0cbb7de8e12e11cb5b66555c7bcba9d5296583de
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct brw_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
80 REG_SIZE);
81 break;
82 case BAD_FILE:
83 this->regs_written = 0;
84 break;
85 case IMM:
86 case UNIFORM:
87 unreachable("Invalid destination register file");
88 }
89
90 this->writes_accumulator = false;
91 }
92
93 fs_inst::fs_inst()
94 {
95 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
96 }
97
98 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
99 {
100 init(opcode, exec_size, reg_undef, NULL, 0);
101 }
102
103 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
104 {
105 init(opcode, exec_size, dst, NULL, 0);
106 }
107
108 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
109 const fs_reg &src0)
110 {
111 const fs_reg src[1] = { src0 };
112 init(opcode, exec_size, dst, src, 1);
113 }
114
115 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
116 const fs_reg &src0, const fs_reg &src1)
117 {
118 const fs_reg src[2] = { src0, src1 };
119 init(opcode, exec_size, dst, src, 2);
120 }
121
122 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
123 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
124 {
125 const fs_reg src[3] = { src0, src1, src2 };
126 init(opcode, exec_size, dst, src, 3);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
130 const fs_reg src[], unsigned sources)
131 {
132 init(opcode, exec_width, dst, src, sources);
133 }
134
135 fs_inst::fs_inst(const fs_inst &that)
136 {
137 memcpy(this, &that, sizeof(that));
138
139 this->src = new fs_reg[MAX2(that.sources, 3)];
140
141 for (unsigned i = 0; i < that.sources; i++)
142 this->src[i] = that.src[i];
143 }
144
145 fs_inst::~fs_inst()
146 {
147 delete[] this->src;
148 }
149
150 void
151 fs_inst::resize_sources(uint8_t num_sources)
152 {
153 if (this->sources != num_sources) {
154 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
155
156 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
157 src[i] = this->src[i];
158
159 delete[] this->src;
160 this->src = src;
161 this->sources = num_sources;
162 }
163 }
164
165 void
166 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
167 const fs_reg &dst,
168 const fs_reg &surf_index,
169 const fs_reg &varying_offset,
170 uint32_t const_offset)
171 {
172 /* We have our constant surface use a pitch of 4 bytes, so our index can
173 * be any component of a vector, and then we load 4 contiguous
174 * components starting from that.
175 *
176 * We break down the const_offset to a portion added to the variable
177 * offset and a portion done using reg_offset, which means that if you
178 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
179 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
180 * CSE can later notice that those loads are all the same and eliminate
181 * the redundant ones.
182 */
183 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
184 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
185
186 /* The pull load message will load a vec4 (16 bytes). If we are loading
187 * a double this means we are only loading 2 elements worth of data.
188 * We also want to use a 32-bit data type for the dst of the load operation
189 * so other parts of the driver don't get confused about the size of the
190 * result.
191 */
192 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
193 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
194 vec4_result, surf_index, vec4_offset);
195 inst->regs_written = 4 * bld.dispatch_width() / 8;
196
197 if (type_sz(dst.type) == 8) {
198 shuffle_32bit_load_result_to_64bit_data(
199 bld, retype(vec4_result, dst.type), vec4_result, 2);
200 }
201
202 vec4_result.type = dst.type;
203 bld.MOV(dst, offset(vec4_result, bld,
204 (const_offset & 0xf) / type_sz(vec4_result.type)));
205 }
206
207 /**
208 * A helper for MOV generation for fixing up broken hardware SEND dependency
209 * handling.
210 */
211 void
212 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
213 {
214 /* The caller always wants uncompressed to emit the minimal extra
215 * dependencies, and to avoid having to deal with aligning its regs to 2.
216 */
217 const fs_builder ubld = bld.annotate("send dependency resolve")
218 .half(0);
219
220 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
221 }
222
223 bool
224 fs_inst::equals(fs_inst *inst) const
225 {
226 return (opcode == inst->opcode &&
227 dst.equals(inst->dst) &&
228 src[0].equals(inst->src[0]) &&
229 src[1].equals(inst->src[1]) &&
230 src[2].equals(inst->src[2]) &&
231 saturate == inst->saturate &&
232 predicate == inst->predicate &&
233 conditional_mod == inst->conditional_mod &&
234 mlen == inst->mlen &&
235 base_mrf == inst->base_mrf &&
236 target == inst->target &&
237 eot == inst->eot &&
238 header_size == inst->header_size &&
239 shadow_compare == inst->shadow_compare &&
240 exec_size == inst->exec_size &&
241 offset == inst->offset);
242 }
243
244 bool
245 fs_inst::overwrites_reg(const fs_reg &reg) const
246 {
247 return reg.in_range(dst, regs_written);
248 }
249
250 bool
251 fs_inst::is_send_from_grf() const
252 {
253 switch (opcode) {
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
255 case SHADER_OPCODE_SHADER_TIME_ADD:
256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
259 case SHADER_OPCODE_UNTYPED_ATOMIC:
260 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
261 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 return src[0].file == VGRF;
276 default:
277 if (is_tex())
278 return src[0].file == VGRF;
279
280 return false;
281 }
282 }
283
284 /**
285 * Returns true if this instruction's sources and destinations cannot
286 * safely be the same register.
287 *
288 * In most cases, a register can be written over safely by the same
289 * instruction that is its last use. For a single instruction, the
290 * sources are dereferenced before writing of the destination starts
291 * (naturally).
292 *
293 * However, there are a few cases where this can be problematic:
294 *
295 * - Virtual opcodes that translate to multiple instructions in the
296 * code generator: if src == dst and one instruction writes the
297 * destination before a later instruction reads the source, then
298 * src will have been clobbered.
299 *
300 * - SIMD16 compressed instructions with certain regioning (see below).
301 *
302 * The register allocator uses this information to set up conflicts between
303 * GRF sources and the destination.
304 */
305 bool
306 fs_inst::has_source_and_destination_hazard() const
307 {
308 switch (opcode) {
309 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
310 /* Multiple partial writes to the destination */
311 return true;
312 default:
313 /* The SIMD16 compressed instruction
314 *
315 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
316 *
317 * is actually decoded in hardware as:
318 *
319 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
320 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
321 *
322 * Which is safe. However, if we have uniform accesses
323 * happening, we get into trouble:
324 *
325 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
326 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
327 *
328 * Now our destination for the first instruction overwrote the
329 * second instruction's src0, and we get garbage for those 8
330 * pixels. There's a similar issue for the pre-gen6
331 * pixel_x/pixel_y, which are registers of 16-bit values and thus
332 * would get stomped by the first decode as well.
333 */
334 if (exec_size == 16) {
335 for (int i = 0; i < sources; i++) {
336 if (src[i].file == VGRF && (src[i].stride == 0 ||
337 src[i].type == BRW_REGISTER_TYPE_UW ||
338 src[i].type == BRW_REGISTER_TYPE_W ||
339 src[i].type == BRW_REGISTER_TYPE_UB ||
340 src[i].type == BRW_REGISTER_TYPE_B)) {
341 return true;
342 }
343 }
344 }
345 return false;
346 }
347 }
348
349 bool
350 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
351 {
352 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
353 return false;
354
355 fs_reg reg = this->src[0];
356 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
357 return false;
358
359 if (grf_alloc.sizes[reg.nr] != this->regs_written)
360 return false;
361
362 for (int i = 0; i < this->sources; i++) {
363 reg.type = this->src[i].type;
364 if (!this->src[i].equals(reg))
365 return false;
366
367 if (i < this->header_size) {
368 reg.reg_offset += 1;
369 } else {
370 reg = horiz_offset(reg, this->exec_size);
371 }
372 }
373
374 return true;
375 }
376
377 bool
378 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
379 {
380 if (devinfo->gen == 6 && is_math())
381 return false;
382
383 if (is_send_from_grf())
384 return false;
385
386 if (!backend_instruction::can_do_source_mods())
387 return false;
388
389 return true;
390 }
391
392 bool
393 fs_inst::can_change_types() const
394 {
395 return dst.type == src[0].type &&
396 !src[0].abs && !src[0].negate && !saturate &&
397 (opcode == BRW_OPCODE_MOV ||
398 (opcode == BRW_OPCODE_SEL &&
399 dst.type == src[1].type &&
400 predicate != BRW_PREDICATE_NONE &&
401 !src[1].abs && !src[1].negate));
402 }
403
404 bool
405 fs_inst::has_side_effects() const
406 {
407 return this->eot || backend_instruction::has_side_effects();
408 }
409
410 void
411 fs_reg::init()
412 {
413 memset(this, 0, sizeof(*this));
414 stride = 1;
415 }
416
417 /** Generic unset register constructor. */
418 fs_reg::fs_reg()
419 {
420 init();
421 this->file = BAD_FILE;
422 }
423
424 fs_reg::fs_reg(struct ::brw_reg reg) :
425 backend_reg(reg)
426 {
427 this->reg_offset = 0;
428 this->subreg_offset = 0;
429 this->stride = 1;
430 if (this->file == IMM &&
431 (this->type != BRW_REGISTER_TYPE_V &&
432 this->type != BRW_REGISTER_TYPE_UV &&
433 this->type != BRW_REGISTER_TYPE_VF)) {
434 this->stride = 0;
435 }
436 }
437
438 bool
439 fs_reg::equals(const fs_reg &r) const
440 {
441 return (this->backend_reg::equals(r) &&
442 subreg_offset == r.subreg_offset &&
443 stride == r.stride);
444 }
445
446 fs_reg &
447 fs_reg::set_smear(unsigned subreg)
448 {
449 assert(file != ARF && file != FIXED_GRF && file != IMM);
450 subreg_offset = subreg * type_sz(type);
451 stride = 0;
452 return *this;
453 }
454
455 bool
456 fs_reg::is_contiguous() const
457 {
458 return stride == 1;
459 }
460
461 unsigned
462 fs_reg::component_size(unsigned width) const
463 {
464 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
465 hstride == 0 ? 0 :
466 1 << (hstride - 1));
467 return MAX2(width * stride, 1) * type_sz(type);
468 }
469
470 extern "C" int
471 type_size_scalar(const struct glsl_type *type)
472 {
473 unsigned int size, i;
474
475 switch (type->base_type) {
476 case GLSL_TYPE_UINT:
477 case GLSL_TYPE_INT:
478 case GLSL_TYPE_FLOAT:
479 case GLSL_TYPE_BOOL:
480 return type->components();
481 case GLSL_TYPE_DOUBLE:
482 return type->components() * 2;
483 case GLSL_TYPE_ARRAY:
484 return type_size_scalar(type->fields.array) * type->length;
485 case GLSL_TYPE_STRUCT:
486 size = 0;
487 for (i = 0; i < type->length; i++) {
488 size += type_size_scalar(type->fields.structure[i].type);
489 }
490 return size;
491 case GLSL_TYPE_SAMPLER:
492 /* Samplers take up no register space, since they're baked in at
493 * link time.
494 */
495 return 0;
496 case GLSL_TYPE_ATOMIC_UINT:
497 return 0;
498 case GLSL_TYPE_SUBROUTINE:
499 return 1;
500 case GLSL_TYPE_IMAGE:
501 return BRW_IMAGE_PARAM_SIZE;
502 case GLSL_TYPE_VOID:
503 case GLSL_TYPE_ERROR:
504 case GLSL_TYPE_INTERFACE:
505 case GLSL_TYPE_FUNCTION:
506 unreachable("not reached");
507 }
508
509 return 0;
510 }
511
512 /**
513 * Returns the number of scalar components needed to store type, assuming
514 * that vectors are padded out to vec4.
515 *
516 * This has the packing rules of type_size_vec4(), but counts components
517 * similar to type_size_scalar().
518 */
519 extern "C" int
520 type_size_vec4_times_4(const struct glsl_type *type)
521 {
522 return 4 * type_size_vec4(type);
523 }
524
525 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
526 * except for double-precision types, which are loaded as one dvec4.
527 */
528 extern "C" int
529 type_size_vs_input(const struct glsl_type *type)
530 {
531 if (type->is_double()) {
532 return type_size_dvec4(type);
533 } else {
534 return type_size_vec4(type);
535 }
536 }
537
538 /**
539 * Create a MOV to read the timestamp register.
540 *
541 * The caller is responsible for emitting the MOV. The return value is
542 * the destination of the MOV, with extra parameters set.
543 */
544 fs_reg
545 fs_visitor::get_timestamp(const fs_builder &bld)
546 {
547 assert(devinfo->gen >= 7);
548
549 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
550 BRW_ARF_TIMESTAMP,
551 0),
552 BRW_REGISTER_TYPE_UD));
553
554 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
555
556 /* We want to read the 3 fields we care about even if it's not enabled in
557 * the dispatch.
558 */
559 bld.group(4, 0).exec_all().MOV(dst, ts);
560
561 return dst;
562 }
563
564 void
565 fs_visitor::emit_shader_time_begin()
566 {
567 shader_start_time = get_timestamp(bld.annotate("shader time start"));
568
569 /* We want only the low 32 bits of the timestamp. Since it's running
570 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
571 * which is plenty of time for our purposes. It is identical across the
572 * EUs, but since it's tracking GPU core speed it will increment at a
573 * varying rate as render P-states change.
574 */
575 shader_start_time.set_smear(0);
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 /* Insert our code just before the final SEND with EOT. */
582 exec_node *end = this->instructions.get_tail();
583 assert(end && ((fs_inst *) end)->eot);
584 const fs_builder ibld = bld.annotate("shader time end")
585 .exec_all().at(NULL, end);
586
587 fs_reg shader_end_time = get_timestamp(ibld);
588
589 /* We only use the low 32 bits of the timestamp - see
590 * emit_shader_time_begin()).
591 *
592 * We could also check if render P-states have changed (or anything
593 * else that might disrupt timing) by setting smear to 2 and checking if
594 * that field is != 0.
595 */
596 shader_end_time.set_smear(0);
597
598 /* Check that there weren't any timestamp reset events (assuming these
599 * were the only two timestamp reads that happened).
600 */
601 fs_reg reset = shader_end_time;
602 reset.set_smear(2);
603 set_condmod(BRW_CONDITIONAL_Z,
604 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
605 ibld.IF(BRW_PREDICATE_NORMAL);
606
607 fs_reg start = shader_start_time;
608 start.negate = true;
609 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
610 diff.set_smear(0);
611
612 const fs_builder cbld = ibld.group(1, 0);
613 cbld.group(1, 0).ADD(diff, start, shader_end_time);
614
615 /* If there were no instructions between the two timestamp gets, the diff
616 * is 2 cycles. Remove that overhead, so I can forget about that when
617 * trying to determine the time taken for single instructions.
618 */
619 cbld.ADD(diff, diff, brw_imm_ud(-2u));
620 SHADER_TIME_ADD(cbld, 0, diff);
621 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
622 ibld.emit(BRW_OPCODE_ELSE);
623 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
624 ibld.emit(BRW_OPCODE_ENDIF);
625 }
626
627 void
628 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
629 int shader_time_subindex,
630 fs_reg value)
631 {
632 int index = shader_time_index * 3 + shader_time_subindex;
633 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
634
635 fs_reg payload;
636 if (dispatch_width == 8)
637 payload = vgrf(glsl_type::uvec2_type);
638 else
639 payload = vgrf(glsl_type::uint_type);
640
641 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
642 }
643
644 void
645 fs_visitor::vfail(const char *format, va_list va)
646 {
647 char *msg;
648
649 if (failed)
650 return;
651
652 failed = true;
653
654 msg = ralloc_vasprintf(mem_ctx, format, va);
655 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
656
657 this->fail_msg = msg;
658
659 if (debug_enabled) {
660 fprintf(stderr, "%s", msg);
661 }
662 }
663
664 void
665 fs_visitor::fail(const char *format, ...)
666 {
667 va_list va;
668
669 va_start(va, format);
670 vfail(format, va);
671 va_end(va);
672 }
673
674 /**
675 * Mark this program as impossible to compile with dispatch width greater
676 * than n.
677 *
678 * During the SIMD8 compile (which happens first), we can detect and flag
679 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
680 * SIMD16+ compile altogether.
681 *
682 * During a compile of dispatch width greater than n (if one happens anyway),
683 * this just calls fail().
684 */
685 void
686 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
687 {
688 if (dispatch_width > n) {
689 fail("%s", msg);
690 } else {
691 max_dispatch_width = n;
692 compiler->shader_perf_log(log_data,
693 "Shader dispatch width limited to SIMD%d: %s",
694 n, msg);
695 }
696 }
697
698 /**
699 * Returns true if the instruction has a flag that means it won't
700 * update an entire destination register.
701 *
702 * For example, dead code elimination and live variable analysis want to know
703 * when a write to a variable screens off any preceding values that were in
704 * it.
705 */
706 bool
707 fs_inst::is_partial_write() const
708 {
709 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
710 (this->exec_size * type_sz(this->dst.type)) < 32 ||
711 !this->dst.is_contiguous() ||
712 this->dst.subreg_offset > 0);
713 }
714
715 unsigned
716 fs_inst::components_read(unsigned i) const
717 {
718 /* Return zero if the source is not present. */
719 if (src[i].file == BAD_FILE)
720 return 0;
721
722 switch (opcode) {
723 case FS_OPCODE_LINTERP:
724 if (i == 0)
725 return 2;
726 else
727 return 1;
728
729 case FS_OPCODE_PIXEL_X:
730 case FS_OPCODE_PIXEL_Y:
731 assert(i == 0);
732 return 2;
733
734 case FS_OPCODE_FB_WRITE_LOGICAL:
735 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
736 /* First/second FB write color. */
737 if (i < 2)
738 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
739 else
740 return 1;
741
742 case SHADER_OPCODE_TEX_LOGICAL:
743 case SHADER_OPCODE_TXD_LOGICAL:
744 case SHADER_OPCODE_TXF_LOGICAL:
745 case SHADER_OPCODE_TXL_LOGICAL:
746 case SHADER_OPCODE_TXS_LOGICAL:
747 case FS_OPCODE_TXB_LOGICAL:
748 case SHADER_OPCODE_TXF_CMS_LOGICAL:
749 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
750 case SHADER_OPCODE_TXF_UMS_LOGICAL:
751 case SHADER_OPCODE_TXF_MCS_LOGICAL:
752 case SHADER_OPCODE_LOD_LOGICAL:
753 case SHADER_OPCODE_TG4_LOGICAL:
754 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
755 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
756 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
757 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
758 /* Texture coordinates. */
759 if (i == TEX_LOGICAL_SRC_COORDINATE)
760 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
761 /* Texture derivatives. */
762 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
763 opcode == SHADER_OPCODE_TXD_LOGICAL)
764 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
765 /* Texture offset. */
766 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
767 return 2;
768 /* MCS */
769 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
770 return 2;
771 else
772 return 1;
773
774 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
775 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
776 assert(src[3].file == IMM);
777 /* Surface coordinates. */
778 if (i == 0)
779 return src[3].ud;
780 /* Surface operation source (ignored for reads). */
781 else if (i == 1)
782 return 0;
783 else
784 return 1;
785
786 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
787 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
788 assert(src[3].file == IMM &&
789 src[4].file == IMM);
790 /* Surface coordinates. */
791 if (i == 0)
792 return src[3].ud;
793 /* Surface operation source. */
794 else if (i == 1)
795 return src[4].ud;
796 else
797 return 1;
798
799 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
800 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
801 assert(src[3].file == IMM &&
802 src[4].file == IMM);
803 const unsigned op = src[4].ud;
804 /* Surface coordinates. */
805 if (i == 0)
806 return src[3].ud;
807 /* Surface operation source. */
808 else if (i == 1 && op == BRW_AOP_CMPWR)
809 return 2;
810 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
811 op == BRW_AOP_PREDEC))
812 return 0;
813 else
814 return 1;
815 }
816
817 default:
818 return 1;
819 }
820 }
821
822 int
823 fs_inst::regs_read(int arg) const
824 {
825 switch (opcode) {
826 case FS_OPCODE_FB_WRITE:
827 case SHADER_OPCODE_URB_WRITE_SIMD8:
828 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
829 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
830 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
831 case SHADER_OPCODE_URB_READ_SIMD8:
832 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
833 case SHADER_OPCODE_UNTYPED_ATOMIC:
834 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
835 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
836 case SHADER_OPCODE_TYPED_ATOMIC:
837 case SHADER_OPCODE_TYPED_SURFACE_READ:
838 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
839 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
840 if (arg == 0)
841 return mlen;
842 break;
843
844 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
845 /* The payload is actually stored in src1 */
846 if (arg == 1)
847 return mlen;
848 break;
849
850 case FS_OPCODE_LINTERP:
851 if (arg == 1)
852 return 1;
853 break;
854
855 case SHADER_OPCODE_LOAD_PAYLOAD:
856 if (arg < this->header_size)
857 return 1;
858 break;
859
860 case CS_OPCODE_CS_TERMINATE:
861 case SHADER_OPCODE_BARRIER:
862 return 1;
863
864 case SHADER_OPCODE_MOV_INDIRECT:
865 if (arg == 0) {
866 assert(src[2].file == IMM);
867 unsigned region_length = src[2].ud;
868
869 if (src[0].file == UNIFORM) {
870 assert(region_length % 4 == 0);
871 return region_length / 4;
872 } else if (src[0].file == FIXED_GRF) {
873 /* If the start of the region is not register aligned, then
874 * there's some portion of the register that's technically
875 * unread at the beginning.
876 *
877 * However, the register allocator works in terms of whole
878 * registers, and does not use subnr. It assumes that the
879 * read starts at the beginning of the register, and extends
880 * regs_read() whole registers beyond that.
881 *
882 * To compensate, we extend the region length to include this
883 * unread portion at the beginning.
884 */
885 if (src[0].subnr)
886 region_length += src[0].subnr;
887
888 return DIV_ROUND_UP(region_length, REG_SIZE);
889 } else {
890 assert(!"Invalid register file");
891 }
892 }
893 break;
894
895 default:
896 if (is_tex() && arg == 0 && src[0].file == VGRF)
897 return mlen;
898 break;
899 }
900
901 switch (src[arg].file) {
902 case UNIFORM:
903 case IMM:
904 return 1;
905 case BAD_FILE:
906 case ARF:
907 case FIXED_GRF:
908 case VGRF:
909 case ATTR:
910 return DIV_ROUND_UP(components_read(arg) *
911 src[arg].component_size(exec_size),
912 REG_SIZE);
913 case MRF:
914 unreachable("MRF registers are not allowed as sources");
915 }
916 return 0;
917 }
918
919 namespace {
920 /* Return the subset of flag registers that an instruction could
921 * potentially read or write based on the execution controls and flag
922 * subregister number of the instruction.
923 */
924 unsigned
925 flag_mask(const fs_inst *inst)
926 {
927 const unsigned start = inst->flag_subreg * 16 + inst->group;
928 const unsigned end = start + inst->exec_size;
929 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
930 }
931 }
932
933 unsigned
934 fs_inst::flags_read(const brw_device_info *devinfo) const
935 {
936 /* XXX - This doesn't consider explicit uses of the flag register as source
937 * region.
938 */
939 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
940 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
941 /* The vertical predication modes combine corresponding bits from
942 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
943 */
944 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
945 return flag_mask(this) << shift | flag_mask(this);
946 } else if (predicate) {
947 return flag_mask(this);
948 } else {
949 return 0;
950 }
951 }
952
953 unsigned
954 fs_inst::flags_written() const
955 {
956 /* XXX - This doesn't consider explicit uses of the flag register as
957 * destination region.
958 */
959 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
960 opcode != BRW_OPCODE_IF &&
961 opcode != BRW_OPCODE_WHILE)) ||
962 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
963 return flag_mask(this);
964 } else {
965 return 0;
966 }
967 }
968
969 /**
970 * Returns how many MRFs an FS opcode will write over.
971 *
972 * Note that this is not the 0 or 1 implied writes in an actual gen
973 * instruction -- the FS opcodes often generate MOVs in addition.
974 */
975 int
976 fs_visitor::implied_mrf_writes(fs_inst *inst)
977 {
978 if (inst->mlen == 0)
979 return 0;
980
981 if (inst->base_mrf == -1)
982 return 0;
983
984 switch (inst->opcode) {
985 case SHADER_OPCODE_RCP:
986 case SHADER_OPCODE_RSQ:
987 case SHADER_OPCODE_SQRT:
988 case SHADER_OPCODE_EXP2:
989 case SHADER_OPCODE_LOG2:
990 case SHADER_OPCODE_SIN:
991 case SHADER_OPCODE_COS:
992 return 1 * dispatch_width / 8;
993 case SHADER_OPCODE_POW:
994 case SHADER_OPCODE_INT_QUOTIENT:
995 case SHADER_OPCODE_INT_REMAINDER:
996 return 2 * dispatch_width / 8;
997 case SHADER_OPCODE_TEX:
998 case FS_OPCODE_TXB:
999 case SHADER_OPCODE_TXD:
1000 case SHADER_OPCODE_TXF:
1001 case SHADER_OPCODE_TXF_CMS:
1002 case SHADER_OPCODE_TXF_MCS:
1003 case SHADER_OPCODE_TG4:
1004 case SHADER_OPCODE_TG4_OFFSET:
1005 case SHADER_OPCODE_TXL:
1006 case SHADER_OPCODE_TXS:
1007 case SHADER_OPCODE_LOD:
1008 case SHADER_OPCODE_SAMPLEINFO:
1009 return 1;
1010 case FS_OPCODE_FB_WRITE:
1011 return 2;
1012 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1013 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1014 return 1;
1015 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1016 return inst->mlen;
1017 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1018 return inst->mlen;
1019 default:
1020 unreachable("not reached");
1021 }
1022 }
1023
1024 fs_reg
1025 fs_visitor::vgrf(const glsl_type *const type)
1026 {
1027 int reg_width = dispatch_width / 8;
1028 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1029 brw_type_for_base_type(type));
1030 }
1031
1032 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1033 {
1034 init();
1035 this->file = file;
1036 this->nr = nr;
1037 this->type = BRW_REGISTER_TYPE_F;
1038 this->stride = (file == UNIFORM ? 0 : 1);
1039 }
1040
1041 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1042 {
1043 init();
1044 this->file = file;
1045 this->nr = nr;
1046 this->type = type;
1047 this->stride = (file == UNIFORM ? 0 : 1);
1048 }
1049
1050 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1051 * This brings in those uniform definitions
1052 */
1053 void
1054 fs_visitor::import_uniforms(fs_visitor *v)
1055 {
1056 this->push_constant_loc = v->push_constant_loc;
1057 this->pull_constant_loc = v->pull_constant_loc;
1058 this->uniforms = v->uniforms;
1059 }
1060
1061 void
1062 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1063 {
1064 assert(stage == MESA_SHADER_FRAGMENT);
1065
1066 /* gl_FragCoord.x */
1067 bld.MOV(wpos, this->pixel_x);
1068 wpos = offset(wpos, bld, 1);
1069
1070 /* gl_FragCoord.y */
1071 bld.MOV(wpos, this->pixel_y);
1072 wpos = offset(wpos, bld, 1);
1073
1074 /* gl_FragCoord.z */
1075 if (devinfo->gen >= 6) {
1076 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1077 } else {
1078 bld.emit(FS_OPCODE_LINTERP, wpos,
1079 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1080 interp_reg(VARYING_SLOT_POS, 2));
1081 }
1082 wpos = offset(wpos, bld, 1);
1083
1084 /* gl_FragCoord.w: Already set up in emit_interpolation */
1085 bld.MOV(wpos, this->wpos_w);
1086 }
1087
1088 enum brw_barycentric_mode
1089 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1090 {
1091 /* Barycentric modes don't make sense for flat inputs. */
1092 assert(mode != INTERP_MODE_FLAT);
1093
1094 unsigned bary;
1095 switch (op) {
1096 case nir_intrinsic_load_barycentric_pixel:
1097 case nir_intrinsic_load_barycentric_at_offset:
1098 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1099 break;
1100 case nir_intrinsic_load_barycentric_centroid:
1101 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1102 break;
1103 case nir_intrinsic_load_barycentric_sample:
1104 case nir_intrinsic_load_barycentric_at_sample:
1105 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1106 break;
1107 default:
1108 unreachable("invalid intrinsic");
1109 }
1110
1111 if (mode == INTERP_MODE_NOPERSPECTIVE)
1112 bary += 3;
1113
1114 return (enum brw_barycentric_mode) bary;
1115 }
1116
1117 /**
1118 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1119 */
1120 static enum brw_barycentric_mode
1121 centroid_to_pixel(enum brw_barycentric_mode bary)
1122 {
1123 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1124 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1125 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1126 }
1127
1128 fs_reg *
1129 fs_visitor::emit_frontfacing_interpolation()
1130 {
1131 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1132
1133 if (devinfo->gen >= 6) {
1134 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1135 * a boolean result from this (~0/true or 0/false).
1136 *
1137 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1138 * this task in only one instruction:
1139 * - a negation source modifier will flip the bit; and
1140 * - a W -> D type conversion will sign extend the bit into the high
1141 * word of the destination.
1142 *
1143 * An ASR 15 fills the low word of the destination.
1144 */
1145 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1146 g0.negate = true;
1147
1148 bld.ASR(*reg, g0, brw_imm_d(15));
1149 } else {
1150 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1151 * a boolean result from this (1/true or 0/false).
1152 *
1153 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1154 * the negation source modifier to flip it. Unfortunately the SHR
1155 * instruction only operates on UD (or D with an abs source modifier)
1156 * sources without negation.
1157 *
1158 * Instead, use ASR (which will give ~0/true or 0/false).
1159 */
1160 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1161 g1_6.negate = true;
1162
1163 bld.ASR(*reg, g1_6, brw_imm_d(31));
1164 }
1165
1166 return reg;
1167 }
1168
1169 void
1170 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1171 {
1172 assert(stage == MESA_SHADER_FRAGMENT);
1173 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1174 assert(dst.type == BRW_REGISTER_TYPE_F);
1175
1176 if (wm_prog_data->persample_dispatch) {
1177 /* Convert int_sample_pos to floating point */
1178 bld.MOV(dst, int_sample_pos);
1179 /* Scale to the range [0, 1] */
1180 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1181 }
1182 else {
1183 /* From ARB_sample_shading specification:
1184 * "When rendering to a non-multisample buffer, or if multisample
1185 * rasterization is disabled, gl_SamplePosition will always be
1186 * (0.5, 0.5).
1187 */
1188 bld.MOV(dst, brw_imm_f(0.5f));
1189 }
1190 }
1191
1192 fs_reg *
1193 fs_visitor::emit_samplepos_setup()
1194 {
1195 assert(devinfo->gen >= 6);
1196
1197 const fs_builder abld = bld.annotate("compute sample position");
1198 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1199 fs_reg pos = *reg;
1200 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1201 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1202
1203 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1204 * mode will be enabled.
1205 *
1206 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1207 * R31.1:0 Position Offset X/Y for Slot[3:0]
1208 * R31.3:2 Position Offset X/Y for Slot[7:4]
1209 * .....
1210 *
1211 * The X, Y sample positions come in as bytes in thread payload. So, read
1212 * the positions using vstride=16, width=8, hstride=2.
1213 */
1214 struct brw_reg sample_pos_reg =
1215 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1216 BRW_REGISTER_TYPE_B), 16, 8, 2);
1217
1218 if (dispatch_width == 8) {
1219 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1220 } else {
1221 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1222 abld.half(1).MOV(half(int_sample_x, 1),
1223 fs_reg(suboffset(sample_pos_reg, 16)));
1224 }
1225 /* Compute gl_SamplePosition.x */
1226 compute_sample_position(pos, int_sample_x);
1227 pos = offset(pos, abld, 1);
1228 if (dispatch_width == 8) {
1229 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1230 } else {
1231 abld.half(0).MOV(half(int_sample_y, 0),
1232 fs_reg(suboffset(sample_pos_reg, 1)));
1233 abld.half(1).MOV(half(int_sample_y, 1),
1234 fs_reg(suboffset(sample_pos_reg, 17)));
1235 }
1236 /* Compute gl_SamplePosition.y */
1237 compute_sample_position(pos, int_sample_y);
1238 return reg;
1239 }
1240
1241 fs_reg *
1242 fs_visitor::emit_sampleid_setup()
1243 {
1244 assert(stage == MESA_SHADER_FRAGMENT);
1245 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1246 assert(devinfo->gen >= 6);
1247
1248 const fs_builder abld = bld.annotate("compute sample id");
1249 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1250
1251 if (!key->multisample_fbo) {
1252 /* As per GL_ARB_sample_shading specification:
1253 * "When rendering to a non-multisample buffer, or if multisample
1254 * rasterization is disabled, gl_SampleID will always be zero."
1255 */
1256 abld.MOV(*reg, brw_imm_d(0));
1257 } else if (devinfo->gen >= 8) {
1258 /* Sample ID comes in as 4-bit numbers in g1.0:
1259 *
1260 * 15:12 Slot 3 SampleID (only used in SIMD16)
1261 * 11:8 Slot 2 SampleID (only used in SIMD16)
1262 * 7:4 Slot 1 SampleID
1263 * 3:0 Slot 0 SampleID
1264 *
1265 * Each slot corresponds to four channels, so we want to replicate each
1266 * half-byte value to 4 channels in a row:
1267 *
1268 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1269 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1270 *
1271 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1272 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1273 *
1274 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1275 * channels to read the first byte (7:0), and the second group of 8
1276 * channels to read the second byte (15:8). Then, we shift right by
1277 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1278 * values into place. Finally, we AND with 0xf to keep the low nibble.
1279 *
1280 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1281 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1282 *
1283 * TODO: These payload bits exist on Gen7 too, but they appear to always
1284 * be zero, so this code fails to work. We should find out why.
1285 */
1286 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1287
1288 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1289 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1290 brw_imm_v(0x44440000));
1291 abld.AND(*reg, tmp, brw_imm_w(0xf));
1292 } else {
1293 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1294 t1.set_smear(0);
1295 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1296
1297 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1298 * 8x multisampling, subspan 0 will represent sample N (where N
1299 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1300 * 7. We can find the value of N by looking at R0.0 bits 7:6
1301 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1302 * (since samples are always delivered in pairs). That is, we
1303 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1304 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1305 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1306 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1307 * populating a temporary variable with the sequence (0, 1, 2, 3),
1308 * and then reading from it using vstride=1, width=4, hstride=0.
1309 * These computations hold good for 4x multisampling as well.
1310 *
1311 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1312 * the first four slots are sample 0 of subspan 0; the next four
1313 * are sample 1 of subspan 0; the third group is sample 0 of
1314 * subspan 1, and finally sample 1 of subspan 1.
1315 */
1316
1317 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1318 * accomodate 16x MSAA.
1319 */
1320 abld.exec_all().group(1, 0)
1321 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1322 brw_imm_ud(0xc0));
1323 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1324
1325 /* This works for both SIMD8 and SIMD16 */
1326 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1327
1328 /* This special instruction takes care of setting vstride=1,
1329 * width=4, hstride=0 of t2 during an ADD instruction.
1330 */
1331 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1332 }
1333
1334 return reg;
1335 }
1336
1337 fs_reg *
1338 fs_visitor::emit_samplemaskin_setup()
1339 {
1340 assert(stage == MESA_SHADER_FRAGMENT);
1341 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1342 assert(devinfo->gen >= 6);
1343
1344 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1345
1346 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1347 BRW_REGISTER_TYPE_D));
1348
1349 if (wm_prog_data->persample_dispatch) {
1350 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1351 * and a mask representing which sample is being processed by the
1352 * current shader invocation.
1353 *
1354 * From the OES_sample_variables specification:
1355 * "When per-sample shading is active due to the use of a fragment input
1356 * qualified by "sample" or due to the use of the gl_SampleID or
1357 * gl_SamplePosition variables, only the bit for the current sample is
1358 * set in gl_SampleMaskIn."
1359 */
1360 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1361
1362 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1363 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1364
1365 fs_reg one = vgrf(glsl_type::int_type);
1366 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1367 abld.MOV(one, brw_imm_d(1));
1368 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1369 abld.AND(*reg, enabled_mask, coverage_mask);
1370 } else {
1371 /* In per-pixel mode, the coverage mask is sufficient. */
1372 *reg = coverage_mask;
1373 }
1374 return reg;
1375 }
1376
1377 fs_reg
1378 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1379 {
1380 if (!src.abs && !src.negate)
1381 return src;
1382
1383 fs_reg temp = bld.vgrf(src.type);
1384 bld.MOV(temp, src);
1385
1386 return temp;
1387 }
1388
1389 void
1390 fs_visitor::emit_discard_jump()
1391 {
1392 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1393
1394 /* For performance, after a discard, jump to the end of the
1395 * shader if all relevant channels have been discarded.
1396 */
1397 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1398 discard_jump->flag_subreg = 1;
1399
1400 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1401 discard_jump->predicate_inverse = true;
1402 }
1403
1404 void
1405 fs_visitor::emit_gs_thread_end()
1406 {
1407 assert(stage == MESA_SHADER_GEOMETRY);
1408
1409 struct brw_gs_prog_data *gs_prog_data =
1410 (struct brw_gs_prog_data *) prog_data;
1411
1412 if (gs_compile->control_data_header_size_bits > 0) {
1413 emit_gs_control_data_bits(this->final_gs_vertex_count);
1414 }
1415
1416 const fs_builder abld = bld.annotate("thread end");
1417 fs_inst *inst;
1418
1419 if (gs_prog_data->static_vertex_count != -1) {
1420 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1421 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1422 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1423 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1424 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1425 prev->eot = true;
1426
1427 /* Delete now dead instructions. */
1428 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1429 if (dead == prev)
1430 break;
1431 dead->remove();
1432 }
1433 return;
1434 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1435 break;
1436 }
1437 }
1438 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1439 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1440 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1441 inst->mlen = 1;
1442 } else {
1443 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1444 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1445 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1446 sources[1] = this->final_gs_vertex_count;
1447 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1448 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1449 inst->mlen = 2;
1450 }
1451 inst->eot = true;
1452 inst->offset = 0;
1453 }
1454
1455 void
1456 fs_visitor::assign_curb_setup()
1457 {
1458 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1459
1460 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1461 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1462 for (unsigned int i = 0; i < inst->sources; i++) {
1463 if (inst->src[i].file == UNIFORM) {
1464 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1465 int constant_nr;
1466 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1467 constant_nr = push_constant_loc[uniform_nr];
1468 } else {
1469 /* Section 5.11 of the OpenGL 4.1 spec says:
1470 * "Out-of-bounds reads return undefined values, which include
1471 * values from other variables of the active program or zero."
1472 * Just return the first push constant.
1473 */
1474 constant_nr = 0;
1475 }
1476
1477 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1478 constant_nr / 8,
1479 constant_nr % 8);
1480 brw_reg.abs = inst->src[i].abs;
1481 brw_reg.negate = inst->src[i].negate;
1482
1483 assert(inst->src[i].stride == 0);
1484 inst->src[i] = byte_offset(
1485 retype(brw_reg, inst->src[i].type),
1486 inst->src[i].subreg_offset);
1487 }
1488 }
1489 }
1490
1491 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1492 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1493 }
1494
1495 void
1496 fs_visitor::calculate_urb_setup()
1497 {
1498 assert(stage == MESA_SHADER_FRAGMENT);
1499 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1500 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1501
1502 memset(prog_data->urb_setup, -1,
1503 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1504
1505 int urb_next = 0;
1506 /* Figure out where each of the incoming setup attributes lands. */
1507 if (devinfo->gen >= 6) {
1508 if (_mesa_bitcount_64(nir->info.inputs_read &
1509 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1510 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1511 * first 16 varying inputs, so we can put them wherever we want.
1512 * Just put them in order.
1513 *
1514 * This is useful because it means that (a) inputs not used by the
1515 * fragment shader won't take up valuable register space, and (b) we
1516 * won't have to recompile the fragment shader if it gets paired with
1517 * a different vertex (or geometry) shader.
1518 */
1519 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1520 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1521 BITFIELD64_BIT(i)) {
1522 prog_data->urb_setup[i] = urb_next++;
1523 }
1524 }
1525 } else {
1526 bool include_vue_header =
1527 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1528
1529 /* We have enough input varyings that the SF/SBE pipeline stage can't
1530 * arbitrarily rearrange them to suit our whim; we have to put them
1531 * in an order that matches the output of the previous pipeline stage
1532 * (geometry or vertex shader).
1533 */
1534 struct brw_vue_map prev_stage_vue_map;
1535 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1536 key->input_slots_valid,
1537 nir->info.separate_shader);
1538 int first_slot =
1539 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1540
1541 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1542 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1543 slot++) {
1544 int varying = prev_stage_vue_map.slot_to_varying[slot];
1545 if (varying != BRW_VARYING_SLOT_PAD &&
1546 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1547 BITFIELD64_BIT(varying))) {
1548 prog_data->urb_setup[varying] = slot - first_slot;
1549 }
1550 }
1551 urb_next = prev_stage_vue_map.num_slots - first_slot;
1552 }
1553 } else {
1554 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1555 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1556 /* Point size is packed into the header, not as a general attribute */
1557 if (i == VARYING_SLOT_PSIZ)
1558 continue;
1559
1560 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1561 /* The back color slot is skipped when the front color is
1562 * also written to. In addition, some slots can be
1563 * written in the vertex shader and not read in the
1564 * fragment shader. So the register number must always be
1565 * incremented, mapped or not.
1566 */
1567 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1568 prog_data->urb_setup[i] = urb_next;
1569 urb_next++;
1570 }
1571 }
1572
1573 /*
1574 * It's a FS only attribute, and we did interpolation for this attribute
1575 * in SF thread. So, count it here, too.
1576 *
1577 * See compile_sf_prog() for more info.
1578 */
1579 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1580 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1581 }
1582
1583 prog_data->num_varying_inputs = urb_next;
1584 }
1585
1586 void
1587 fs_visitor::assign_urb_setup()
1588 {
1589 assert(stage == MESA_SHADER_FRAGMENT);
1590 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1591
1592 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1593
1594 /* Offset all the urb_setup[] index by the actual position of the
1595 * setup regs, now that the location of the constants has been chosen.
1596 */
1597 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1598 if (inst->opcode == FS_OPCODE_LINTERP) {
1599 assert(inst->src[1].file == FIXED_GRF);
1600 inst->src[1].nr += urb_start;
1601 }
1602
1603 if (inst->opcode == FS_OPCODE_CINTERP) {
1604 assert(inst->src[0].file == FIXED_GRF);
1605 inst->src[0].nr += urb_start;
1606 }
1607 }
1608
1609 /* Each attribute is 4 setup channels, each of which is half a reg. */
1610 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1611 }
1612
1613 void
1614 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1615 {
1616 for (int i = 0; i < inst->sources; i++) {
1617 if (inst->src[i].file == ATTR) {
1618 int grf = payload.num_regs +
1619 prog_data->curb_read_length +
1620 inst->src[i].nr +
1621 inst->src[i].reg_offset;
1622
1623 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1624 *
1625 * VertStride must be used to cross GRF register boundaries. This
1626 * rule implies that elements within a 'Width' cannot cross GRF
1627 * boundaries.
1628 *
1629 * So, for registers that are large enough, we have to split the exec
1630 * size in two and trust the compression state to sort it out.
1631 */
1632 unsigned total_size = inst->exec_size *
1633 inst->src[i].stride *
1634 type_sz(inst->src[i].type);
1635
1636 assert(total_size <= 2 * REG_SIZE);
1637 const unsigned exec_size =
1638 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1639
1640 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1641 struct brw_reg reg =
1642 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1643 inst->src[i].subreg_offset),
1644 exec_size * inst->src[i].stride,
1645 width, inst->src[i].stride);
1646 reg.abs = inst->src[i].abs;
1647 reg.negate = inst->src[i].negate;
1648
1649 inst->src[i] = reg;
1650 }
1651 }
1652 }
1653
1654 void
1655 fs_visitor::assign_vs_urb_setup()
1656 {
1657 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1658
1659 assert(stage == MESA_SHADER_VERTEX);
1660
1661 /* Each attribute is 4 regs. */
1662 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1663
1664 assert(vs_prog_data->base.urb_read_length <= 15);
1665
1666 /* Rewrite all ATTR file references to the hw grf that they land in. */
1667 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1668 convert_attr_sources_to_hw_regs(inst);
1669 }
1670 }
1671
1672 void
1673 fs_visitor::assign_tcs_single_patch_urb_setup()
1674 {
1675 assert(stage == MESA_SHADER_TESS_CTRL);
1676
1677 /* Rewrite all ATTR file references to HW_REGs. */
1678 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1679 convert_attr_sources_to_hw_regs(inst);
1680 }
1681 }
1682
1683 void
1684 fs_visitor::assign_tes_urb_setup()
1685 {
1686 assert(stage == MESA_SHADER_TESS_EVAL);
1687
1688 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1689
1690 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1691
1692 /* Rewrite all ATTR file references to HW_REGs. */
1693 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1694 convert_attr_sources_to_hw_regs(inst);
1695 }
1696 }
1697
1698 void
1699 fs_visitor::assign_gs_urb_setup()
1700 {
1701 assert(stage == MESA_SHADER_GEOMETRY);
1702
1703 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1704
1705 first_non_payload_grf +=
1706 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1707
1708 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1709 /* Rewrite all ATTR file references to GRFs. */
1710 convert_attr_sources_to_hw_regs(inst);
1711 }
1712 }
1713
1714
1715 /**
1716 * Split large virtual GRFs into separate components if we can.
1717 *
1718 * This is mostly duplicated with what brw_fs_vector_splitting does,
1719 * but that's really conservative because it's afraid of doing
1720 * splitting that doesn't result in real progress after the rest of
1721 * the optimization phases, which would cause infinite looping in
1722 * optimization. We can do it once here, safely. This also has the
1723 * opportunity to split interpolated values, or maybe even uniforms,
1724 * which we don't have at the IR level.
1725 *
1726 * We want to split, because virtual GRFs are what we register
1727 * allocate and spill (due to contiguousness requirements for some
1728 * instructions), and they're what we naturally generate in the
1729 * codegen process, but most virtual GRFs don't actually need to be
1730 * contiguous sets of GRFs. If we split, we'll end up with reduced
1731 * live intervals and better dead code elimination and coalescing.
1732 */
1733 void
1734 fs_visitor::split_virtual_grfs()
1735 {
1736 int num_vars = this->alloc.count;
1737
1738 /* Count the total number of registers */
1739 int reg_count = 0;
1740 int vgrf_to_reg[num_vars];
1741 for (int i = 0; i < num_vars; i++) {
1742 vgrf_to_reg[i] = reg_count;
1743 reg_count += alloc.sizes[i];
1744 }
1745
1746 /* An array of "split points". For each register slot, this indicates
1747 * if this slot can be separated from the previous slot. Every time an
1748 * instruction uses multiple elements of a register (as a source or
1749 * destination), we mark the used slots as inseparable. Then we go
1750 * through and split the registers into the smallest pieces we can.
1751 */
1752 bool split_points[reg_count];
1753 memset(split_points, 0, sizeof(split_points));
1754
1755 /* Mark all used registers as fully splittable */
1756 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1757 if (inst->dst.file == VGRF) {
1758 int reg = vgrf_to_reg[inst->dst.nr];
1759 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1760 split_points[reg + j] = true;
1761 }
1762
1763 for (int i = 0; i < inst->sources; i++) {
1764 if (inst->src[i].file == VGRF) {
1765 int reg = vgrf_to_reg[inst->src[i].nr];
1766 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1767 split_points[reg + j] = true;
1768 }
1769 }
1770 }
1771
1772 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1773 if (inst->dst.file == VGRF) {
1774 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1775 for (int j = 1; j < inst->regs_written; j++)
1776 split_points[reg + j] = false;
1777 }
1778 for (int i = 0; i < inst->sources; i++) {
1779 if (inst->src[i].file == VGRF) {
1780 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1781 for (int j = 1; j < inst->regs_read(i); j++)
1782 split_points[reg + j] = false;
1783 }
1784 }
1785 }
1786
1787 int new_virtual_grf[reg_count];
1788 int new_reg_offset[reg_count];
1789
1790 int reg = 0;
1791 for (int i = 0; i < num_vars; i++) {
1792 /* The first one should always be 0 as a quick sanity check. */
1793 assert(split_points[reg] == false);
1794
1795 /* j = 0 case */
1796 new_reg_offset[reg] = 0;
1797 reg++;
1798 int offset = 1;
1799
1800 /* j > 0 case */
1801 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1802 /* If this is a split point, reset the offset to 0 and allocate a
1803 * new virtual GRF for the previous offset many registers
1804 */
1805 if (split_points[reg]) {
1806 assert(offset <= MAX_VGRF_SIZE);
1807 int grf = alloc.allocate(offset);
1808 for (int k = reg - offset; k < reg; k++)
1809 new_virtual_grf[k] = grf;
1810 offset = 0;
1811 }
1812 new_reg_offset[reg] = offset;
1813 offset++;
1814 reg++;
1815 }
1816
1817 /* The last one gets the original register number */
1818 assert(offset <= MAX_VGRF_SIZE);
1819 alloc.sizes[i] = offset;
1820 for (int k = reg - offset; k < reg; k++)
1821 new_virtual_grf[k] = i;
1822 }
1823 assert(reg == reg_count);
1824
1825 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1826 if (inst->dst.file == VGRF) {
1827 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1828 inst->dst.nr = new_virtual_grf[reg];
1829 inst->dst.reg_offset = new_reg_offset[reg];
1830 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1831 }
1832 for (int i = 0; i < inst->sources; i++) {
1833 if (inst->src[i].file == VGRF) {
1834 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1835 inst->src[i].nr = new_virtual_grf[reg];
1836 inst->src[i].reg_offset = new_reg_offset[reg];
1837 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1838 }
1839 }
1840 }
1841 invalidate_live_intervals();
1842 }
1843
1844 /**
1845 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1846 *
1847 * During code generation, we create tons of temporary variables, many of
1848 * which get immediately killed and are never used again. Yet, in later
1849 * optimization and analysis passes, such as compute_live_intervals, we need
1850 * to loop over all the virtual GRFs. Compacting them can save a lot of
1851 * overhead.
1852 */
1853 bool
1854 fs_visitor::compact_virtual_grfs()
1855 {
1856 bool progress = false;
1857 int remap_table[this->alloc.count];
1858 memset(remap_table, -1, sizeof(remap_table));
1859
1860 /* Mark which virtual GRFs are used. */
1861 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1862 if (inst->dst.file == VGRF)
1863 remap_table[inst->dst.nr] = 0;
1864
1865 for (int i = 0; i < inst->sources; i++) {
1866 if (inst->src[i].file == VGRF)
1867 remap_table[inst->src[i].nr] = 0;
1868 }
1869 }
1870
1871 /* Compact the GRF arrays. */
1872 int new_index = 0;
1873 for (unsigned i = 0; i < this->alloc.count; i++) {
1874 if (remap_table[i] == -1) {
1875 /* We just found an unused register. This means that we are
1876 * actually going to compact something.
1877 */
1878 progress = true;
1879 } else {
1880 remap_table[i] = new_index;
1881 alloc.sizes[new_index] = alloc.sizes[i];
1882 invalidate_live_intervals();
1883 ++new_index;
1884 }
1885 }
1886
1887 this->alloc.count = new_index;
1888
1889 /* Patch all the instructions to use the newly renumbered registers */
1890 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1891 if (inst->dst.file == VGRF)
1892 inst->dst.nr = remap_table[inst->dst.nr];
1893
1894 for (int i = 0; i < inst->sources; i++) {
1895 if (inst->src[i].file == VGRF)
1896 inst->src[i].nr = remap_table[inst->src[i].nr];
1897 }
1898 }
1899
1900 /* Patch all the references to delta_xy, since they're used in register
1901 * allocation. If they're unused, switch them to BAD_FILE so we don't
1902 * think some random VGRF is delta_xy.
1903 */
1904 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1905 if (delta_xy[i].file == VGRF) {
1906 if (remap_table[delta_xy[i].nr] != -1) {
1907 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1908 } else {
1909 delta_xy[i].file = BAD_FILE;
1910 }
1911 }
1912 }
1913
1914 return progress;
1915 }
1916
1917 static void
1918 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1919 int *push_constant_loc, int *pull_constant_loc,
1920 unsigned *num_push_constants,
1921 unsigned *num_pull_constants,
1922 const unsigned max_push_components,
1923 const unsigned max_chunk_size,
1924 struct brw_stage_prog_data *stage_prog_data)
1925 {
1926 /* This is the first live uniform in the chunk */
1927 if (*chunk_start < 0)
1928 *chunk_start = uniform;
1929
1930 /* If this element does not need to be contiguous with the next, we
1931 * split at this point and everything between chunk_start and u forms a
1932 * single chunk.
1933 */
1934 if (!contiguous) {
1935 unsigned chunk_size = uniform - *chunk_start + 1;
1936
1937 /* Decide whether we should push or pull this parameter. In the
1938 * Vulkan driver, push constants are explicitly exposed via the API
1939 * so we push everything. In GL, we only push small arrays.
1940 */
1941 if (stage_prog_data->pull_param == NULL ||
1942 (*num_push_constants + chunk_size <= max_push_components &&
1943 chunk_size <= max_chunk_size)) {
1944 assert(*num_push_constants + chunk_size <= max_push_components);
1945 for (unsigned j = *chunk_start; j <= uniform; j++)
1946 push_constant_loc[j] = (*num_push_constants)++;
1947 } else {
1948 for (unsigned j = *chunk_start; j <= uniform; j++)
1949 pull_constant_loc[j] = (*num_pull_constants)++;
1950 }
1951
1952 *chunk_start = -1;
1953 }
1954 }
1955
1956 /**
1957 * Assign UNIFORM file registers to either push constants or pull constants.
1958 *
1959 * We allow a fragment shader to have more than the specified minimum
1960 * maximum number of fragment shader uniform components (64). If
1961 * there are too many of these, they'd fill up all of register space.
1962 * So, this will push some of them out to the pull constant buffer and
1963 * update the program to load them.
1964 */
1965 void
1966 fs_visitor::assign_constant_locations()
1967 {
1968 /* Only the first compile gets to decide on locations. */
1969 if (dispatch_width != min_dispatch_width)
1970 return;
1971
1972 bool is_live[uniforms];
1973 memset(is_live, 0, sizeof(is_live));
1974 bool is_live_64bit[uniforms];
1975 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1976
1977 /* For each uniform slot, a value of true indicates that the given slot and
1978 * the next slot must remain contiguous. This is used to keep us from
1979 * splitting arrays apart.
1980 */
1981 bool contiguous[uniforms];
1982 memset(contiguous, 0, sizeof(contiguous));
1983
1984 int thread_local_id_index =
1985 (stage == MESA_SHADER_COMPUTE) ?
1986 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index : -1;
1987
1988 /* First, we walk through the instructions and do two things:
1989 *
1990 * 1) Figure out which uniforms are live.
1991 *
1992 * 2) Mark any indirectly used ranges of registers as contiguous.
1993 *
1994 * Note that we don't move constant-indexed accesses to arrays. No
1995 * testing has been done of the performance impact of this choice.
1996 */
1997 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1998 for (int i = 0 ; i < inst->sources; i++) {
1999 if (inst->src[i].file != UNIFORM)
2000 continue;
2001
2002 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
2003
2004 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2005 assert(inst->src[2].ud % 4 == 0);
2006 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
2007 assert(last < uniforms);
2008
2009 for (unsigned j = constant_nr; j < last; j++) {
2010 is_live[j] = true;
2011 contiguous[j] = true;
2012 if (type_sz(inst->src[i].type) == 8) {
2013 is_live_64bit[j] = true;
2014 }
2015 }
2016 is_live[last] = true;
2017 } else {
2018 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2019 int regs_read = inst->components_read(i) *
2020 type_sz(inst->src[i].type) / 4;
2021 for (int j = 0; j < regs_read; j++) {
2022 is_live[constant_nr + j] = true;
2023 if (type_sz(inst->src[i].type) == 8) {
2024 is_live_64bit[constant_nr + j] = true;
2025 }
2026 }
2027 }
2028 }
2029 }
2030 }
2031
2032 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2033 thread_local_id_index = -1;
2034
2035 /* Only allow 16 registers (128 uniform components) as push constants.
2036 *
2037 * Just demote the end of the list. We could probably do better
2038 * here, demoting things that are rarely used in the program first.
2039 *
2040 * If changing this value, note the limitation about total_regs in
2041 * brw_curbe.c.
2042 */
2043 unsigned int max_push_components = 16 * 8;
2044 if (thread_local_id_index >= 0)
2045 max_push_components--; /* Save a slot for the thread ID */
2046
2047 /* We push small arrays, but no bigger than 16 floats. This is big enough
2048 * for a vec4 but hopefully not large enough to push out other stuff. We
2049 * should probably use a better heuristic at some point.
2050 */
2051 const unsigned int max_chunk_size = 16;
2052
2053 unsigned int num_push_constants = 0;
2054 unsigned int num_pull_constants = 0;
2055
2056 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2057 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2058
2059 /* Default to -1 meaning no location */
2060 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2061 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2062
2063 int chunk_start = -1;
2064
2065 /* First push 64-bit uniforms to ensure they are properly aligned */
2066 for (unsigned u = 0; u < uniforms; u++) {
2067 if (!is_live[u] || !is_live_64bit[u])
2068 continue;
2069
2070 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2071 push_constant_loc, pull_constant_loc,
2072 &num_push_constants, &num_pull_constants,
2073 max_push_components, max_chunk_size,
2074 stage_prog_data);
2075
2076 }
2077
2078 /* Then push the rest of uniforms */
2079 for (unsigned u = 0; u < uniforms; u++) {
2080 if (!is_live[u] || is_live_64bit[u])
2081 continue;
2082
2083 /* Skip thread_local_id_index to put it in the last push register. */
2084 if (thread_local_id_index == (int)u)
2085 continue;
2086
2087 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2088 push_constant_loc, pull_constant_loc,
2089 &num_push_constants, &num_pull_constants,
2090 max_push_components, max_chunk_size,
2091 stage_prog_data);
2092 }
2093
2094 /* Add the CS local thread ID uniform at the end of the push constants */
2095 if (thread_local_id_index >= 0)
2096 push_constant_loc[thread_local_id_index] = num_push_constants++;
2097
2098 /* As the uniforms are going to be reordered, take the data from a temporary
2099 * copy of the original param[].
2100 */
2101 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2102 stage_prog_data->nr_params);
2103 memcpy(param, stage_prog_data->param,
2104 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2105 stage_prog_data->nr_params = num_push_constants;
2106 stage_prog_data->nr_pull_params = num_pull_constants;
2107
2108 /* Up until now, the param[] array has been indexed by reg + reg_offset
2109 * of UNIFORM registers. Move pull constants into pull_param[] and
2110 * condense param[] to only contain the uniforms we chose to push.
2111 *
2112 * NOTE: Because we are condensing the params[] array, we know that
2113 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2114 * having to make a copy.
2115 */
2116 int new_thread_local_id_index = -1;
2117 for (unsigned int i = 0; i < uniforms; i++) {
2118 const gl_constant_value *value = param[i];
2119
2120 if (pull_constant_loc[i] != -1) {
2121 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2122 } else if (push_constant_loc[i] != -1) {
2123 stage_prog_data->param[push_constant_loc[i]] = value;
2124 if (thread_local_id_index == (int)i)
2125 new_thread_local_id_index = push_constant_loc[i];
2126 }
2127 }
2128 ralloc_free(param);
2129
2130 if (stage == MESA_SHADER_COMPUTE)
2131 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index =
2132 new_thread_local_id_index;
2133 }
2134
2135 /**
2136 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2137 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2138 */
2139 void
2140 fs_visitor::lower_constant_loads()
2141 {
2142 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2143
2144 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2145 /* Set up the annotation tracking for new generated instructions. */
2146 const fs_builder ibld(this, block, inst);
2147
2148 for (int i = 0; i < inst->sources; i++) {
2149 if (inst->src[i].file != UNIFORM)
2150 continue;
2151
2152 /* We'll handle this case later */
2153 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2154 continue;
2155
2156 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2157 if (location >= uniforms)
2158 continue; /* Out of bounds access */
2159
2160 int pull_index = pull_constant_loc[location];
2161
2162 if (pull_index == -1)
2163 continue;
2164
2165 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2166 fs_reg dst;
2167
2168 if (type_sz(inst->src[i].type) <= 4)
2169 dst = vgrf(glsl_type::float_type);
2170 else
2171 dst = vgrf(glsl_type::double_type);
2172
2173 assert(inst->src[i].stride == 0);
2174
2175 const fs_builder ubld = ibld.exec_all().group(8, 0);
2176 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2177 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2178 dst, brw_imm_ud(index), offset);
2179
2180 /* Rewrite the instruction to use the temporary VGRF. */
2181 inst->src[i].file = VGRF;
2182 inst->src[i].nr = dst.nr;
2183 inst->src[i].reg_offset = 0;
2184 inst->src[i].set_smear((pull_index & 3) * 4 /
2185 type_sz(inst->src[i].type));
2186
2187 brw_mark_surface_used(prog_data, index);
2188 }
2189
2190 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2191 inst->src[0].file == UNIFORM) {
2192
2193 unsigned location = inst->src[0].nr + inst->src[0].reg_offset;
2194 if (location >= uniforms)
2195 continue; /* Out of bounds access */
2196
2197 int pull_index = pull_constant_loc[location];
2198
2199 if (pull_index == -1)
2200 continue;
2201
2202 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2203 brw_imm_ud(index),
2204 inst->src[1],
2205 pull_index * 4);
2206 inst->remove(block);
2207
2208 brw_mark_surface_used(prog_data, index);
2209 }
2210 }
2211 invalidate_live_intervals();
2212 }
2213
2214 bool
2215 fs_visitor::opt_algebraic()
2216 {
2217 bool progress = false;
2218
2219 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2220 switch (inst->opcode) {
2221 case BRW_OPCODE_MOV:
2222 if (inst->src[0].file != IMM)
2223 break;
2224
2225 if (inst->saturate) {
2226 if (inst->dst.type != inst->src[0].type)
2227 assert(!"unimplemented: saturate mixed types");
2228
2229 if (brw_saturate_immediate(inst->dst.type,
2230 &inst->src[0].as_brw_reg())) {
2231 inst->saturate = false;
2232 progress = true;
2233 }
2234 }
2235 break;
2236
2237 case BRW_OPCODE_MUL:
2238 if (inst->src[1].file != IMM)
2239 continue;
2240
2241 /* a * 1.0 = a */
2242 if (inst->src[1].is_one()) {
2243 inst->opcode = BRW_OPCODE_MOV;
2244 inst->src[1] = reg_undef;
2245 progress = true;
2246 break;
2247 }
2248
2249 /* a * -1.0 = -a */
2250 if (inst->src[1].is_negative_one()) {
2251 inst->opcode = BRW_OPCODE_MOV;
2252 inst->src[0].negate = !inst->src[0].negate;
2253 inst->src[1] = reg_undef;
2254 progress = true;
2255 break;
2256 }
2257
2258 /* a * 0.0 = 0.0 */
2259 if (inst->src[1].is_zero()) {
2260 inst->opcode = BRW_OPCODE_MOV;
2261 inst->src[0] = inst->src[1];
2262 inst->src[1] = reg_undef;
2263 progress = true;
2264 break;
2265 }
2266
2267 if (inst->src[0].file == IMM) {
2268 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2269 inst->opcode = BRW_OPCODE_MOV;
2270 inst->src[0].f *= inst->src[1].f;
2271 inst->src[1] = reg_undef;
2272 progress = true;
2273 break;
2274 }
2275 break;
2276 case BRW_OPCODE_ADD:
2277 if (inst->src[1].file != IMM)
2278 continue;
2279
2280 /* a + 0.0 = a */
2281 if (inst->src[1].is_zero()) {
2282 inst->opcode = BRW_OPCODE_MOV;
2283 inst->src[1] = reg_undef;
2284 progress = true;
2285 break;
2286 }
2287
2288 if (inst->src[0].file == IMM) {
2289 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2290 inst->opcode = BRW_OPCODE_MOV;
2291 inst->src[0].f += inst->src[1].f;
2292 inst->src[1] = reg_undef;
2293 progress = true;
2294 break;
2295 }
2296 break;
2297 case BRW_OPCODE_OR:
2298 if (inst->src[0].equals(inst->src[1])) {
2299 inst->opcode = BRW_OPCODE_MOV;
2300 inst->src[1] = reg_undef;
2301 progress = true;
2302 break;
2303 }
2304 break;
2305 case BRW_OPCODE_LRP:
2306 if (inst->src[1].equals(inst->src[2])) {
2307 inst->opcode = BRW_OPCODE_MOV;
2308 inst->src[0] = inst->src[1];
2309 inst->src[1] = reg_undef;
2310 inst->src[2] = reg_undef;
2311 progress = true;
2312 break;
2313 }
2314 break;
2315 case BRW_OPCODE_CMP:
2316 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2317 inst->src[0].abs &&
2318 inst->src[0].negate &&
2319 inst->src[1].is_zero()) {
2320 inst->src[0].abs = false;
2321 inst->src[0].negate = false;
2322 inst->conditional_mod = BRW_CONDITIONAL_Z;
2323 progress = true;
2324 break;
2325 }
2326 break;
2327 case BRW_OPCODE_SEL:
2328 if (inst->src[0].equals(inst->src[1])) {
2329 inst->opcode = BRW_OPCODE_MOV;
2330 inst->src[1] = reg_undef;
2331 inst->predicate = BRW_PREDICATE_NONE;
2332 inst->predicate_inverse = false;
2333 progress = true;
2334 } else if (inst->saturate && inst->src[1].file == IMM) {
2335 switch (inst->conditional_mod) {
2336 case BRW_CONDITIONAL_LE:
2337 case BRW_CONDITIONAL_L:
2338 switch (inst->src[1].type) {
2339 case BRW_REGISTER_TYPE_F:
2340 if (inst->src[1].f >= 1.0f) {
2341 inst->opcode = BRW_OPCODE_MOV;
2342 inst->src[1] = reg_undef;
2343 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2344 progress = true;
2345 }
2346 break;
2347 default:
2348 break;
2349 }
2350 break;
2351 case BRW_CONDITIONAL_GE:
2352 case BRW_CONDITIONAL_G:
2353 switch (inst->src[1].type) {
2354 case BRW_REGISTER_TYPE_F:
2355 if (inst->src[1].f <= 0.0f) {
2356 inst->opcode = BRW_OPCODE_MOV;
2357 inst->src[1] = reg_undef;
2358 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2359 progress = true;
2360 }
2361 break;
2362 default:
2363 break;
2364 }
2365 default:
2366 break;
2367 }
2368 }
2369 break;
2370 case BRW_OPCODE_MAD:
2371 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2372 inst->opcode = BRW_OPCODE_MOV;
2373 inst->src[1] = reg_undef;
2374 inst->src[2] = reg_undef;
2375 progress = true;
2376 } else if (inst->src[0].is_zero()) {
2377 inst->opcode = BRW_OPCODE_MUL;
2378 inst->src[0] = inst->src[2];
2379 inst->src[2] = reg_undef;
2380 progress = true;
2381 } else if (inst->src[1].is_one()) {
2382 inst->opcode = BRW_OPCODE_ADD;
2383 inst->src[1] = inst->src[2];
2384 inst->src[2] = reg_undef;
2385 progress = true;
2386 } else if (inst->src[2].is_one()) {
2387 inst->opcode = BRW_OPCODE_ADD;
2388 inst->src[2] = reg_undef;
2389 progress = true;
2390 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2391 inst->opcode = BRW_OPCODE_ADD;
2392 inst->src[1].f *= inst->src[2].f;
2393 inst->src[2] = reg_undef;
2394 progress = true;
2395 }
2396 break;
2397 case SHADER_OPCODE_BROADCAST:
2398 if (is_uniform(inst->src[0])) {
2399 inst->opcode = BRW_OPCODE_MOV;
2400 inst->sources = 1;
2401 inst->force_writemask_all = true;
2402 progress = true;
2403 } else if (inst->src[1].file == IMM) {
2404 inst->opcode = BRW_OPCODE_MOV;
2405 inst->src[0] = component(inst->src[0],
2406 inst->src[1].ud);
2407 inst->sources = 1;
2408 inst->force_writemask_all = true;
2409 progress = true;
2410 }
2411 break;
2412
2413 default:
2414 break;
2415 }
2416
2417 /* Swap if src[0] is immediate. */
2418 if (progress && inst->is_commutative()) {
2419 if (inst->src[0].file == IMM) {
2420 fs_reg tmp = inst->src[1];
2421 inst->src[1] = inst->src[0];
2422 inst->src[0] = tmp;
2423 }
2424 }
2425 }
2426 return progress;
2427 }
2428
2429 /**
2430 * Optimize sample messages that have constant zero values for the trailing
2431 * texture coordinates. We can just reduce the message length for these
2432 * instructions instead of reserving a register for it. Trailing parameters
2433 * that aren't sent default to zero anyway. This will cause the dead code
2434 * eliminator to remove the MOV instruction that would otherwise be emitted to
2435 * set up the zero value.
2436 */
2437 bool
2438 fs_visitor::opt_zero_samples()
2439 {
2440 /* Gen4 infers the texturing opcode based on the message length so we can't
2441 * change it.
2442 */
2443 if (devinfo->gen < 5)
2444 return false;
2445
2446 bool progress = false;
2447
2448 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2449 if (!inst->is_tex())
2450 continue;
2451
2452 fs_inst *load_payload = (fs_inst *) inst->prev;
2453
2454 if (load_payload->is_head_sentinel() ||
2455 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2456 continue;
2457
2458 /* We don't want to remove the message header or the first parameter.
2459 * Removing the first parameter is not allowed, see the Haswell PRM
2460 * volume 7, page 149:
2461 *
2462 * "Parameter 0 is required except for the sampleinfo message, which
2463 * has no parameter 0"
2464 */
2465 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2466 load_payload->src[(inst->mlen - inst->header_size) /
2467 (inst->exec_size / 8) +
2468 inst->header_size - 1].is_zero()) {
2469 inst->mlen -= inst->exec_size / 8;
2470 progress = true;
2471 }
2472 }
2473
2474 if (progress)
2475 invalidate_live_intervals();
2476
2477 return progress;
2478 }
2479
2480 /**
2481 * Optimize sample messages which are followed by the final RT write.
2482 *
2483 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2484 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2485 * final texturing results copied to the framebuffer write payload and modify
2486 * them to write to the framebuffer directly.
2487 */
2488 bool
2489 fs_visitor::opt_sampler_eot()
2490 {
2491 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2492
2493 if (stage != MESA_SHADER_FRAGMENT)
2494 return false;
2495
2496 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2497 return false;
2498
2499 /* FINISHME: It should be possible to implement this optimization when there
2500 * are multiple drawbuffers.
2501 */
2502 if (key->nr_color_regions != 1)
2503 return false;
2504
2505 /* Requires emitting a bunch of saturating MOV instructions during logical
2506 * send lowering to clamp the color payload, which the sampler unit isn't
2507 * going to do for us.
2508 */
2509 if (key->clamp_fragment_color)
2510 return false;
2511
2512 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2513 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2514 fs_inst *fb_write = (fs_inst *)block->end();
2515 assert(fb_write->eot);
2516 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2517
2518 /* There wasn't one; nothing to do. */
2519 if (unlikely(fb_write->prev->is_head_sentinel()))
2520 return false;
2521
2522 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2523
2524 /* 3D Sampler » Messages » Message Format
2525 *
2526 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2527 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2528 */
2529 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2530 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2531 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2532 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2533 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2534 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2535 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2536 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2537 return false;
2538
2539 /* XXX - This shouldn't be necessary. */
2540 if (tex_inst->prev->is_head_sentinel())
2541 return false;
2542
2543 /* Check that the FB write sources are fully initialized by the single
2544 * texturing instruction.
2545 */
2546 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2547 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2548 if (!fb_write->src[i].equals(tex_inst->dst) ||
2549 fb_write->regs_read(i) != tex_inst->regs_written)
2550 return false;
2551 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2552 if (fb_write->src[i].file != BAD_FILE)
2553 return false;
2554 }
2555 }
2556
2557 assert(!tex_inst->eot); /* We can't get here twice */
2558 assert((tex_inst->offset & (0xff << 24)) == 0);
2559
2560 const fs_builder ibld(this, block, tex_inst);
2561
2562 tex_inst->offset |= fb_write->target << 24;
2563 tex_inst->eot = true;
2564 tex_inst->dst = ibld.null_reg_ud();
2565 tex_inst->regs_written = 0;
2566 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2567
2568 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2569 * flag and submit a header together with the sampler message as required
2570 * by the hardware.
2571 */
2572 invalidate_live_intervals();
2573 return true;
2574 }
2575
2576 bool
2577 fs_visitor::opt_register_renaming()
2578 {
2579 bool progress = false;
2580 int depth = 0;
2581
2582 int remap[alloc.count];
2583 memset(remap, -1, sizeof(int) * alloc.count);
2584
2585 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2586 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2587 depth++;
2588 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2589 inst->opcode == BRW_OPCODE_WHILE) {
2590 depth--;
2591 }
2592
2593 /* Rewrite instruction sources. */
2594 for (int i = 0; i < inst->sources; i++) {
2595 if (inst->src[i].file == VGRF &&
2596 remap[inst->src[i].nr] != -1 &&
2597 remap[inst->src[i].nr] != inst->src[i].nr) {
2598 inst->src[i].nr = remap[inst->src[i].nr];
2599 progress = true;
2600 }
2601 }
2602
2603 const int dst = inst->dst.nr;
2604
2605 if (depth == 0 &&
2606 inst->dst.file == VGRF &&
2607 alloc.sizes[inst->dst.nr] == inst->regs_written &&
2608 !inst->is_partial_write()) {
2609 if (remap[dst] == -1) {
2610 remap[dst] = dst;
2611 } else {
2612 remap[dst] = alloc.allocate(inst->regs_written);
2613 inst->dst.nr = remap[dst];
2614 progress = true;
2615 }
2616 } else if (inst->dst.file == VGRF &&
2617 remap[dst] != -1 &&
2618 remap[dst] != dst) {
2619 inst->dst.nr = remap[dst];
2620 progress = true;
2621 }
2622 }
2623
2624 if (progress) {
2625 invalidate_live_intervals();
2626
2627 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2628 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2629 delta_xy[i].nr = remap[delta_xy[i].nr];
2630 }
2631 }
2632 }
2633
2634 return progress;
2635 }
2636
2637 /**
2638 * Remove redundant or useless discard jumps.
2639 *
2640 * For example, we can eliminate jumps in the following sequence:
2641 *
2642 * discard-jump (redundant with the next jump)
2643 * discard-jump (useless; jumps to the next instruction)
2644 * placeholder-halt
2645 */
2646 bool
2647 fs_visitor::opt_redundant_discard_jumps()
2648 {
2649 bool progress = false;
2650
2651 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2652
2653 fs_inst *placeholder_halt = NULL;
2654 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2655 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2656 placeholder_halt = inst;
2657 break;
2658 }
2659 }
2660
2661 if (!placeholder_halt)
2662 return false;
2663
2664 /* Delete any HALTs immediately before the placeholder halt. */
2665 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2666 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2667 prev = (fs_inst *) placeholder_halt->prev) {
2668 prev->remove(last_bblock);
2669 progress = true;
2670 }
2671
2672 if (progress)
2673 invalidate_live_intervals();
2674
2675 return progress;
2676 }
2677
2678 /**
2679 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2680 * from \p r which overlaps the region starting at \p r and spanning \p n GRF
2681 * units.
2682 */
2683 static inline unsigned
2684 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned n)
2685 {
2686 const int rel_offset = (reg_offset(s) - reg_offset(r)) / REG_SIZE;
2687 assert(reg_space(r) == reg_space(s) &&
2688 rel_offset >= 0 && rel_offset < int(8 * sizeof(unsigned)));
2689 return ((1 << n) - 1) << rel_offset;
2690 }
2691
2692 bool
2693 fs_visitor::compute_to_mrf()
2694 {
2695 bool progress = false;
2696 int next_ip = 0;
2697
2698 /* No MRFs on Gen >= 7. */
2699 if (devinfo->gen >= 7)
2700 return false;
2701
2702 calculate_live_intervals();
2703
2704 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2705 int ip = next_ip;
2706 next_ip++;
2707
2708 if (inst->opcode != BRW_OPCODE_MOV ||
2709 inst->is_partial_write() ||
2710 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2711 inst->dst.type != inst->src[0].type ||
2712 inst->src[0].abs || inst->src[0].negate ||
2713 !inst->src[0].is_contiguous() ||
2714 inst->src[0].subreg_offset)
2715 continue;
2716
2717 /* Can't compute-to-MRF this GRF if someone else was going to
2718 * read it later.
2719 */
2720 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2721 continue;
2722
2723 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2724 * things that computed the value of all GRFs of the source region. The
2725 * regs_left bitset keeps track of the registers we haven't yet found a
2726 * generating instruction for.
2727 */
2728 unsigned regs_left = (1 << inst->regs_read(0)) - 1;
2729
2730 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2731 if (regions_overlap(scan_inst->dst, scan_inst->regs_written * REG_SIZE,
2732 inst->src[0], inst->regs_read(0) * REG_SIZE)) {
2733 /* Found the last thing to write our reg we want to turn
2734 * into a compute-to-MRF.
2735 */
2736
2737 /* If this one instruction didn't populate all the
2738 * channels, bail. We might be able to rewrite everything
2739 * that writes that reg, but it would require smarter
2740 * tracking.
2741 */
2742 if (scan_inst->is_partial_write())
2743 break;
2744
2745 /* Handling things not fully contained in the source of the copy
2746 * would need us to understand coalescing out more than one MOV at
2747 * a time.
2748 */
2749 if (scan_inst->dst.reg_offset < inst->src[0].reg_offset ||
2750 scan_inst->dst.reg_offset + scan_inst->regs_written >
2751 inst->src[0].reg_offset + inst->regs_read(0))
2752 break;
2753
2754 /* SEND instructions can't have MRF as a destination. */
2755 if (scan_inst->mlen)
2756 break;
2757
2758 if (devinfo->gen == 6) {
2759 /* gen6 math instructions must have the destination be
2760 * GRF, so no compute-to-MRF for them.
2761 */
2762 if (scan_inst->is_math()) {
2763 break;
2764 }
2765 }
2766
2767 /* Clear the bits for any registers this instruction overwrites. */
2768 regs_left &= ~mask_relative_to(
2769 inst->src[0], scan_inst->dst, scan_inst->regs_written);
2770 if (!regs_left)
2771 break;
2772 }
2773
2774 /* We don't handle control flow here. Most computation of
2775 * values that end up in MRFs are shortly before the MRF
2776 * write anyway.
2777 */
2778 if (block->start() == scan_inst)
2779 break;
2780
2781 /* You can't read from an MRF, so if someone else reads our
2782 * MRF's source GRF that we wanted to rewrite, that stops us.
2783 */
2784 bool interfered = false;
2785 for (int i = 0; i < scan_inst->sources; i++) {
2786 if (regions_overlap(scan_inst->src[i], scan_inst->regs_read(i) * REG_SIZE,
2787 inst->src[0], inst->regs_read(0) * REG_SIZE)) {
2788 interfered = true;
2789 }
2790 }
2791 if (interfered)
2792 break;
2793
2794 if (regions_overlap(scan_inst->dst, scan_inst->regs_written * REG_SIZE,
2795 inst->dst, inst->regs_written * REG_SIZE)) {
2796 /* If somebody else writes our MRF here, we can't
2797 * compute-to-MRF before that.
2798 */
2799 break;
2800 }
2801
2802 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2803 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2804 inst->dst, inst->regs_written * REG_SIZE)) {
2805 /* Found a SEND instruction, which means that there are
2806 * live values in MRFs from base_mrf to base_mrf +
2807 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2808 * above it.
2809 */
2810 break;
2811 }
2812 }
2813
2814 if (regs_left)
2815 continue;
2816
2817 /* Found all generating instructions of our MRF's source value, so it
2818 * should be safe to rewrite them to point to the MRF directly.
2819 */
2820 regs_left = (1 << inst->regs_read(0)) - 1;
2821
2822 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2823 if (regions_overlap(scan_inst->dst, scan_inst->regs_written * REG_SIZE,
2824 inst->src[0], inst->regs_read(0) * REG_SIZE)) {
2825 /* Clear the bits for any registers this instruction overwrites. */
2826 regs_left &= ~mask_relative_to(
2827 inst->src[0], scan_inst->dst, scan_inst->regs_written);
2828
2829 const unsigned rel_offset = (reg_offset(scan_inst->dst) -
2830 reg_offset(inst->src[0])) / REG_SIZE;
2831
2832 if (inst->dst.nr & BRW_MRF_COMPR4) {
2833 /* Apply the same address transformation done by the hardware
2834 * for COMPR4 MRF writes.
2835 */
2836 assert(rel_offset < 2);
2837 scan_inst->dst.nr = inst->dst.nr + rel_offset * 4;
2838
2839 /* Clear the COMPR4 bit if the generating instruction is not
2840 * compressed.
2841 */
2842 if (scan_inst->regs_written < 2)
2843 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2844
2845 } else {
2846 /* Calculate the MRF number the result of this instruction is
2847 * ultimately written to.
2848 */
2849 scan_inst->dst.nr = inst->dst.nr + rel_offset;
2850 }
2851
2852 scan_inst->dst.file = MRF;
2853 scan_inst->dst.reg_offset = 0;
2854 scan_inst->saturate |= inst->saturate;
2855 if (!regs_left)
2856 break;
2857 }
2858 }
2859
2860 assert(!regs_left);
2861 inst->remove(block);
2862 progress = true;
2863 }
2864
2865 if (progress)
2866 invalidate_live_intervals();
2867
2868 return progress;
2869 }
2870
2871 /**
2872 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2873 * flow. We could probably do better here with some form of divergence
2874 * analysis.
2875 */
2876 bool
2877 fs_visitor::eliminate_find_live_channel()
2878 {
2879 bool progress = false;
2880 unsigned depth = 0;
2881
2882 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2883 switch (inst->opcode) {
2884 case BRW_OPCODE_IF:
2885 case BRW_OPCODE_DO:
2886 depth++;
2887 break;
2888
2889 case BRW_OPCODE_ENDIF:
2890 case BRW_OPCODE_WHILE:
2891 depth--;
2892 break;
2893
2894 case FS_OPCODE_DISCARD_JUMP:
2895 /* This can potentially make control flow non-uniform until the end
2896 * of the program.
2897 */
2898 return progress;
2899
2900 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2901 if (depth == 0) {
2902 inst->opcode = BRW_OPCODE_MOV;
2903 inst->src[0] = brw_imm_ud(0u);
2904 inst->sources = 1;
2905 inst->force_writemask_all = true;
2906 progress = true;
2907 }
2908 break;
2909
2910 default:
2911 break;
2912 }
2913 }
2914
2915 return progress;
2916 }
2917
2918 /**
2919 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2920 * instructions to FS_OPCODE_REP_FB_WRITE.
2921 */
2922 void
2923 fs_visitor::emit_repclear_shader()
2924 {
2925 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2926 int base_mrf = 0;
2927 int color_mrf = base_mrf + 2;
2928 fs_inst *mov;
2929
2930 if (uniforms > 0) {
2931 mov = bld.exec_all().group(4, 0)
2932 .MOV(brw_message_reg(color_mrf),
2933 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2934 } else {
2935 struct brw_reg reg =
2936 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2937 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2938 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2939
2940 mov = bld.exec_all().group(4, 0)
2941 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2942 }
2943
2944 fs_inst *write;
2945 if (key->nr_color_regions == 1) {
2946 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2947 write->saturate = key->clamp_fragment_color;
2948 write->base_mrf = color_mrf;
2949 write->target = 0;
2950 write->header_size = 0;
2951 write->mlen = 1;
2952 } else {
2953 assume(key->nr_color_regions > 0);
2954 for (int i = 0; i < key->nr_color_regions; ++i) {
2955 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2956 write->saturate = key->clamp_fragment_color;
2957 write->base_mrf = base_mrf;
2958 write->target = i;
2959 write->header_size = 2;
2960 write->mlen = 3;
2961 }
2962 }
2963 write->eot = true;
2964
2965 calculate_cfg();
2966
2967 assign_constant_locations();
2968 assign_curb_setup();
2969
2970 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2971 if (uniforms > 0) {
2972 assert(mov->src[0].file == FIXED_GRF);
2973 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2974 }
2975 }
2976
2977 /**
2978 * Walks through basic blocks, looking for repeated MRF writes and
2979 * removing the later ones.
2980 */
2981 bool
2982 fs_visitor::remove_duplicate_mrf_writes()
2983 {
2984 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2985 bool progress = false;
2986
2987 /* Need to update the MRF tracking for compressed instructions. */
2988 if (dispatch_width >= 16)
2989 return false;
2990
2991 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2992
2993 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2994 if (inst->is_control_flow()) {
2995 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2996 }
2997
2998 if (inst->opcode == BRW_OPCODE_MOV &&
2999 inst->dst.file == MRF) {
3000 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3001 if (prev_inst && inst->equals(prev_inst)) {
3002 inst->remove(block);
3003 progress = true;
3004 continue;
3005 }
3006 }
3007
3008 /* Clear out the last-write records for MRFs that were overwritten. */
3009 if (inst->dst.file == MRF) {
3010 last_mrf_move[inst->dst.nr] = NULL;
3011 }
3012
3013 if (inst->mlen > 0 && inst->base_mrf != -1) {
3014 /* Found a SEND instruction, which will include two or fewer
3015 * implied MRF writes. We could do better here.
3016 */
3017 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3018 last_mrf_move[inst->base_mrf + i] = NULL;
3019 }
3020 }
3021
3022 /* Clear out any MRF move records whose sources got overwritten. */
3023 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3024 if (last_mrf_move[i] &&
3025 regions_overlap(inst->dst, inst->regs_written * REG_SIZE,
3026 last_mrf_move[i]->src[0],
3027 last_mrf_move[i]->regs_read(0) * REG_SIZE)) {
3028 last_mrf_move[i] = NULL;
3029 }
3030 }
3031
3032 if (inst->opcode == BRW_OPCODE_MOV &&
3033 inst->dst.file == MRF &&
3034 inst->src[0].file != ARF &&
3035 !inst->is_partial_write()) {
3036 last_mrf_move[inst->dst.nr] = inst;
3037 }
3038 }
3039
3040 if (progress)
3041 invalidate_live_intervals();
3042
3043 return progress;
3044 }
3045
3046 static void
3047 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3048 {
3049 /* Clear the flag for registers that actually got read (as expected). */
3050 for (int i = 0; i < inst->sources; i++) {
3051 int grf;
3052 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3053 grf = inst->src[i].nr;
3054 } else {
3055 continue;
3056 }
3057
3058 if (grf >= first_grf &&
3059 grf < first_grf + grf_len) {
3060 deps[grf - first_grf] = false;
3061 if (inst->exec_size == 16)
3062 deps[grf - first_grf + 1] = false;
3063 }
3064 }
3065 }
3066
3067 /**
3068 * Implements this workaround for the original 965:
3069 *
3070 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3071 * check for post destination dependencies on this instruction, software
3072 * must ensure that there is no destination hazard for the case of ‘write
3073 * followed by a posted write’ shown in the following example.
3074 *
3075 * 1. mov r3 0
3076 * 2. send r3.xy <rest of send instruction>
3077 * 3. mov r2 r3
3078 *
3079 * Due to no post-destination dependency check on the ‘send’, the above
3080 * code sequence could have two instructions (1 and 2) in flight at the
3081 * same time that both consider ‘r3’ as the target of their final writes.
3082 */
3083 void
3084 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3085 fs_inst *inst)
3086 {
3087 int write_len = inst->regs_written;
3088 int first_write_grf = inst->dst.nr;
3089 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3090 assert(write_len < (int)sizeof(needs_dep) - 1);
3091
3092 memset(needs_dep, false, sizeof(needs_dep));
3093 memset(needs_dep, true, write_len);
3094
3095 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3096
3097 /* Walk backwards looking for writes to registers we're writing which
3098 * aren't read since being written. If we hit the start of the program,
3099 * we assume that there are no outstanding dependencies on entry to the
3100 * program.
3101 */
3102 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3103 /* If we hit control flow, assume that there *are* outstanding
3104 * dependencies, and force their cleanup before our instruction.
3105 */
3106 if (block->start() == scan_inst && block->num != 0) {
3107 for (int i = 0; i < write_len; i++) {
3108 if (needs_dep[i])
3109 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3110 first_write_grf + i);
3111 }
3112 return;
3113 }
3114
3115 /* We insert our reads as late as possible on the assumption that any
3116 * instruction but a MOV that might have left us an outstanding
3117 * dependency has more latency than a MOV.
3118 */
3119 if (scan_inst->dst.file == VGRF) {
3120 for (int i = 0; i < scan_inst->regs_written; i++) {
3121 int reg = scan_inst->dst.nr + i;
3122
3123 if (reg >= first_write_grf &&
3124 reg < first_write_grf + write_len &&
3125 needs_dep[reg - first_write_grf]) {
3126 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3127 needs_dep[reg - first_write_grf] = false;
3128 if (scan_inst->exec_size == 16)
3129 needs_dep[reg - first_write_grf + 1] = false;
3130 }
3131 }
3132 }
3133
3134 /* Clear the flag for registers that actually got read (as expected). */
3135 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3136
3137 /* Continue the loop only if we haven't resolved all the dependencies */
3138 int i;
3139 for (i = 0; i < write_len; i++) {
3140 if (needs_dep[i])
3141 break;
3142 }
3143 if (i == write_len)
3144 return;
3145 }
3146 }
3147
3148 /**
3149 * Implements this workaround for the original 965:
3150 *
3151 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3152 * used as a destination register until after it has been sourced by an
3153 * instruction with a different destination register.
3154 */
3155 void
3156 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3157 {
3158 int write_len = inst->regs_written;
3159 int first_write_grf = inst->dst.nr;
3160 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3161 assert(write_len < (int)sizeof(needs_dep) - 1);
3162
3163 memset(needs_dep, false, sizeof(needs_dep));
3164 memset(needs_dep, true, write_len);
3165 /* Walk forwards looking for writes to registers we're writing which aren't
3166 * read before being written.
3167 */
3168 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3169 /* If we hit control flow, force resolve all remaining dependencies. */
3170 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3171 for (int i = 0; i < write_len; i++) {
3172 if (needs_dep[i])
3173 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3174 first_write_grf + i);
3175 }
3176 return;
3177 }
3178
3179 /* Clear the flag for registers that actually got read (as expected). */
3180 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3181
3182 /* We insert our reads as late as possible since they're reading the
3183 * result of a SEND, which has massive latency.
3184 */
3185 if (scan_inst->dst.file == VGRF &&
3186 scan_inst->dst.nr >= first_write_grf &&
3187 scan_inst->dst.nr < first_write_grf + write_len &&
3188 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3189 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3190 scan_inst->dst.nr);
3191 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3192 }
3193
3194 /* Continue the loop only if we haven't resolved all the dependencies */
3195 int i;
3196 for (i = 0; i < write_len; i++) {
3197 if (needs_dep[i])
3198 break;
3199 }
3200 if (i == write_len)
3201 return;
3202 }
3203 }
3204
3205 void
3206 fs_visitor::insert_gen4_send_dependency_workarounds()
3207 {
3208 if (devinfo->gen != 4 || devinfo->is_g4x)
3209 return;
3210
3211 bool progress = false;
3212
3213 /* Note that we're done with register allocation, so GRF fs_regs always
3214 * have a .reg_offset of 0.
3215 */
3216
3217 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3218 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3219 insert_gen4_pre_send_dependency_workarounds(block, inst);
3220 insert_gen4_post_send_dependency_workarounds(block, inst);
3221 progress = true;
3222 }
3223 }
3224
3225 if (progress)
3226 invalidate_live_intervals();
3227 }
3228
3229 /**
3230 * Turns the generic expression-style uniform pull constant load instruction
3231 * into a hardware-specific series of instructions for loading a pull
3232 * constant.
3233 *
3234 * The expression style allows the CSE pass before this to optimize out
3235 * repeated loads from the same offset, and gives the pre-register-allocation
3236 * scheduling full flexibility, while the conversion to native instructions
3237 * allows the post-register-allocation scheduler the best information
3238 * possible.
3239 *
3240 * Note that execution masking for setting up pull constant loads is special:
3241 * the channels that need to be written are unrelated to the current execution
3242 * mask, since a later instruction will use one of the result channels as a
3243 * source operand for all 8 or 16 of its channels.
3244 */
3245 void
3246 fs_visitor::lower_uniform_pull_constant_loads()
3247 {
3248 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3249 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3250 continue;
3251
3252 if (devinfo->gen >= 7) {
3253 /* The offset arg is a vec4-aligned immediate byte offset. */
3254 fs_reg const_offset_reg = inst->src[1];
3255 assert(const_offset_reg.file == IMM &&
3256 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3257 assert(const_offset_reg.ud % 16 == 0);
3258
3259 fs_reg payload, offset;
3260 if (devinfo->gen >= 9) {
3261 /* We have to use a message header on Skylake to get SIMD4x2
3262 * mode. Reserve space for the register.
3263 */
3264 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3265 offset.reg_offset++;
3266 inst->mlen = 2;
3267 } else {
3268 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3269 inst->mlen = 1;
3270 }
3271
3272 /* This is actually going to be a MOV, but since only the first dword
3273 * is accessed, we have a special opcode to do just that one. Note
3274 * that this needs to be an operation that will be considered a def
3275 * by live variable analysis, or register allocation will explode.
3276 */
3277 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3278 8, offset, const_offset_reg);
3279 setup->force_writemask_all = true;
3280
3281 setup->ir = inst->ir;
3282 setup->annotation = inst->annotation;
3283 inst->insert_before(block, setup);
3284
3285 /* Similarly, this will only populate the first 4 channels of the
3286 * result register (since we only use smear values from 0-3), but we
3287 * don't tell the optimizer.
3288 */
3289 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3290 inst->src[1] = payload;
3291
3292 invalidate_live_intervals();
3293 } else {
3294 /* Before register allocation, we didn't tell the scheduler about the
3295 * MRF we use. We know it's safe to use this MRF because nothing
3296 * else does except for register spill/unspill, which generates and
3297 * uses its MRF within a single IR instruction.
3298 */
3299 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3300 inst->mlen = 1;
3301 }
3302 }
3303 }
3304
3305 bool
3306 fs_visitor::lower_load_payload()
3307 {
3308 bool progress = false;
3309
3310 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3311 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3312 continue;
3313
3314 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3315 assert(inst->saturate == false);
3316 fs_reg dst = inst->dst;
3317
3318 /* Get rid of COMPR4. We'll add it back in if we need it */
3319 if (dst.file == MRF)
3320 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3321
3322 const fs_builder ibld(this, block, inst);
3323 const fs_builder hbld = ibld.exec_all().group(8, 0);
3324
3325 for (uint8_t i = 0; i < inst->header_size; i++) {
3326 if (inst->src[i].file != BAD_FILE) {
3327 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3328 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3329 hbld.MOV(mov_dst, mov_src);
3330 }
3331 dst = offset(dst, hbld, 1);
3332 }
3333
3334 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3335 inst->exec_size > 8) {
3336 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3337 * a straightforward copy. Instead, the result of the
3338 * LOAD_PAYLOAD is treated as interleaved and the first four
3339 * non-header sources are unpacked as:
3340 *
3341 * m + 0: r0
3342 * m + 1: g0
3343 * m + 2: b0
3344 * m + 3: a0
3345 * m + 4: r1
3346 * m + 5: g1
3347 * m + 6: b1
3348 * m + 7: a1
3349 *
3350 * This is used for gen <= 5 fb writes.
3351 */
3352 assert(inst->exec_size == 16);
3353 assert(inst->header_size + 4 <= inst->sources);
3354 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3355 if (inst->src[i].file != BAD_FILE) {
3356 if (devinfo->has_compr4) {
3357 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3358 compr4_dst.nr |= BRW_MRF_COMPR4;
3359 ibld.MOV(compr4_dst, inst->src[i]);
3360 } else {
3361 /* Platform doesn't have COMPR4. We have to fake it */
3362 fs_reg mov_dst = retype(dst, inst->src[i].type);
3363 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3364 mov_dst.nr += 4;
3365 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3366 }
3367 }
3368
3369 dst.nr++;
3370 }
3371
3372 /* The loop above only ever incremented us through the first set
3373 * of 4 registers. However, thanks to the magic of COMPR4, we
3374 * actually wrote to the first 8 registers, so we need to take
3375 * that into account now.
3376 */
3377 dst.nr += 4;
3378
3379 /* The COMPR4 code took care of the first 4 sources. We'll let
3380 * the regular path handle any remaining sources. Yes, we are
3381 * modifying the instruction but we're about to delete it so
3382 * this really doesn't hurt anything.
3383 */
3384 inst->header_size += 4;
3385 }
3386
3387 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3388 if (inst->src[i].file != BAD_FILE)
3389 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3390 dst = offset(dst, ibld, 1);
3391 }
3392
3393 inst->remove(block);
3394 progress = true;
3395 }
3396
3397 if (progress)
3398 invalidate_live_intervals();
3399
3400 return progress;
3401 }
3402
3403 bool
3404 fs_visitor::lower_integer_multiplication()
3405 {
3406 bool progress = false;
3407
3408 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3409 const fs_builder ibld(this, block, inst);
3410
3411 if (inst->opcode == BRW_OPCODE_MUL) {
3412 if (inst->dst.is_accumulator() ||
3413 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3414 inst->dst.type != BRW_REGISTER_TYPE_UD))
3415 continue;
3416
3417 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3418 * operation directly, but CHV/BXT cannot.
3419 */
3420 if (devinfo->gen >= 8 &&
3421 !devinfo->is_cherryview && !devinfo->is_broxton)
3422 continue;
3423
3424 if (inst->src[1].file == IMM &&
3425 inst->src[1].ud < (1 << 16)) {
3426 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3427 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3428 * src1 are used.
3429 *
3430 * If multiplying by an immediate value that fits in 16-bits, do a
3431 * single MUL instruction with that value in the proper location.
3432 */
3433 if (devinfo->gen < 7) {
3434 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3435 inst->dst.type);
3436 ibld.MOV(imm, inst->src[1]);
3437 ibld.MUL(inst->dst, imm, inst->src[0]);
3438 } else {
3439 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3440 ibld.MUL(inst->dst, inst->src[0],
3441 ud ? brw_imm_uw(inst->src[1].ud)
3442 : brw_imm_w(inst->src[1].d));
3443 }
3444 } else {
3445 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3446 * do 32-bit integer multiplication in one instruction, but instead
3447 * must do a sequence (which actually calculates a 64-bit result):
3448 *
3449 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3450 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3451 * mov(8) g2<1>D acc0<8,8,1>D
3452 *
3453 * But on Gen > 6, the ability to use second accumulator register
3454 * (acc1) for non-float data types was removed, preventing a simple
3455 * implementation in SIMD16. A 16-channel result can be calculated by
3456 * executing the three instructions twice in SIMD8, once with quarter
3457 * control of 1Q for the first eight channels and again with 2Q for
3458 * the second eight channels.
3459 *
3460 * Which accumulator register is implicitly accessed (by AccWrEnable
3461 * for instance) is determined by the quarter control. Unfortunately
3462 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3463 * implicit accumulator access by an instruction with 2Q will access
3464 * acc1 regardless of whether the data type is usable in acc1.
3465 *
3466 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3467 * integer data types.
3468 *
3469 * Since we only want the low 32-bits of the result, we can do two
3470 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3471 * adjust the high result and add them (like the mach is doing):
3472 *
3473 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3474 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3475 * shl(8) g9<1>D g8<8,8,1>D 16D
3476 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3477 *
3478 * We avoid the shl instruction by realizing that we only want to add
3479 * the low 16-bits of the "high" result to the high 16-bits of the
3480 * "low" result and using proper regioning on the add:
3481 *
3482 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3483 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3484 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3485 *
3486 * Since it does not use the (single) accumulator register, we can
3487 * schedule multi-component multiplications much better.
3488 */
3489
3490 fs_reg orig_dst = inst->dst;
3491 if (orig_dst.is_null() || orig_dst.file == MRF) {
3492 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3493 inst->dst.type);
3494 }
3495 fs_reg low = inst->dst;
3496 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3497 inst->dst.type);
3498
3499 if (devinfo->gen >= 7) {
3500 fs_reg src1_0_w = inst->src[1];
3501 fs_reg src1_1_w = inst->src[1];
3502
3503 if (inst->src[1].file == IMM) {
3504 src1_0_w.ud &= 0xffff;
3505 src1_1_w.ud >>= 16;
3506 } else {
3507 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3508 if (src1_0_w.stride != 0) {
3509 assert(src1_0_w.stride == 1);
3510 src1_0_w.stride = 2;
3511 }
3512
3513 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3514 if (src1_1_w.stride != 0) {
3515 assert(src1_1_w.stride == 1);
3516 src1_1_w.stride = 2;
3517 }
3518 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3519 }
3520 ibld.MUL(low, inst->src[0], src1_0_w);
3521 ibld.MUL(high, inst->src[0], src1_1_w);
3522 } else {
3523 fs_reg src0_0_w = inst->src[0];
3524 fs_reg src0_1_w = inst->src[0];
3525
3526 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3527 if (src0_0_w.stride != 0) {
3528 assert(src0_0_w.stride == 1);
3529 src0_0_w.stride = 2;
3530 }
3531
3532 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3533 if (src0_1_w.stride != 0) {
3534 assert(src0_1_w.stride == 1);
3535 src0_1_w.stride = 2;
3536 }
3537 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3538
3539 ibld.MUL(low, src0_0_w, inst->src[1]);
3540 ibld.MUL(high, src0_1_w, inst->src[1]);
3541 }
3542
3543 fs_reg dst = inst->dst;
3544 dst.type = BRW_REGISTER_TYPE_UW;
3545 dst.subreg_offset = 2;
3546 dst.stride = 2;
3547
3548 high.type = BRW_REGISTER_TYPE_UW;
3549 high.stride = 2;
3550
3551 low.type = BRW_REGISTER_TYPE_UW;
3552 low.subreg_offset = 2;
3553 low.stride = 2;
3554
3555 ibld.ADD(dst, low, high);
3556
3557 if (inst->conditional_mod || orig_dst.file == MRF) {
3558 set_condmod(inst->conditional_mod,
3559 ibld.MOV(orig_dst, inst->dst));
3560 }
3561 }
3562
3563 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3564 /* Should have been lowered to 8-wide. */
3565 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3566 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3567 inst->dst.type);
3568 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3569 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3570
3571 if (devinfo->gen >= 8) {
3572 /* Until Gen8, integer multiplies read 32-bits from one source,
3573 * and 16-bits from the other, and relying on the MACH instruction
3574 * to generate the high bits of the result.
3575 *
3576 * On Gen8, the multiply instruction does a full 32x32-bit
3577 * multiply, but in order to do a 64-bit multiply we can simulate
3578 * the previous behavior and then use a MACH instruction.
3579 *
3580 * FINISHME: Don't use source modifiers on src1.
3581 */
3582 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3583 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3584 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3585 mul->src[1].stride *= 2;
3586
3587 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3588 inst->group > 0) {
3589 /* Among other things the quarter control bits influence which
3590 * accumulator register is used by the hardware for instructions
3591 * that access the accumulator implicitly (e.g. MACH). A
3592 * second-half instruction would normally map to acc1, which
3593 * doesn't exist on Gen7 and up (the hardware does emulate it for
3594 * floating-point instructions *only* by taking advantage of the
3595 * extra precision of acc0 not normally used for floating point
3596 * arithmetic).
3597 *
3598 * HSW and up are careful enough not to try to access an
3599 * accumulator register that doesn't exist, but on earlier Gen7
3600 * hardware we need to make sure that the quarter control bits are
3601 * zero to avoid non-deterministic behaviour and emit an extra MOV
3602 * to get the result masked correctly according to the current
3603 * channel enables.
3604 */
3605 mach->group = 0;
3606 mach->force_writemask_all = true;
3607 mach->dst = ibld.vgrf(inst->dst.type);
3608 ibld.MOV(inst->dst, mach->dst);
3609 }
3610 } else {
3611 continue;
3612 }
3613
3614 inst->remove(block);
3615 progress = true;
3616 }
3617
3618 if (progress)
3619 invalidate_live_intervals();
3620
3621 return progress;
3622 }
3623
3624 bool
3625 fs_visitor::lower_minmax()
3626 {
3627 assert(devinfo->gen < 6);
3628
3629 bool progress = false;
3630
3631 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3632 const fs_builder ibld(this, block, inst);
3633
3634 if (inst->opcode == BRW_OPCODE_SEL &&
3635 inst->predicate == BRW_PREDICATE_NONE) {
3636 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3637 * the original SEL.L/GE instruction
3638 */
3639 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3640 inst->conditional_mod);
3641 inst->predicate = BRW_PREDICATE_NORMAL;
3642 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3643
3644 progress = true;
3645 }
3646 }
3647
3648 if (progress)
3649 invalidate_live_intervals();
3650
3651 return progress;
3652 }
3653
3654 static void
3655 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3656 fs_reg *dst, fs_reg color, unsigned components)
3657 {
3658 if (key->clamp_fragment_color) {
3659 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3660 assert(color.type == BRW_REGISTER_TYPE_F);
3661
3662 for (unsigned i = 0; i < components; i++)
3663 set_saturate(true,
3664 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3665
3666 color = tmp;
3667 }
3668
3669 for (unsigned i = 0; i < components; i++)
3670 dst[i] = offset(color, bld, i);
3671 }
3672
3673 static void
3674 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3675 const brw_wm_prog_data *prog_data,
3676 const brw_wm_prog_key *key,
3677 const fs_visitor::thread_payload &payload)
3678 {
3679 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3680 const brw_device_info *devinfo = bld.shader->devinfo;
3681 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3682 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3683 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3684 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3685 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3686 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3687 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3688 const unsigned components =
3689 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3690
3691 /* We can potentially have a message length of up to 15, so we have to set
3692 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3693 */
3694 fs_reg sources[15];
3695 int header_size = 2, payload_header_size;
3696 unsigned length = 0;
3697
3698 /* From the Sandy Bridge PRM, volume 4, page 198:
3699 *
3700 * "Dispatched Pixel Enables. One bit per pixel indicating
3701 * which pixels were originally enabled when the thread was
3702 * dispatched. This field is only required for the end-of-
3703 * thread message and on all dual-source messages."
3704 */
3705 if (devinfo->gen >= 6 &&
3706 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3707 color1.file == BAD_FILE &&
3708 key->nr_color_regions == 1) {
3709 header_size = 0;
3710 }
3711
3712 if (header_size != 0) {
3713 assert(header_size == 2);
3714 /* Allocate 2 registers for a header */
3715 length += 2;
3716 }
3717
3718 if (payload.aa_dest_stencil_reg) {
3719 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3720 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3721 .MOV(sources[length],
3722 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3723 length++;
3724 }
3725
3726 if (sample_mask.file != BAD_FILE) {
3727 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3728 BRW_REGISTER_TYPE_UD);
3729
3730 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3731 * relevant. Since it's unsigned single words one vgrf is always
3732 * 16-wide, but only the lower or higher 8 channels will be used by the
3733 * hardware when doing a SIMD8 write depending on whether we have
3734 * selected the subspans for the first or second half respectively.
3735 */
3736 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3737 sample_mask.type = BRW_REGISTER_TYPE_UW;
3738 sample_mask.stride *= 2;
3739
3740 bld.exec_all().annotate("FB write oMask")
3741 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3742 inst->group),
3743 sample_mask);
3744 length++;
3745 }
3746
3747 payload_header_size = length;
3748
3749 if (src0_alpha.file != BAD_FILE) {
3750 /* FIXME: This is being passed at the wrong location in the payload and
3751 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3752 * It's supposed to be immediately before oMask but there seems to be no
3753 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3754 * requires header sources to form a contiguous segment at the beginning
3755 * of the message and src0_alpha has per-channel semantics.
3756 */
3757 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3758 length++;
3759 }
3760
3761 setup_color_payload(bld, key, &sources[length], color0, components);
3762 length += 4;
3763
3764 if (color1.file != BAD_FILE) {
3765 setup_color_payload(bld, key, &sources[length], color1, components);
3766 length += 4;
3767 }
3768
3769 if (src_depth.file != BAD_FILE) {
3770 sources[length] = src_depth;
3771 length++;
3772 }
3773
3774 if (dst_depth.file != BAD_FILE) {
3775 sources[length] = dst_depth;
3776 length++;
3777 }
3778
3779 if (src_stencil.file != BAD_FILE) {
3780 assert(devinfo->gen >= 9);
3781 assert(bld.dispatch_width() != 16);
3782
3783 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3784 * available on gen9+. As such it's impossible to have both enabled at the
3785 * same time and therefore length cannot overrun the array.
3786 */
3787 assert(length < 15);
3788
3789 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3790 bld.exec_all().annotate("FB write OS")
3791 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3792 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3793 length++;
3794 }
3795
3796 fs_inst *load;
3797 if (devinfo->gen >= 7) {
3798 /* Send from the GRF */
3799 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3800 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3801 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3802 load->dst = payload;
3803
3804 inst->src[0] = payload;
3805 inst->resize_sources(1);
3806 } else {
3807 /* Send from the MRF */
3808 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3809 sources, length, payload_header_size);
3810
3811 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3812 * will do this for us if we just give it a COMPR4 destination.
3813 */
3814 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3815 load->dst.nr |= BRW_MRF_COMPR4;
3816
3817 inst->resize_sources(0);
3818 inst->base_mrf = 1;
3819 }
3820
3821 inst->opcode = FS_OPCODE_FB_WRITE;
3822 inst->mlen = load->regs_written;
3823 inst->header_size = header_size;
3824 }
3825
3826 static void
3827 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3828 const fs_reg &coordinate,
3829 const fs_reg &shadow_c,
3830 const fs_reg &lod, const fs_reg &lod2,
3831 const fs_reg &surface,
3832 const fs_reg &sampler,
3833 unsigned coord_components,
3834 unsigned grad_components)
3835 {
3836 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3837 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3838 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3839 fs_reg msg_end = msg_begin;
3840
3841 /* g0 header. */
3842 msg_end = offset(msg_end, bld.group(8, 0), 1);
3843
3844 for (unsigned i = 0; i < coord_components; i++)
3845 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3846 offset(coordinate, bld, i));
3847
3848 msg_end = offset(msg_end, bld, coord_components);
3849
3850 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3851 * require all three components to be present and zero if they are unused.
3852 */
3853 if (coord_components > 0 &&
3854 (has_lod || shadow_c.file != BAD_FILE ||
3855 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3856 for (unsigned i = coord_components; i < 3; i++)
3857 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3858
3859 msg_end = offset(msg_end, bld, 3 - coord_components);
3860 }
3861
3862 if (op == SHADER_OPCODE_TXD) {
3863 /* TXD unsupported in SIMD16 mode. */
3864 assert(bld.dispatch_width() == 8);
3865
3866 /* the slots for u and v are always present, but r is optional */
3867 if (coord_components < 2)
3868 msg_end = offset(msg_end, bld, 2 - coord_components);
3869
3870 /* P = u, v, r
3871 * dPdx = dudx, dvdx, drdx
3872 * dPdy = dudy, dvdy, drdy
3873 *
3874 * 1-arg: Does not exist.
3875 *
3876 * 2-arg: dudx dvdx dudy dvdy
3877 * dPdx.x dPdx.y dPdy.x dPdy.y
3878 * m4 m5 m6 m7
3879 *
3880 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3881 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3882 * m5 m6 m7 m8 m9 m10
3883 */
3884 for (unsigned i = 0; i < grad_components; i++)
3885 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3886
3887 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3888
3889 for (unsigned i = 0; i < grad_components; i++)
3890 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3891
3892 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3893 }
3894
3895 if (has_lod) {
3896 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3897 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3898 */
3899 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3900 bld.dispatch_width() == 16);
3901
3902 const brw_reg_type type =
3903 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3904 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3905 bld.MOV(retype(msg_end, type), lod);
3906 msg_end = offset(msg_end, bld, 1);
3907 }
3908
3909 if (shadow_c.file != BAD_FILE) {
3910 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3911 /* There's no plain shadow compare message, so we use shadow
3912 * compare with a bias of 0.0.
3913 */
3914 bld.MOV(msg_end, brw_imm_f(0.0f));
3915 msg_end = offset(msg_end, bld, 1);
3916 }
3917
3918 bld.MOV(msg_end, shadow_c);
3919 msg_end = offset(msg_end, bld, 1);
3920 }
3921
3922 inst->opcode = op;
3923 inst->src[0] = reg_undef;
3924 inst->src[1] = surface;
3925 inst->src[2] = sampler;
3926 inst->resize_sources(3);
3927 inst->base_mrf = msg_begin.nr;
3928 inst->mlen = msg_end.nr - msg_begin.nr;
3929 inst->header_size = 1;
3930 }
3931
3932 static void
3933 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3934 const fs_reg &coordinate,
3935 const fs_reg &shadow_c,
3936 const fs_reg &lod, const fs_reg &lod2,
3937 const fs_reg &sample_index,
3938 const fs_reg &surface,
3939 const fs_reg &sampler,
3940 const fs_reg &offset_value,
3941 unsigned coord_components,
3942 unsigned grad_components)
3943 {
3944 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3945 fs_reg msg_coords = message;
3946 unsigned header_size = 0;
3947
3948 if (offset_value.file != BAD_FILE) {
3949 /* The offsets set up by the visitor are in the m1 header, so we can't
3950 * go headerless.
3951 */
3952 header_size = 1;
3953 message.nr--;
3954 }
3955
3956 for (unsigned i = 0; i < coord_components; i++)
3957 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3958 offset(coordinate, bld, i));
3959
3960 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3961 fs_reg msg_lod = offset(msg_coords, bld, 4);
3962
3963 if (shadow_c.file != BAD_FILE) {
3964 fs_reg msg_shadow = msg_lod;
3965 bld.MOV(msg_shadow, shadow_c);
3966 msg_lod = offset(msg_shadow, bld, 1);
3967 msg_end = msg_lod;
3968 }
3969
3970 switch (op) {
3971 case SHADER_OPCODE_TXL:
3972 case FS_OPCODE_TXB:
3973 bld.MOV(msg_lod, lod);
3974 msg_end = offset(msg_lod, bld, 1);
3975 break;
3976 case SHADER_OPCODE_TXD:
3977 /**
3978 * P = u, v, r
3979 * dPdx = dudx, dvdx, drdx
3980 * dPdy = dudy, dvdy, drdy
3981 *
3982 * Load up these values:
3983 * - dudx dudy dvdx dvdy drdx drdy
3984 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3985 */
3986 msg_end = msg_lod;
3987 for (unsigned i = 0; i < grad_components; i++) {
3988 bld.MOV(msg_end, offset(lod, bld, i));
3989 msg_end = offset(msg_end, bld, 1);
3990
3991 bld.MOV(msg_end, offset(lod2, bld, i));
3992 msg_end = offset(msg_end, bld, 1);
3993 }
3994 break;
3995 case SHADER_OPCODE_TXS:
3996 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3997 bld.MOV(msg_lod, lod);
3998 msg_end = offset(msg_lod, bld, 1);
3999 break;
4000 case SHADER_OPCODE_TXF:
4001 msg_lod = offset(msg_coords, bld, 3);
4002 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4003 msg_end = offset(msg_lod, bld, 1);
4004 break;
4005 case SHADER_OPCODE_TXF_CMS:
4006 msg_lod = offset(msg_coords, bld, 3);
4007 /* lod */
4008 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4009 /* sample index */
4010 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4011 msg_end = offset(msg_lod, bld, 2);
4012 break;
4013 default:
4014 break;
4015 }
4016
4017 inst->opcode = op;
4018 inst->src[0] = reg_undef;
4019 inst->src[1] = surface;
4020 inst->src[2] = sampler;
4021 inst->resize_sources(3);
4022 inst->base_mrf = message.nr;
4023 inst->mlen = msg_end.nr - message.nr;
4024 inst->header_size = header_size;
4025
4026 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4027 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4028 }
4029
4030 static bool
4031 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
4032 {
4033 if (devinfo->gen < 8 && !devinfo->is_haswell)
4034 return false;
4035
4036 return sampler.file != IMM || sampler.ud >= 16;
4037 }
4038
4039 static void
4040 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4041 const fs_reg &coordinate,
4042 const fs_reg &shadow_c,
4043 fs_reg lod, const fs_reg &lod2,
4044 const fs_reg &sample_index,
4045 const fs_reg &mcs,
4046 const fs_reg &surface,
4047 const fs_reg &sampler,
4048 const fs_reg &offset_value,
4049 unsigned coord_components,
4050 unsigned grad_components)
4051 {
4052 const brw_device_info *devinfo = bld.shader->devinfo;
4053 int reg_width = bld.dispatch_width() / 8;
4054 unsigned header_size = 0, length = 0;
4055 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4056 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4057 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4058
4059 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4060 offset_value.file != BAD_FILE || inst->eot ||
4061 op == SHADER_OPCODE_SAMPLEINFO ||
4062 is_high_sampler(devinfo, sampler)) {
4063 /* For general texture offsets (no txf workaround), we need a header to
4064 * put them in. Note that we're only reserving space for it in the
4065 * message payload as it will be initialized implicitly by the
4066 * generator.
4067 *
4068 * TG4 needs to place its channel select in the header, for interaction
4069 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4070 * larger sampler numbers we need to offset the Sampler State Pointer in
4071 * the header.
4072 */
4073 header_size = 1;
4074 sources[0] = fs_reg();
4075 length++;
4076
4077 /* If we're requesting fewer than four channels worth of response,
4078 * and we have an explicit header, we need to set up the sampler
4079 * writemask. It's reversed from normal: 1 means "don't write".
4080 */
4081 if (!inst->eot && inst->regs_written != 4 * reg_width) {
4082 assert((inst->regs_written % reg_width) == 0);
4083 unsigned mask = ~((1 << (inst->regs_written / reg_width)) - 1) & 0xf;
4084 inst->offset |= mask << 12;
4085 }
4086 }
4087
4088 if (shadow_c.file != BAD_FILE) {
4089 bld.MOV(sources[length], shadow_c);
4090 length++;
4091 }
4092
4093 bool coordinate_done = false;
4094
4095 /* Set up the LOD info */
4096 switch (op) {
4097 case FS_OPCODE_TXB:
4098 case SHADER_OPCODE_TXL:
4099 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4100 op = SHADER_OPCODE_TXL_LZ;
4101 break;
4102 }
4103 bld.MOV(sources[length], lod);
4104 length++;
4105 break;
4106 case SHADER_OPCODE_TXD:
4107 /* TXD should have been lowered in SIMD16 mode. */
4108 assert(bld.dispatch_width() == 8);
4109
4110 /* Load dPdx and the coordinate together:
4111 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4112 */
4113 for (unsigned i = 0; i < coord_components; i++) {
4114 bld.MOV(sources[length++], offset(coordinate, bld, i));
4115
4116 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4117 * only derivatives for (u, v, r).
4118 */
4119 if (i < grad_components) {
4120 bld.MOV(sources[length++], offset(lod, bld, i));
4121 bld.MOV(sources[length++], offset(lod2, bld, i));
4122 }
4123 }
4124
4125 coordinate_done = true;
4126 break;
4127 case SHADER_OPCODE_TXS:
4128 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4129 length++;
4130 break;
4131 case SHADER_OPCODE_TXF:
4132 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4133 * On Gen9 they are u, v, lod, r
4134 */
4135 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4136
4137 if (devinfo->gen >= 9) {
4138 if (coord_components >= 2) {
4139 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4140 offset(coordinate, bld, 1));
4141 } else {
4142 sources[length] = brw_imm_d(0);
4143 }
4144 length++;
4145 }
4146
4147 if (devinfo->gen >= 9 && lod.is_zero()) {
4148 op = SHADER_OPCODE_TXF_LZ;
4149 } else {
4150 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4151 length++;
4152 }
4153
4154 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4155 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4156 offset(coordinate, bld, i));
4157
4158 coordinate_done = true;
4159 break;
4160
4161 case SHADER_OPCODE_TXF_CMS:
4162 case SHADER_OPCODE_TXF_CMS_W:
4163 case SHADER_OPCODE_TXF_UMS:
4164 case SHADER_OPCODE_TXF_MCS:
4165 if (op == SHADER_OPCODE_TXF_UMS ||
4166 op == SHADER_OPCODE_TXF_CMS ||
4167 op == SHADER_OPCODE_TXF_CMS_W) {
4168 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4169 length++;
4170 }
4171
4172 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4173 /* Data from the multisample control surface. */
4174 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4175 length++;
4176
4177 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4178 * the MCS data.
4179 */
4180 if (op == SHADER_OPCODE_TXF_CMS_W) {
4181 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4182 mcs.file == IMM ?
4183 mcs :
4184 offset(mcs, bld, 1));
4185 length++;
4186 }
4187 }
4188
4189 /* There is no offsetting for this message; just copy in the integer
4190 * texture coordinates.
4191 */
4192 for (unsigned i = 0; i < coord_components; i++)
4193 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4194 offset(coordinate, bld, i));
4195
4196 coordinate_done = true;
4197 break;
4198 case SHADER_OPCODE_TG4_OFFSET:
4199 /* More crazy intermixing */
4200 for (unsigned i = 0; i < 2; i++) /* u, v */
4201 bld.MOV(sources[length++], offset(coordinate, bld, i));
4202
4203 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4204 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4205 offset(offset_value, bld, i));
4206
4207 if (coord_components == 3) /* r if present */
4208 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4209
4210 coordinate_done = true;
4211 break;
4212 default:
4213 break;
4214 }
4215
4216 /* Set up the coordinate (except for cases where it was done above) */
4217 if (!coordinate_done) {
4218 for (unsigned i = 0; i < coord_components; i++)
4219 bld.MOV(sources[length++], offset(coordinate, bld, i));
4220 }
4221
4222 int mlen;
4223 if (reg_width == 2)
4224 mlen = length * reg_width - header_size;
4225 else
4226 mlen = length * reg_width;
4227
4228 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4229 BRW_REGISTER_TYPE_F);
4230 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4231
4232 /* Generate the SEND. */
4233 inst->opcode = op;
4234 inst->src[0] = src_payload;
4235 inst->src[1] = surface;
4236 inst->src[2] = sampler;
4237 inst->resize_sources(3);
4238 inst->mlen = mlen;
4239 inst->header_size = header_size;
4240
4241 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4242 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4243 }
4244
4245 static void
4246 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4247 {
4248 const brw_device_info *devinfo = bld.shader->devinfo;
4249 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4250 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4251 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4252 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4253 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4254 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4255 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4256 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4257 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4258 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4259 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4260 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4261 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4262
4263 if (devinfo->gen >= 7) {
4264 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4265 shadow_c, lod, lod2, sample_index,
4266 mcs, surface, sampler, offset_value,
4267 coord_components, grad_components);
4268 } else if (devinfo->gen >= 5) {
4269 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4270 shadow_c, lod, lod2, sample_index,
4271 surface, sampler, offset_value,
4272 coord_components, grad_components);
4273 } else {
4274 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4275 shadow_c, lod, lod2,
4276 surface, sampler,
4277 coord_components, grad_components);
4278 }
4279 }
4280
4281 /**
4282 * Initialize the header present in some typed and untyped surface
4283 * messages.
4284 */
4285 static fs_reg
4286 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4287 {
4288 fs_builder ubld = bld.exec_all().group(8, 0);
4289 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4290 ubld.MOV(dst, brw_imm_d(0));
4291 ubld.MOV(component(dst, 7), sample_mask);
4292 return dst;
4293 }
4294
4295 static void
4296 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4297 const fs_reg &sample_mask)
4298 {
4299 /* Get the logical send arguments. */
4300 const fs_reg &addr = inst->src[0];
4301 const fs_reg &src = inst->src[1];
4302 const fs_reg &surface = inst->src[2];
4303 const UNUSED fs_reg &dims = inst->src[3];
4304 const fs_reg &arg = inst->src[4];
4305
4306 /* Calculate the total number of components of the payload. */
4307 const unsigned addr_sz = inst->components_read(0);
4308 const unsigned src_sz = inst->components_read(1);
4309 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4310 const unsigned sz = header_sz + addr_sz + src_sz;
4311
4312 /* Allocate space for the payload. */
4313 fs_reg *const components = new fs_reg[sz];
4314 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4315 unsigned n = 0;
4316
4317 /* Construct the payload. */
4318 if (header_sz)
4319 components[n++] = emit_surface_header(bld, sample_mask);
4320
4321 for (unsigned i = 0; i < addr_sz; i++)
4322 components[n++] = offset(addr, bld, i);
4323
4324 for (unsigned i = 0; i < src_sz; i++)
4325 components[n++] = offset(src, bld, i);
4326
4327 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4328
4329 /* Update the original instruction. */
4330 inst->opcode = op;
4331 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4332 inst->header_size = header_sz;
4333
4334 inst->src[0] = payload;
4335 inst->src[1] = surface;
4336 inst->src[2] = arg;
4337 inst->resize_sources(3);
4338
4339 delete[] components;
4340 }
4341
4342 static void
4343 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4344 {
4345 const brw_device_info *devinfo = bld.shader->devinfo;
4346
4347 if (devinfo->gen >= 7) {
4348 /* We are switching the instruction from an ALU-like instruction to a
4349 * send-from-grf instruction. Since sends can't handle strides or
4350 * source modifiers, we have to make a copy of the offset source.
4351 */
4352 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4353 bld.MOV(tmp, inst->src[1]);
4354 inst->src[1] = tmp;
4355
4356 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4357
4358 } else {
4359 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4360 BRW_REGISTER_TYPE_UD);
4361
4362 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4363
4364 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4365 inst->resize_sources(1);
4366 inst->base_mrf = payload.nr;
4367 inst->header_size = 1;
4368 inst->mlen = 1 + inst->exec_size / 8;
4369 }
4370 }
4371
4372 static void
4373 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4374 {
4375 assert(bld.shader->devinfo->gen < 6);
4376
4377 inst->base_mrf = 2;
4378 inst->mlen = inst->sources * inst->exec_size / 8;
4379
4380 if (inst->sources > 1) {
4381 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4382 * "Message Payload":
4383 *
4384 * "Operand0[7]. For the INT DIV functions, this operand is the
4385 * denominator."
4386 * ...
4387 * "Operand1[7]. For the INT DIV functions, this operand is the
4388 * numerator."
4389 */
4390 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4391 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4392 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4393
4394 inst->resize_sources(1);
4395 inst->src[0] = src0;
4396
4397 assert(inst->exec_size == 8);
4398 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4399 }
4400 }
4401
4402 bool
4403 fs_visitor::lower_logical_sends()
4404 {
4405 bool progress = false;
4406
4407 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4408 const fs_builder ibld(this, block, inst);
4409
4410 switch (inst->opcode) {
4411 case FS_OPCODE_FB_WRITE_LOGICAL:
4412 assert(stage == MESA_SHADER_FRAGMENT);
4413 lower_fb_write_logical_send(ibld, inst,
4414 (const brw_wm_prog_data *)prog_data,
4415 (const brw_wm_prog_key *)key,
4416 payload);
4417 break;
4418
4419 case SHADER_OPCODE_TEX_LOGICAL:
4420 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4421 break;
4422
4423 case SHADER_OPCODE_TXD_LOGICAL:
4424 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4425 break;
4426
4427 case SHADER_OPCODE_TXF_LOGICAL:
4428 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4429 break;
4430
4431 case SHADER_OPCODE_TXL_LOGICAL:
4432 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4433 break;
4434
4435 case SHADER_OPCODE_TXS_LOGICAL:
4436 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4437 break;
4438
4439 case FS_OPCODE_TXB_LOGICAL:
4440 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4441 break;
4442
4443 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4444 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4445 break;
4446
4447 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4448 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4449 break;
4450
4451 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4452 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4453 break;
4454
4455 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4456 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4457 break;
4458
4459 case SHADER_OPCODE_LOD_LOGICAL:
4460 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4461 break;
4462
4463 case SHADER_OPCODE_TG4_LOGICAL:
4464 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4465 break;
4466
4467 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4468 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4469 break;
4470
4471 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4472 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4473 break;
4474
4475 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4476 lower_surface_logical_send(ibld, inst,
4477 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4478 fs_reg());
4479 break;
4480
4481 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4482 lower_surface_logical_send(ibld, inst,
4483 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4484 ibld.sample_mask_reg());
4485 break;
4486
4487 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4488 lower_surface_logical_send(ibld, inst,
4489 SHADER_OPCODE_UNTYPED_ATOMIC,
4490 ibld.sample_mask_reg());
4491 break;
4492
4493 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4494 lower_surface_logical_send(ibld, inst,
4495 SHADER_OPCODE_TYPED_SURFACE_READ,
4496 brw_imm_d(0xffff));
4497 break;
4498
4499 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4500 lower_surface_logical_send(ibld, inst,
4501 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4502 ibld.sample_mask_reg());
4503 break;
4504
4505 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4506 lower_surface_logical_send(ibld, inst,
4507 SHADER_OPCODE_TYPED_ATOMIC,
4508 ibld.sample_mask_reg());
4509 break;
4510
4511 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4512 lower_varying_pull_constant_logical_send(ibld, inst);
4513 break;
4514
4515 case SHADER_OPCODE_RCP:
4516 case SHADER_OPCODE_RSQ:
4517 case SHADER_OPCODE_SQRT:
4518 case SHADER_OPCODE_EXP2:
4519 case SHADER_OPCODE_LOG2:
4520 case SHADER_OPCODE_SIN:
4521 case SHADER_OPCODE_COS:
4522 case SHADER_OPCODE_POW:
4523 case SHADER_OPCODE_INT_QUOTIENT:
4524 case SHADER_OPCODE_INT_REMAINDER:
4525 /* The math opcodes are overloaded for the send-like and
4526 * expression-like instructions which seems kind of icky. Gen6+ has
4527 * a native (but rather quirky) MATH instruction so we don't need to
4528 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4529 * logical instructions (which we can easily recognize because they
4530 * have mlen = 0) into send-like virtual instructions.
4531 */
4532 if (devinfo->gen < 6 && inst->mlen == 0) {
4533 lower_math_logical_send(ibld, inst);
4534 break;
4535
4536 } else {
4537 continue;
4538 }
4539
4540 default:
4541 continue;
4542 }
4543
4544 progress = true;
4545 }
4546
4547 if (progress)
4548 invalidate_live_intervals();
4549
4550 return progress;
4551 }
4552
4553 /**
4554 * Get the closest allowed SIMD width for instruction \p inst accounting for
4555 * some common regioning and execution control restrictions that apply to FPU
4556 * instructions. These restrictions don't necessarily have any relevance to
4557 * instructions not executed by the FPU pipeline like extended math, control
4558 * flow or send message instructions.
4559 *
4560 * For virtual opcodes it's really up to the instruction -- In some cases
4561 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4562 * instructions) it may simplify virtual instruction lowering if we can
4563 * enforce FPU-like regioning restrictions already on the virtual instruction,
4564 * in other cases (e.g. virtual send-like instructions) this may be
4565 * excessively restrictive.
4566 */
4567 static unsigned
4568 get_fpu_lowered_simd_width(const struct brw_device_info *devinfo,
4569 const fs_inst *inst)
4570 {
4571 /* Maximum execution size representable in the instruction controls. */
4572 unsigned max_width = MIN2(32, inst->exec_size);
4573
4574 /* According to the PRMs:
4575 * "A. In Direct Addressing mode, a source cannot span more than 2
4576 * adjacent GRF registers.
4577 * B. A destination cannot span more than 2 adjacent GRF registers."
4578 *
4579 * Look for the source or destination with the largest register region
4580 * which is the one that is going to limit the overall execution size of
4581 * the instruction due to this rule.
4582 */
4583 unsigned reg_count = inst->regs_written;
4584
4585 for (unsigned i = 0; i < inst->sources; i++)
4586 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4587
4588 /* Calculate the maximum execution size of the instruction based on the
4589 * factor by which it goes over the hardware limit of 2 GRFs.
4590 */
4591 if (reg_count > 2)
4592 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4593
4594 /* According to the IVB PRMs:
4595 * "When destination spans two registers, the source MUST span two
4596 * registers. The exception to the above rule:
4597 *
4598 * - When source is scalar, the source registers are not incremented.
4599 * - When source is packed integer Word and destination is packed
4600 * integer DWord, the source register is not incremented but the
4601 * source sub register is incremented."
4602 *
4603 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4604 * restrictions. The code below intentionally doesn't check whether the
4605 * destination type is integer because empirically the hardware doesn't
4606 * seem to care what the actual type is as long as it's dword-aligned.
4607 */
4608 if (devinfo->gen < 8) {
4609 for (unsigned i = 0; i < inst->sources; i++) {
4610 if (inst->regs_written == 2 &&
4611 inst->regs_read(i) != 0 && inst->regs_read(i) != 2 &&
4612 !is_uniform(inst->src[i]) &&
4613 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4614 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1))
4615 max_width = MIN2(max_width, inst->exec_size /
4616 inst->regs_written);
4617 }
4618 }
4619
4620 /* From the IVB PRMs:
4621 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4622 * are applied for both halves of the SIMD32 instruction. If different
4623 * execution mask channels are required, split the instruction into two
4624 * SIMD16 instructions."
4625 *
4626 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4627 * 32-wide control flow support in hardware and will behave similarly.
4628 */
4629 if (devinfo->gen < 8 && !inst->force_writemask_all)
4630 max_width = MIN2(max_width, 16);
4631
4632 /* From the IVB PRMs (applies to HSW too):
4633 * "Instructions with condition modifiers must not use SIMD32."
4634 *
4635 * From the BDW PRMs (applies to later hardware too):
4636 * "Ternary instruction with condition modifiers must not use SIMD32."
4637 */
4638 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4639 max_width = MIN2(max_width, 16);
4640
4641 /* From the IVB PRMs (applies to other devices that don't have the
4642 * brw_device_info::supports_simd16_3src flag set):
4643 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4644 * SIMD8 is not allowed for DF operations."
4645 */
4646 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4647 max_width = MIN2(max_width, inst->exec_size / reg_count);
4648
4649 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4650 * the 8-bit quarter of the execution mask signals specified in the
4651 * instruction control fields) for the second compressed half of any
4652 * single-precision instruction (for double-precision instructions
4653 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4654 * the EU will apply the wrong execution controls for the second
4655 * sequential GRF write if the number of channels per GRF is not exactly
4656 * eight in single-precision mode (or four in double-float mode).
4657 *
4658 * In this situation we calculate the maximum size of the split
4659 * instructions so they only ever write to a single register.
4660 */
4661 if (devinfo->gen < 8 && inst->regs_written > 1 &&
4662 !inst->force_writemask_all) {
4663 const unsigned channels_per_grf = inst->exec_size / inst->regs_written;
4664 unsigned exec_type_size = 0;
4665 for (int i = 0; i < inst->sources; i++) {
4666 if (inst->src[i].file != BAD_FILE)
4667 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4668 }
4669 assert(exec_type_size);
4670
4671 /* The hardware shifts exactly 8 channels per compressed half of the
4672 * instruction in single-precision mode and exactly 4 in double-precision.
4673 */
4674 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4675 max_width = MIN2(max_width, channels_per_grf);
4676 }
4677
4678 /* Only power-of-two execution sizes are representable in the instruction
4679 * control fields.
4680 */
4681 return 1 << _mesa_logbase2(max_width);
4682 }
4683
4684 /**
4685 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4686 * various payload size restrictions that apply to sampler message
4687 * instructions.
4688 *
4689 * This is only intended to provide a maximum theoretical bound for the
4690 * execution size of the message based on the number of argument components
4691 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4692 * variant of the message can be used, though some messages may have
4693 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4694 * the message length to determine the exact SIMD width and argument count,
4695 * which makes a number of sampler message combinations impossible to
4696 * represent).
4697 */
4698 static unsigned
4699 get_sampler_lowered_simd_width(const struct brw_device_info *devinfo,
4700 const fs_inst *inst)
4701 {
4702 /* Calculate the number of coordinate components that have to be present
4703 * assuming that additional arguments follow the texel coordinates in the
4704 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4705 * need to pad to four or three components depending on the message,
4706 * pre-ILK we need to pad to at most three components.
4707 */
4708 const unsigned req_coord_components =
4709 (devinfo->gen >= 7 ||
4710 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4711 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4712 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4713 3;
4714
4715 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4716 * variant of the TXL or TXF message.
4717 */
4718 const bool implicit_lod = devinfo->gen >= 9 &&
4719 (inst->opcode == SHADER_OPCODE_TXL ||
4720 inst->opcode == SHADER_OPCODE_TXF) &&
4721 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4722
4723 /* Calculate the total number of argument components that need to be passed
4724 * to the sampler unit.
4725 */
4726 const unsigned num_payload_components =
4727 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4728 req_coord_components) +
4729 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4730 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4731 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4732 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4733 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4734 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4735 inst->components_read(TEX_LOGICAL_SRC_MCS);
4736
4737 /* SIMD16 messages with more than five arguments exceed the maximum message
4738 * size supported by the sampler, regardless of whether a header is
4739 * provided or not.
4740 */
4741 return MIN2(inst->exec_size,
4742 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4743 }
4744
4745 /**
4746 * Get the closest native SIMD width supported by the hardware for instruction
4747 * \p inst. The instruction will be left untouched by
4748 * fs_visitor::lower_simd_width() if the returned value is equal to the
4749 * original execution size.
4750 */
4751 static unsigned
4752 get_lowered_simd_width(const struct brw_device_info *devinfo,
4753 const fs_inst *inst)
4754 {
4755 switch (inst->opcode) {
4756 case BRW_OPCODE_MOV:
4757 case BRW_OPCODE_SEL:
4758 case BRW_OPCODE_NOT:
4759 case BRW_OPCODE_AND:
4760 case BRW_OPCODE_OR:
4761 case BRW_OPCODE_XOR:
4762 case BRW_OPCODE_SHR:
4763 case BRW_OPCODE_SHL:
4764 case BRW_OPCODE_ASR:
4765 case BRW_OPCODE_CMPN:
4766 case BRW_OPCODE_CSEL:
4767 case BRW_OPCODE_F32TO16:
4768 case BRW_OPCODE_F16TO32:
4769 case BRW_OPCODE_BFREV:
4770 case BRW_OPCODE_BFE:
4771 case BRW_OPCODE_ADD:
4772 case BRW_OPCODE_MUL:
4773 case BRW_OPCODE_AVG:
4774 case BRW_OPCODE_FRC:
4775 case BRW_OPCODE_RNDU:
4776 case BRW_OPCODE_RNDD:
4777 case BRW_OPCODE_RNDE:
4778 case BRW_OPCODE_RNDZ:
4779 case BRW_OPCODE_LZD:
4780 case BRW_OPCODE_FBH:
4781 case BRW_OPCODE_FBL:
4782 case BRW_OPCODE_CBIT:
4783 case BRW_OPCODE_SAD2:
4784 case BRW_OPCODE_MAD:
4785 case BRW_OPCODE_LRP:
4786 case FS_OPCODE_PACK:
4787 return get_fpu_lowered_simd_width(devinfo, inst);
4788
4789 case BRW_OPCODE_CMP: {
4790 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4791 * when the destination is a GRF the dependency-clear bit on the flag
4792 * register is cleared early.
4793 *
4794 * Suggested workarounds are to disable coissuing CMP instructions
4795 * or to split CMP(16) instructions into two CMP(8) instructions.
4796 *
4797 * We choose to split into CMP(8) instructions since disabling
4798 * coissuing would affect CMP instructions not otherwise affected by
4799 * the errata.
4800 */
4801 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4802 !inst->dst.is_null() ? 8 : ~0);
4803 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4804 }
4805 case BRW_OPCODE_BFI1:
4806 case BRW_OPCODE_BFI2:
4807 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4808 * should
4809 * "Force BFI instructions to be executed always in SIMD8."
4810 */
4811 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4812 get_fpu_lowered_simd_width(devinfo, inst));
4813
4814 case BRW_OPCODE_IF:
4815 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4816 return inst->exec_size;
4817
4818 case SHADER_OPCODE_RCP:
4819 case SHADER_OPCODE_RSQ:
4820 case SHADER_OPCODE_SQRT:
4821 case SHADER_OPCODE_EXP2:
4822 case SHADER_OPCODE_LOG2:
4823 case SHADER_OPCODE_SIN:
4824 case SHADER_OPCODE_COS:
4825 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4826 * Gen6.
4827 */
4828 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4829 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4830 MIN2(8, inst->exec_size));
4831
4832 case SHADER_OPCODE_POW:
4833 /* SIMD16 is only allowed on Gen7+. */
4834 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4835 MIN2(8, inst->exec_size));
4836
4837 case SHADER_OPCODE_INT_QUOTIENT:
4838 case SHADER_OPCODE_INT_REMAINDER:
4839 /* Integer division is limited to SIMD8 on all generations. */
4840 return MIN2(8, inst->exec_size);
4841
4842 case FS_OPCODE_LINTERP:
4843 case FS_OPCODE_GET_BUFFER_SIZE:
4844 case FS_OPCODE_DDX_COARSE:
4845 case FS_OPCODE_DDX_FINE:
4846 case FS_OPCODE_DDY_COARSE:
4847 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4848 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4849 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4850 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4851 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4852 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4853 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4854 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4855 return MIN2(16, inst->exec_size);
4856
4857 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4858 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4859 * message used to implement varying pull constant loads, so expand it
4860 * to SIMD16. An alternative with longer message payload length but
4861 * shorter return payload would be to use the SIMD8 sampler message that
4862 * takes (header, u, v, r) as parameters instead of (header, u).
4863 */
4864 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4865
4866 case FS_OPCODE_DDY_FINE:
4867 /* The implementation of this virtual opcode may require emitting
4868 * compressed Align16 instructions, which are severely limited on some
4869 * generations.
4870 *
4871 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4872 * Region Restrictions):
4873 *
4874 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4875 * and SIMD8 is not allowed for DF operations."
4876 *
4877 * In this context, "DW operations" means "operations acting on 32-bit
4878 * values", so it includes operations on floats.
4879 *
4880 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4881 * (Instruction Compression -> Rules and Restrictions):
4882 *
4883 * "A compressed instruction must be in Align1 access mode. Align16
4884 * mode instructions cannot be compressed."
4885 *
4886 * Similar text exists in the g45 PRM.
4887 *
4888 * Empirically, compressed align16 instructions using odd register
4889 * numbers don't appear to work on Sandybridge either.
4890 */
4891 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4892 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4893 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4894
4895 case SHADER_OPCODE_MULH:
4896 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4897 * is 8-wide on Gen7+.
4898 */
4899 return (devinfo->gen >= 7 ? 8 :
4900 get_fpu_lowered_simd_width(devinfo, inst));
4901
4902 case FS_OPCODE_FB_WRITE_LOGICAL:
4903 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4904 * here.
4905 */
4906 assert(devinfo->gen != 6 ||
4907 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4908 inst->exec_size == 8);
4909 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4910 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4911 8 : MIN2(16, inst->exec_size));
4912
4913 case SHADER_OPCODE_TEX_LOGICAL:
4914 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4915 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4916 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4917 case SHADER_OPCODE_LOD_LOGICAL:
4918 case SHADER_OPCODE_TG4_LOGICAL:
4919 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4920 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4921 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4922 return get_sampler_lowered_simd_width(devinfo, inst);
4923
4924 case SHADER_OPCODE_TXD_LOGICAL:
4925 /* TXD is unsupported in SIMD16 mode. */
4926 return 8;
4927
4928 case SHADER_OPCODE_TXL_LOGICAL:
4929 case FS_OPCODE_TXB_LOGICAL:
4930 /* Only one execution size is representable pre-ILK depending on whether
4931 * the shadow reference argument is present.
4932 */
4933 if (devinfo->gen == 4)
4934 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4935 else
4936 return get_sampler_lowered_simd_width(devinfo, inst);
4937
4938 case SHADER_OPCODE_TXF_LOGICAL:
4939 case SHADER_OPCODE_TXS_LOGICAL:
4940 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4941 * messages. Use SIMD16 instead.
4942 */
4943 if (devinfo->gen == 4)
4944 return 16;
4945 else
4946 return get_sampler_lowered_simd_width(devinfo, inst);
4947
4948 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4949 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4950 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4951 return 8;
4952
4953 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4954 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4955 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4956 return MIN2(16, inst->exec_size);
4957
4958 case SHADER_OPCODE_URB_READ_SIMD8:
4959 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4960 case SHADER_OPCODE_URB_WRITE_SIMD8:
4961 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4962 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4963 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4964 return MIN2(8, inst->exec_size);
4965
4966 case SHADER_OPCODE_MOV_INDIRECT:
4967 /* Prior to Broadwell, we only have 8 address subregisters */
4968 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4969 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4970 inst->exec_size);
4971
4972 case SHADER_OPCODE_LOAD_PAYLOAD: {
4973 const unsigned reg_count =
4974 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4975
4976 if (reg_count > 2) {
4977 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4978 * can be easily lowered (which excludes headers and heterogeneous
4979 * types).
4980 */
4981 assert(!inst->header_size);
4982 for (unsigned i = 0; i < inst->sources; i++)
4983 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4984 inst->src[i].file == BAD_FILE);
4985
4986 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4987 } else {
4988 return inst->exec_size;
4989 }
4990 }
4991 default:
4992 return inst->exec_size;
4993 }
4994 }
4995
4996 /**
4997 * Return true if splitting out the group of channels of instruction \p inst
4998 * given by lbld.group() requires allocating a temporary for the i-th source
4999 * of the lowered instruction.
5000 */
5001 static inline bool
5002 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5003 {
5004 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5005 (inst->components_read(i) == 1 &&
5006 lbld.dispatch_width() <= inst->exec_size));
5007 }
5008
5009 /**
5010 * Extract the data that would be consumed by the channel group given by
5011 * lbld.group() from the i-th source region of instruction \p inst and return
5012 * it as result in packed form. If any copy instructions are required they
5013 * will be emitted before the given \p inst in \p block.
5014 */
5015 static fs_reg
5016 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5017 unsigned i)
5018 {
5019 /* Specified channel group from the source region. */
5020 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5021
5022 if (needs_src_copy(lbld, inst, i)) {
5023 /* Builder of the right width to perform the copy avoiding uninitialized
5024 * data if the lowered execution size is greater than the original
5025 * execution size of the instruction.
5026 */
5027 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5028 inst->exec_size), 0);
5029 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5030
5031 for (unsigned k = 0; k < inst->components_read(i); ++k)
5032 cbld.at(block, inst)
5033 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5034
5035 return tmp;
5036
5037 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5038 /* The source is invariant for all dispatch_width-wide groups of the
5039 * original region.
5040 */
5041 return inst->src[i];
5042
5043 } else {
5044 /* We can just point the lowered instruction at the right channel group
5045 * from the original region.
5046 */
5047 return src;
5048 }
5049 }
5050
5051 /**
5052 * Return true if splitting out the group of channels of instruction \p inst
5053 * given by lbld.group() requires allocating a temporary for the destination
5054 * of the lowered instruction and copying the data back to the original
5055 * destination region.
5056 */
5057 static inline bool
5058 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5059 {
5060 /* If the instruction writes more than one component we'll have to shuffle
5061 * the results of multiple lowered instructions in order to make sure that
5062 * they end up arranged correctly in the original destination region.
5063 */
5064 if (inst->regs_written * REG_SIZE >
5065 inst->dst.component_size(inst->exec_size))
5066 return true;
5067
5068 /* If the lowered execution size is larger than the original the result of
5069 * the instruction won't fit in the original destination, so we'll have to
5070 * allocate a temporary in any case.
5071 */
5072 if (lbld.dispatch_width() > inst->exec_size)
5073 return true;
5074
5075 for (unsigned i = 0; i < inst->sources; i++) {
5076 /* If we already made a copy of the source for other reasons there won't
5077 * be any overlap with the destination.
5078 */
5079 if (needs_src_copy(lbld, inst, i))
5080 continue;
5081
5082 /* In order to keep the logic simple we emit a copy whenever the
5083 * destination region doesn't exactly match an overlapping source, which
5084 * may point at the source and destination not being aligned group by
5085 * group which could cause one of the lowered instructions to overwrite
5086 * the data read from the same source by other lowered instructions.
5087 */
5088 if (regions_overlap(inst->dst, inst->regs_written * REG_SIZE,
5089 inst->src[i], inst->regs_read(i) * REG_SIZE) &&
5090 !inst->dst.equals(inst->src[i]))
5091 return true;
5092 }
5093
5094 return false;
5095 }
5096
5097 /**
5098 * Insert data from a packed temporary into the channel group given by
5099 * lbld.group() of the destination region of instruction \p inst and return
5100 * the temporary as result. If any copy instructions are required they will
5101 * be emitted around the given \p inst in \p block.
5102 */
5103 static fs_reg
5104 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5105 {
5106 /* Builder of the right width to perform the copy avoiding uninitialized
5107 * data if the lowered execution size is greater than the original
5108 * execution size of the instruction.
5109 */
5110 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5111 inst->exec_size), 0);
5112
5113 /* Specified channel group from the destination region. */
5114 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5115 const unsigned dst_size = inst->regs_written * REG_SIZE /
5116 inst->dst.component_size(inst->exec_size);
5117
5118 if (needs_dst_copy(lbld, inst)) {
5119 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5120
5121 if (inst->predicate) {
5122 /* Handle predication by copying the original contents of
5123 * the destination into the temporary before emitting the
5124 * lowered instruction.
5125 */
5126 for (unsigned k = 0; k < dst_size; ++k)
5127 cbld.at(block, inst)
5128 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5129 }
5130
5131 for (unsigned k = 0; k < dst_size; ++k)
5132 cbld.at(block, inst->next)
5133 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5134
5135 return tmp;
5136
5137 } else {
5138 /* No need to allocate a temporary for the lowered instruction, just
5139 * take the right group of channels from the original region.
5140 */
5141 return dst;
5142 }
5143 }
5144
5145 bool
5146 fs_visitor::lower_simd_width()
5147 {
5148 bool progress = false;
5149
5150 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5151 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5152
5153 if (lower_width != inst->exec_size) {
5154 /* Builder matching the original instruction. We may also need to
5155 * emit an instruction of width larger than the original, set the
5156 * execution size of the builder to the highest of both for now so
5157 * we're sure that both cases can be handled.
5158 */
5159 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5160 const fs_builder ibld = bld.at(block, inst)
5161 .exec_all(inst->force_writemask_all)
5162 .group(max_width, inst->group / max_width);
5163
5164 /* Split the copies in chunks of the execution width of either the
5165 * original or the lowered instruction, whichever is lower.
5166 */
5167 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5168 const unsigned dst_size = inst->regs_written * REG_SIZE /
5169 inst->dst.component_size(inst->exec_size);
5170
5171 assert(!inst->writes_accumulator && !inst->mlen);
5172
5173 for (unsigned i = 0; i < n; i++) {
5174 /* Emit a copy of the original instruction with the lowered width.
5175 * If the EOT flag was set throw it away except for the last
5176 * instruction to avoid killing the thread prematurely.
5177 */
5178 fs_inst split_inst = *inst;
5179 split_inst.exec_size = lower_width;
5180 split_inst.eot = inst->eot && i == n - 1;
5181
5182 /* Select the correct channel enables for the i-th group, then
5183 * transform the sources and destination and emit the lowered
5184 * instruction.
5185 */
5186 const fs_builder lbld = ibld.group(lower_width, i);
5187
5188 for (unsigned j = 0; j < inst->sources; j++)
5189 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5190
5191 split_inst.dst = emit_zip(lbld, block, inst);
5192 split_inst.regs_written = DIV_ROUND_UP(
5193 split_inst.dst.component_size(lower_width) * dst_size,
5194 REG_SIZE);
5195
5196 lbld.emit(split_inst);
5197 }
5198
5199 inst->remove(block);
5200 progress = true;
5201 }
5202 }
5203
5204 if (progress)
5205 invalidate_live_intervals();
5206
5207 return progress;
5208 }
5209
5210 void
5211 fs_visitor::dump_instructions()
5212 {
5213 dump_instructions(NULL);
5214 }
5215
5216 void
5217 fs_visitor::dump_instructions(const char *name)
5218 {
5219 FILE *file = stderr;
5220 if (name && geteuid() != 0) {
5221 file = fopen(name, "w");
5222 if (!file)
5223 file = stderr;
5224 }
5225
5226 if (cfg) {
5227 calculate_register_pressure();
5228 int ip = 0, max_pressure = 0;
5229 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5230 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5231 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5232 dump_instruction(inst, file);
5233 ip++;
5234 }
5235 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5236 } else {
5237 int ip = 0;
5238 foreach_in_list(backend_instruction, inst, &instructions) {
5239 fprintf(file, "%4d: ", ip++);
5240 dump_instruction(inst, file);
5241 }
5242 }
5243
5244 if (file != stderr) {
5245 fclose(file);
5246 }
5247 }
5248
5249 void
5250 fs_visitor::dump_instruction(backend_instruction *be_inst)
5251 {
5252 dump_instruction(be_inst, stderr);
5253 }
5254
5255 void
5256 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5257 {
5258 fs_inst *inst = (fs_inst *)be_inst;
5259
5260 if (inst->predicate) {
5261 fprintf(file, "(%cf0.%d) ",
5262 inst->predicate_inverse ? '-' : '+',
5263 inst->flag_subreg);
5264 }
5265
5266 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5267 if (inst->saturate)
5268 fprintf(file, ".sat");
5269 if (inst->conditional_mod) {
5270 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5271 if (!inst->predicate &&
5272 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5273 inst->opcode != BRW_OPCODE_IF &&
5274 inst->opcode != BRW_OPCODE_WHILE))) {
5275 fprintf(file, ".f0.%d", inst->flag_subreg);
5276 }
5277 }
5278 fprintf(file, "(%d) ", inst->exec_size);
5279
5280 if (inst->mlen) {
5281 fprintf(file, "(mlen: %d) ", inst->mlen);
5282 }
5283
5284 if (inst->eot) {
5285 fprintf(file, "(EOT) ");
5286 }
5287
5288 switch (inst->dst.file) {
5289 case VGRF:
5290 fprintf(file, "vgrf%d", inst->dst.nr);
5291 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
5292 inst->dst.subreg_offset)
5293 fprintf(file, "+%d.%d",
5294 inst->dst.reg_offset, inst->dst.subreg_offset);
5295 break;
5296 case FIXED_GRF:
5297 fprintf(file, "g%d", inst->dst.nr);
5298 break;
5299 case MRF:
5300 fprintf(file, "m%d", inst->dst.nr);
5301 break;
5302 case BAD_FILE:
5303 fprintf(file, "(null)");
5304 break;
5305 case UNIFORM:
5306 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
5307 break;
5308 case ATTR:
5309 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
5310 break;
5311 case ARF:
5312 switch (inst->dst.nr) {
5313 case BRW_ARF_NULL:
5314 fprintf(file, "null");
5315 break;
5316 case BRW_ARF_ADDRESS:
5317 fprintf(file, "a0.%d", inst->dst.subnr);
5318 break;
5319 case BRW_ARF_ACCUMULATOR:
5320 fprintf(file, "acc%d", inst->dst.subnr);
5321 break;
5322 case BRW_ARF_FLAG:
5323 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5324 break;
5325 default:
5326 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5327 break;
5328 }
5329 if (inst->dst.subnr)
5330 fprintf(file, "+%d", inst->dst.subnr);
5331 break;
5332 case IMM:
5333 unreachable("not reached");
5334 }
5335 if (inst->dst.stride != 1)
5336 fprintf(file, "<%u>", inst->dst.stride);
5337 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5338
5339 for (int i = 0; i < inst->sources; i++) {
5340 if (inst->src[i].negate)
5341 fprintf(file, "-");
5342 if (inst->src[i].abs)
5343 fprintf(file, "|");
5344 switch (inst->src[i].file) {
5345 case VGRF:
5346 fprintf(file, "vgrf%d", inst->src[i].nr);
5347 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
5348 inst->src[i].subreg_offset)
5349 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
5350 inst->src[i].subreg_offset);
5351 break;
5352 case FIXED_GRF:
5353 fprintf(file, "g%d", inst->src[i].nr);
5354 break;
5355 case MRF:
5356 fprintf(file, "***m%d***", inst->src[i].nr);
5357 break;
5358 case ATTR:
5359 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
5360 break;
5361 case UNIFORM:
5362 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
5363 if (inst->src[i].subreg_offset) {
5364 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
5365 inst->src[i].subreg_offset);
5366 }
5367 break;
5368 case BAD_FILE:
5369 fprintf(file, "(null)");
5370 break;
5371 case IMM:
5372 switch (inst->src[i].type) {
5373 case BRW_REGISTER_TYPE_F:
5374 fprintf(file, "%-gf", inst->src[i].f);
5375 break;
5376 case BRW_REGISTER_TYPE_DF:
5377 fprintf(file, "%fdf", inst->src[i].df);
5378 break;
5379 case BRW_REGISTER_TYPE_W:
5380 case BRW_REGISTER_TYPE_D:
5381 fprintf(file, "%dd", inst->src[i].d);
5382 break;
5383 case BRW_REGISTER_TYPE_UW:
5384 case BRW_REGISTER_TYPE_UD:
5385 fprintf(file, "%uu", inst->src[i].ud);
5386 break;
5387 case BRW_REGISTER_TYPE_VF:
5388 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5389 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5390 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5391 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5392 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5393 break;
5394 default:
5395 fprintf(file, "???");
5396 break;
5397 }
5398 break;
5399 case ARF:
5400 switch (inst->src[i].nr) {
5401 case BRW_ARF_NULL:
5402 fprintf(file, "null");
5403 break;
5404 case BRW_ARF_ADDRESS:
5405 fprintf(file, "a0.%d", inst->src[i].subnr);
5406 break;
5407 case BRW_ARF_ACCUMULATOR:
5408 fprintf(file, "acc%d", inst->src[i].subnr);
5409 break;
5410 case BRW_ARF_FLAG:
5411 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5412 break;
5413 default:
5414 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5415 break;
5416 }
5417 if (inst->src[i].subnr)
5418 fprintf(file, "+%d", inst->src[i].subnr);
5419 break;
5420 }
5421 if (inst->src[i].abs)
5422 fprintf(file, "|");
5423
5424 if (inst->src[i].file != IMM) {
5425 unsigned stride;
5426 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5427 unsigned hstride = inst->src[i].hstride;
5428 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5429 } else {
5430 stride = inst->src[i].stride;
5431 }
5432 if (stride != 1)
5433 fprintf(file, "<%u>", stride);
5434
5435 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5436 }
5437
5438 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5439 fprintf(file, ", ");
5440 }
5441
5442 fprintf(file, " ");
5443
5444 if (inst->force_writemask_all)
5445 fprintf(file, "NoMask ");
5446
5447 if (inst->exec_size != dispatch_width)
5448 fprintf(file, "group%d ", inst->group);
5449
5450 fprintf(file, "\n");
5451 }
5452
5453 /**
5454 * Possibly returns an instruction that set up @param reg.
5455 *
5456 * Sometimes we want to take the result of some expression/variable
5457 * dereference tree and rewrite the instruction generating the result
5458 * of the tree. When processing the tree, we know that the
5459 * instructions generated are all writing temporaries that are dead
5460 * outside of this tree. So, if we have some instructions that write
5461 * a temporary, we're free to point that temp write somewhere else.
5462 *
5463 * Note that this doesn't guarantee that the instruction generated
5464 * only reg -- it might be the size=4 destination of a texture instruction.
5465 */
5466 fs_inst *
5467 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5468 fs_inst *end,
5469 const fs_reg &reg)
5470 {
5471 if (end == start ||
5472 end->is_partial_write() ||
5473 !reg.equals(end->dst)) {
5474 return NULL;
5475 } else {
5476 return end;
5477 }
5478 }
5479
5480 void
5481 fs_visitor::setup_fs_payload_gen6()
5482 {
5483 assert(stage == MESA_SHADER_FRAGMENT);
5484 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
5485
5486 unsigned barycentric_interp_modes =
5487 (stage == MESA_SHADER_FRAGMENT) ?
5488 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
5489
5490 assert(devinfo->gen >= 6);
5491
5492 /* R0-1: masks, pixel X/Y coordinates. */
5493 payload.num_regs = 2;
5494 /* R2: only for 32-pixel dispatch.*/
5495
5496 /* R3-26: barycentric interpolation coordinates. These appear in the
5497 * same order that they appear in the brw_barycentric_mode
5498 * enum. Each set of coordinates occupies 2 registers if dispatch width
5499 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5500 * appear if they were enabled using the "Barycentric Interpolation
5501 * Mode" bits in WM_STATE.
5502 */
5503 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5504 if (barycentric_interp_modes & (1 << i)) {
5505 payload.barycentric_coord_reg[i] = payload.num_regs;
5506 payload.num_regs += 2;
5507 if (dispatch_width == 16) {
5508 payload.num_regs += 2;
5509 }
5510 }
5511 }
5512
5513 /* R27: interpolated depth if uses source depth */
5514 prog_data->uses_src_depth =
5515 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5516 if (prog_data->uses_src_depth) {
5517 payload.source_depth_reg = payload.num_regs;
5518 payload.num_regs++;
5519 if (dispatch_width == 16) {
5520 /* R28: interpolated depth if not SIMD8. */
5521 payload.num_regs++;
5522 }
5523 }
5524
5525 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5526 prog_data->uses_src_w =
5527 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5528 if (prog_data->uses_src_w) {
5529 payload.source_w_reg = payload.num_regs;
5530 payload.num_regs++;
5531 if (dispatch_width == 16) {
5532 /* R30: interpolated W if not SIMD8. */
5533 payload.num_regs++;
5534 }
5535 }
5536
5537 /* R31: MSAA position offsets. */
5538 if (prog_data->persample_dispatch &&
5539 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5540 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5541 *
5542 * "MSDISPMODE_PERSAMPLE is required in order to select
5543 * POSOFFSET_SAMPLE"
5544 *
5545 * So we can only really get sample positions if we are doing real
5546 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5547 * persample dispatch, we hard-code it to 0.5.
5548 */
5549 prog_data->uses_pos_offset = true;
5550 payload.sample_pos_reg = payload.num_regs;
5551 payload.num_regs++;
5552 }
5553
5554 /* R32: MSAA input coverage mask */
5555 prog_data->uses_sample_mask =
5556 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5557 if (prog_data->uses_sample_mask) {
5558 assert(devinfo->gen >= 7);
5559 payload.sample_mask_in_reg = payload.num_regs;
5560 payload.num_regs++;
5561 if (dispatch_width == 16) {
5562 /* R33: input coverage mask if not SIMD8. */
5563 payload.num_regs++;
5564 }
5565 }
5566
5567 /* R34-: bary for 32-pixel. */
5568 /* R58-59: interp W for 32-pixel. */
5569
5570 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5571 source_depth_to_render_target = true;
5572 }
5573 }
5574
5575 void
5576 fs_visitor::setup_vs_payload()
5577 {
5578 /* R0: thread header, R1: urb handles */
5579 payload.num_regs = 2;
5580 }
5581
5582 void
5583 fs_visitor::setup_gs_payload()
5584 {
5585 assert(stage == MESA_SHADER_GEOMETRY);
5586
5587 struct brw_gs_prog_data *gs_prog_data =
5588 (struct brw_gs_prog_data *) prog_data;
5589 struct brw_vue_prog_data *vue_prog_data =
5590 (struct brw_vue_prog_data *) prog_data;
5591
5592 /* R0: thread header, R1: output URB handles */
5593 payload.num_regs = 2;
5594
5595 if (gs_prog_data->include_primitive_id) {
5596 /* R2: Primitive ID 0..7 */
5597 payload.num_regs++;
5598 }
5599
5600 /* Use a maximum of 24 registers for push-model inputs. */
5601 const unsigned max_push_components = 24;
5602
5603 /* If pushing our inputs would take too many registers, reduce the URB read
5604 * length (which is in HWords, or 8 registers), and resort to pulling.
5605 *
5606 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5607 * have to multiply by VerticesIn to obtain the total storage requirement.
5608 */
5609 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5610 max_push_components || gs_prog_data->invocations > 1) {
5611 gs_prog_data->base.include_vue_handles = true;
5612
5613 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5614 payload.num_regs += nir->info.gs.vertices_in;
5615
5616 vue_prog_data->urb_read_length =
5617 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5618 }
5619 }
5620
5621 void
5622 fs_visitor::setup_cs_payload()
5623 {
5624 assert(devinfo->gen >= 7);
5625 payload.num_regs = 1;
5626 }
5627
5628 void
5629 fs_visitor::calculate_register_pressure()
5630 {
5631 invalidate_live_intervals();
5632 calculate_live_intervals();
5633
5634 unsigned num_instructions = 0;
5635 foreach_block(block, cfg)
5636 num_instructions += block->instructions.length();
5637
5638 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5639
5640 for (unsigned reg = 0; reg < alloc.count; reg++) {
5641 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5642 regs_live_at_ip[ip] += alloc.sizes[reg];
5643 }
5644 }
5645
5646 /**
5647 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5648 *
5649 * The needs_unlit_centroid_workaround ends up producing one of these per
5650 * channel of centroid input, so it's good to clean them up.
5651 *
5652 * An assumption here is that nothing ever modifies the dispatched pixels
5653 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5654 * dictates that anyway.
5655 */
5656 bool
5657 fs_visitor::opt_drop_redundant_mov_to_flags()
5658 {
5659 bool flag_mov_found[2] = {false};
5660 bool progress = false;
5661
5662 /* Instructions removed by this pass can only be added if this were true */
5663 if (!devinfo->needs_unlit_centroid_workaround)
5664 return false;
5665
5666 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5667 if (inst->is_control_flow()) {
5668 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5669 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5670 if (!flag_mov_found[inst->flag_subreg]) {
5671 flag_mov_found[inst->flag_subreg] = true;
5672 } else {
5673 inst->remove(block);
5674 progress = true;
5675 }
5676 } else if (inst->flags_written()) {
5677 flag_mov_found[inst->flag_subreg] = false;
5678 }
5679 }
5680
5681 return progress;
5682 }
5683
5684 void
5685 fs_visitor::optimize()
5686 {
5687 /* Start by validating the shader we currently have. */
5688 validate();
5689
5690 /* bld is the common builder object pointing at the end of the program we
5691 * used to translate it into i965 IR. For the optimization and lowering
5692 * passes coming next, any code added after the end of the program without
5693 * having explicitly called fs_builder::at() clearly points at a mistake.
5694 * Ideally optimization passes wouldn't be part of the visitor so they
5695 * wouldn't have access to bld at all, but they do, so just in case some
5696 * pass forgets to ask for a location explicitly set it to NULL here to
5697 * make it trip. The dispatch width is initialized to a bogus value to
5698 * make sure that optimizations set the execution controls explicitly to
5699 * match the code they are manipulating instead of relying on the defaults.
5700 */
5701 bld = fs_builder(this, 64);
5702
5703 assign_constant_locations();
5704 lower_constant_loads();
5705
5706 validate();
5707
5708 split_virtual_grfs();
5709 validate();
5710
5711 #define OPT(pass, args...) ({ \
5712 pass_num++; \
5713 bool this_progress = pass(args); \
5714 \
5715 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5716 char filename[64]; \
5717 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5718 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5719 \
5720 backend_shader::dump_instructions(filename); \
5721 } \
5722 \
5723 validate(); \
5724 \
5725 progress = progress || this_progress; \
5726 this_progress; \
5727 })
5728
5729 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5730 char filename[64];
5731 snprintf(filename, 64, "%s%d-%s-00-00-start",
5732 stage_abbrev, dispatch_width, nir->info.name);
5733
5734 backend_shader::dump_instructions(filename);
5735 }
5736
5737 bool progress = false;
5738 int iteration = 0;
5739 int pass_num = 0;
5740
5741 OPT(opt_drop_redundant_mov_to_flags);
5742
5743 do {
5744 progress = false;
5745 pass_num = 0;
5746 iteration++;
5747
5748 OPT(remove_duplicate_mrf_writes);
5749
5750 OPT(opt_algebraic);
5751 OPT(opt_cse);
5752 OPT(opt_copy_propagate);
5753 OPT(opt_predicated_break, this);
5754 OPT(opt_cmod_propagation);
5755 OPT(dead_code_eliminate);
5756 OPT(opt_peephole_sel);
5757 OPT(dead_control_flow_eliminate, this);
5758 OPT(opt_register_renaming);
5759 OPT(opt_saturate_propagation);
5760 OPT(register_coalesce);
5761 OPT(compute_to_mrf);
5762 OPT(eliminate_find_live_channel);
5763
5764 OPT(compact_virtual_grfs);
5765 } while (progress);
5766
5767 progress = false;
5768 pass_num = 0;
5769
5770 if (OPT(lower_pack)) {
5771 OPT(register_coalesce);
5772 OPT(dead_code_eliminate);
5773 }
5774
5775 if (OPT(lower_d2x)) {
5776 OPT(opt_copy_propagate);
5777 OPT(dead_code_eliminate);
5778 }
5779
5780 OPT(lower_simd_width);
5781
5782 /* After SIMD lowering just in case we had to unroll the EOT send. */
5783 OPT(opt_sampler_eot);
5784
5785 OPT(lower_logical_sends);
5786
5787 if (progress) {
5788 OPT(opt_copy_propagate);
5789 /* Only run after logical send lowering because it's easier to implement
5790 * in terms of physical sends.
5791 */
5792 if (OPT(opt_zero_samples))
5793 OPT(opt_copy_propagate);
5794 /* Run after logical send lowering to give it a chance to CSE the
5795 * LOAD_PAYLOAD instructions created to construct the payloads of
5796 * e.g. texturing messages in cases where it wasn't possible to CSE the
5797 * whole logical instruction.
5798 */
5799 OPT(opt_cse);
5800 OPT(register_coalesce);
5801 OPT(compute_to_mrf);
5802 OPT(dead_code_eliminate);
5803 OPT(remove_duplicate_mrf_writes);
5804 OPT(opt_peephole_sel);
5805 }
5806
5807 OPT(opt_redundant_discard_jumps);
5808
5809 if (OPT(lower_load_payload)) {
5810 split_virtual_grfs();
5811 OPT(register_coalesce);
5812 OPT(compute_to_mrf);
5813 OPT(dead_code_eliminate);
5814 }
5815
5816 OPT(opt_combine_constants);
5817 OPT(lower_integer_multiplication);
5818
5819 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5820 OPT(opt_cmod_propagation);
5821 OPT(opt_cse);
5822 OPT(opt_copy_propagate);
5823 OPT(dead_code_eliminate);
5824 }
5825
5826 lower_uniform_pull_constant_loads();
5827
5828 validate();
5829 }
5830
5831 /**
5832 * Three source instruction must have a GRF/MRF destination register.
5833 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5834 */
5835 void
5836 fs_visitor::fixup_3src_null_dest()
5837 {
5838 bool progress = false;
5839
5840 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5841 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5842 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5843 inst->dst.type);
5844 progress = true;
5845 }
5846 }
5847
5848 if (progress)
5849 invalidate_live_intervals();
5850 }
5851
5852 void
5853 fs_visitor::allocate_registers(bool allow_spilling)
5854 {
5855 bool allocated_without_spills;
5856
5857 static const enum instruction_scheduler_mode pre_modes[] = {
5858 SCHEDULE_PRE,
5859 SCHEDULE_PRE_NON_LIFO,
5860 SCHEDULE_PRE_LIFO,
5861 };
5862
5863 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5864
5865 /* Try each scheduling heuristic to see if it can successfully register
5866 * allocate without spilling. They should be ordered by decreasing
5867 * performance but increasing likelihood of allocating.
5868 */
5869 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5870 schedule_instructions(pre_modes[i]);
5871
5872 if (0) {
5873 assign_regs_trivial();
5874 allocated_without_spills = true;
5875 } else {
5876 allocated_without_spills = assign_regs(false, spill_all);
5877 }
5878 if (allocated_without_spills)
5879 break;
5880 }
5881
5882 if (!allocated_without_spills) {
5883 /* We assume that any spilling is worse than just dropping back to
5884 * SIMD8. There's probably actually some intermediate point where
5885 * SIMD16 with a couple of spills is still better.
5886 */
5887 if (dispatch_width > min_dispatch_width) {
5888 fail("Failure to register allocate. Reduce number of "
5889 "live scalar values to avoid this.");
5890 } else {
5891 compiler->shader_perf_log(log_data,
5892 "%s shader triggered register spilling. "
5893 "Try reducing the number of live scalar "
5894 "values to improve performance.\n",
5895 stage_name);
5896 }
5897
5898 /* Since we're out of heuristics, just go spill registers until we
5899 * get an allocation.
5900 */
5901 while (!assign_regs(true, spill_all)) {
5902 if (failed)
5903 break;
5904 }
5905 }
5906
5907 assert(last_scratch == 0 || allow_spilling);
5908
5909 /* This must come after all optimization and register allocation, since
5910 * it inserts dead code that happens to have side effects, and it does
5911 * so based on the actual physical registers in use.
5912 */
5913 insert_gen4_send_dependency_workarounds();
5914
5915 if (failed)
5916 return;
5917
5918 schedule_instructions(SCHEDULE_POST);
5919
5920 if (last_scratch > 0) {
5921 unsigned max_scratch_size = 2 * 1024 * 1024;
5922
5923 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5924
5925 if (stage == MESA_SHADER_COMPUTE) {
5926 if (devinfo->is_haswell) {
5927 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5928 * field documentation, Haswell supports a minimum of 2kB of
5929 * scratch space for compute shaders, unlike every other stage
5930 * and platform.
5931 */
5932 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5933 } else if (devinfo->gen <= 7) {
5934 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5935 * field documentation, platforms prior to Haswell measure scratch
5936 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5937 */
5938 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5939 max_scratch_size = 12 * 1024;
5940 }
5941 }
5942
5943 /* We currently only support up to 2MB of scratch space. If we
5944 * need to support more eventually, the documentation suggests
5945 * that we could allocate a larger buffer, and partition it out
5946 * ourselves. We'd just have to undo the hardware's address
5947 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5948 * and then add FFTID * (Larger Per Thread Scratch Space).
5949 *
5950 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5951 * Thread Group Tracking > Local Memory/Scratch Space.
5952 */
5953 assert(prog_data->total_scratch < max_scratch_size);
5954 }
5955 }
5956
5957 bool
5958 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5959 {
5960 assert(stage == MESA_SHADER_VERTEX);
5961
5962 setup_vs_payload();
5963
5964 if (shader_time_index >= 0)
5965 emit_shader_time_begin();
5966
5967 emit_nir_code();
5968
5969 if (failed)
5970 return false;
5971
5972 compute_clip_distance(clip_planes);
5973
5974 emit_urb_writes();
5975
5976 if (shader_time_index >= 0)
5977 emit_shader_time_end();
5978
5979 calculate_cfg();
5980
5981 optimize();
5982
5983 assign_curb_setup();
5984 assign_vs_urb_setup();
5985
5986 fixup_3src_null_dest();
5987 allocate_registers(true);
5988
5989 return !failed;
5990 }
5991
5992 bool
5993 fs_visitor::run_tcs_single_patch()
5994 {
5995 assert(stage == MESA_SHADER_TESS_CTRL);
5996
5997 struct brw_tcs_prog_data *tcs_prog_data =
5998 (struct brw_tcs_prog_data *) prog_data;
5999
6000 /* r1-r4 contain the ICP handles. */
6001 payload.num_regs = 5;
6002
6003 if (shader_time_index >= 0)
6004 emit_shader_time_begin();
6005
6006 /* Initialize gl_InvocationID */
6007 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6008 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6009 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6010 bld.MOV(channels_ud, channels_uw);
6011
6012 if (tcs_prog_data->instances == 1) {
6013 invocation_id = channels_ud;
6014 } else {
6015 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6016
6017 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6018 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6019 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6020 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6021 brw_imm_ud(INTEL_MASK(23, 17)));
6022 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6023
6024 bld.ADD(invocation_id, instance_times_8, channels_ud);
6025 }
6026
6027 /* Fix the disptach mask */
6028 if (nir->info.tcs.vertices_out % 8) {
6029 bld.CMP(bld.null_reg_ud(), invocation_id,
6030 brw_imm_ud(nir->info.tcs.vertices_out), BRW_CONDITIONAL_L);
6031 bld.IF(BRW_PREDICATE_NORMAL);
6032 }
6033
6034 emit_nir_code();
6035
6036 if (nir->info.tcs.vertices_out % 8) {
6037 bld.emit(BRW_OPCODE_ENDIF);
6038 }
6039
6040 /* Emit EOT write; set TR DS Cache bit */
6041 fs_reg srcs[3] = {
6042 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6043 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6044 fs_reg(brw_imm_ud(0)),
6045 };
6046 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6047 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6048
6049 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6050 bld.null_reg_ud(), payload);
6051 inst->mlen = 3;
6052 inst->eot = true;
6053
6054 if (shader_time_index >= 0)
6055 emit_shader_time_end();
6056
6057 if (failed)
6058 return false;
6059
6060 calculate_cfg();
6061
6062 optimize();
6063
6064 assign_curb_setup();
6065 assign_tcs_single_patch_urb_setup();
6066
6067 fixup_3src_null_dest();
6068 allocate_registers(true);
6069
6070 return !failed;
6071 }
6072
6073 bool
6074 fs_visitor::run_tes()
6075 {
6076 assert(stage == MESA_SHADER_TESS_EVAL);
6077
6078 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6079 payload.num_regs = 5;
6080
6081 if (shader_time_index >= 0)
6082 emit_shader_time_begin();
6083
6084 emit_nir_code();
6085
6086 if (failed)
6087 return false;
6088
6089 emit_urb_writes();
6090
6091 if (shader_time_index >= 0)
6092 emit_shader_time_end();
6093
6094 calculate_cfg();
6095
6096 optimize();
6097
6098 assign_curb_setup();
6099 assign_tes_urb_setup();
6100
6101 fixup_3src_null_dest();
6102 allocate_registers(true);
6103
6104 return !failed;
6105 }
6106
6107 bool
6108 fs_visitor::run_gs()
6109 {
6110 assert(stage == MESA_SHADER_GEOMETRY);
6111
6112 setup_gs_payload();
6113
6114 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6115
6116 if (gs_compile->control_data_header_size_bits > 0) {
6117 /* Create a VGRF to store accumulated control data bits. */
6118 this->control_data_bits = vgrf(glsl_type::uint_type);
6119
6120 /* If we're outputting more than 32 control data bits, then EmitVertex()
6121 * will set control_data_bits to 0 after emitting the first vertex.
6122 * Otherwise, we need to initialize it to 0 here.
6123 */
6124 if (gs_compile->control_data_header_size_bits <= 32) {
6125 const fs_builder abld = bld.annotate("initialize control data bits");
6126 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6127 }
6128 }
6129
6130 if (shader_time_index >= 0)
6131 emit_shader_time_begin();
6132
6133 emit_nir_code();
6134
6135 emit_gs_thread_end();
6136
6137 if (shader_time_index >= 0)
6138 emit_shader_time_end();
6139
6140 if (failed)
6141 return false;
6142
6143 calculate_cfg();
6144
6145 optimize();
6146
6147 assign_curb_setup();
6148 assign_gs_urb_setup();
6149
6150 fixup_3src_null_dest();
6151 allocate_registers(true);
6152
6153 return !failed;
6154 }
6155
6156 bool
6157 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6158 {
6159 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
6160 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6161
6162 assert(stage == MESA_SHADER_FRAGMENT);
6163
6164 if (devinfo->gen >= 6)
6165 setup_fs_payload_gen6();
6166 else
6167 setup_fs_payload_gen4();
6168
6169 if (0) {
6170 emit_dummy_fs();
6171 } else if (do_rep_send) {
6172 assert(dispatch_width == 16);
6173 emit_repclear_shader();
6174 } else {
6175 if (shader_time_index >= 0)
6176 emit_shader_time_begin();
6177
6178 calculate_urb_setup();
6179 if (nir->info.inputs_read > 0 ||
6180 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6181 if (devinfo->gen < 6)
6182 emit_interpolation_setup_gen4();
6183 else
6184 emit_interpolation_setup_gen6();
6185 }
6186
6187 /* We handle discards by keeping track of the still-live pixels in f0.1.
6188 * Initialize it with the dispatched pixels.
6189 */
6190 if (wm_prog_data->uses_kill) {
6191 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6192 discard_init->flag_subreg = 1;
6193 }
6194
6195 /* Generate FS IR for main(). (the visitor only descends into
6196 * functions called "main").
6197 */
6198 emit_nir_code();
6199
6200 if (failed)
6201 return false;
6202
6203 if (wm_prog_data->uses_kill)
6204 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6205
6206 if (wm_key->alpha_test_func)
6207 emit_alpha_test();
6208
6209 emit_fb_writes();
6210
6211 if (shader_time_index >= 0)
6212 emit_shader_time_end();
6213
6214 calculate_cfg();
6215
6216 optimize();
6217
6218 assign_curb_setup();
6219 assign_urb_setup();
6220
6221 fixup_3src_null_dest();
6222 allocate_registers(allow_spilling);
6223
6224 if (failed)
6225 return false;
6226 }
6227
6228 return !failed;
6229 }
6230
6231 bool
6232 fs_visitor::run_cs()
6233 {
6234 assert(stage == MESA_SHADER_COMPUTE);
6235
6236 setup_cs_payload();
6237
6238 if (shader_time_index >= 0)
6239 emit_shader_time_begin();
6240
6241 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6242 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6243 const fs_builder abld = bld.exec_all().group(1, 0);
6244 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
6245 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6246 }
6247
6248 emit_nir_code();
6249
6250 if (failed)
6251 return false;
6252
6253 emit_cs_terminate();
6254
6255 if (shader_time_index >= 0)
6256 emit_shader_time_end();
6257
6258 calculate_cfg();
6259
6260 optimize();
6261
6262 assign_curb_setup();
6263
6264 fixup_3src_null_dest();
6265 allocate_registers(true);
6266
6267 if (failed)
6268 return false;
6269
6270 return !failed;
6271 }
6272
6273 /**
6274 * Return a bitfield where bit n is set if barycentric interpolation mode n
6275 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6276 *
6277 * We examine the load_barycentric intrinsics rather than looking at input
6278 * variables so that we catch interpolateAtCentroid() messages too, which
6279 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6280 */
6281 static unsigned
6282 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
6283 const nir_shader *shader)
6284 {
6285 unsigned barycentric_interp_modes = 0;
6286
6287 nir_foreach_function(f, shader) {
6288 if (!f->impl)
6289 continue;
6290
6291 nir_foreach_block(block, f->impl) {
6292 nir_foreach_instr(instr, block) {
6293 if (instr->type != nir_instr_type_intrinsic)
6294 continue;
6295
6296 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6297 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6298 continue;
6299
6300 /* Ignore WPOS; it doesn't require interpolation. */
6301 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6302 continue;
6303
6304 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6305 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6306 nir_intrinsic_interp_mode(intrin);
6307 nir_intrinsic_op bary_op = intrin->intrinsic;
6308 enum brw_barycentric_mode bary =
6309 brw_barycentric_mode(interp, bary_op);
6310
6311 barycentric_interp_modes |= 1 << bary;
6312
6313 if (devinfo->needs_unlit_centroid_workaround &&
6314 bary_op == nir_intrinsic_load_barycentric_centroid)
6315 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6316 }
6317 }
6318 }
6319
6320 return barycentric_interp_modes;
6321 }
6322
6323 static void
6324 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6325 const nir_shader *shader)
6326 {
6327 prog_data->flat_inputs = 0;
6328
6329 nir_foreach_variable(var, &shader->inputs) {
6330 int input_index = prog_data->urb_setup[var->data.location];
6331
6332 if (input_index < 0)
6333 continue;
6334
6335 /* flat shading */
6336 if (var->data.interpolation == INTERP_MODE_FLAT)
6337 prog_data->flat_inputs |= (1 << input_index);
6338 }
6339 }
6340
6341 static uint8_t
6342 computed_depth_mode(const nir_shader *shader)
6343 {
6344 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6345 switch (shader->info.fs.depth_layout) {
6346 case FRAG_DEPTH_LAYOUT_NONE:
6347 case FRAG_DEPTH_LAYOUT_ANY:
6348 return BRW_PSCDEPTH_ON;
6349 case FRAG_DEPTH_LAYOUT_GREATER:
6350 return BRW_PSCDEPTH_ON_GE;
6351 case FRAG_DEPTH_LAYOUT_LESS:
6352 return BRW_PSCDEPTH_ON_LE;
6353 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6354 return BRW_PSCDEPTH_OFF;
6355 }
6356 }
6357 return BRW_PSCDEPTH_OFF;
6358 }
6359
6360 /**
6361 * Move load_interpolated_input with simple (payload-based) barycentric modes
6362 * to the top of the program so we don't emit multiple PLNs for the same input.
6363 *
6364 * This works around CSE not being able to handle non-dominating cases
6365 * such as:
6366 *
6367 * if (...) {
6368 * interpolate input
6369 * } else {
6370 * interpolate the same exact input
6371 * }
6372 *
6373 * This should be replaced by global value numbering someday.
6374 */
6375 void
6376 move_interpolation_to_top(nir_shader *nir)
6377 {
6378 nir_foreach_function(f, nir) {
6379 if (!f->impl)
6380 continue;
6381
6382 nir_block *top = nir_start_block(f->impl);
6383 exec_node *cursor_node = NULL;
6384
6385 nir_foreach_block(block, f->impl) {
6386 if (block == top)
6387 continue;
6388
6389 nir_foreach_instr_safe(instr, block) {
6390 if (instr->type != nir_instr_type_intrinsic)
6391 continue;
6392
6393 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6394 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6395 continue;
6396 nir_intrinsic_instr *bary_intrinsic =
6397 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6398 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6399
6400 /* Leave interpolateAtSample/Offset() where they are. */
6401 if (op == nir_intrinsic_load_barycentric_at_sample ||
6402 op == nir_intrinsic_load_barycentric_at_offset)
6403 continue;
6404
6405 nir_instr *move[3] = {
6406 &bary_intrinsic->instr,
6407 intrin->src[1].ssa->parent_instr,
6408 instr
6409 };
6410
6411 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6412 if (move[i]->block != top) {
6413 move[i]->block = top;
6414 exec_node_remove(&move[i]->node);
6415 if (cursor_node) {
6416 exec_node_insert_after(cursor_node, &move[i]->node);
6417 } else {
6418 exec_list_push_head(&top->instr_list, &move[i]->node);
6419 }
6420 cursor_node = &move[i]->node;
6421 }
6422 }
6423 }
6424 }
6425 nir_metadata_preserve(f->impl, (nir_metadata)
6426 ((unsigned) nir_metadata_block_index |
6427 (unsigned) nir_metadata_dominance));
6428 }
6429 }
6430
6431 /**
6432 * Apply default interpolation settings to FS inputs which don't specify any.
6433 */
6434 static void
6435 brw_nir_set_default_interpolation(const struct brw_device_info *devinfo,
6436 struct nir_shader *nir,
6437 bool api_flat_shade,
6438 bool per_sample_interpolation)
6439 {
6440 assert(nir->stage == MESA_SHADER_FRAGMENT);
6441
6442 nir_foreach_variable(var, &nir->inputs) {
6443 /* Apply default interpolation mode.
6444 *
6445 * Everything defaults to smooth except for the legacy GL color
6446 * built-in variables, which might be flat depending on API state.
6447 */
6448 if (var->data.interpolation == INTERP_MODE_NONE) {
6449 const bool flat = api_flat_shade &&
6450 (var->data.location == VARYING_SLOT_COL0 ||
6451 var->data.location == VARYING_SLOT_COL1);
6452
6453 var->data.interpolation = flat ? INTERP_MODE_FLAT
6454 : INTERP_MODE_SMOOTH;
6455 }
6456
6457 /* Apply 'sample' if necessary for API state. */
6458 if (per_sample_interpolation &&
6459 var->data.interpolation != INTERP_MODE_FLAT) {
6460 var->data.centroid = false;
6461 var->data.sample = true;
6462 }
6463
6464 /* On Ironlake and below, there is only one interpolation mode.
6465 * Centroid interpolation doesn't mean anything on this hardware --
6466 * there is no multisampling.
6467 */
6468 if (devinfo->gen < 6) {
6469 var->data.centroid = false;
6470 var->data.sample = false;
6471 }
6472 }
6473 }
6474
6475 /**
6476 * Demote per-sample barycentric intrinsics to centroid.
6477 *
6478 * Useful when rendering to a non-multisampled buffer.
6479 */
6480 static void
6481 demote_sample_qualifiers(nir_shader *nir)
6482 {
6483 nir_foreach_function(f, nir) {
6484 if (!f->impl)
6485 continue;
6486
6487 nir_builder b;
6488 nir_builder_init(&b, f->impl);
6489
6490 nir_foreach_block(block, f->impl) {
6491 nir_foreach_instr_safe(instr, block) {
6492 if (instr->type != nir_instr_type_intrinsic)
6493 continue;
6494
6495 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6496 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6497 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6498 continue;
6499
6500 b.cursor = nir_before_instr(instr);
6501 nir_ssa_def *centroid =
6502 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6503 nir_intrinsic_interp_mode(intrin));
6504 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6505 nir_src_for_ssa(centroid));
6506 nir_instr_remove(instr);
6507 }
6508 }
6509
6510 nir_metadata_preserve(f->impl, (nir_metadata)
6511 ((unsigned) nir_metadata_block_index |
6512 (unsigned) nir_metadata_dominance));
6513 }
6514 }
6515
6516 const unsigned *
6517 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6518 void *mem_ctx,
6519 const struct brw_wm_prog_key *key,
6520 struct brw_wm_prog_data *prog_data,
6521 const nir_shader *src_shader,
6522 struct gl_program *prog,
6523 int shader_time_index8, int shader_time_index16,
6524 bool allow_spilling,
6525 bool use_rep_send,
6526 unsigned *final_assembly_size,
6527 char **error_str)
6528 {
6529 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6530 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6531 true);
6532 brw_nir_set_default_interpolation(compiler->devinfo, shader,
6533 key->flat_shade, key->persample_interp);
6534 brw_nir_lower_fs_inputs(shader);
6535 brw_nir_lower_fs_outputs(shader);
6536 if (!key->multisample_fbo)
6537 NIR_PASS_V(shader, demote_sample_qualifiers);
6538 NIR_PASS_V(shader, move_interpolation_to_top);
6539 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6540
6541 /* key->alpha_test_func means simulating alpha testing via discards,
6542 * so the shader definitely kills pixels.
6543 */
6544 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
6545 prog_data->uses_omask = key->multisample_fbo &&
6546 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6547 prog_data->computed_depth_mode = computed_depth_mode(shader);
6548 prog_data->computed_stencil =
6549 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6550
6551 prog_data->persample_dispatch =
6552 key->multisample_fbo &&
6553 (key->persample_interp ||
6554 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6555 SYSTEM_BIT_SAMPLE_POS)) ||
6556 shader->info.fs.uses_sample_qualifier ||
6557 shader->info.outputs_read);
6558
6559 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6560
6561 prog_data->barycentric_interp_modes =
6562 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6563
6564 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6565 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6566 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6567
6568 fs_visitor v8(compiler, log_data, mem_ctx, key,
6569 &prog_data->base, prog, shader, 8,
6570 shader_time_index8);
6571 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6572 if (error_str)
6573 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6574
6575 return NULL;
6576 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6577 simd8_cfg = v8.cfg;
6578 simd8_grf_start = v8.payload.num_regs;
6579 simd8_grf_used = v8.grf_used;
6580 }
6581
6582 if (v8.max_dispatch_width >= 16 &&
6583 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6584 /* Try a SIMD16 compile */
6585 fs_visitor v16(compiler, log_data, mem_ctx, key,
6586 &prog_data->base, prog, shader, 16,
6587 shader_time_index16);
6588 v16.import_uniforms(&v8);
6589 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6590 compiler->shader_perf_log(log_data,
6591 "SIMD16 shader failed to compile: %s",
6592 v16.fail_msg);
6593 } else {
6594 simd16_cfg = v16.cfg;
6595 simd16_grf_start = v16.payload.num_regs;
6596 simd16_grf_used = v16.grf_used;
6597 }
6598 }
6599
6600 /* When the caller requests a repclear shader, they want SIMD16-only */
6601 if (use_rep_send)
6602 simd8_cfg = NULL;
6603
6604 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6605 * at the top to select the shader. We've never implemented that.
6606 * Instead, we just give them exactly one shader and we pick the widest one
6607 * available.
6608 */
6609 if (compiler->devinfo->gen < 5 && simd16_cfg)
6610 simd8_cfg = NULL;
6611
6612 if (prog_data->persample_dispatch) {
6613 /* Starting with SandyBridge (where we first get MSAA), the different
6614 * pixel dispatch combinations are grouped into classifications A
6615 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6616 * generations, the only configurations supporting persample dispatch
6617 * are are this in which only one dispatch width is enabled.
6618 *
6619 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6620 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6621 */
6622 if (compiler->devinfo->gen == 6 &&
6623 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6624 simd16_cfg = NULL;
6625 } else if (simd16_cfg) {
6626 simd8_cfg = NULL;
6627 }
6628 }
6629
6630 /* We have to compute the flat inputs after the visitor is finished running
6631 * because it relies on prog_data->urb_setup which is computed in
6632 * fs_visitor::calculate_urb_setup().
6633 */
6634 brw_compute_flat_inputs(prog_data, shader);
6635
6636 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6637 v8.promoted_constants, v8.runtime_check_aads_emit,
6638 MESA_SHADER_FRAGMENT);
6639
6640 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6641 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6642 shader->info.label ? shader->info.label :
6643 "unnamed",
6644 shader->info.name));
6645 }
6646
6647 if (simd8_cfg) {
6648 prog_data->dispatch_8 = true;
6649 g.generate_code(simd8_cfg, 8);
6650 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6651 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6652
6653 if (simd16_cfg) {
6654 prog_data->dispatch_16 = true;
6655 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6656 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6657 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6658 }
6659 } else if (simd16_cfg) {
6660 prog_data->dispatch_16 = true;
6661 g.generate_code(simd16_cfg, 16);
6662 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6663 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6664 }
6665
6666 return g.get_assembly(final_assembly_size);
6667 }
6668
6669 fs_reg *
6670 fs_visitor::emit_cs_work_group_id_setup()
6671 {
6672 assert(stage == MESA_SHADER_COMPUTE);
6673
6674 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6675
6676 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6677 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6678 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6679
6680 bld.MOV(*reg, r0_1);
6681 bld.MOV(offset(*reg, bld, 1), r0_6);
6682 bld.MOV(offset(*reg, bld, 2), r0_7);
6683
6684 return reg;
6685 }
6686
6687 static void
6688 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6689 {
6690 block->dwords = dwords;
6691 block->regs = DIV_ROUND_UP(dwords, 8);
6692 block->size = block->regs * 32;
6693 }
6694
6695 static void
6696 cs_fill_push_const_info(const struct brw_device_info *devinfo,
6697 struct brw_cs_prog_data *cs_prog_data)
6698 {
6699 const struct brw_stage_prog_data *prog_data =
6700 (struct brw_stage_prog_data*) cs_prog_data;
6701 bool fill_thread_id =
6702 cs_prog_data->thread_local_id_index >= 0 &&
6703 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6704 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6705
6706 /* The thread ID should be stored in the last param dword */
6707 assert(prog_data->nr_params > 0 || !fill_thread_id);
6708 assert(!fill_thread_id ||
6709 cs_prog_data->thread_local_id_index ==
6710 (int)prog_data->nr_params - 1);
6711
6712 unsigned cross_thread_dwords, per_thread_dwords;
6713 if (!cross_thread_supported) {
6714 cross_thread_dwords = 0u;
6715 per_thread_dwords = prog_data->nr_params;
6716 } else if (fill_thread_id) {
6717 /* Fill all but the last register with cross-thread payload */
6718 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6719 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6720 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6721 } else {
6722 /* Fill all data using cross-thread payload */
6723 cross_thread_dwords = prog_data->nr_params;
6724 per_thread_dwords = 0u;
6725 }
6726
6727 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6728 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6729
6730 unsigned total_dwords =
6731 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6732 cs_prog_data->push.cross_thread.size) / 4;
6733 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6734
6735 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6736 cs_prog_data->push.per_thread.size == 0);
6737 assert(cs_prog_data->push.cross_thread.dwords +
6738 cs_prog_data->push.per_thread.dwords ==
6739 prog_data->nr_params);
6740 }
6741
6742 static void
6743 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6744 {
6745 cs_prog_data->simd_size = size;
6746 unsigned group_size = cs_prog_data->local_size[0] *
6747 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6748 cs_prog_data->threads = (group_size + size - 1) / size;
6749 }
6750
6751 const unsigned *
6752 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6753 void *mem_ctx,
6754 const struct brw_cs_prog_key *key,
6755 struct brw_cs_prog_data *prog_data,
6756 const nir_shader *src_shader,
6757 int shader_time_index,
6758 unsigned *final_assembly_size,
6759 char **error_str)
6760 {
6761 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6762 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6763 true);
6764 brw_nir_lower_cs_shared(shader);
6765 prog_data->base.total_shared += shader->num_shared;
6766
6767 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6768 * the thread_local_id_index.
6769 */
6770 assert(prog_data->thread_local_id_index >= 0);
6771 shader->num_uniforms =
6772 MAX2(shader->num_uniforms,
6773 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6774
6775 brw_nir_lower_intrinsics(shader, &prog_data->base);
6776 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6777
6778 prog_data->local_size[0] = shader->info.cs.local_size[0];
6779 prog_data->local_size[1] = shader->info.cs.local_size[1];
6780 prog_data->local_size[2] = shader->info.cs.local_size[2];
6781 unsigned local_workgroup_size =
6782 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6783 shader->info.cs.local_size[2];
6784
6785 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6786 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6787
6788 cfg_t *cfg = NULL;
6789 const char *fail_msg = NULL;
6790
6791 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6792 */
6793 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6794 NULL, /* Never used in core profile */
6795 shader, 8, shader_time_index);
6796 if (simd_required <= 8) {
6797 if (!v8.run_cs()) {
6798 fail_msg = v8.fail_msg;
6799 } else {
6800 cfg = v8.cfg;
6801 cs_set_simd_size(prog_data, 8);
6802 cs_fill_push_const_info(compiler->devinfo, prog_data);
6803 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6804 }
6805 }
6806
6807 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6808 NULL, /* Never used in core profile */
6809 shader, 16, shader_time_index);
6810 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6811 !fail_msg && v8.max_dispatch_width >= 16 &&
6812 simd_required <= 16) {
6813 /* Try a SIMD16 compile */
6814 if (simd_required <= 8)
6815 v16.import_uniforms(&v8);
6816 if (!v16.run_cs()) {
6817 compiler->shader_perf_log(log_data,
6818 "SIMD16 shader failed to compile: %s",
6819 v16.fail_msg);
6820 if (!cfg) {
6821 fail_msg =
6822 "Couldn't generate SIMD16 program and not "
6823 "enough threads for SIMD8";
6824 }
6825 } else {
6826 cfg = v16.cfg;
6827 cs_set_simd_size(prog_data, 16);
6828 cs_fill_push_const_info(compiler->devinfo, prog_data);
6829 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6830 }
6831 }
6832
6833 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6834 NULL, /* Never used in core profile */
6835 shader, 32, shader_time_index);
6836 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6837 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6838 /* Try a SIMD32 compile */
6839 if (simd_required <= 8)
6840 v32.import_uniforms(&v8);
6841 else if (simd_required <= 16)
6842 v32.import_uniforms(&v16);
6843
6844 if (!v32.run_cs()) {
6845 compiler->shader_perf_log(log_data,
6846 "SIMD32 shader failed to compile: %s",
6847 v16.fail_msg);
6848 if (!cfg) {
6849 fail_msg =
6850 "Couldn't generate SIMD32 program and not "
6851 "enough threads for SIMD16";
6852 }
6853 } else {
6854 cfg = v32.cfg;
6855 cs_set_simd_size(prog_data, 32);
6856 cs_fill_push_const_info(compiler->devinfo, prog_data);
6857 }
6858 }
6859
6860 if (unlikely(cfg == NULL)) {
6861 assert(fail_msg);
6862 if (error_str)
6863 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6864
6865 return NULL;
6866 }
6867
6868 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6869 v8.promoted_constants, v8.runtime_check_aads_emit,
6870 MESA_SHADER_COMPUTE);
6871 if (INTEL_DEBUG & DEBUG_CS) {
6872 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6873 shader->info.label ? shader->info.label :
6874 "unnamed",
6875 shader->info.name);
6876 g.enable_debug(name);
6877 }
6878
6879 g.generate_code(cfg, prog_data->simd_size);
6880
6881 return g.get_assembly(final_assembly_size);
6882 }