fs_builder abld = bld.annotate("initialize control data bits");
5372 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5373 }
5374 }
5375
5376 if (shader_time_index >= 0)
5377 emit_shader_time_begin();
5378
5379 emit_nir_code();
5380
5381 emit_gs_thread_end();
5382
5383 if (shader_time_index >= 0)
5384 emit_shader_time_end();
5385
5386 if (failed)
5387 return false;
5388
5389 calculate_cfg();
5390
5391 optimize();
5392
5393 assign_curb_setup();
5394 assign_gs_urb_setup();
5395
5396 fixup_3src_null_dest();
5397 allocate_registers();
5398
5399 return !failed;
5400 }
5401
5402 bool
5403 fs_visitor::run_fs(bool do_rep_send)
5404 {
5405 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5406 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5407
5408 assert(stage == MESA_SHADER_FRAGMENT);
5409
5410 if (devinfo->gen >= 6)
5411 setup_fs_payload_gen6();
5412 else
5413 setup_fs_payload_gen4();
5414
5415 if (0) {
5416 emit_dummy_fs();
5417 } else if (do_rep_send) {
5418 assert(dispatch_width == 16);
5419 emit_repclear_shader();
5420 } else {
5421 if (shader_time_index >= 0)
5422 emit_shader_time_begin();
5423
5424 calculate_urb_setup();
5425 if (nir->info.inputs_read > 0) {
5426 if (devinfo->gen < 6)
5427 emit_interpolation_setup_gen4();
5428 else
5429 emit_interpolation_setup_gen6();
5430 }
5431
5432 /* We handle discards by keeping track of the still-live pixels in f0.1.
5433 * Initialize it with the dispatched pixels.
5434 */
5435 if (wm_prog_data->uses_kill) {
5436 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5437 discard_init->flag_subreg = 1;
5438 }
5439
5440 /* Generate FS IR for main(). (the visitor only descends into
5441 * functions called "main").
5442 */
5443 emit_nir_code();
5444
5445 if (failed)
5446 return false;
5447
5448 if (wm_prog_data->uses_kill)
5449 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5450
5451 if (wm_key->alpha_test_func)
5452 emit_alpha_test();
5453
5454 emit_fb_writes();
5455
5456 if (shader_time_index >= 0)
5457 emit_shader_time_end();
5458
5459 calculate_cfg();
5460
5461 optimize();
5462
5463 assign_curb_setup();
5464 assign_urb_setup();
5465
5466 fixup_3src_null_dest();
5467 allocate_registers();
5468
5469 if (failed)
5470 return false;
5471 }
5472
5473 if (dispatch_width == 8)
5474 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5475 else
5476 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5477
5478 return !failed;
5479 }
5480
5481 bool
5482 fs_visitor::run_cs()
5483 {
5484 assert(stage == MESA_SHADER_COMPUTE);
5485
5486 setup_cs_payload();
5487
5488 if (shader_time_index >= 0)
5489 emit_shader_time_begin();
5490
5491 if (devinfo->is_haswell && prog_data->total_shared > 0) {
5492 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
5493 const fs_builder abld = bld.exec_all().group(1, 0);
5494 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
5495 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
5496 }
5497
5498 emit_nir_code();
5499
5500 if (failed)
5501 return false;
5502
5503 emit_cs_terminate();
5504
5505 if (shader_time_index >= 0)
5506 emit_shader_time_end();
5507
5508 calculate_cfg();
5509
5510 optimize();
5511
5512 assign_curb_setup();
5513
5514 fixup_3src_null_dest();
5515 allocate_registers();
5516
5517 if (failed)
5518 return false;
5519
5520 return !failed;
5521 }
5522
5523 /**
5524 * Return a bitfield where bit n is set if barycentric interpolation mode n
5525 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5526 */
5527 static unsigned
5528 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5529 bool shade_model_flat,
5530 bool persample_shading,
5531 const nir_shader *shader)
5532 {
5533 unsigned barycentric_interp_modes = 0;
5534
5535 nir_foreach_variable(var, &shader->inputs) {
5536 enum glsl_interp_qualifier interp_qualifier =
5537 (enum glsl_interp_qualifier)var->data.interpolation;
5538 bool is_centroid = var->data.centroid && !persample_shading;
5539 bool is_sample = var->data.sample || persample_shading;
5540 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5541 (var->data.location == VARYING_SLOT_COL1);
5542
5543 /* Ignore WPOS and FACE, because they don't require interpolation. */
5544 if (var->data.location == VARYING_SLOT_POS ||
5545 var->data.location == VARYING_SLOT_FACE)
5546 continue;
5547
5548 /* Determine the set (or sets) of barycentric coordinates needed to
5549 * interpolate this variable. Note that when
5550 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5551 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5552 * for lit pixels, so we need both sets of barycentric coordinates.
5553 */
5554 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5555 if (is_centroid) {
5556 barycentric_interp_modes |=
5557 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5558 } else if (is_sample) {
5559 barycentric_interp_modes |=
5560 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5561 }
5562 if ((!is_centroid && !is_sample) ||
5563 devinfo->needs_unlit_centroid_workaround) {
5564 barycentric_interp_modes |=
5565 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5566 }
5567 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5568 (!(shade_model_flat && is_gl_Color) &&
5569 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5570 if (is_centroid) {
5571 barycentric_interp_modes |=
5572 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5573 } else if (is_sample) {
5574 barycentric_interp_modes |=
5575 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5576 }
5577 if ((!is_centroid && !is_sample) ||
5578 devinfo->needs_unlit_centroid_workaround) {
5579 barycentric_interp_modes |=
5580 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5581 }
5582 }
5583 }
5584
5585 return barycentric_interp_modes;
5586 }
5587
5588 static void
5589 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
5590 bool shade_model_flat, const nir_shader *shader)
5591 {
5592 prog_data->flat_inputs = 0;
5593
5594 nir_foreach_variable(var, &shader->inputs) {
5595 enum glsl_interp_qualifier interp_qualifier =
5596 (enum glsl_interp_qualifier)var->data.interpolation;
5597 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5598 (var->data.location == VARYING_SLOT_COL1);
5599
5600 int input_index = prog_data->urb_setup[var->data.location];
5601
5602 if (input_index < 0)
5603 continue;
5604
5605 /* flat shading */
5606 if (interp_qualifier == INTERP_QUALIFIER_FLAT ||
5607 (shade_model_flat && is_gl_Color &&
5608 interp_qualifier == INTERP_QUALIFIER_NONE))
5609 prog_data->flat_inputs |= (1 << input_index);
5610 }
5611 }
5612
5613 static uint8_t
5614 computed_depth_mode(const nir_shader *shader)
5615 {
5616 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5617 switch (shader->info.fs.depth_layout) {
5618 case FRAG_DEPTH_LAYOUT_NONE:
5619 case FRAG_DEPTH_LAYOUT_ANY:
5620 return BRW_PSCDEPTH_ON;
5621 case FRAG_DEPTH_LAYOUT_GREATER:
5622 return BRW_PSCDEPTH_ON_GE;
5623 case FRAG_DEPTH_LAYOUT_LESS:
5624 return BRW_PSCDEPTH_ON_LE;
5625 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5626 return BRW_PSCDEPTH_OFF;
5627 }
5628 }
5629 return BRW_PSCDEPTH_OFF;
5630 }
5631
5632 const unsigned *
5633 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5634 void *mem_ctx,
5635 const struct brw_wm_prog_key *key,
5636 struct brw_wm_prog_data *prog_data,
5637 const nir_shader *src_shader,
5638 struct gl_program *prog,
5639 int shader_time_index8, int shader_time_index16,
5640 bool use_rep_send,
5641 unsigned *final_assembly_size,
5642 char **error_str)
5643 {
5644 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5645 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5646 true);
5647 brw_nir_lower_fs_inputs(shader);
5648 brw_nir_lower_fs_outputs(shader);
5649 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5650
5651 /* key->alpha_test_func means simulating alpha testing via discards,
5652 * so the shader definitely kills pixels.
5653 */
5654 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5655 prog_data->uses_omask =
5656 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5657 prog_data->computed_depth_mode = computed_depth_mode(shader);
5658 prog_data->computed_stencil =
5659 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5660
5661 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5662
5663 prog_data->barycentric_interp_modes =
5664 brw_compute_barycentric_interp_modes(compiler->devinfo,
5665 key->flat_shade,
5666 key->persample_shading,
5667 shader);
5668
5669 fs_visitor v(compiler, log_data, mem_ctx, key,
5670 &prog_data->base, prog, shader, 8,
5671 shader_time_index8);
5672 if (!v.run_fs(false /* do_rep_send */)) {
5673 if (error_str)
5674 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5675
5676 return NULL;
5677 }
5678
5679 cfg_t *simd16_cfg = NULL;
5680 fs_visitor v2(compiler, log_data, mem_ctx, key,
5681 &prog_data->base, prog, shader, 16,
5682 shader_time_index16);
5683 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5684 if (!v.simd16_unsupported) {
5685 /* Try a SIMD16 compile */
5686 v2.import_uniforms(&v);
5687 if (!v2.run_fs(use_rep_send)) {
5688 compiler->shader_perf_log(log_data,
5689 "SIMD16 shader failed to compile: %s",
5690 v2.fail_msg);
5691 } else {
5692 simd16_cfg = v2.cfg;
5693 }
5694 }
5695 }
5696
5697 /* We have to compute the flat inputs after the visitor is finished running
5698 * because it relies on prog_data->urb_setup which is computed in
5699 * fs_visitor::calculate_urb_setup().
5700 */
5701 brw_compute_flat_inputs(prog_data, key->flat_shade, shader);
5702
5703 cfg_t *simd8_cfg;
5704 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5705 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5706 simd8_cfg = NULL;
5707 prog_data->no_8 = true;
5708 } else {
5709 simd8_cfg = v.cfg;
5710 prog_data->no_8 = false;
5711 }
5712
5713 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5714 v.promoted_constants, v.runtime_check_aads_emit,
5715 MESA_SHADER_FRAGMENT);
5716
5717 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5718 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5719 shader->info.label ? shader->info.label :
5720 "unnamed",
5721 shader->info.name));
5722 }
5723
5724 if (simd8_cfg)
5725 g.generate_code(simd8_cfg, 8);
5726 if (simd16_cfg)
5727 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5728
5729 return g.get_assembly(final_assembly_size);
5730 }
5731
5732 fs_reg *
5733 fs_visitor::emit_cs_local_invocation_id_setup()
5734 {
5735 assert(stage == MESA_SHADER_COMPUTE);
5736
5737 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5738
5739 struct brw_reg src =
5740 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5741 src = retype(src, BRW_REGISTER_TYPE_UD);
5742 bld.MOV(*reg, src);
5743 src.nr += dispatch_width / 8;
5744 bld.MOV(offset(*reg, bld, 1), src);
5745 src.nr += dispatch_width / 8;
5746 bld.MOV(offset(*reg, bld, 2), src);
5747
5748 return reg;
5749 }
5750
5751 fs_reg *
5752 fs_visitor::emit_cs_work_group_id_setup()
5753 {
5754 assert(stage == MESA_SHADER_COMPUTE);
5755
5756 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5757
5758 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5759 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5760 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5761
5762 bld.MOV(*reg, r0_1);
5763 bld.MOV(offset(*reg, bld, 1), r0_6);
5764 bld.MOV(offset(*reg, bld, 2), r0_7);
5765
5766 return reg;
5767 }
5768
5769 const unsigned *
5770 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5771 void *mem_ctx,
5772 const struct brw_cs_prog_key *key,
5773 struct brw_cs_prog_data *prog_data,
5774 const nir_shader *src_shader,
5775 int shader_time_index,
5776 unsigned *final_assembly_size,
5777 char **error_str)
5778 {
5779 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5780 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5781 true);
5782 brw_nir_lower_cs_shared(shader);
5783 prog_data->base.total_shared += shader->num_shared;
5784 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5785
5786 prog_data->local_size[0] = shader->info.cs.local_size[0];
5787 prog_data->local_size[1] = shader->info.cs.local_size[1];
5788 prog_data->local_size[2] = shader->info.cs.local_size[2];
5789 unsigned local_workgroup_size =
5790 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5791 shader->info.cs.local_size[2];
5792
5793 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5794 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
5795
5796 cfg_t *cfg = NULL;
5797 const char *fail_msg = NULL;
5798
5799 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5800 */
5801 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5802 NULL, /* Never used in core profile */
5803 shader, 8, shader_time_index);
5804 if (simd_required <= 8) {
5805 if (!v8.run_cs()) {
5806 fail_msg = v8.fail_msg;
5807 } else {
5808 cfg = v8.cfg;
5809 prog_data->simd_size = 8;
5810 }
5811 }
5812
5813 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5814 NULL, /* Never used in core profile */
5815 shader, 16, shader_time_index);
5816 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5817 !fail_msg && !v8.simd16_unsupported &&
5818 local_workgroup_size <= 16 * max_cs_threads) {
5819 /* Try a SIMD16 compile */
5820 if (simd_required <= 8)
5821 v16.import_uniforms(&v8);
5822 if (!v16.run_cs()) {
5823 compiler->shader_perf_log(log_data,
5824 "SIMD16 shader failed to compile: %s",
5825 v16.fail_msg);
5826 if (!cfg) {
5827 fail_msg =
5828 "Couldn't generate SIMD16 program and not "
5829 "enough threads for SIMD8";
5830 }
5831 } else {
5832 cfg = v16.cfg;
5833 prog_data->simd_size = 16;
5834 }
5835 }
5836
5837 if (unlikely(cfg == NULL)) {
5838 assert(fail_msg);
5839 if (error_str)
5840 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5841
5842 return NULL;
5843 }
5844
5845 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5846 v8.promoted_constants, v8.runtime_check_aads_emit,
5847 MESA_SHADER_COMPUTE);
5848 if (INTEL_DEBUG & DEBUG_CS) {
5849 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5850 shader->info.label ? shader->info.label :
5851 "unnamed",
5852 shader->info.name);
5853 g.enable_debug(name);
5854 }
5855
5856 g.generate_code(cfg, prog_data->simd_size);
5857
5858 return g.get_assembly(final_assembly_size);
5859 }
5860
5861 void
5862 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5863 void *buffer, uint32_t threads, uint32_t stride)
5864 {
5865 if (prog_data->local_invocation_id_regs == 0)
5866 return;
5867
5868 /* 'stride' should be an integer number of registers, that is, a multiple
5869 * of 32 bytes.
5870 */
5871 assert(stride % 32 == 0);
5872
5873 unsigned x = 0, y = 0, z = 0;
5874 for (unsigned t = 0; t < threads; t++) {
5875 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5876
5877 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5878 param[0 * prog_data->simd_size + i] = x;
5879 param[1 * prog_data->simd_size + i] = y;
5880 param[2 * prog_data->simd_size + i] = z;
5881
5882 x++;
5883 if (x == prog_data->local_size[0]) {
5884 x = 0;
5885 y++;
5886 if (y == prog_data->local_size[1]) {
5887 y = 0;
5888 z++;
5889 if (z == prog_data->local_size[2])
5890 z = 0;
5891 }
5892 }
5893 }
5894 }
5895 }