i965: Enable EGL_KHR_gl_texture_3D_image
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 bool
439 fs_reg::is_contiguous() const
440 {
441 return stride == 1;
442 }
443
444 unsigned
445 fs_reg::component_size(unsigned width) const
446 {
447 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448 hstride == 0 ? 0 :
449 1 << (hstride - 1));
450 return MAX2(width * stride, 1) * type_sz(type);
451 }
452
453 extern "C" int
454 type_size_scalar(const struct glsl_type *type)
455 {
456 unsigned int size, i;
457
458 switch (type->base_type) {
459 case GLSL_TYPE_UINT:
460 case GLSL_TYPE_INT:
461 case GLSL_TYPE_FLOAT:
462 case GLSL_TYPE_BOOL:
463 return type->components();
464 case GLSL_TYPE_DOUBLE:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /**
496 * Returns the number of scalar components needed to store type, assuming
497 * that vectors are padded out to vec4.
498 *
499 * This has the packing rules of type_size_vec4(), but counts components
500 * similar to type_size_scalar().
501 */
502 extern "C" int
503 type_size_vec4_times_4(const struct glsl_type *type)
504 {
505 return 4 * type_size_vec4(type);
506 }
507
508 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
509 * except for double-precision types, which are loaded as one dvec4.
510 */
511 extern "C" int
512 type_size_vs_input(const struct glsl_type *type)
513 {
514 if (type->is_double()) {
515 return type_size_dvec4(type);
516 } else {
517 return type_size_vec4(type);
518 }
519 }
520
521 /**
522 * Create a MOV to read the timestamp register.
523 *
524 * The caller is responsible for emitting the MOV. The return value is
525 * the destination of the MOV, with extra parameters set.
526 */
527 fs_reg
528 fs_visitor::get_timestamp(const fs_builder &bld)
529 {
530 assert(devinfo->gen >= 7);
531
532 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
533 BRW_ARF_TIMESTAMP,
534 0),
535 BRW_REGISTER_TYPE_UD));
536
537 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
538
539 /* We want to read the 3 fields we care about even if it's not enabled in
540 * the dispatch.
541 */
542 bld.group(4, 0).exec_all().MOV(dst, ts);
543
544 return dst;
545 }
546
547 void
548 fs_visitor::emit_shader_time_begin()
549 {
550 /* We want only the low 32 bits of the timestamp. Since it's running
551 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
552 * which is plenty of time for our purposes. It is identical across the
553 * EUs, but since it's tracking GPU core speed it will increment at a
554 * varying rate as render P-states change.
555 */
556 shader_start_time = component(
557 get_timestamp(bld.annotate("shader time start")), 0);
558 }
559
560 void
561 fs_visitor::emit_shader_time_end()
562 {
563 /* Insert our code just before the final SEND with EOT. */
564 exec_node *end = this->instructions.get_tail();
565 assert(end && ((fs_inst *) end)->eot);
566 const fs_builder ibld = bld.annotate("shader time end")
567 .exec_all().at(NULL, end);
568 const fs_reg timestamp = get_timestamp(ibld);
569
570 /* We only use the low 32 bits of the timestamp - see
571 * emit_shader_time_begin()).
572 *
573 * We could also check if render P-states have changed (or anything
574 * else that might disrupt timing) by setting smear to 2 and checking if
575 * that field is != 0.
576 */
577 const fs_reg shader_end_time = component(timestamp, 0);
578
579 /* Check that there weren't any timestamp reset events (assuming these
580 * were the only two timestamp reads that happened).
581 */
582 const fs_reg reset = component(timestamp, 2);
583 set_condmod(BRW_CONDITIONAL_Z,
584 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
585 ibld.IF(BRW_PREDICATE_NORMAL);
586
587 fs_reg start = shader_start_time;
588 start.negate = true;
589 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
590 BRW_REGISTER_TYPE_UD),
591 0);
592 const fs_builder cbld = ibld.group(1, 0);
593 cbld.group(1, 0).ADD(diff, start, shader_end_time);
594
595 /* If there were no instructions between the two timestamp gets, the diff
596 * is 2 cycles. Remove that overhead, so I can forget about that when
597 * trying to determine the time taken for single instructions.
598 */
599 cbld.ADD(diff, diff, brw_imm_ud(-2u));
600 SHADER_TIME_ADD(cbld, 0, diff);
601 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
602 ibld.emit(BRW_OPCODE_ELSE);
603 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
604 ibld.emit(BRW_OPCODE_ENDIF);
605 }
606
607 void
608 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
609 int shader_time_subindex,
610 fs_reg value)
611 {
612 int index = shader_time_index * 3 + shader_time_subindex;
613 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
614
615 fs_reg payload;
616 if (dispatch_width == 8)
617 payload = vgrf(glsl_type::uvec2_type);
618 else
619 payload = vgrf(glsl_type::uint_type);
620
621 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
622 }
623
624 void
625 fs_visitor::vfail(const char *format, va_list va)
626 {
627 char *msg;
628
629 if (failed)
630 return;
631
632 failed = true;
633
634 msg = ralloc_vasprintf(mem_ctx, format, va);
635 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
636
637 this->fail_msg = msg;
638
639 if (debug_enabled) {
640 fprintf(stderr, "%s", msg);
641 }
642 }
643
644 void
645 fs_visitor::fail(const char *format, ...)
646 {
647 va_list va;
648
649 va_start(va, format);
650 vfail(format, va);
651 va_end(va);
652 }
653
654 /**
655 * Mark this program as impossible to compile with dispatch width greater
656 * than n.
657 *
658 * During the SIMD8 compile (which happens first), we can detect and flag
659 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
660 * SIMD16+ compile altogether.
661 *
662 * During a compile of dispatch width greater than n (if one happens anyway),
663 * this just calls fail().
664 */
665 void
666 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
667 {
668 if (dispatch_width > n) {
669 fail("%s", msg);
670 } else {
671 max_dispatch_width = n;
672 compiler->shader_perf_log(log_data,
673 "Shader dispatch width limited to SIMD%d: %s",
674 n, msg);
675 }
676 }
677
678 /**
679 * Returns true if the instruction has a flag that means it won't
680 * update an entire destination register.
681 *
682 * For example, dead code elimination and live variable analysis want to know
683 * when a write to a variable screens off any preceding values that were in
684 * it.
685 */
686 bool
687 fs_inst::is_partial_write() const
688 {
689 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
690 (this->exec_size * type_sz(this->dst.type)) < 32 ||
691 !this->dst.is_contiguous() ||
692 this->dst.offset % REG_SIZE != 0);
693 }
694
695 unsigned
696 fs_inst::components_read(unsigned i) const
697 {
698 /* Return zero if the source is not present. */
699 if (src[i].file == BAD_FILE)
700 return 0;
701
702 switch (opcode) {
703 case FS_OPCODE_LINTERP:
704 if (i == 0)
705 return 2;
706 else
707 return 1;
708
709 case FS_OPCODE_PIXEL_X:
710 case FS_OPCODE_PIXEL_Y:
711 assert(i == 0);
712 return 2;
713
714 case FS_OPCODE_FB_WRITE_LOGICAL:
715 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
716 /* First/second FB write color. */
717 if (i < 2)
718 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
719 else
720 return 1;
721
722 case SHADER_OPCODE_TEX_LOGICAL:
723 case SHADER_OPCODE_TXD_LOGICAL:
724 case SHADER_OPCODE_TXF_LOGICAL:
725 case SHADER_OPCODE_TXL_LOGICAL:
726 case SHADER_OPCODE_TXS_LOGICAL:
727 case FS_OPCODE_TXB_LOGICAL:
728 case SHADER_OPCODE_TXF_CMS_LOGICAL:
729 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
730 case SHADER_OPCODE_TXF_UMS_LOGICAL:
731 case SHADER_OPCODE_TXF_MCS_LOGICAL:
732 case SHADER_OPCODE_LOD_LOGICAL:
733 case SHADER_OPCODE_TG4_LOGICAL:
734 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
735 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
736 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
737 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
738 /* Texture coordinates. */
739 if (i == TEX_LOGICAL_SRC_COORDINATE)
740 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
741 /* Texture derivatives. */
742 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
743 opcode == SHADER_OPCODE_TXD_LOGICAL)
744 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
745 /* Texture offset. */
746 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
747 return 2;
748 /* MCS */
749 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
750 return 2;
751 else
752 return 1;
753
754 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
755 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
756 assert(src[3].file == IMM);
757 /* Surface coordinates. */
758 if (i == 0)
759 return src[3].ud;
760 /* Surface operation source (ignored for reads). */
761 else if (i == 1)
762 return 0;
763 else
764 return 1;
765
766 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
767 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
768 assert(src[3].file == IMM &&
769 src[4].file == IMM);
770 /* Surface coordinates. */
771 if (i == 0)
772 return src[3].ud;
773 /* Surface operation source. */
774 else if (i == 1)
775 return src[4].ud;
776 else
777 return 1;
778
779 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
780 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
781 assert(src[3].file == IMM &&
782 src[4].file == IMM);
783 const unsigned op = src[4].ud;
784 /* Surface coordinates. */
785 if (i == 0)
786 return src[3].ud;
787 /* Surface operation source. */
788 else if (i == 1 && op == BRW_AOP_CMPWR)
789 return 2;
790 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
791 op == BRW_AOP_PREDEC))
792 return 0;
793 else
794 return 1;
795 }
796
797 default:
798 return 1;
799 }
800 }
801
802 unsigned
803 fs_inst::size_read(int arg) const
804 {
805 switch (opcode) {
806 case FS_OPCODE_FB_WRITE:
807 case FS_OPCODE_FB_READ:
808 case SHADER_OPCODE_URB_WRITE_SIMD8:
809 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
810 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
811 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
812 case SHADER_OPCODE_URB_READ_SIMD8:
813 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
814 case SHADER_OPCODE_UNTYPED_ATOMIC:
815 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
816 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
817 case SHADER_OPCODE_TYPED_ATOMIC:
818 case SHADER_OPCODE_TYPED_SURFACE_READ:
819 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
820 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
821 if (arg == 0)
822 return mlen * REG_SIZE;
823 break;
824
825 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
826 /* The payload is actually stored in src1 */
827 if (arg == 1)
828 return mlen * REG_SIZE;
829 break;
830
831 case FS_OPCODE_LINTERP:
832 if (arg == 1)
833 return 16;
834 break;
835
836 case SHADER_OPCODE_LOAD_PAYLOAD:
837 if (arg < this->header_size)
838 return REG_SIZE;
839 break;
840
841 case CS_OPCODE_CS_TERMINATE:
842 case SHADER_OPCODE_BARRIER:
843 return REG_SIZE;
844
845 case SHADER_OPCODE_MOV_INDIRECT:
846 if (arg == 0) {
847 assert(src[2].file == IMM);
848 return src[2].ud;
849 }
850 break;
851
852 default:
853 if (is_tex() && arg == 0 && src[0].file == VGRF)
854 return mlen * REG_SIZE;
855 break;
856 }
857
858 switch (src[arg].file) {
859 case UNIFORM:
860 case IMM:
861 return components_read(arg) * type_sz(src[arg].type);
862 case BAD_FILE:
863 case ARF:
864 case FIXED_GRF:
865 case VGRF:
866 case ATTR:
867 return components_read(arg) * src[arg].component_size(exec_size);
868 case MRF:
869 unreachable("MRF registers are not allowed as sources");
870 }
871 return 0;
872 }
873
874 namespace {
875 /* Return the subset of flag registers that an instruction could
876 * potentially read or write based on the execution controls and flag
877 * subregister number of the instruction.
878 */
879 unsigned
880 flag_mask(const fs_inst *inst)
881 {
882 const unsigned start = inst->flag_subreg * 16 + inst->group;
883 const unsigned end = start + inst->exec_size;
884 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
885 }
886 }
887
888 unsigned
889 fs_inst::flags_read(const gen_device_info *devinfo) const
890 {
891 /* XXX - This doesn't consider explicit uses of the flag register as source
892 * region.
893 */
894 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
895 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
896 /* The vertical predication modes combine corresponding bits from
897 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
898 */
899 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
900 return flag_mask(this) << shift | flag_mask(this);
901 } else if (predicate) {
902 return flag_mask(this);
903 } else {
904 return 0;
905 }
906 }
907
908 unsigned
909 fs_inst::flags_written() const
910 {
911 /* XXX - This doesn't consider explicit uses of the flag register as
912 * destination region.
913 */
914 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
915 opcode != BRW_OPCODE_IF &&
916 opcode != BRW_OPCODE_WHILE)) ||
917 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
918 return flag_mask(this);
919 } else {
920 return 0;
921 }
922 }
923
924 /**
925 * Returns how many MRFs an FS opcode will write over.
926 *
927 * Note that this is not the 0 or 1 implied writes in an actual gen
928 * instruction -- the FS opcodes often generate MOVs in addition.
929 */
930 int
931 fs_visitor::implied_mrf_writes(fs_inst *inst)
932 {
933 if (inst->mlen == 0)
934 return 0;
935
936 if (inst->base_mrf == -1)
937 return 0;
938
939 switch (inst->opcode) {
940 case SHADER_OPCODE_RCP:
941 case SHADER_OPCODE_RSQ:
942 case SHADER_OPCODE_SQRT:
943 case SHADER_OPCODE_EXP2:
944 case SHADER_OPCODE_LOG2:
945 case SHADER_OPCODE_SIN:
946 case SHADER_OPCODE_COS:
947 return 1 * dispatch_width / 8;
948 case SHADER_OPCODE_POW:
949 case SHADER_OPCODE_INT_QUOTIENT:
950 case SHADER_OPCODE_INT_REMAINDER:
951 return 2 * dispatch_width / 8;
952 case SHADER_OPCODE_TEX:
953 case FS_OPCODE_TXB:
954 case SHADER_OPCODE_TXD:
955 case SHADER_OPCODE_TXF:
956 case SHADER_OPCODE_TXF_CMS:
957 case SHADER_OPCODE_TXF_MCS:
958 case SHADER_OPCODE_TG4:
959 case SHADER_OPCODE_TG4_OFFSET:
960 case SHADER_OPCODE_TXL:
961 case SHADER_OPCODE_TXS:
962 case SHADER_OPCODE_LOD:
963 case SHADER_OPCODE_SAMPLEINFO:
964 return 1;
965 case FS_OPCODE_FB_WRITE:
966 return 2;
967 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
968 case SHADER_OPCODE_GEN4_SCRATCH_READ:
969 return 1;
970 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
971 return inst->mlen;
972 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
973 return inst->mlen;
974 default:
975 unreachable("not reached");
976 }
977 }
978
979 fs_reg
980 fs_visitor::vgrf(const glsl_type *const type)
981 {
982 int reg_width = dispatch_width / 8;
983 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
984 brw_type_for_base_type(type));
985 }
986
987 fs_reg::fs_reg(enum brw_reg_file file, int nr)
988 {
989 init();
990 this->file = file;
991 this->nr = nr;
992 this->type = BRW_REGISTER_TYPE_F;
993 this->stride = (file == UNIFORM ? 0 : 1);
994 }
995
996 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
997 {
998 init();
999 this->file = file;
1000 this->nr = nr;
1001 this->type = type;
1002 this->stride = (file == UNIFORM ? 0 : 1);
1003 }
1004
1005 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1006 * This brings in those uniform definitions
1007 */
1008 void
1009 fs_visitor::import_uniforms(fs_visitor *v)
1010 {
1011 this->push_constant_loc = v->push_constant_loc;
1012 this->pull_constant_loc = v->pull_constant_loc;
1013 this->uniforms = v->uniforms;
1014 }
1015
1016 void
1017 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1018 {
1019 assert(stage == MESA_SHADER_FRAGMENT);
1020
1021 /* gl_FragCoord.x */
1022 bld.MOV(wpos, this->pixel_x);
1023 wpos = offset(wpos, bld, 1);
1024
1025 /* gl_FragCoord.y */
1026 bld.MOV(wpos, this->pixel_y);
1027 wpos = offset(wpos, bld, 1);
1028
1029 /* gl_FragCoord.z */
1030 if (devinfo->gen >= 6) {
1031 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1032 } else {
1033 bld.emit(FS_OPCODE_LINTERP, wpos,
1034 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1035 interp_reg(VARYING_SLOT_POS, 2));
1036 }
1037 wpos = offset(wpos, bld, 1);
1038
1039 /* gl_FragCoord.w: Already set up in emit_interpolation */
1040 bld.MOV(wpos, this->wpos_w);
1041 }
1042
1043 enum brw_barycentric_mode
1044 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1045 {
1046 /* Barycentric modes don't make sense for flat inputs. */
1047 assert(mode != INTERP_MODE_FLAT);
1048
1049 unsigned bary;
1050 switch (op) {
1051 case nir_intrinsic_load_barycentric_pixel:
1052 case nir_intrinsic_load_barycentric_at_offset:
1053 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1054 break;
1055 case nir_intrinsic_load_barycentric_centroid:
1056 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1057 break;
1058 case nir_intrinsic_load_barycentric_sample:
1059 case nir_intrinsic_load_barycentric_at_sample:
1060 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1061 break;
1062 default:
1063 unreachable("invalid intrinsic");
1064 }
1065
1066 if (mode == INTERP_MODE_NOPERSPECTIVE)
1067 bary += 3;
1068
1069 return (enum brw_barycentric_mode) bary;
1070 }
1071
1072 /**
1073 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1074 */
1075 static enum brw_barycentric_mode
1076 centroid_to_pixel(enum brw_barycentric_mode bary)
1077 {
1078 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1079 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1080 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1081 }
1082
1083 fs_reg *
1084 fs_visitor::emit_frontfacing_interpolation()
1085 {
1086 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1087
1088 if (devinfo->gen >= 6) {
1089 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1090 * a boolean result from this (~0/true or 0/false).
1091 *
1092 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1093 * this task in only one instruction:
1094 * - a negation source modifier will flip the bit; and
1095 * - a W -> D type conversion will sign extend the bit into the high
1096 * word of the destination.
1097 *
1098 * An ASR 15 fills the low word of the destination.
1099 */
1100 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1101 g0.negate = true;
1102
1103 bld.ASR(*reg, g0, brw_imm_d(15));
1104 } else {
1105 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1106 * a boolean result from this (1/true or 0/false).
1107 *
1108 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1109 * the negation source modifier to flip it. Unfortunately the SHR
1110 * instruction only operates on UD (or D with an abs source modifier)
1111 * sources without negation.
1112 *
1113 * Instead, use ASR (which will give ~0/true or 0/false).
1114 */
1115 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1116 g1_6.negate = true;
1117
1118 bld.ASR(*reg, g1_6, brw_imm_d(31));
1119 }
1120
1121 return reg;
1122 }
1123
1124 void
1125 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1126 {
1127 assert(stage == MESA_SHADER_FRAGMENT);
1128 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1129 assert(dst.type == BRW_REGISTER_TYPE_F);
1130
1131 if (wm_prog_data->persample_dispatch) {
1132 /* Convert int_sample_pos to floating point */
1133 bld.MOV(dst, int_sample_pos);
1134 /* Scale to the range [0, 1] */
1135 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1136 }
1137 else {
1138 /* From ARB_sample_shading specification:
1139 * "When rendering to a non-multisample buffer, or if multisample
1140 * rasterization is disabled, gl_SamplePosition will always be
1141 * (0.5, 0.5).
1142 */
1143 bld.MOV(dst, brw_imm_f(0.5f));
1144 }
1145 }
1146
1147 fs_reg *
1148 fs_visitor::emit_samplepos_setup()
1149 {
1150 assert(devinfo->gen >= 6);
1151
1152 const fs_builder abld = bld.annotate("compute sample position");
1153 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1154 fs_reg pos = *reg;
1155 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1156 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1157
1158 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1159 * mode will be enabled.
1160 *
1161 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1162 * R31.1:0 Position Offset X/Y for Slot[3:0]
1163 * R31.3:2 Position Offset X/Y for Slot[7:4]
1164 * .....
1165 *
1166 * The X, Y sample positions come in as bytes in thread payload. So, read
1167 * the positions using vstride=16, width=8, hstride=2.
1168 */
1169 struct brw_reg sample_pos_reg =
1170 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1171 BRW_REGISTER_TYPE_B), 16, 8, 2);
1172
1173 if (dispatch_width == 8) {
1174 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1175 } else {
1176 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1177 abld.half(1).MOV(half(int_sample_x, 1),
1178 fs_reg(suboffset(sample_pos_reg, 16)));
1179 }
1180 /* Compute gl_SamplePosition.x */
1181 compute_sample_position(pos, int_sample_x);
1182 pos = offset(pos, abld, 1);
1183 if (dispatch_width == 8) {
1184 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1185 } else {
1186 abld.half(0).MOV(half(int_sample_y, 0),
1187 fs_reg(suboffset(sample_pos_reg, 1)));
1188 abld.half(1).MOV(half(int_sample_y, 1),
1189 fs_reg(suboffset(sample_pos_reg, 17)));
1190 }
1191 /* Compute gl_SamplePosition.y */
1192 compute_sample_position(pos, int_sample_y);
1193 return reg;
1194 }
1195
1196 fs_reg *
1197 fs_visitor::emit_sampleid_setup()
1198 {
1199 assert(stage == MESA_SHADER_FRAGMENT);
1200 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1201 assert(devinfo->gen >= 6);
1202
1203 const fs_builder abld = bld.annotate("compute sample id");
1204 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1205
1206 if (!key->multisample_fbo) {
1207 /* As per GL_ARB_sample_shading specification:
1208 * "When rendering to a non-multisample buffer, or if multisample
1209 * rasterization is disabled, gl_SampleID will always be zero."
1210 */
1211 abld.MOV(*reg, brw_imm_d(0));
1212 } else if (devinfo->gen >= 8) {
1213 /* Sample ID comes in as 4-bit numbers in g1.0:
1214 *
1215 * 15:12 Slot 3 SampleID (only used in SIMD16)
1216 * 11:8 Slot 2 SampleID (only used in SIMD16)
1217 * 7:4 Slot 1 SampleID
1218 * 3:0 Slot 0 SampleID
1219 *
1220 * Each slot corresponds to four channels, so we want to replicate each
1221 * half-byte value to 4 channels in a row:
1222 *
1223 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1224 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1225 *
1226 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1227 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1228 *
1229 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1230 * channels to read the first byte (7:0), and the second group of 8
1231 * channels to read the second byte (15:8). Then, we shift right by
1232 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1233 * values into place. Finally, we AND with 0xf to keep the low nibble.
1234 *
1235 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1236 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1237 *
1238 * TODO: These payload bits exist on Gen7 too, but they appear to always
1239 * be zero, so this code fails to work. We should find out why.
1240 */
1241 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1242
1243 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1244 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1245 brw_imm_v(0x44440000));
1246 abld.AND(*reg, tmp, brw_imm_w(0xf));
1247 } else {
1248 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1249 BRW_REGISTER_TYPE_D), 0);
1250 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1251
1252 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1253 * 8x multisampling, subspan 0 will represent sample N (where N
1254 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1255 * 7. We can find the value of N by looking at R0.0 bits 7:6
1256 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1257 * (since samples are always delivered in pairs). That is, we
1258 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1259 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1260 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1261 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1262 * populating a temporary variable with the sequence (0, 1, 2, 3),
1263 * and then reading from it using vstride=1, width=4, hstride=0.
1264 * These computations hold good for 4x multisampling as well.
1265 *
1266 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1267 * the first four slots are sample 0 of subspan 0; the next four
1268 * are sample 1 of subspan 0; the third group is sample 0 of
1269 * subspan 1, and finally sample 1 of subspan 1.
1270 */
1271
1272 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1273 * accomodate 16x MSAA.
1274 */
1275 abld.exec_all().group(1, 0)
1276 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1277 brw_imm_ud(0xc0));
1278 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1279
1280 /* This works for both SIMD8 and SIMD16 */
1281 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1282
1283 /* This special instruction takes care of setting vstride=1,
1284 * width=4, hstride=0 of t2 during an ADD instruction.
1285 */
1286 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1287 }
1288
1289 return reg;
1290 }
1291
1292 fs_reg *
1293 fs_visitor::emit_samplemaskin_setup()
1294 {
1295 assert(stage == MESA_SHADER_FRAGMENT);
1296 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1297 assert(devinfo->gen >= 6);
1298
1299 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1300
1301 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1302 BRW_REGISTER_TYPE_D));
1303
1304 if (wm_prog_data->persample_dispatch) {
1305 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1306 * and a mask representing which sample is being processed by the
1307 * current shader invocation.
1308 *
1309 * From the OES_sample_variables specification:
1310 * "When per-sample shading is active due to the use of a fragment input
1311 * qualified by "sample" or due to the use of the gl_SampleID or
1312 * gl_SamplePosition variables, only the bit for the current sample is
1313 * set in gl_SampleMaskIn."
1314 */
1315 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1316
1317 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1318 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1319
1320 fs_reg one = vgrf(glsl_type::int_type);
1321 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1322 abld.MOV(one, brw_imm_d(1));
1323 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1324 abld.AND(*reg, enabled_mask, coverage_mask);
1325 } else {
1326 /* In per-pixel mode, the coverage mask is sufficient. */
1327 *reg = coverage_mask;
1328 }
1329 return reg;
1330 }
1331
1332 fs_reg
1333 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1334 {
1335 if (!src.abs && !src.negate)
1336 return src;
1337
1338 fs_reg temp = bld.vgrf(src.type);
1339 bld.MOV(temp, src);
1340
1341 return temp;
1342 }
1343
1344 void
1345 fs_visitor::emit_discard_jump()
1346 {
1347 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1348
1349 /* For performance, after a discard, jump to the end of the
1350 * shader if all relevant channels have been discarded.
1351 */
1352 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1353 discard_jump->flag_subreg = 1;
1354
1355 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1356 discard_jump->predicate_inverse = true;
1357 }
1358
1359 void
1360 fs_visitor::emit_gs_thread_end()
1361 {
1362 assert(stage == MESA_SHADER_GEOMETRY);
1363
1364 struct brw_gs_prog_data *gs_prog_data =
1365 (struct brw_gs_prog_data *) prog_data;
1366
1367 if (gs_compile->control_data_header_size_bits > 0) {
1368 emit_gs_control_data_bits(this->final_gs_vertex_count);
1369 }
1370
1371 const fs_builder abld = bld.annotate("thread end");
1372 fs_inst *inst;
1373
1374 if (gs_prog_data->static_vertex_count != -1) {
1375 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1376 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1377 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1378 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1379 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1380 prev->eot = true;
1381
1382 /* Delete now dead instructions. */
1383 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1384 if (dead == prev)
1385 break;
1386 dead->remove();
1387 }
1388 return;
1389 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1390 break;
1391 }
1392 }
1393 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1394 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1395 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1396 inst->mlen = 1;
1397 } else {
1398 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1399 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1400 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1401 sources[1] = this->final_gs_vertex_count;
1402 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1403 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1404 inst->mlen = 2;
1405 }
1406 inst->eot = true;
1407 inst->offset = 0;
1408 }
1409
1410 void
1411 fs_visitor::assign_curb_setup()
1412 {
1413 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1414
1415 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1416 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1417 for (unsigned int i = 0; i < inst->sources; i++) {
1418 if (inst->src[i].file == UNIFORM) {
1419 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1420 int constant_nr;
1421 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1422 constant_nr = push_constant_loc[uniform_nr];
1423 } else {
1424 /* Section 5.11 of the OpenGL 4.1 spec says:
1425 * "Out-of-bounds reads return undefined values, which include
1426 * values from other variables of the active program or zero."
1427 * Just return the first push constant.
1428 */
1429 constant_nr = 0;
1430 }
1431
1432 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1433 constant_nr / 8,
1434 constant_nr % 8);
1435 brw_reg.abs = inst->src[i].abs;
1436 brw_reg.negate = inst->src[i].negate;
1437
1438 assert(inst->src[i].stride == 0);
1439 inst->src[i] = byte_offset(
1440 retype(brw_reg, inst->src[i].type),
1441 inst->src[i].offset % 4);
1442 }
1443 }
1444 }
1445
1446 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1447 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1448 }
1449
1450 void
1451 fs_visitor::calculate_urb_setup()
1452 {
1453 assert(stage == MESA_SHADER_FRAGMENT);
1454 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1455 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1456
1457 memset(prog_data->urb_setup, -1,
1458 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1459
1460 int urb_next = 0;
1461 /* Figure out where each of the incoming setup attributes lands. */
1462 if (devinfo->gen >= 6) {
1463 if (_mesa_bitcount_64(nir->info.inputs_read &
1464 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1465 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1466 * first 16 varying inputs, so we can put them wherever we want.
1467 * Just put them in order.
1468 *
1469 * This is useful because it means that (a) inputs not used by the
1470 * fragment shader won't take up valuable register space, and (b) we
1471 * won't have to recompile the fragment shader if it gets paired with
1472 * a different vertex (or geometry) shader.
1473 */
1474 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1475 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1476 BITFIELD64_BIT(i)) {
1477 prog_data->urb_setup[i] = urb_next++;
1478 }
1479 }
1480 } else {
1481 bool include_vue_header =
1482 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1483
1484 /* We have enough input varyings that the SF/SBE pipeline stage can't
1485 * arbitrarily rearrange them to suit our whim; we have to put them
1486 * in an order that matches the output of the previous pipeline stage
1487 * (geometry or vertex shader).
1488 */
1489 struct brw_vue_map prev_stage_vue_map;
1490 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1491 key->input_slots_valid,
1492 nir->info.separate_shader);
1493 int first_slot =
1494 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1495
1496 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1497 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1498 slot++) {
1499 int varying = prev_stage_vue_map.slot_to_varying[slot];
1500 if (varying != BRW_VARYING_SLOT_PAD &&
1501 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1502 BITFIELD64_BIT(varying))) {
1503 prog_data->urb_setup[varying] = slot - first_slot;
1504 }
1505 }
1506 urb_next = prev_stage_vue_map.num_slots - first_slot;
1507 }
1508 } else {
1509 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1510 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1511 /* Point size is packed into the header, not as a general attribute */
1512 if (i == VARYING_SLOT_PSIZ)
1513 continue;
1514
1515 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1516 /* The back color slot is skipped when the front color is
1517 * also written to. In addition, some slots can be
1518 * written in the vertex shader and not read in the
1519 * fragment shader. So the register number must always be
1520 * incremented, mapped or not.
1521 */
1522 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1523 prog_data->urb_setup[i] = urb_next;
1524 urb_next++;
1525 }
1526 }
1527
1528 /*
1529 * It's a FS only attribute, and we did interpolation for this attribute
1530 * in SF thread. So, count it here, too.
1531 *
1532 * See compile_sf_prog() for more info.
1533 */
1534 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1535 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1536 }
1537
1538 prog_data->num_varying_inputs = urb_next;
1539 }
1540
1541 void
1542 fs_visitor::assign_urb_setup()
1543 {
1544 assert(stage == MESA_SHADER_FRAGMENT);
1545 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1546
1547 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1548
1549 /* Offset all the urb_setup[] index by the actual position of the
1550 * setup regs, now that the location of the constants has been chosen.
1551 */
1552 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1553 if (inst->opcode == FS_OPCODE_LINTERP) {
1554 assert(inst->src[1].file == FIXED_GRF);
1555 inst->src[1].nr += urb_start;
1556 }
1557
1558 if (inst->opcode == FS_OPCODE_CINTERP) {
1559 assert(inst->src[0].file == FIXED_GRF);
1560 inst->src[0].nr += urb_start;
1561 }
1562 }
1563
1564 /* Each attribute is 4 setup channels, each of which is half a reg. */
1565 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1566 }
1567
1568 void
1569 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1570 {
1571 for (int i = 0; i < inst->sources; i++) {
1572 if (inst->src[i].file == ATTR) {
1573 int grf = payload.num_regs +
1574 prog_data->curb_read_length +
1575 inst->src[i].nr +
1576 inst->src[i].offset / REG_SIZE;
1577
1578 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1579 *
1580 * VertStride must be used to cross GRF register boundaries. This
1581 * rule implies that elements within a 'Width' cannot cross GRF
1582 * boundaries.
1583 *
1584 * So, for registers that are large enough, we have to split the exec
1585 * size in two and trust the compression state to sort it out.
1586 */
1587 unsigned total_size = inst->exec_size *
1588 inst->src[i].stride *
1589 type_sz(inst->src[i].type);
1590
1591 assert(total_size <= 2 * REG_SIZE);
1592 const unsigned exec_size =
1593 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1594
1595 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1596 struct brw_reg reg =
1597 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1598 inst->src[i].offset % REG_SIZE),
1599 exec_size * inst->src[i].stride,
1600 width, inst->src[i].stride);
1601 reg.abs = inst->src[i].abs;
1602 reg.negate = inst->src[i].negate;
1603
1604 inst->src[i] = reg;
1605 }
1606 }
1607 }
1608
1609 void
1610 fs_visitor::assign_vs_urb_setup()
1611 {
1612 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1613
1614 assert(stage == MESA_SHADER_VERTEX);
1615
1616 /* Each attribute is 4 regs. */
1617 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1618
1619 assert(vs_prog_data->base.urb_read_length <= 15);
1620
1621 /* Rewrite all ATTR file references to the hw grf that they land in. */
1622 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1623 convert_attr_sources_to_hw_regs(inst);
1624 }
1625 }
1626
1627 void
1628 fs_visitor::assign_tcs_single_patch_urb_setup()
1629 {
1630 assert(stage == MESA_SHADER_TESS_CTRL);
1631
1632 /* Rewrite all ATTR file references to HW_REGs. */
1633 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1634 convert_attr_sources_to_hw_regs(inst);
1635 }
1636 }
1637
1638 void
1639 fs_visitor::assign_tes_urb_setup()
1640 {
1641 assert(stage == MESA_SHADER_TESS_EVAL);
1642
1643 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1644
1645 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1646
1647 /* Rewrite all ATTR file references to HW_REGs. */
1648 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1649 convert_attr_sources_to_hw_regs(inst);
1650 }
1651 }
1652
1653 void
1654 fs_visitor::assign_gs_urb_setup()
1655 {
1656 assert(stage == MESA_SHADER_GEOMETRY);
1657
1658 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1659
1660 first_non_payload_grf +=
1661 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1662
1663 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1664 /* Rewrite all ATTR file references to GRFs. */
1665 convert_attr_sources_to_hw_regs(inst);
1666 }
1667 }
1668
1669
1670 /**
1671 * Split large virtual GRFs into separate components if we can.
1672 *
1673 * This is mostly duplicated with what brw_fs_vector_splitting does,
1674 * but that's really conservative because it's afraid of doing
1675 * splitting that doesn't result in real progress after the rest of
1676 * the optimization phases, which would cause infinite looping in
1677 * optimization. We can do it once here, safely. This also has the
1678 * opportunity to split interpolated values, or maybe even uniforms,
1679 * which we don't have at the IR level.
1680 *
1681 * We want to split, because virtual GRFs are what we register
1682 * allocate and spill (due to contiguousness requirements for some
1683 * instructions), and they're what we naturally generate in the
1684 * codegen process, but most virtual GRFs don't actually need to be
1685 * contiguous sets of GRFs. If we split, we'll end up with reduced
1686 * live intervals and better dead code elimination and coalescing.
1687 */
1688 void
1689 fs_visitor::split_virtual_grfs()
1690 {
1691 int num_vars = this->alloc.count;
1692
1693 /* Count the total number of registers */
1694 int reg_count = 0;
1695 int vgrf_to_reg[num_vars];
1696 for (int i = 0; i < num_vars; i++) {
1697 vgrf_to_reg[i] = reg_count;
1698 reg_count += alloc.sizes[i];
1699 }
1700
1701 /* An array of "split points". For each register slot, this indicates
1702 * if this slot can be separated from the previous slot. Every time an
1703 * instruction uses multiple elements of a register (as a source or
1704 * destination), we mark the used slots as inseparable. Then we go
1705 * through and split the registers into the smallest pieces we can.
1706 */
1707 bool split_points[reg_count];
1708 memset(split_points, 0, sizeof(split_points));
1709
1710 /* Mark all used registers as fully splittable */
1711 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1712 if (inst->dst.file == VGRF) {
1713 int reg = vgrf_to_reg[inst->dst.nr];
1714 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1715 split_points[reg + j] = true;
1716 }
1717
1718 for (int i = 0; i < inst->sources; i++) {
1719 if (inst->src[i].file == VGRF) {
1720 int reg = vgrf_to_reg[inst->src[i].nr];
1721 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1722 split_points[reg + j] = true;
1723 }
1724 }
1725 }
1726
1727 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1728 if (inst->dst.file == VGRF) {
1729 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1730 for (unsigned j = 1; j < regs_written(inst); j++)
1731 split_points[reg + j] = false;
1732 }
1733 for (int i = 0; i < inst->sources; i++) {
1734 if (inst->src[i].file == VGRF) {
1735 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1736 for (unsigned j = 1; j < regs_read(inst, i); j++)
1737 split_points[reg + j] = false;
1738 }
1739 }
1740 }
1741
1742 int new_virtual_grf[reg_count];
1743 int new_reg_offset[reg_count];
1744
1745 int reg = 0;
1746 for (int i = 0; i < num_vars; i++) {
1747 /* The first one should always be 0 as a quick sanity check. */
1748 assert(split_points[reg] == false);
1749
1750 /* j = 0 case */
1751 new_reg_offset[reg] = 0;
1752 reg++;
1753 int offset = 1;
1754
1755 /* j > 0 case */
1756 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1757 /* If this is a split point, reset the offset to 0 and allocate a
1758 * new virtual GRF for the previous offset many registers
1759 */
1760 if (split_points[reg]) {
1761 assert(offset <= MAX_VGRF_SIZE);
1762 int grf = alloc.allocate(offset);
1763 for (int k = reg - offset; k < reg; k++)
1764 new_virtual_grf[k] = grf;
1765 offset = 0;
1766 }
1767 new_reg_offset[reg] = offset;
1768 offset++;
1769 reg++;
1770 }
1771
1772 /* The last one gets the original register number */
1773 assert(offset <= MAX_VGRF_SIZE);
1774 alloc.sizes[i] = offset;
1775 for (int k = reg - offset; k < reg; k++)
1776 new_virtual_grf[k] = i;
1777 }
1778 assert(reg == reg_count);
1779
1780 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1781 if (inst->dst.file == VGRF) {
1782 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1783 inst->dst.nr = new_virtual_grf[reg];
1784 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1785 inst->dst.offset % REG_SIZE;
1786 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1787 }
1788 for (int i = 0; i < inst->sources; i++) {
1789 if (inst->src[i].file == VGRF) {
1790 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1791 inst->src[i].nr = new_virtual_grf[reg];
1792 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1793 inst->src[i].offset % REG_SIZE;
1794 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1795 }
1796 }
1797 }
1798 invalidate_live_intervals();
1799 }
1800
1801 /**
1802 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1803 *
1804 * During code generation, we create tons of temporary variables, many of
1805 * which get immediately killed and are never used again. Yet, in later
1806 * optimization and analysis passes, such as compute_live_intervals, we need
1807 * to loop over all the virtual GRFs. Compacting them can save a lot of
1808 * overhead.
1809 */
1810 bool
1811 fs_visitor::compact_virtual_grfs()
1812 {
1813 bool progress = false;
1814 int remap_table[this->alloc.count];
1815 memset(remap_table, -1, sizeof(remap_table));
1816
1817 /* Mark which virtual GRFs are used. */
1818 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1819 if (inst->dst.file == VGRF)
1820 remap_table[inst->dst.nr] = 0;
1821
1822 for (int i = 0; i < inst->sources; i++) {
1823 if (inst->src[i].file == VGRF)
1824 remap_table[inst->src[i].nr] = 0;
1825 }
1826 }
1827
1828 /* Compact the GRF arrays. */
1829 int new_index = 0;
1830 for (unsigned i = 0; i < this->alloc.count; i++) {
1831 if (remap_table[i] == -1) {
1832 /* We just found an unused register. This means that we are
1833 * actually going to compact something.
1834 */
1835 progress = true;
1836 } else {
1837 remap_table[i] = new_index;
1838 alloc.sizes[new_index] = alloc.sizes[i];
1839 invalidate_live_intervals();
1840 ++new_index;
1841 }
1842 }
1843
1844 this->alloc.count = new_index;
1845
1846 /* Patch all the instructions to use the newly renumbered registers */
1847 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1848 if (inst->dst.file == VGRF)
1849 inst->dst.nr = remap_table[inst->dst.nr];
1850
1851 for (int i = 0; i < inst->sources; i++) {
1852 if (inst->src[i].file == VGRF)
1853 inst->src[i].nr = remap_table[inst->src[i].nr];
1854 }
1855 }
1856
1857 /* Patch all the references to delta_xy, since they're used in register
1858 * allocation. If they're unused, switch them to BAD_FILE so we don't
1859 * think some random VGRF is delta_xy.
1860 */
1861 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1862 if (delta_xy[i].file == VGRF) {
1863 if (remap_table[delta_xy[i].nr] != -1) {
1864 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1865 } else {
1866 delta_xy[i].file = BAD_FILE;
1867 }
1868 }
1869 }
1870
1871 return progress;
1872 }
1873
1874 static void
1875 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1876 int *push_constant_loc, int *pull_constant_loc,
1877 unsigned *num_push_constants,
1878 unsigned *num_pull_constants,
1879 const unsigned max_push_components,
1880 const unsigned max_chunk_size,
1881 struct brw_stage_prog_data *stage_prog_data)
1882 {
1883 /* This is the first live uniform in the chunk */
1884 if (*chunk_start < 0)
1885 *chunk_start = uniform;
1886
1887 /* If this element does not need to be contiguous with the next, we
1888 * split at this point and everything between chunk_start and u forms a
1889 * single chunk.
1890 */
1891 if (!contiguous) {
1892 unsigned chunk_size = uniform - *chunk_start + 1;
1893
1894 /* Decide whether we should push or pull this parameter. In the
1895 * Vulkan driver, push constants are explicitly exposed via the API
1896 * so we push everything. In GL, we only push small arrays.
1897 */
1898 if (stage_prog_data->pull_param == NULL ||
1899 (*num_push_constants + chunk_size <= max_push_components &&
1900 chunk_size <= max_chunk_size)) {
1901 assert(*num_push_constants + chunk_size <= max_push_components);
1902 for (unsigned j = *chunk_start; j <= uniform; j++)
1903 push_constant_loc[j] = (*num_push_constants)++;
1904 } else {
1905 for (unsigned j = *chunk_start; j <= uniform; j++)
1906 pull_constant_loc[j] = (*num_pull_constants)++;
1907 }
1908
1909 *chunk_start = -1;
1910 }
1911 }
1912
1913 /**
1914 * Assign UNIFORM file registers to either push constants or pull constants.
1915 *
1916 * We allow a fragment shader to have more than the specified minimum
1917 * maximum number of fragment shader uniform components (64). If
1918 * there are too many of these, they'd fill up all of register space.
1919 * So, this will push some of them out to the pull constant buffer and
1920 * update the program to load them.
1921 */
1922 void
1923 fs_visitor::assign_constant_locations()
1924 {
1925 /* Only the first compile gets to decide on locations. */
1926 if (dispatch_width != min_dispatch_width)
1927 return;
1928
1929 bool is_live[uniforms];
1930 memset(is_live, 0, sizeof(is_live));
1931 bool is_live_64bit[uniforms];
1932 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1933
1934 /* For each uniform slot, a value of true indicates that the given slot and
1935 * the next slot must remain contiguous. This is used to keep us from
1936 * splitting arrays apart.
1937 */
1938 bool contiguous[uniforms];
1939 memset(contiguous, 0, sizeof(contiguous));
1940
1941 int thread_local_id_index =
1942 (stage == MESA_SHADER_COMPUTE) ?
1943 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index : -1;
1944
1945 /* First, we walk through the instructions and do two things:
1946 *
1947 * 1) Figure out which uniforms are live.
1948 *
1949 * 2) Mark any indirectly used ranges of registers as contiguous.
1950 *
1951 * Note that we don't move constant-indexed accesses to arrays. No
1952 * testing has been done of the performance impact of this choice.
1953 */
1954 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1955 for (int i = 0 ; i < inst->sources; i++) {
1956 if (inst->src[i].file != UNIFORM)
1957 continue;
1958
1959 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1960
1961 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1962 assert(inst->src[2].ud % 4 == 0);
1963 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1964 assert(last < uniforms);
1965
1966 for (unsigned j = constant_nr; j < last; j++) {
1967 is_live[j] = true;
1968 contiguous[j] = true;
1969 if (type_sz(inst->src[i].type) == 8) {
1970 is_live_64bit[j] = true;
1971 }
1972 }
1973 is_live[last] = true;
1974 } else {
1975 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1976 int regs_read = inst->components_read(i) *
1977 type_sz(inst->src[i].type) / 4;
1978 for (int j = 0; j < regs_read; j++) {
1979 is_live[constant_nr + j] = true;
1980 if (type_sz(inst->src[i].type) == 8) {
1981 is_live_64bit[constant_nr + j] = true;
1982 }
1983 }
1984 }
1985 }
1986 }
1987 }
1988
1989 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1990 thread_local_id_index = -1;
1991
1992 /* Only allow 16 registers (128 uniform components) as push constants.
1993 *
1994 * Just demote the end of the list. We could probably do better
1995 * here, demoting things that are rarely used in the program first.
1996 *
1997 * If changing this value, note the limitation about total_regs in
1998 * brw_curbe.c.
1999 */
2000 unsigned int max_push_components = 16 * 8;
2001 if (thread_local_id_index >= 0)
2002 max_push_components--; /* Save a slot for the thread ID */
2003
2004 /* We push small arrays, but no bigger than 16 floats. This is big enough
2005 * for a vec4 but hopefully not large enough to push out other stuff. We
2006 * should probably use a better heuristic at some point.
2007 */
2008 const unsigned int max_chunk_size = 16;
2009
2010 unsigned int num_push_constants = 0;
2011 unsigned int num_pull_constants = 0;
2012
2013 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2014 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2015
2016 /* Default to -1 meaning no location */
2017 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2018 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2019
2020 int chunk_start = -1;
2021
2022 /* First push 64-bit uniforms to ensure they are properly aligned */
2023 for (unsigned u = 0; u < uniforms; u++) {
2024 if (!is_live[u] || !is_live_64bit[u])
2025 continue;
2026
2027 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2028 push_constant_loc, pull_constant_loc,
2029 &num_push_constants, &num_pull_constants,
2030 max_push_components, max_chunk_size,
2031 stage_prog_data);
2032
2033 }
2034
2035 /* Then push the rest of uniforms */
2036 for (unsigned u = 0; u < uniforms; u++) {
2037 if (!is_live[u] || is_live_64bit[u])
2038 continue;
2039
2040 /* Skip thread_local_id_index to put it in the last push register. */
2041 if (thread_local_id_index == (int)u)
2042 continue;
2043
2044 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2045 push_constant_loc, pull_constant_loc,
2046 &num_push_constants, &num_pull_constants,
2047 max_push_components, max_chunk_size,
2048 stage_prog_data);
2049 }
2050
2051 /* Add the CS local thread ID uniform at the end of the push constants */
2052 if (thread_local_id_index >= 0)
2053 push_constant_loc[thread_local_id_index] = num_push_constants++;
2054
2055 /* As the uniforms are going to be reordered, take the data from a temporary
2056 * copy of the original param[].
2057 */
2058 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2059 stage_prog_data->nr_params);
2060 memcpy(param, stage_prog_data->param,
2061 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2062 stage_prog_data->nr_params = num_push_constants;
2063 stage_prog_data->nr_pull_params = num_pull_constants;
2064
2065 /* Up until now, the param[] array has been indexed by reg + offset
2066 * of UNIFORM registers. Move pull constants into pull_param[] and
2067 * condense param[] to only contain the uniforms we chose to push.
2068 *
2069 * NOTE: Because we are condensing the params[] array, we know that
2070 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2071 * having to make a copy.
2072 */
2073 int new_thread_local_id_index = -1;
2074 for (unsigned int i = 0; i < uniforms; i++) {
2075 const gl_constant_value *value = param[i];
2076
2077 if (pull_constant_loc[i] != -1) {
2078 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2079 } else if (push_constant_loc[i] != -1) {
2080 stage_prog_data->param[push_constant_loc[i]] = value;
2081 if (thread_local_id_index == (int)i)
2082 new_thread_local_id_index = push_constant_loc[i];
2083 }
2084 }
2085 ralloc_free(param);
2086
2087 if (stage == MESA_SHADER_COMPUTE)
2088 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index =
2089 new_thread_local_id_index;
2090 }
2091
2092 /**
2093 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2094 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2095 */
2096 void
2097 fs_visitor::lower_constant_loads()
2098 {
2099 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2100
2101 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2102 /* Set up the annotation tracking for new generated instructions. */
2103 const fs_builder ibld(this, block, inst);
2104
2105 for (int i = 0; i < inst->sources; i++) {
2106 if (inst->src[i].file != UNIFORM)
2107 continue;
2108
2109 /* We'll handle this case later */
2110 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2111 continue;
2112
2113 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2114 if (location >= uniforms)
2115 continue; /* Out of bounds access */
2116
2117 int pull_index = pull_constant_loc[location];
2118
2119 if (pull_index == -1)
2120 continue;
2121
2122 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2123 fs_reg dst;
2124
2125 if (type_sz(inst->src[i].type) <= 4)
2126 dst = vgrf(glsl_type::float_type);
2127 else
2128 dst = vgrf(glsl_type::double_type);
2129
2130 assert(inst->src[i].stride == 0);
2131
2132 const fs_builder ubld = ibld.exec_all().group(8, 0);
2133 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2134 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2135 dst, brw_imm_ud(index), offset);
2136
2137 /* Rewrite the instruction to use the temporary VGRF. */
2138 inst->src[i].file = VGRF;
2139 inst->src[i].nr = dst.nr;
2140 inst->src[i].offset = (pull_index & 3) * 4 + inst->src[i].offset % 4;
2141
2142 brw_mark_surface_used(prog_data, index);
2143 }
2144
2145 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2146 inst->src[0].file == UNIFORM) {
2147
2148 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2149 if (location >= uniforms)
2150 continue; /* Out of bounds access */
2151
2152 int pull_index = pull_constant_loc[location];
2153
2154 if (pull_index == -1)
2155 continue;
2156
2157 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2158 brw_imm_ud(index),
2159 inst->src[1],
2160 pull_index * 4);
2161 inst->remove(block);
2162
2163 brw_mark_surface_used(prog_data, index);
2164 }
2165 }
2166 invalidate_live_intervals();
2167 }
2168
2169 bool
2170 fs_visitor::opt_algebraic()
2171 {
2172 bool progress = false;
2173
2174 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2175 switch (inst->opcode) {
2176 case BRW_OPCODE_MOV:
2177 if (inst->src[0].file != IMM)
2178 break;
2179
2180 if (inst->saturate) {
2181 if (inst->dst.type != inst->src[0].type)
2182 assert(!"unimplemented: saturate mixed types");
2183
2184 if (brw_saturate_immediate(inst->dst.type,
2185 &inst->src[0].as_brw_reg())) {
2186 inst->saturate = false;
2187 progress = true;
2188 }
2189 }
2190 break;
2191
2192 case BRW_OPCODE_MUL:
2193 if (inst->src[1].file != IMM)
2194 continue;
2195
2196 /* a * 1.0 = a */
2197 if (inst->src[1].is_one()) {
2198 inst->opcode = BRW_OPCODE_MOV;
2199 inst->src[1] = reg_undef;
2200 progress = true;
2201 break;
2202 }
2203
2204 /* a * -1.0 = -a */
2205 if (inst->src[1].is_negative_one()) {
2206 inst->opcode = BRW_OPCODE_MOV;
2207 inst->src[0].negate = !inst->src[0].negate;
2208 inst->src[1] = reg_undef;
2209 progress = true;
2210 break;
2211 }
2212
2213 /* a * 0.0 = 0.0 */
2214 if (inst->src[1].is_zero()) {
2215 inst->opcode = BRW_OPCODE_MOV;
2216 inst->src[0] = inst->src[1];
2217 inst->src[1] = reg_undef;
2218 progress = true;
2219 break;
2220 }
2221
2222 if (inst->src[0].file == IMM) {
2223 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2224 inst->opcode = BRW_OPCODE_MOV;
2225 inst->src[0].f *= inst->src[1].f;
2226 inst->src[1] = reg_undef;
2227 progress = true;
2228 break;
2229 }
2230 break;
2231 case BRW_OPCODE_ADD:
2232 if (inst->src[1].file != IMM)
2233 continue;
2234
2235 /* a + 0.0 = a */
2236 if (inst->src[1].is_zero()) {
2237 inst->opcode = BRW_OPCODE_MOV;
2238 inst->src[1] = reg_undef;
2239 progress = true;
2240 break;
2241 }
2242
2243 if (inst->src[0].file == IMM) {
2244 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2245 inst->opcode = BRW_OPCODE_MOV;
2246 inst->src[0].f += inst->src[1].f;
2247 inst->src[1] = reg_undef;
2248 progress = true;
2249 break;
2250 }
2251 break;
2252 case BRW_OPCODE_OR:
2253 if (inst->src[0].equals(inst->src[1])) {
2254 inst->opcode = BRW_OPCODE_MOV;
2255 inst->src[1] = reg_undef;
2256 progress = true;
2257 break;
2258 }
2259 break;
2260 case BRW_OPCODE_LRP:
2261 if (inst->src[1].equals(inst->src[2])) {
2262 inst->opcode = BRW_OPCODE_MOV;
2263 inst->src[0] = inst->src[1];
2264 inst->src[1] = reg_undef;
2265 inst->src[2] = reg_undef;
2266 progress = true;
2267 break;
2268 }
2269 break;
2270 case BRW_OPCODE_CMP:
2271 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2272 inst->src[0].abs &&
2273 inst->src[0].negate &&
2274 inst->src[1].is_zero()) {
2275 inst->src[0].abs = false;
2276 inst->src[0].negate = false;
2277 inst->conditional_mod = BRW_CONDITIONAL_Z;
2278 progress = true;
2279 break;
2280 }
2281 break;
2282 case BRW_OPCODE_SEL:
2283 if (inst->src[0].equals(inst->src[1])) {
2284 inst->opcode = BRW_OPCODE_MOV;
2285 inst->src[1] = reg_undef;
2286 inst->predicate = BRW_PREDICATE_NONE;
2287 inst->predicate_inverse = false;
2288 progress = true;
2289 } else if (inst->saturate && inst->src[1].file == IMM) {
2290 switch (inst->conditional_mod) {
2291 case BRW_CONDITIONAL_LE:
2292 case BRW_CONDITIONAL_L:
2293 switch (inst->src[1].type) {
2294 case BRW_REGISTER_TYPE_F:
2295 if (inst->src[1].f >= 1.0f) {
2296 inst->opcode = BRW_OPCODE_MOV;
2297 inst->src[1] = reg_undef;
2298 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2299 progress = true;
2300 }
2301 break;
2302 default:
2303 break;
2304 }
2305 break;
2306 case BRW_CONDITIONAL_GE:
2307 case BRW_CONDITIONAL_G:
2308 switch (inst->src[1].type) {
2309 case BRW_REGISTER_TYPE_F:
2310 if (inst->src[1].f <= 0.0f) {
2311 inst->opcode = BRW_OPCODE_MOV;
2312 inst->src[1] = reg_undef;
2313 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2314 progress = true;
2315 }
2316 break;
2317 default:
2318 break;
2319 }
2320 default:
2321 break;
2322 }
2323 }
2324 break;
2325 case BRW_OPCODE_MAD:
2326 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2327 inst->opcode = BRW_OPCODE_MOV;
2328 inst->src[1] = reg_undef;
2329 inst->src[2] = reg_undef;
2330 progress = true;
2331 } else if (inst->src[0].is_zero()) {
2332 inst->opcode = BRW_OPCODE_MUL;
2333 inst->src[0] = inst->src[2];
2334 inst->src[2] = reg_undef;
2335 progress = true;
2336 } else if (inst->src[1].is_one()) {
2337 inst->opcode = BRW_OPCODE_ADD;
2338 inst->src[1] = inst->src[2];
2339 inst->src[2] = reg_undef;
2340 progress = true;
2341 } else if (inst->src[2].is_one()) {
2342 inst->opcode = BRW_OPCODE_ADD;
2343 inst->src[2] = reg_undef;
2344 progress = true;
2345 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2346 inst->opcode = BRW_OPCODE_ADD;
2347 inst->src[1].f *= inst->src[2].f;
2348 inst->src[2] = reg_undef;
2349 progress = true;
2350 }
2351 break;
2352 case SHADER_OPCODE_BROADCAST:
2353 if (is_uniform(inst->src[0])) {
2354 inst->opcode = BRW_OPCODE_MOV;
2355 inst->sources = 1;
2356 inst->force_writemask_all = true;
2357 progress = true;
2358 } else if (inst->src[1].file == IMM) {
2359 inst->opcode = BRW_OPCODE_MOV;
2360 inst->src[0] = component(inst->src[0],
2361 inst->src[1].ud);
2362 inst->sources = 1;
2363 inst->force_writemask_all = true;
2364 progress = true;
2365 }
2366 break;
2367
2368 default:
2369 break;
2370 }
2371
2372 /* Swap if src[0] is immediate. */
2373 if (progress && inst->is_commutative()) {
2374 if (inst->src[0].file == IMM) {
2375 fs_reg tmp = inst->src[1];
2376 inst->src[1] = inst->src[0];
2377 inst->src[0] = tmp;
2378 }
2379 }
2380 }
2381 return progress;
2382 }
2383
2384 /**
2385 * Optimize sample messages that have constant zero values for the trailing
2386 * texture coordinates. We can just reduce the message length for these
2387 * instructions instead of reserving a register for it. Trailing parameters
2388 * that aren't sent default to zero anyway. This will cause the dead code
2389 * eliminator to remove the MOV instruction that would otherwise be emitted to
2390 * set up the zero value.
2391 */
2392 bool
2393 fs_visitor::opt_zero_samples()
2394 {
2395 /* Gen4 infers the texturing opcode based on the message length so we can't
2396 * change it.
2397 */
2398 if (devinfo->gen < 5)
2399 return false;
2400
2401 bool progress = false;
2402
2403 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2404 if (!inst->is_tex())
2405 continue;
2406
2407 fs_inst *load_payload = (fs_inst *) inst->prev;
2408
2409 if (load_payload->is_head_sentinel() ||
2410 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2411 continue;
2412
2413 /* We don't want to remove the message header or the first parameter.
2414 * Removing the first parameter is not allowed, see the Haswell PRM
2415 * volume 7, page 149:
2416 *
2417 * "Parameter 0 is required except for the sampleinfo message, which
2418 * has no parameter 0"
2419 */
2420 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2421 load_payload->src[(inst->mlen - inst->header_size) /
2422 (inst->exec_size / 8) +
2423 inst->header_size - 1].is_zero()) {
2424 inst->mlen -= inst->exec_size / 8;
2425 progress = true;
2426 }
2427 }
2428
2429 if (progress)
2430 invalidate_live_intervals();
2431
2432 return progress;
2433 }
2434
2435 /**
2436 * Optimize sample messages which are followed by the final RT write.
2437 *
2438 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2439 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2440 * final texturing results copied to the framebuffer write payload and modify
2441 * them to write to the framebuffer directly.
2442 */
2443 bool
2444 fs_visitor::opt_sampler_eot()
2445 {
2446 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2447
2448 if (stage != MESA_SHADER_FRAGMENT)
2449 return false;
2450
2451 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2452 return false;
2453
2454 /* FINISHME: It should be possible to implement this optimization when there
2455 * are multiple drawbuffers.
2456 */
2457 if (key->nr_color_regions != 1)
2458 return false;
2459
2460 /* Requires emitting a bunch of saturating MOV instructions during logical
2461 * send lowering to clamp the color payload, which the sampler unit isn't
2462 * going to do for us.
2463 */
2464 if (key->clamp_fragment_color)
2465 return false;
2466
2467 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2468 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2469 fs_inst *fb_write = (fs_inst *)block->end();
2470 assert(fb_write->eot);
2471 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2472
2473 /* There wasn't one; nothing to do. */
2474 if (unlikely(fb_write->prev->is_head_sentinel()))
2475 return false;
2476
2477 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2478
2479 /* 3D Sampler » Messages » Message Format
2480 *
2481 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2482 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2483 */
2484 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2485 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2486 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2487 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2488 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2489 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2490 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2491 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2492 return false;
2493
2494 /* XXX - This shouldn't be necessary. */
2495 if (tex_inst->prev->is_head_sentinel())
2496 return false;
2497
2498 /* Check that the FB write sources are fully initialized by the single
2499 * texturing instruction.
2500 */
2501 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2502 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2503 if (!fb_write->src[i].equals(tex_inst->dst) ||
2504 fb_write->size_read(i) != tex_inst->size_written)
2505 return false;
2506 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2507 if (fb_write->src[i].file != BAD_FILE)
2508 return false;
2509 }
2510 }
2511
2512 assert(!tex_inst->eot); /* We can't get here twice */
2513 assert((tex_inst->offset & (0xff << 24)) == 0);
2514
2515 const fs_builder ibld(this, block, tex_inst);
2516
2517 tex_inst->offset |= fb_write->target << 24;
2518 tex_inst->eot = true;
2519 tex_inst->dst = ibld.null_reg_ud();
2520 tex_inst->size_written = 0;
2521 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2522
2523 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2524 * flag and submit a header together with the sampler message as required
2525 * by the hardware.
2526 */
2527 invalidate_live_intervals();
2528 return true;
2529 }
2530
2531 bool
2532 fs_visitor::opt_register_renaming()
2533 {
2534 bool progress = false;
2535 int depth = 0;
2536
2537 int remap[alloc.count];
2538 memset(remap, -1, sizeof(int) * alloc.count);
2539
2540 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2541 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2542 depth++;
2543 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2544 inst->opcode == BRW_OPCODE_WHILE) {
2545 depth--;
2546 }
2547
2548 /* Rewrite instruction sources. */
2549 for (int i = 0; i < inst->sources; i++) {
2550 if (inst->src[i].file == VGRF &&
2551 remap[inst->src[i].nr] != -1 &&
2552 remap[inst->src[i].nr] != inst->src[i].nr) {
2553 inst->src[i].nr = remap[inst->src[i].nr];
2554 progress = true;
2555 }
2556 }
2557
2558 const int dst = inst->dst.nr;
2559
2560 if (depth == 0 &&
2561 inst->dst.file == VGRF &&
2562 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2563 !inst->is_partial_write()) {
2564 if (remap[dst] == -1) {
2565 remap[dst] = dst;
2566 } else {
2567 remap[dst] = alloc.allocate(regs_written(inst));
2568 inst->dst.nr = remap[dst];
2569 progress = true;
2570 }
2571 } else if (inst->dst.file == VGRF &&
2572 remap[dst] != -1 &&
2573 remap[dst] != dst) {
2574 inst->dst.nr = remap[dst];
2575 progress = true;
2576 }
2577 }
2578
2579 if (progress) {
2580 invalidate_live_intervals();
2581
2582 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2583 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2584 delta_xy[i].nr = remap[delta_xy[i].nr];
2585 }
2586 }
2587 }
2588
2589 return progress;
2590 }
2591
2592 /**
2593 * Remove redundant or useless discard jumps.
2594 *
2595 * For example, we can eliminate jumps in the following sequence:
2596 *
2597 * discard-jump (redundant with the next jump)
2598 * discard-jump (useless; jumps to the next instruction)
2599 * placeholder-halt
2600 */
2601 bool
2602 fs_visitor::opt_redundant_discard_jumps()
2603 {
2604 bool progress = false;
2605
2606 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2607
2608 fs_inst *placeholder_halt = NULL;
2609 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2610 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2611 placeholder_halt = inst;
2612 break;
2613 }
2614 }
2615
2616 if (!placeholder_halt)
2617 return false;
2618
2619 /* Delete any HALTs immediately before the placeholder halt. */
2620 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2621 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2622 prev = (fs_inst *) placeholder_halt->prev) {
2623 prev->remove(last_bblock);
2624 progress = true;
2625 }
2626
2627 if (progress)
2628 invalidate_live_intervals();
2629
2630 return progress;
2631 }
2632
2633 /**
2634 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2635 * from \p r.offset which overlaps the region starting at \p s.offset and
2636 * spanning \p ds bytes.
2637 */
2638 static inline unsigned
2639 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2640 {
2641 const int rel_offset = reg_offset(s) - reg_offset(r);
2642 const int shift = rel_offset / REG_SIZE;
2643 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2644 assert(reg_space(r) == reg_space(s) &&
2645 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2646 return ((1 << n) - 1) << shift;
2647 }
2648
2649 bool
2650 fs_visitor::compute_to_mrf()
2651 {
2652 bool progress = false;
2653 int next_ip = 0;
2654
2655 /* No MRFs on Gen >= 7. */
2656 if (devinfo->gen >= 7)
2657 return false;
2658
2659 calculate_live_intervals();
2660
2661 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2662 int ip = next_ip;
2663 next_ip++;
2664
2665 if (inst->opcode != BRW_OPCODE_MOV ||
2666 inst->is_partial_write() ||
2667 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2668 inst->dst.type != inst->src[0].type ||
2669 inst->src[0].abs || inst->src[0].negate ||
2670 !inst->src[0].is_contiguous() ||
2671 inst->src[0].offset % REG_SIZE != 0)
2672 continue;
2673
2674 /* Can't compute-to-MRF this GRF if someone else was going to
2675 * read it later.
2676 */
2677 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2678 continue;
2679
2680 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2681 * things that computed the value of all GRFs of the source region. The
2682 * regs_left bitset keeps track of the registers we haven't yet found a
2683 * generating instruction for.
2684 */
2685 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2686
2687 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2688 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2689 inst->src[0], inst->size_read(0))) {
2690 /* Found the last thing to write our reg we want to turn
2691 * into a compute-to-MRF.
2692 */
2693
2694 /* If this one instruction didn't populate all the
2695 * channels, bail. We might be able to rewrite everything
2696 * that writes that reg, but it would require smarter
2697 * tracking.
2698 */
2699 if (scan_inst->is_partial_write())
2700 break;
2701
2702 /* Handling things not fully contained in the source of the copy
2703 * would need us to understand coalescing out more than one MOV at
2704 * a time.
2705 */
2706 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2707 inst->src[0], inst->size_read(0)))
2708 break;
2709
2710 /* SEND instructions can't have MRF as a destination. */
2711 if (scan_inst->mlen)
2712 break;
2713
2714 if (devinfo->gen == 6) {
2715 /* gen6 math instructions must have the destination be
2716 * GRF, so no compute-to-MRF for them.
2717 */
2718 if (scan_inst->is_math()) {
2719 break;
2720 }
2721 }
2722
2723 /* Clear the bits for any registers this instruction overwrites. */
2724 regs_left &= ~mask_relative_to(
2725 inst->src[0], scan_inst->dst, scan_inst->size_written);
2726 if (!regs_left)
2727 break;
2728 }
2729
2730 /* We don't handle control flow here. Most computation of
2731 * values that end up in MRFs are shortly before the MRF
2732 * write anyway.
2733 */
2734 if (block->start() == scan_inst)
2735 break;
2736
2737 /* You can't read from an MRF, so if someone else reads our
2738 * MRF's source GRF that we wanted to rewrite, that stops us.
2739 */
2740 bool interfered = false;
2741 for (int i = 0; i < scan_inst->sources; i++) {
2742 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2743 inst->src[0], inst->size_read(0))) {
2744 interfered = true;
2745 }
2746 }
2747 if (interfered)
2748 break;
2749
2750 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2751 inst->dst, inst->size_written)) {
2752 /* If somebody else writes our MRF here, we can't
2753 * compute-to-MRF before that.
2754 */
2755 break;
2756 }
2757
2758 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2759 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2760 inst->dst, inst->size_written)) {
2761 /* Found a SEND instruction, which means that there are
2762 * live values in MRFs from base_mrf to base_mrf +
2763 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2764 * above it.
2765 */
2766 break;
2767 }
2768 }
2769
2770 if (regs_left)
2771 continue;
2772
2773 /* Found all generating instructions of our MRF's source value, so it
2774 * should be safe to rewrite them to point to the MRF directly.
2775 */
2776 regs_left = (1 << regs_read(inst, 0)) - 1;
2777
2778 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2779 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2780 inst->src[0], inst->size_read(0))) {
2781 /* Clear the bits for any registers this instruction overwrites. */
2782 regs_left &= ~mask_relative_to(
2783 inst->src[0], scan_inst->dst, scan_inst->size_written);
2784
2785 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2786 reg_offset(inst->src[0]);
2787
2788 if (inst->dst.nr & BRW_MRF_COMPR4) {
2789 /* Apply the same address transformation done by the hardware
2790 * for COMPR4 MRF writes.
2791 */
2792 assert(rel_offset < 2 * REG_SIZE);
2793 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2794
2795 /* Clear the COMPR4 bit if the generating instruction is not
2796 * compressed.
2797 */
2798 if (scan_inst->size_written < 2 * REG_SIZE)
2799 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2800
2801 } else {
2802 /* Calculate the MRF number the result of this instruction is
2803 * ultimately written to.
2804 */
2805 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2806 }
2807
2808 scan_inst->dst.file = MRF;
2809 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2810 scan_inst->saturate |= inst->saturate;
2811 if (!regs_left)
2812 break;
2813 }
2814 }
2815
2816 assert(!regs_left);
2817 inst->remove(block);
2818 progress = true;
2819 }
2820
2821 if (progress)
2822 invalidate_live_intervals();
2823
2824 return progress;
2825 }
2826
2827 /**
2828 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2829 * flow. We could probably do better here with some form of divergence
2830 * analysis.
2831 */
2832 bool
2833 fs_visitor::eliminate_find_live_channel()
2834 {
2835 bool progress = false;
2836 unsigned depth = 0;
2837
2838 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2839 /* The optimization below assumes that channel zero is live on thread
2840 * dispatch, which may not be the case if the fixed function dispatches
2841 * threads sparsely.
2842 */
2843 return false;
2844 }
2845
2846 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2847 switch (inst->opcode) {
2848 case BRW_OPCODE_IF:
2849 case BRW_OPCODE_DO:
2850 depth++;
2851 break;
2852
2853 case BRW_OPCODE_ENDIF:
2854 case BRW_OPCODE_WHILE:
2855 depth--;
2856 break;
2857
2858 case FS_OPCODE_DISCARD_JUMP:
2859 /* This can potentially make control flow non-uniform until the end
2860 * of the program.
2861 */
2862 return progress;
2863
2864 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2865 if (depth == 0) {
2866 inst->opcode = BRW_OPCODE_MOV;
2867 inst->src[0] = brw_imm_ud(0u);
2868 inst->sources = 1;
2869 inst->force_writemask_all = true;
2870 progress = true;
2871 }
2872 break;
2873
2874 default:
2875 break;
2876 }
2877 }
2878
2879 return progress;
2880 }
2881
2882 /**
2883 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2884 * instructions to FS_OPCODE_REP_FB_WRITE.
2885 */
2886 void
2887 fs_visitor::emit_repclear_shader()
2888 {
2889 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2890 int base_mrf = 0;
2891 int color_mrf = base_mrf + 2;
2892 fs_inst *mov;
2893
2894 if (uniforms > 0) {
2895 mov = bld.exec_all().group(4, 0)
2896 .MOV(brw_message_reg(color_mrf),
2897 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2898 } else {
2899 struct brw_reg reg =
2900 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2901 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2902 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2903
2904 mov = bld.exec_all().group(4, 0)
2905 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2906 }
2907
2908 fs_inst *write;
2909 if (key->nr_color_regions == 1) {
2910 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2911 write->saturate = key->clamp_fragment_color;
2912 write->base_mrf = color_mrf;
2913 write->target = 0;
2914 write->header_size = 0;
2915 write->mlen = 1;
2916 } else {
2917 assume(key->nr_color_regions > 0);
2918 for (int i = 0; i < key->nr_color_regions; ++i) {
2919 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2920 write->saturate = key->clamp_fragment_color;
2921 write->base_mrf = base_mrf;
2922 write->target = i;
2923 write->header_size = 2;
2924 write->mlen = 3;
2925 }
2926 }
2927 write->eot = true;
2928
2929 calculate_cfg();
2930
2931 assign_constant_locations();
2932 assign_curb_setup();
2933
2934 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2935 if (uniforms > 0) {
2936 assert(mov->src[0].file == FIXED_GRF);
2937 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2938 }
2939 }
2940
2941 /**
2942 * Walks through basic blocks, looking for repeated MRF writes and
2943 * removing the later ones.
2944 */
2945 bool
2946 fs_visitor::remove_duplicate_mrf_writes()
2947 {
2948 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2949 bool progress = false;
2950
2951 /* Need to update the MRF tracking for compressed instructions. */
2952 if (dispatch_width >= 16)
2953 return false;
2954
2955 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2956
2957 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2958 if (inst->is_control_flow()) {
2959 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2960 }
2961
2962 if (inst->opcode == BRW_OPCODE_MOV &&
2963 inst->dst.file == MRF) {
2964 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2965 if (prev_inst && inst->equals(prev_inst)) {
2966 inst->remove(block);
2967 progress = true;
2968 continue;
2969 }
2970 }
2971
2972 /* Clear out the last-write records for MRFs that were overwritten. */
2973 if (inst->dst.file == MRF) {
2974 last_mrf_move[inst->dst.nr] = NULL;
2975 }
2976
2977 if (inst->mlen > 0 && inst->base_mrf != -1) {
2978 /* Found a SEND instruction, which will include two or fewer
2979 * implied MRF writes. We could do better here.
2980 */
2981 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2982 last_mrf_move[inst->base_mrf + i] = NULL;
2983 }
2984 }
2985
2986 /* Clear out any MRF move records whose sources got overwritten. */
2987 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2988 if (last_mrf_move[i] &&
2989 regions_overlap(inst->dst, inst->size_written,
2990 last_mrf_move[i]->src[0],
2991 last_mrf_move[i]->size_read(0))) {
2992 last_mrf_move[i] = NULL;
2993 }
2994 }
2995
2996 if (inst->opcode == BRW_OPCODE_MOV &&
2997 inst->dst.file == MRF &&
2998 inst->src[0].file != ARF &&
2999 !inst->is_partial_write()) {
3000 last_mrf_move[inst->dst.nr] = inst;
3001 }
3002 }
3003
3004 if (progress)
3005 invalidate_live_intervals();
3006
3007 return progress;
3008 }
3009
3010 static void
3011 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3012 {
3013 /* Clear the flag for registers that actually got read (as expected). */
3014 for (int i = 0; i < inst->sources; i++) {
3015 int grf;
3016 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3017 grf = inst->src[i].nr;
3018 } else {
3019 continue;
3020 }
3021
3022 if (grf >= first_grf &&
3023 grf < first_grf + grf_len) {
3024 deps[grf - first_grf] = false;
3025 if (inst->exec_size == 16)
3026 deps[grf - first_grf + 1] = false;
3027 }
3028 }
3029 }
3030
3031 /**
3032 * Implements this workaround for the original 965:
3033 *
3034 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3035 * check for post destination dependencies on this instruction, software
3036 * must ensure that there is no destination hazard for the case of ‘write
3037 * followed by a posted write’ shown in the following example.
3038 *
3039 * 1. mov r3 0
3040 * 2. send r3.xy <rest of send instruction>
3041 * 3. mov r2 r3
3042 *
3043 * Due to no post-destination dependency check on the ‘send’, the above
3044 * code sequence could have two instructions (1 and 2) in flight at the
3045 * same time that both consider ‘r3’ as the target of their final writes.
3046 */
3047 void
3048 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3049 fs_inst *inst)
3050 {
3051 int write_len = regs_written(inst);
3052 int first_write_grf = inst->dst.nr;
3053 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3054 assert(write_len < (int)sizeof(needs_dep) - 1);
3055
3056 memset(needs_dep, false, sizeof(needs_dep));
3057 memset(needs_dep, true, write_len);
3058
3059 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3060
3061 /* Walk backwards looking for writes to registers we're writing which
3062 * aren't read since being written. If we hit the start of the program,
3063 * we assume that there are no outstanding dependencies on entry to the
3064 * program.
3065 */
3066 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3067 /* If we hit control flow, assume that there *are* outstanding
3068 * dependencies, and force their cleanup before our instruction.
3069 */
3070 if (block->start() == scan_inst && block->num != 0) {
3071 for (int i = 0; i < write_len; i++) {
3072 if (needs_dep[i])
3073 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3074 first_write_grf + i);
3075 }
3076 return;
3077 }
3078
3079 /* We insert our reads as late as possible on the assumption that any
3080 * instruction but a MOV that might have left us an outstanding
3081 * dependency has more latency than a MOV.
3082 */
3083 if (scan_inst->dst.file == VGRF) {
3084 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3085 int reg = scan_inst->dst.nr + i;
3086
3087 if (reg >= first_write_grf &&
3088 reg < first_write_grf + write_len &&
3089 needs_dep[reg - first_write_grf]) {
3090 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3091 needs_dep[reg - first_write_grf] = false;
3092 if (scan_inst->exec_size == 16)
3093 needs_dep[reg - first_write_grf + 1] = false;
3094 }
3095 }
3096 }
3097
3098 /* Clear the flag for registers that actually got read (as expected). */
3099 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3100
3101 /* Continue the loop only if we haven't resolved all the dependencies */
3102 int i;
3103 for (i = 0; i < write_len; i++) {
3104 if (needs_dep[i])
3105 break;
3106 }
3107 if (i == write_len)
3108 return;
3109 }
3110 }
3111
3112 /**
3113 * Implements this workaround for the original 965:
3114 *
3115 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3116 * used as a destination register until after it has been sourced by an
3117 * instruction with a different destination register.
3118 */
3119 void
3120 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3121 {
3122 int write_len = regs_written(inst);
3123 int first_write_grf = inst->dst.nr;
3124 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3125 assert(write_len < (int)sizeof(needs_dep) - 1);
3126
3127 memset(needs_dep, false, sizeof(needs_dep));
3128 memset(needs_dep, true, write_len);
3129 /* Walk forwards looking for writes to registers we're writing which aren't
3130 * read before being written.
3131 */
3132 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3133 /* If we hit control flow, force resolve all remaining dependencies. */
3134 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3135 for (int i = 0; i < write_len; i++) {
3136 if (needs_dep[i])
3137 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3138 first_write_grf + i);
3139 }
3140 return;
3141 }
3142
3143 /* Clear the flag for registers that actually got read (as expected). */
3144 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3145
3146 /* We insert our reads as late as possible since they're reading the
3147 * result of a SEND, which has massive latency.
3148 */
3149 if (scan_inst->dst.file == VGRF &&
3150 scan_inst->dst.nr >= first_write_grf &&
3151 scan_inst->dst.nr < first_write_grf + write_len &&
3152 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3153 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3154 scan_inst->dst.nr);
3155 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3156 }
3157
3158 /* Continue the loop only if we haven't resolved all the dependencies */
3159 int i;
3160 for (i = 0; i < write_len; i++) {
3161 if (needs_dep[i])
3162 break;
3163 }
3164 if (i == write_len)
3165 return;
3166 }
3167 }
3168
3169 void
3170 fs_visitor::insert_gen4_send_dependency_workarounds()
3171 {
3172 if (devinfo->gen != 4 || devinfo->is_g4x)
3173 return;
3174
3175 bool progress = false;
3176
3177 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3178 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3179 insert_gen4_pre_send_dependency_workarounds(block, inst);
3180 insert_gen4_post_send_dependency_workarounds(block, inst);
3181 progress = true;
3182 }
3183 }
3184
3185 if (progress)
3186 invalidate_live_intervals();
3187 }
3188
3189 /**
3190 * Turns the generic expression-style uniform pull constant load instruction
3191 * into a hardware-specific series of instructions for loading a pull
3192 * constant.
3193 *
3194 * The expression style allows the CSE pass before this to optimize out
3195 * repeated loads from the same offset, and gives the pre-register-allocation
3196 * scheduling full flexibility, while the conversion to native instructions
3197 * allows the post-register-allocation scheduler the best information
3198 * possible.
3199 *
3200 * Note that execution masking for setting up pull constant loads is special:
3201 * the channels that need to be written are unrelated to the current execution
3202 * mask, since a later instruction will use one of the result channels as a
3203 * source operand for all 8 or 16 of its channels.
3204 */
3205 void
3206 fs_visitor::lower_uniform_pull_constant_loads()
3207 {
3208 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3209 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3210 continue;
3211
3212 if (devinfo->gen >= 7) {
3213 /* The offset arg is a vec4-aligned immediate byte offset. */
3214 fs_reg const_offset_reg = inst->src[1];
3215 assert(const_offset_reg.file == IMM &&
3216 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3217 assert(const_offset_reg.ud % 16 == 0);
3218
3219 fs_reg payload, offset;
3220 if (devinfo->gen >= 9) {
3221 /* We have to use a message header on Skylake to get SIMD4x2
3222 * mode. Reserve space for the register.
3223 */
3224 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3225 offset.offset += REG_SIZE;
3226 inst->mlen = 2;
3227 } else {
3228 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3229 inst->mlen = 1;
3230 }
3231
3232 /* This is actually going to be a MOV, but since only the first dword
3233 * is accessed, we have a special opcode to do just that one. Note
3234 * that this needs to be an operation that will be considered a def
3235 * by live variable analysis, or register allocation will explode.
3236 */
3237 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3238 8, offset, const_offset_reg);
3239 setup->force_writemask_all = true;
3240
3241 setup->ir = inst->ir;
3242 setup->annotation = inst->annotation;
3243 inst->insert_before(block, setup);
3244
3245 /* Similarly, this will only populate the first 4 channels of the
3246 * result register (since we only use smear values from 0-3), but we
3247 * don't tell the optimizer.
3248 */
3249 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3250 inst->src[1] = payload;
3251
3252 invalidate_live_intervals();
3253 } else {
3254 /* Before register allocation, we didn't tell the scheduler about the
3255 * MRF we use. We know it's safe to use this MRF because nothing
3256 * else does except for register spill/unspill, which generates and
3257 * uses its MRF within a single IR instruction.
3258 */
3259 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3260 inst->mlen = 1;
3261 }
3262 }
3263 }
3264
3265 bool
3266 fs_visitor::lower_load_payload()
3267 {
3268 bool progress = false;
3269
3270 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3271 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3272 continue;
3273
3274 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3275 assert(inst->saturate == false);
3276 fs_reg dst = inst->dst;
3277
3278 /* Get rid of COMPR4. We'll add it back in if we need it */
3279 if (dst.file == MRF)
3280 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3281
3282 const fs_builder ibld(this, block, inst);
3283 const fs_builder hbld = ibld.exec_all().group(8, 0);
3284
3285 for (uint8_t i = 0; i < inst->header_size; i++) {
3286 if (inst->src[i].file != BAD_FILE) {
3287 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3288 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3289 hbld.MOV(mov_dst, mov_src);
3290 }
3291 dst = offset(dst, hbld, 1);
3292 }
3293
3294 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3295 inst->exec_size > 8) {
3296 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3297 * a straightforward copy. Instead, the result of the
3298 * LOAD_PAYLOAD is treated as interleaved and the first four
3299 * non-header sources are unpacked as:
3300 *
3301 * m + 0: r0
3302 * m + 1: g0
3303 * m + 2: b0
3304 * m + 3: a0
3305 * m + 4: r1
3306 * m + 5: g1
3307 * m + 6: b1
3308 * m + 7: a1
3309 *
3310 * This is used for gen <= 5 fb writes.
3311 */
3312 assert(inst->exec_size == 16);
3313 assert(inst->header_size + 4 <= inst->sources);
3314 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3315 if (inst->src[i].file != BAD_FILE) {
3316 if (devinfo->has_compr4) {
3317 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3318 compr4_dst.nr |= BRW_MRF_COMPR4;
3319 ibld.MOV(compr4_dst, inst->src[i]);
3320 } else {
3321 /* Platform doesn't have COMPR4. We have to fake it */
3322 fs_reg mov_dst = retype(dst, inst->src[i].type);
3323 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3324 mov_dst.nr += 4;
3325 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3326 }
3327 }
3328
3329 dst.nr++;
3330 }
3331
3332 /* The loop above only ever incremented us through the first set
3333 * of 4 registers. However, thanks to the magic of COMPR4, we
3334 * actually wrote to the first 8 registers, so we need to take
3335 * that into account now.
3336 */
3337 dst.nr += 4;
3338
3339 /* The COMPR4 code took care of the first 4 sources. We'll let
3340 * the regular path handle any remaining sources. Yes, we are
3341 * modifying the instruction but we're about to delete it so
3342 * this really doesn't hurt anything.
3343 */
3344 inst->header_size += 4;
3345 }
3346
3347 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3348 if (inst->src[i].file != BAD_FILE)
3349 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3350 dst = offset(dst, ibld, 1);
3351 }
3352
3353 inst->remove(block);
3354 progress = true;
3355 }
3356
3357 if (progress)
3358 invalidate_live_intervals();
3359
3360 return progress;
3361 }
3362
3363 bool
3364 fs_visitor::lower_integer_multiplication()
3365 {
3366 bool progress = false;
3367
3368 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3369 const fs_builder ibld(this, block, inst);
3370
3371 if (inst->opcode == BRW_OPCODE_MUL) {
3372 if (inst->dst.is_accumulator() ||
3373 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3374 inst->dst.type != BRW_REGISTER_TYPE_UD))
3375 continue;
3376
3377 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3378 * operation directly, but CHV/BXT cannot.
3379 */
3380 if (devinfo->gen >= 8 &&
3381 !devinfo->is_cherryview && !devinfo->is_broxton)
3382 continue;
3383
3384 if (inst->src[1].file == IMM &&
3385 inst->src[1].ud < (1 << 16)) {
3386 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3387 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3388 * src1 are used.
3389 *
3390 * If multiplying by an immediate value that fits in 16-bits, do a
3391 * single MUL instruction with that value in the proper location.
3392 */
3393 if (devinfo->gen < 7) {
3394 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3395 inst->dst.type);
3396 ibld.MOV(imm, inst->src[1]);
3397 ibld.MUL(inst->dst, imm, inst->src[0]);
3398 } else {
3399 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3400 ibld.MUL(inst->dst, inst->src[0],
3401 ud ? brw_imm_uw(inst->src[1].ud)
3402 : brw_imm_w(inst->src[1].d));
3403 }
3404 } else {
3405 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3406 * do 32-bit integer multiplication in one instruction, but instead
3407 * must do a sequence (which actually calculates a 64-bit result):
3408 *
3409 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3410 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3411 * mov(8) g2<1>D acc0<8,8,1>D
3412 *
3413 * But on Gen > 6, the ability to use second accumulator register
3414 * (acc1) for non-float data types was removed, preventing a simple
3415 * implementation in SIMD16. A 16-channel result can be calculated by
3416 * executing the three instructions twice in SIMD8, once with quarter
3417 * control of 1Q for the first eight channels and again with 2Q for
3418 * the second eight channels.
3419 *
3420 * Which accumulator register is implicitly accessed (by AccWrEnable
3421 * for instance) is determined by the quarter control. Unfortunately
3422 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3423 * implicit accumulator access by an instruction with 2Q will access
3424 * acc1 regardless of whether the data type is usable in acc1.
3425 *
3426 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3427 * integer data types.
3428 *
3429 * Since we only want the low 32-bits of the result, we can do two
3430 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3431 * adjust the high result and add them (like the mach is doing):
3432 *
3433 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3434 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3435 * shl(8) g9<1>D g8<8,8,1>D 16D
3436 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3437 *
3438 * We avoid the shl instruction by realizing that we only want to add
3439 * the low 16-bits of the "high" result to the high 16-bits of the
3440 * "low" result and using proper regioning on the add:
3441 *
3442 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3443 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3444 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3445 *
3446 * Since it does not use the (single) accumulator register, we can
3447 * schedule multi-component multiplications much better.
3448 */
3449
3450 fs_reg orig_dst = inst->dst;
3451 if (orig_dst.is_null() || orig_dst.file == MRF) {
3452 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3453 inst->dst.type);
3454 }
3455 fs_reg low = inst->dst;
3456 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3457 inst->dst.type);
3458
3459 if (devinfo->gen >= 7) {
3460 if (inst->src[1].file == IMM) {
3461 ibld.MUL(low, inst->src[0],
3462 brw_imm_uw(inst->src[1].ud & 0xffff));
3463 ibld.MUL(high, inst->src[0],
3464 brw_imm_uw(inst->src[1].ud >> 16));
3465 } else {
3466 ibld.MUL(low, inst->src[0],
3467 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3468 ibld.MUL(high, inst->src[0],
3469 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3470 }
3471 } else {
3472 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3473 inst->src[1]);
3474 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3475 inst->src[1]);
3476 }
3477
3478 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3479 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3480 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3481
3482 if (inst->conditional_mod || orig_dst.file == MRF) {
3483 set_condmod(inst->conditional_mod,
3484 ibld.MOV(orig_dst, inst->dst));
3485 }
3486 }
3487
3488 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3489 /* Should have been lowered to 8-wide. */
3490 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3491 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3492 inst->dst.type);
3493 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3494 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3495
3496 if (devinfo->gen >= 8) {
3497 /* Until Gen8, integer multiplies read 32-bits from one source,
3498 * and 16-bits from the other, and relying on the MACH instruction
3499 * to generate the high bits of the result.
3500 *
3501 * On Gen8, the multiply instruction does a full 32x32-bit
3502 * multiply, but in order to do a 64-bit multiply we can simulate
3503 * the previous behavior and then use a MACH instruction.
3504 *
3505 * FINISHME: Don't use source modifiers on src1.
3506 */
3507 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3508 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3509 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3510 mul->src[1].stride *= 2;
3511
3512 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3513 inst->group > 0) {
3514 /* Among other things the quarter control bits influence which
3515 * accumulator register is used by the hardware for instructions
3516 * that access the accumulator implicitly (e.g. MACH). A
3517 * second-half instruction would normally map to acc1, which
3518 * doesn't exist on Gen7 and up (the hardware does emulate it for
3519 * floating-point instructions *only* by taking advantage of the
3520 * extra precision of acc0 not normally used for floating point
3521 * arithmetic).
3522 *
3523 * HSW and up are careful enough not to try to access an
3524 * accumulator register that doesn't exist, but on earlier Gen7
3525 * hardware we need to make sure that the quarter control bits are
3526 * zero to avoid non-deterministic behaviour and emit an extra MOV
3527 * to get the result masked correctly according to the current
3528 * channel enables.
3529 */
3530 mach->group = 0;
3531 mach->force_writemask_all = true;
3532 mach->dst = ibld.vgrf(inst->dst.type);
3533 ibld.MOV(inst->dst, mach->dst);
3534 }
3535 } else {
3536 continue;
3537 }
3538
3539 inst->remove(block);
3540 progress = true;
3541 }
3542
3543 if (progress)
3544 invalidate_live_intervals();
3545
3546 return progress;
3547 }
3548
3549 bool
3550 fs_visitor::lower_minmax()
3551 {
3552 assert(devinfo->gen < 6);
3553
3554 bool progress = false;
3555
3556 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3557 const fs_builder ibld(this, block, inst);
3558
3559 if (inst->opcode == BRW_OPCODE_SEL &&
3560 inst->predicate == BRW_PREDICATE_NONE) {
3561 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3562 * the original SEL.L/GE instruction
3563 */
3564 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3565 inst->conditional_mod);
3566 inst->predicate = BRW_PREDICATE_NORMAL;
3567 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3568
3569 progress = true;
3570 }
3571 }
3572
3573 if (progress)
3574 invalidate_live_intervals();
3575
3576 return progress;
3577 }
3578
3579 static void
3580 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3581 fs_reg *dst, fs_reg color, unsigned components)
3582 {
3583 if (key->clamp_fragment_color) {
3584 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3585 assert(color.type == BRW_REGISTER_TYPE_F);
3586
3587 for (unsigned i = 0; i < components; i++)
3588 set_saturate(true,
3589 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3590
3591 color = tmp;
3592 }
3593
3594 for (unsigned i = 0; i < components; i++)
3595 dst[i] = offset(color, bld, i);
3596 }
3597
3598 static void
3599 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3600 const brw_wm_prog_data *prog_data,
3601 const brw_wm_prog_key *key,
3602 const fs_visitor::thread_payload &payload)
3603 {
3604 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3605 const gen_device_info *devinfo = bld.shader->devinfo;
3606 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3607 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3608 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3609 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3610 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3611 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3612 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3613 const unsigned components =
3614 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3615
3616 /* We can potentially have a message length of up to 15, so we have to set
3617 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3618 */
3619 fs_reg sources[15];
3620 int header_size = 2, payload_header_size;
3621 unsigned length = 0;
3622
3623 /* From the Sandy Bridge PRM, volume 4, page 198:
3624 *
3625 * "Dispatched Pixel Enables. One bit per pixel indicating
3626 * which pixels were originally enabled when the thread was
3627 * dispatched. This field is only required for the end-of-
3628 * thread message and on all dual-source messages."
3629 */
3630 if (devinfo->gen >= 6 &&
3631 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3632 color1.file == BAD_FILE &&
3633 key->nr_color_regions == 1) {
3634 header_size = 0;
3635 }
3636
3637 if (header_size != 0) {
3638 assert(header_size == 2);
3639 /* Allocate 2 registers for a header */
3640 length += 2;
3641 }
3642
3643 if (payload.aa_dest_stencil_reg) {
3644 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3645 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3646 .MOV(sources[length],
3647 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3648 length++;
3649 }
3650
3651 if (sample_mask.file != BAD_FILE) {
3652 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3653 BRW_REGISTER_TYPE_UD);
3654
3655 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3656 * relevant. Since it's unsigned single words one vgrf is always
3657 * 16-wide, but only the lower or higher 8 channels will be used by the
3658 * hardware when doing a SIMD8 write depending on whether we have
3659 * selected the subspans for the first or second half respectively.
3660 */
3661 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3662 sample_mask.type = BRW_REGISTER_TYPE_UW;
3663 sample_mask.stride *= 2;
3664
3665 bld.exec_all().annotate("FB write oMask")
3666 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3667 inst->group),
3668 sample_mask);
3669 length++;
3670 }
3671
3672 payload_header_size = length;
3673
3674 if (src0_alpha.file != BAD_FILE) {
3675 /* FIXME: This is being passed at the wrong location in the payload and
3676 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3677 * It's supposed to be immediately before oMask but there seems to be no
3678 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3679 * requires header sources to form a contiguous segment at the beginning
3680 * of the message and src0_alpha has per-channel semantics.
3681 */
3682 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3683 length++;
3684 }
3685
3686 setup_color_payload(bld, key, &sources[length], color0, components);
3687 length += 4;
3688
3689 if (color1.file != BAD_FILE) {
3690 setup_color_payload(bld, key, &sources[length], color1, components);
3691 length += 4;
3692 }
3693
3694 if (src_depth.file != BAD_FILE) {
3695 sources[length] = src_depth;
3696 length++;
3697 }
3698
3699 if (dst_depth.file != BAD_FILE) {
3700 sources[length] = dst_depth;
3701 length++;
3702 }
3703
3704 if (src_stencil.file != BAD_FILE) {
3705 assert(devinfo->gen >= 9);
3706 assert(bld.dispatch_width() != 16);
3707
3708 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3709 * available on gen9+. As such it's impossible to have both enabled at the
3710 * same time and therefore length cannot overrun the array.
3711 */
3712 assert(length < 15);
3713
3714 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3715 bld.exec_all().annotate("FB write OS")
3716 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3717 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3718 length++;
3719 }
3720
3721 fs_inst *load;
3722 if (devinfo->gen >= 7) {
3723 /* Send from the GRF */
3724 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3725 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3726 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3727 load->dst = payload;
3728
3729 inst->src[0] = payload;
3730 inst->resize_sources(1);
3731 } else {
3732 /* Send from the MRF */
3733 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3734 sources, length, payload_header_size);
3735
3736 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3737 * will do this for us if we just give it a COMPR4 destination.
3738 */
3739 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3740 load->dst.nr |= BRW_MRF_COMPR4;
3741
3742 inst->resize_sources(0);
3743 inst->base_mrf = 1;
3744 }
3745
3746 inst->opcode = FS_OPCODE_FB_WRITE;
3747 inst->mlen = regs_written(load);
3748 inst->header_size = header_size;
3749 }
3750
3751 static void
3752 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3753 {
3754 const fs_builder &ubld = bld.exec_all();
3755 const unsigned length = 2;
3756 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3757
3758 ubld.group(16, 0)
3759 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3760
3761 inst->resize_sources(1);
3762 inst->src[0] = header;
3763 inst->opcode = FS_OPCODE_FB_READ;
3764 inst->mlen = length;
3765 inst->header_size = length;
3766 }
3767
3768 static void
3769 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3770 const fs_reg &coordinate,
3771 const fs_reg &shadow_c,
3772 const fs_reg &lod, const fs_reg &lod2,
3773 const fs_reg &surface,
3774 const fs_reg &sampler,
3775 unsigned coord_components,
3776 unsigned grad_components)
3777 {
3778 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3779 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3780 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3781 fs_reg msg_end = msg_begin;
3782
3783 /* g0 header. */
3784 msg_end = offset(msg_end, bld.group(8, 0), 1);
3785
3786 for (unsigned i = 0; i < coord_components; i++)
3787 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3788 offset(coordinate, bld, i));
3789
3790 msg_end = offset(msg_end, bld, coord_components);
3791
3792 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3793 * require all three components to be present and zero if they are unused.
3794 */
3795 if (coord_components > 0 &&
3796 (has_lod || shadow_c.file != BAD_FILE ||
3797 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3798 for (unsigned i = coord_components; i < 3; i++)
3799 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3800
3801 msg_end = offset(msg_end, bld, 3 - coord_components);
3802 }
3803
3804 if (op == SHADER_OPCODE_TXD) {
3805 /* TXD unsupported in SIMD16 mode. */
3806 assert(bld.dispatch_width() == 8);
3807
3808 /* the slots for u and v are always present, but r is optional */
3809 if (coord_components < 2)
3810 msg_end = offset(msg_end, bld, 2 - coord_components);
3811
3812 /* P = u, v, r
3813 * dPdx = dudx, dvdx, drdx
3814 * dPdy = dudy, dvdy, drdy
3815 *
3816 * 1-arg: Does not exist.
3817 *
3818 * 2-arg: dudx dvdx dudy dvdy
3819 * dPdx.x dPdx.y dPdy.x dPdy.y
3820 * m4 m5 m6 m7
3821 *
3822 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3823 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3824 * m5 m6 m7 m8 m9 m10
3825 */
3826 for (unsigned i = 0; i < grad_components; i++)
3827 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3828
3829 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3830
3831 for (unsigned i = 0; i < grad_components; i++)
3832 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3833
3834 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3835 }
3836
3837 if (has_lod) {
3838 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3839 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3840 */
3841 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3842 bld.dispatch_width() == 16);
3843
3844 const brw_reg_type type =
3845 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3846 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3847 bld.MOV(retype(msg_end, type), lod);
3848 msg_end = offset(msg_end, bld, 1);
3849 }
3850
3851 if (shadow_c.file != BAD_FILE) {
3852 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3853 /* There's no plain shadow compare message, so we use shadow
3854 * compare with a bias of 0.0.
3855 */
3856 bld.MOV(msg_end, brw_imm_f(0.0f));
3857 msg_end = offset(msg_end, bld, 1);
3858 }
3859
3860 bld.MOV(msg_end, shadow_c);
3861 msg_end = offset(msg_end, bld, 1);
3862 }
3863
3864 inst->opcode = op;
3865 inst->src[0] = reg_undef;
3866 inst->src[1] = surface;
3867 inst->src[2] = sampler;
3868 inst->resize_sources(3);
3869 inst->base_mrf = msg_begin.nr;
3870 inst->mlen = msg_end.nr - msg_begin.nr;
3871 inst->header_size = 1;
3872 }
3873
3874 static void
3875 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3876 const fs_reg &coordinate,
3877 const fs_reg &shadow_c,
3878 const fs_reg &lod, const fs_reg &lod2,
3879 const fs_reg &sample_index,
3880 const fs_reg &surface,
3881 const fs_reg &sampler,
3882 const fs_reg &offset_value,
3883 unsigned coord_components,
3884 unsigned grad_components)
3885 {
3886 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3887 fs_reg msg_coords = message;
3888 unsigned header_size = 0;
3889
3890 if (offset_value.file != BAD_FILE) {
3891 /* The offsets set up by the visitor are in the m1 header, so we can't
3892 * go headerless.
3893 */
3894 header_size = 1;
3895 message.nr--;
3896 }
3897
3898 for (unsigned i = 0; i < coord_components; i++)
3899 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3900 offset(coordinate, bld, i));
3901
3902 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3903 fs_reg msg_lod = offset(msg_coords, bld, 4);
3904
3905 if (shadow_c.file != BAD_FILE) {
3906 fs_reg msg_shadow = msg_lod;
3907 bld.MOV(msg_shadow, shadow_c);
3908 msg_lod = offset(msg_shadow, bld, 1);
3909 msg_end = msg_lod;
3910 }
3911
3912 switch (op) {
3913 case SHADER_OPCODE_TXL:
3914 case FS_OPCODE_TXB:
3915 bld.MOV(msg_lod, lod);
3916 msg_end = offset(msg_lod, bld, 1);
3917 break;
3918 case SHADER_OPCODE_TXD:
3919 /**
3920 * P = u, v, r
3921 * dPdx = dudx, dvdx, drdx
3922 * dPdy = dudy, dvdy, drdy
3923 *
3924 * Load up these values:
3925 * - dudx dudy dvdx dvdy drdx drdy
3926 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3927 */
3928 msg_end = msg_lod;
3929 for (unsigned i = 0; i < grad_components; i++) {
3930 bld.MOV(msg_end, offset(lod, bld, i));
3931 msg_end = offset(msg_end, bld, 1);
3932
3933 bld.MOV(msg_end, offset(lod2, bld, i));
3934 msg_end = offset(msg_end, bld, 1);
3935 }
3936 break;
3937 case SHADER_OPCODE_TXS:
3938 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3939 bld.MOV(msg_lod, lod);
3940 msg_end = offset(msg_lod, bld, 1);
3941 break;
3942 case SHADER_OPCODE_TXF:
3943 msg_lod = offset(msg_coords, bld, 3);
3944 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3945 msg_end = offset(msg_lod, bld, 1);
3946 break;
3947 case SHADER_OPCODE_TXF_CMS:
3948 msg_lod = offset(msg_coords, bld, 3);
3949 /* lod */
3950 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3951 /* sample index */
3952 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3953 msg_end = offset(msg_lod, bld, 2);
3954 break;
3955 default:
3956 break;
3957 }
3958
3959 inst->opcode = op;
3960 inst->src[0] = reg_undef;
3961 inst->src[1] = surface;
3962 inst->src[2] = sampler;
3963 inst->resize_sources(3);
3964 inst->base_mrf = message.nr;
3965 inst->mlen = msg_end.nr - message.nr;
3966 inst->header_size = header_size;
3967
3968 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3969 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3970 }
3971
3972 static bool
3973 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3974 {
3975 if (devinfo->gen < 8 && !devinfo->is_haswell)
3976 return false;
3977
3978 return sampler.file != IMM || sampler.ud >= 16;
3979 }
3980
3981 static void
3982 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3983 const fs_reg &coordinate,
3984 const fs_reg &shadow_c,
3985 fs_reg lod, const fs_reg &lod2,
3986 const fs_reg &sample_index,
3987 const fs_reg &mcs,
3988 const fs_reg &surface,
3989 const fs_reg &sampler,
3990 const fs_reg &offset_value,
3991 unsigned coord_components,
3992 unsigned grad_components)
3993 {
3994 const gen_device_info *devinfo = bld.shader->devinfo;
3995 unsigned reg_width = bld.dispatch_width() / 8;
3996 unsigned header_size = 0, length = 0;
3997 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3998 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3999 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4000
4001 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4002 offset_value.file != BAD_FILE || inst->eot ||
4003 op == SHADER_OPCODE_SAMPLEINFO ||
4004 is_high_sampler(devinfo, sampler)) {
4005 /* For general texture offsets (no txf workaround), we need a header to
4006 * put them in. Note that we're only reserving space for it in the
4007 * message payload as it will be initialized implicitly by the
4008 * generator.
4009 *
4010 * TG4 needs to place its channel select in the header, for interaction
4011 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4012 * larger sampler numbers we need to offset the Sampler State Pointer in
4013 * the header.
4014 */
4015 header_size = 1;
4016 sources[0] = fs_reg();
4017 length++;
4018
4019 /* If we're requesting fewer than four channels worth of response,
4020 * and we have an explicit header, we need to set up the sampler
4021 * writemask. It's reversed from normal: 1 means "don't write".
4022 */
4023 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4024 assert(regs_written(inst) % reg_width == 0);
4025 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4026 inst->offset |= mask << 12;
4027 }
4028 }
4029
4030 if (shadow_c.file != BAD_FILE) {
4031 bld.MOV(sources[length], shadow_c);
4032 length++;
4033 }
4034
4035 bool coordinate_done = false;
4036
4037 /* Set up the LOD info */
4038 switch (op) {
4039 case FS_OPCODE_TXB:
4040 case SHADER_OPCODE_TXL:
4041 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4042 op = SHADER_OPCODE_TXL_LZ;
4043 break;
4044 }
4045 bld.MOV(sources[length], lod);
4046 length++;
4047 break;
4048 case SHADER_OPCODE_TXD:
4049 /* TXD should have been lowered in SIMD16 mode. */
4050 assert(bld.dispatch_width() == 8);
4051
4052 /* Load dPdx and the coordinate together:
4053 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4054 */
4055 for (unsigned i = 0; i < coord_components; i++) {
4056 bld.MOV(sources[length++], offset(coordinate, bld, i));
4057
4058 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4059 * only derivatives for (u, v, r).
4060 */
4061 if (i < grad_components) {
4062 bld.MOV(sources[length++], offset(lod, bld, i));
4063 bld.MOV(sources[length++], offset(lod2, bld, i));
4064 }
4065 }
4066
4067 coordinate_done = true;
4068 break;
4069 case SHADER_OPCODE_TXS:
4070 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4071 length++;
4072 break;
4073 case SHADER_OPCODE_TXF:
4074 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4075 * On Gen9 they are u, v, lod, r
4076 */
4077 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4078
4079 if (devinfo->gen >= 9) {
4080 if (coord_components >= 2) {
4081 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4082 offset(coordinate, bld, 1));
4083 } else {
4084 sources[length] = brw_imm_d(0);
4085 }
4086 length++;
4087 }
4088
4089 if (devinfo->gen >= 9 && lod.is_zero()) {
4090 op = SHADER_OPCODE_TXF_LZ;
4091 } else {
4092 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4093 length++;
4094 }
4095
4096 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4097 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4098 offset(coordinate, bld, i));
4099
4100 coordinate_done = true;
4101 break;
4102
4103 case SHADER_OPCODE_TXF_CMS:
4104 case SHADER_OPCODE_TXF_CMS_W:
4105 case SHADER_OPCODE_TXF_UMS:
4106 case SHADER_OPCODE_TXF_MCS:
4107 if (op == SHADER_OPCODE_TXF_UMS ||
4108 op == SHADER_OPCODE_TXF_CMS ||
4109 op == SHADER_OPCODE_TXF_CMS_W) {
4110 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4111 length++;
4112 }
4113
4114 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4115 /* Data from the multisample control surface. */
4116 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4117 length++;
4118
4119 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4120 * the MCS data.
4121 */
4122 if (op == SHADER_OPCODE_TXF_CMS_W) {
4123 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4124 mcs.file == IMM ?
4125 mcs :
4126 offset(mcs, bld, 1));
4127 length++;
4128 }
4129 }
4130
4131 /* There is no offsetting for this message; just copy in the integer
4132 * texture coordinates.
4133 */
4134 for (unsigned i = 0; i < coord_components; i++)
4135 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4136 offset(coordinate, bld, i));
4137
4138 coordinate_done = true;
4139 break;
4140 case SHADER_OPCODE_TG4_OFFSET:
4141 /* More crazy intermixing */
4142 for (unsigned i = 0; i < 2; i++) /* u, v */
4143 bld.MOV(sources[length++], offset(coordinate, bld, i));
4144
4145 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4146 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4147 offset(offset_value, bld, i));
4148
4149 if (coord_components == 3) /* r if present */
4150 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4151
4152 coordinate_done = true;
4153 break;
4154 default:
4155 break;
4156 }
4157
4158 /* Set up the coordinate (except for cases where it was done above) */
4159 if (!coordinate_done) {
4160 for (unsigned i = 0; i < coord_components; i++)
4161 bld.MOV(sources[length++], offset(coordinate, bld, i));
4162 }
4163
4164 int mlen;
4165 if (reg_width == 2)
4166 mlen = length * reg_width - header_size;
4167 else
4168 mlen = length * reg_width;
4169
4170 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4171 BRW_REGISTER_TYPE_F);
4172 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4173
4174 /* Generate the SEND. */
4175 inst->opcode = op;
4176 inst->src[0] = src_payload;
4177 inst->src[1] = surface;
4178 inst->src[2] = sampler;
4179 inst->resize_sources(3);
4180 inst->mlen = mlen;
4181 inst->header_size = header_size;
4182
4183 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4184 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4185 }
4186
4187 static void
4188 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4189 {
4190 const gen_device_info *devinfo = bld.shader->devinfo;
4191 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4192 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4193 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4194 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4195 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4196 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4197 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4198 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4199 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4200 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4201 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4202 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4203 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4204
4205 if (devinfo->gen >= 7) {
4206 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4207 shadow_c, lod, lod2, sample_index,
4208 mcs, surface, sampler, offset_value,
4209 coord_components, grad_components);
4210 } else if (devinfo->gen >= 5) {
4211 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4212 shadow_c, lod, lod2, sample_index,
4213 surface, sampler, offset_value,
4214 coord_components, grad_components);
4215 } else {
4216 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4217 shadow_c, lod, lod2,
4218 surface, sampler,
4219 coord_components, grad_components);
4220 }
4221 }
4222
4223 /**
4224 * Initialize the header present in some typed and untyped surface
4225 * messages.
4226 */
4227 static fs_reg
4228 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4229 {
4230 fs_builder ubld = bld.exec_all().group(8, 0);
4231 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4232 ubld.MOV(dst, brw_imm_d(0));
4233 ubld.MOV(component(dst, 7), sample_mask);
4234 return dst;
4235 }
4236
4237 static void
4238 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4239 const fs_reg &sample_mask)
4240 {
4241 /* Get the logical send arguments. */
4242 const fs_reg &addr = inst->src[0];
4243 const fs_reg &src = inst->src[1];
4244 const fs_reg &surface = inst->src[2];
4245 const UNUSED fs_reg &dims = inst->src[3];
4246 const fs_reg &arg = inst->src[4];
4247
4248 /* Calculate the total number of components of the payload. */
4249 const unsigned addr_sz = inst->components_read(0);
4250 const unsigned src_sz = inst->components_read(1);
4251 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4252 const unsigned sz = header_sz + addr_sz + src_sz;
4253
4254 /* Allocate space for the payload. */
4255 fs_reg *const components = new fs_reg[sz];
4256 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4257 unsigned n = 0;
4258
4259 /* Construct the payload. */
4260 if (header_sz)
4261 components[n++] = emit_surface_header(bld, sample_mask);
4262
4263 for (unsigned i = 0; i < addr_sz; i++)
4264 components[n++] = offset(addr, bld, i);
4265
4266 for (unsigned i = 0; i < src_sz; i++)
4267 components[n++] = offset(src, bld, i);
4268
4269 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4270
4271 /* Update the original instruction. */
4272 inst->opcode = op;
4273 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4274 inst->header_size = header_sz;
4275
4276 inst->src[0] = payload;
4277 inst->src[1] = surface;
4278 inst->src[2] = arg;
4279 inst->resize_sources(3);
4280
4281 delete[] components;
4282 }
4283
4284 static void
4285 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4286 {
4287 const gen_device_info *devinfo = bld.shader->devinfo;
4288
4289 if (devinfo->gen >= 7) {
4290 /* We are switching the instruction from an ALU-like instruction to a
4291 * send-from-grf instruction. Since sends can't handle strides or
4292 * source modifiers, we have to make a copy of the offset source.
4293 */
4294 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4295 bld.MOV(tmp, inst->src[1]);
4296 inst->src[1] = tmp;
4297
4298 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4299
4300 } else {
4301 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4302 BRW_REGISTER_TYPE_UD);
4303
4304 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4305
4306 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4307 inst->resize_sources(1);
4308 inst->base_mrf = payload.nr;
4309 inst->header_size = 1;
4310 inst->mlen = 1 + inst->exec_size / 8;
4311 }
4312 }
4313
4314 static void
4315 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4316 {
4317 assert(bld.shader->devinfo->gen < 6);
4318
4319 inst->base_mrf = 2;
4320 inst->mlen = inst->sources * inst->exec_size / 8;
4321
4322 if (inst->sources > 1) {
4323 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4324 * "Message Payload":
4325 *
4326 * "Operand0[7]. For the INT DIV functions, this operand is the
4327 * denominator."
4328 * ...
4329 * "Operand1[7]. For the INT DIV functions, this operand is the
4330 * numerator."
4331 */
4332 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4333 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4334 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4335
4336 inst->resize_sources(1);
4337 inst->src[0] = src0;
4338
4339 assert(inst->exec_size == 8);
4340 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4341 }
4342 }
4343
4344 bool
4345 fs_visitor::lower_logical_sends()
4346 {
4347 bool progress = false;
4348
4349 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4350 const fs_builder ibld(this, block, inst);
4351
4352 switch (inst->opcode) {
4353 case FS_OPCODE_FB_WRITE_LOGICAL:
4354 assert(stage == MESA_SHADER_FRAGMENT);
4355 lower_fb_write_logical_send(ibld, inst,
4356 (const brw_wm_prog_data *)prog_data,
4357 (const brw_wm_prog_key *)key,
4358 payload);
4359 break;
4360
4361 case FS_OPCODE_FB_READ_LOGICAL:
4362 lower_fb_read_logical_send(ibld, inst);
4363 break;
4364
4365 case SHADER_OPCODE_TEX_LOGICAL:
4366 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4367 break;
4368
4369 case SHADER_OPCODE_TXD_LOGICAL:
4370 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4371 break;
4372
4373 case SHADER_OPCODE_TXF_LOGICAL:
4374 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4375 break;
4376
4377 case SHADER_OPCODE_TXL_LOGICAL:
4378 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4379 break;
4380
4381 case SHADER_OPCODE_TXS_LOGICAL:
4382 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4383 break;
4384
4385 case FS_OPCODE_TXB_LOGICAL:
4386 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4387 break;
4388
4389 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4390 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4391 break;
4392
4393 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4394 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4395 break;
4396
4397 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4398 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4399 break;
4400
4401 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4402 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4403 break;
4404
4405 case SHADER_OPCODE_LOD_LOGICAL:
4406 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4407 break;
4408
4409 case SHADER_OPCODE_TG4_LOGICAL:
4410 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4411 break;
4412
4413 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4414 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4415 break;
4416
4417 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4418 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4419 break;
4420
4421 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4422 lower_surface_logical_send(ibld, inst,
4423 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4424 fs_reg());
4425 break;
4426
4427 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4428 lower_surface_logical_send(ibld, inst,
4429 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4430 ibld.sample_mask_reg());
4431 break;
4432
4433 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4434 lower_surface_logical_send(ibld, inst,
4435 SHADER_OPCODE_UNTYPED_ATOMIC,
4436 ibld.sample_mask_reg());
4437 break;
4438
4439 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4440 lower_surface_logical_send(ibld, inst,
4441 SHADER_OPCODE_TYPED_SURFACE_READ,
4442 brw_imm_d(0xffff));
4443 break;
4444
4445 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4446 lower_surface_logical_send(ibld, inst,
4447 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4448 ibld.sample_mask_reg());
4449 break;
4450
4451 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4452 lower_surface_logical_send(ibld, inst,
4453 SHADER_OPCODE_TYPED_ATOMIC,
4454 ibld.sample_mask_reg());
4455 break;
4456
4457 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4458 lower_varying_pull_constant_logical_send(ibld, inst);
4459 break;
4460
4461 case SHADER_OPCODE_RCP:
4462 case SHADER_OPCODE_RSQ:
4463 case SHADER_OPCODE_SQRT:
4464 case SHADER_OPCODE_EXP2:
4465 case SHADER_OPCODE_LOG2:
4466 case SHADER_OPCODE_SIN:
4467 case SHADER_OPCODE_COS:
4468 case SHADER_OPCODE_POW:
4469 case SHADER_OPCODE_INT_QUOTIENT:
4470 case SHADER_OPCODE_INT_REMAINDER:
4471 /* The math opcodes are overloaded for the send-like and
4472 * expression-like instructions which seems kind of icky. Gen6+ has
4473 * a native (but rather quirky) MATH instruction so we don't need to
4474 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4475 * logical instructions (which we can easily recognize because they
4476 * have mlen = 0) into send-like virtual instructions.
4477 */
4478 if (devinfo->gen < 6 && inst->mlen == 0) {
4479 lower_math_logical_send(ibld, inst);
4480 break;
4481
4482 } else {
4483 continue;
4484 }
4485
4486 default:
4487 continue;
4488 }
4489
4490 progress = true;
4491 }
4492
4493 if (progress)
4494 invalidate_live_intervals();
4495
4496 return progress;
4497 }
4498
4499 /**
4500 * Get the closest allowed SIMD width for instruction \p inst accounting for
4501 * some common regioning and execution control restrictions that apply to FPU
4502 * instructions. These restrictions don't necessarily have any relevance to
4503 * instructions not executed by the FPU pipeline like extended math, control
4504 * flow or send message instructions.
4505 *
4506 * For virtual opcodes it's really up to the instruction -- In some cases
4507 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4508 * instructions) it may simplify virtual instruction lowering if we can
4509 * enforce FPU-like regioning restrictions already on the virtual instruction,
4510 * in other cases (e.g. virtual send-like instructions) this may be
4511 * excessively restrictive.
4512 */
4513 static unsigned
4514 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4515 const fs_inst *inst)
4516 {
4517 /* Maximum execution size representable in the instruction controls. */
4518 unsigned max_width = MIN2(32, inst->exec_size);
4519
4520 /* According to the PRMs:
4521 * "A. In Direct Addressing mode, a source cannot span more than 2
4522 * adjacent GRF registers.
4523 * B. A destination cannot span more than 2 adjacent GRF registers."
4524 *
4525 * Look for the source or destination with the largest register region
4526 * which is the one that is going to limit the overall execution size of
4527 * the instruction due to this rule.
4528 */
4529 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4530
4531 for (unsigned i = 0; i < inst->sources; i++)
4532 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4533
4534 /* Calculate the maximum execution size of the instruction based on the
4535 * factor by which it goes over the hardware limit of 2 GRFs.
4536 */
4537 if (reg_count > 2)
4538 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4539
4540 /* According to the IVB PRMs:
4541 * "When destination spans two registers, the source MUST span two
4542 * registers. The exception to the above rule:
4543 *
4544 * - When source is scalar, the source registers are not incremented.
4545 * - When source is packed integer Word and destination is packed
4546 * integer DWord, the source register is not incremented but the
4547 * source sub register is incremented."
4548 *
4549 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4550 * restrictions. The code below intentionally doesn't check whether the
4551 * destination type is integer because empirically the hardware doesn't
4552 * seem to care what the actual type is as long as it's dword-aligned.
4553 */
4554 if (devinfo->gen < 8) {
4555 for (unsigned i = 0; i < inst->sources; i++) {
4556 if (inst->size_written > REG_SIZE &&
4557 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4558 !is_uniform(inst->src[i]) &&
4559 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4560 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4561 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4562 max_width = MIN2(max_width, inst->exec_size / reg_count);
4563 }
4564 }
4565 }
4566
4567 /* From the IVB PRMs:
4568 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4569 * are applied for both halves of the SIMD32 instruction. If different
4570 * execution mask channels are required, split the instruction into two
4571 * SIMD16 instructions."
4572 *
4573 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4574 * 32-wide control flow support in hardware and will behave similarly.
4575 */
4576 if (devinfo->gen < 8 && !inst->force_writemask_all)
4577 max_width = MIN2(max_width, 16);
4578
4579 /* From the IVB PRMs (applies to HSW too):
4580 * "Instructions with condition modifiers must not use SIMD32."
4581 *
4582 * From the BDW PRMs (applies to later hardware too):
4583 * "Ternary instruction with condition modifiers must not use SIMD32."
4584 */
4585 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4586 max_width = MIN2(max_width, 16);
4587
4588 /* From the IVB PRMs (applies to other devices that don't have the
4589 * gen_device_info::supports_simd16_3src flag set):
4590 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4591 * SIMD8 is not allowed for DF operations."
4592 */
4593 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4594 max_width = MIN2(max_width, inst->exec_size / reg_count);
4595
4596 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4597 * the 8-bit quarter of the execution mask signals specified in the
4598 * instruction control fields) for the second compressed half of any
4599 * single-precision instruction (for double-precision instructions
4600 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4601 * the EU will apply the wrong execution controls for the second
4602 * sequential GRF write if the number of channels per GRF is not exactly
4603 * eight in single-precision mode (or four in double-float mode).
4604 *
4605 * In this situation we calculate the maximum size of the split
4606 * instructions so they only ever write to a single register.
4607 */
4608 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4609 !inst->force_writemask_all) {
4610 const unsigned channels_per_grf = inst->exec_size /
4611 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4612 unsigned exec_type_size = 0;
4613 for (int i = 0; i < inst->sources; i++) {
4614 if (inst->src[i].file != BAD_FILE)
4615 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4616 }
4617 assert(exec_type_size);
4618
4619 /* The hardware shifts exactly 8 channels per compressed half of the
4620 * instruction in single-precision mode and exactly 4 in double-precision.
4621 */
4622 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4623 max_width = MIN2(max_width, channels_per_grf);
4624 }
4625
4626 /* Only power-of-two execution sizes are representable in the instruction
4627 * control fields.
4628 */
4629 return 1 << _mesa_logbase2(max_width);
4630 }
4631
4632 /**
4633 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4634 * various payload size restrictions that apply to sampler message
4635 * instructions.
4636 *
4637 * This is only intended to provide a maximum theoretical bound for the
4638 * execution size of the message based on the number of argument components
4639 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4640 * variant of the message can be used, though some messages may have
4641 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4642 * the message length to determine the exact SIMD width and argument count,
4643 * which makes a number of sampler message combinations impossible to
4644 * represent).
4645 */
4646 static unsigned
4647 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4648 const fs_inst *inst)
4649 {
4650 /* Calculate the number of coordinate components that have to be present
4651 * assuming that additional arguments follow the texel coordinates in the
4652 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4653 * need to pad to four or three components depending on the message,
4654 * pre-ILK we need to pad to at most three components.
4655 */
4656 const unsigned req_coord_components =
4657 (devinfo->gen >= 7 ||
4658 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4659 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4660 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4661 3;
4662
4663 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4664 * variant of the TXL or TXF message.
4665 */
4666 const bool implicit_lod = devinfo->gen >= 9 &&
4667 (inst->opcode == SHADER_OPCODE_TXL ||
4668 inst->opcode == SHADER_OPCODE_TXF) &&
4669 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4670
4671 /* Calculate the total number of argument components that need to be passed
4672 * to the sampler unit.
4673 */
4674 const unsigned num_payload_components =
4675 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4676 req_coord_components) +
4677 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4678 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4679 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4680 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4681 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4682 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4683 inst->components_read(TEX_LOGICAL_SRC_MCS);
4684
4685 /* SIMD16 messages with more than five arguments exceed the maximum message
4686 * size supported by the sampler, regardless of whether a header is
4687 * provided or not.
4688 */
4689 return MIN2(inst->exec_size,
4690 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4691 }
4692
4693 /**
4694 * Get the closest native SIMD width supported by the hardware for instruction
4695 * \p inst. The instruction will be left untouched by
4696 * fs_visitor::lower_simd_width() if the returned value is equal to the
4697 * original execution size.
4698 */
4699 static unsigned
4700 get_lowered_simd_width(const struct gen_device_info *devinfo,
4701 const fs_inst *inst)
4702 {
4703 switch (inst->opcode) {
4704 case BRW_OPCODE_MOV:
4705 case BRW_OPCODE_SEL:
4706 case BRW_OPCODE_NOT:
4707 case BRW_OPCODE_AND:
4708 case BRW_OPCODE_OR:
4709 case BRW_OPCODE_XOR:
4710 case BRW_OPCODE_SHR:
4711 case BRW_OPCODE_SHL:
4712 case BRW_OPCODE_ASR:
4713 case BRW_OPCODE_CMPN:
4714 case BRW_OPCODE_CSEL:
4715 case BRW_OPCODE_F32TO16:
4716 case BRW_OPCODE_F16TO32:
4717 case BRW_OPCODE_BFREV:
4718 case BRW_OPCODE_BFE:
4719 case BRW_OPCODE_ADD:
4720 case BRW_OPCODE_MUL:
4721 case BRW_OPCODE_AVG:
4722 case BRW_OPCODE_FRC:
4723 case BRW_OPCODE_RNDU:
4724 case BRW_OPCODE_RNDD:
4725 case BRW_OPCODE_RNDE:
4726 case BRW_OPCODE_RNDZ:
4727 case BRW_OPCODE_LZD:
4728 case BRW_OPCODE_FBH:
4729 case BRW_OPCODE_FBL:
4730 case BRW_OPCODE_CBIT:
4731 case BRW_OPCODE_SAD2:
4732 case BRW_OPCODE_MAD:
4733 case BRW_OPCODE_LRP:
4734 case FS_OPCODE_PACK:
4735 return get_fpu_lowered_simd_width(devinfo, inst);
4736
4737 case BRW_OPCODE_CMP: {
4738 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4739 * when the destination is a GRF the dependency-clear bit on the flag
4740 * register is cleared early.
4741 *
4742 * Suggested workarounds are to disable coissuing CMP instructions
4743 * or to split CMP(16) instructions into two CMP(8) instructions.
4744 *
4745 * We choose to split into CMP(8) instructions since disabling
4746 * coissuing would affect CMP instructions not otherwise affected by
4747 * the errata.
4748 */
4749 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4750 !inst->dst.is_null() ? 8 : ~0);
4751 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4752 }
4753 case BRW_OPCODE_BFI1:
4754 case BRW_OPCODE_BFI2:
4755 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4756 * should
4757 * "Force BFI instructions to be executed always in SIMD8."
4758 */
4759 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4760 get_fpu_lowered_simd_width(devinfo, inst));
4761
4762 case BRW_OPCODE_IF:
4763 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4764 return inst->exec_size;
4765
4766 case SHADER_OPCODE_RCP:
4767 case SHADER_OPCODE_RSQ:
4768 case SHADER_OPCODE_SQRT:
4769 case SHADER_OPCODE_EXP2:
4770 case SHADER_OPCODE_LOG2:
4771 case SHADER_OPCODE_SIN:
4772 case SHADER_OPCODE_COS:
4773 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4774 * Gen6.
4775 */
4776 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4777 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4778 MIN2(8, inst->exec_size));
4779
4780 case SHADER_OPCODE_POW:
4781 /* SIMD16 is only allowed on Gen7+. */
4782 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4783 MIN2(8, inst->exec_size));
4784
4785 case SHADER_OPCODE_INT_QUOTIENT:
4786 case SHADER_OPCODE_INT_REMAINDER:
4787 /* Integer division is limited to SIMD8 on all generations. */
4788 return MIN2(8, inst->exec_size);
4789
4790 case FS_OPCODE_LINTERP:
4791 case FS_OPCODE_GET_BUFFER_SIZE:
4792 case FS_OPCODE_DDX_COARSE:
4793 case FS_OPCODE_DDX_FINE:
4794 case FS_OPCODE_DDY_COARSE:
4795 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4796 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4797 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4798 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4799 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4800 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4801 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4802 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4803 return MIN2(16, inst->exec_size);
4804
4805 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4806 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4807 * message used to implement varying pull constant loads, so expand it
4808 * to SIMD16. An alternative with longer message payload length but
4809 * shorter return payload would be to use the SIMD8 sampler message that
4810 * takes (header, u, v, r) as parameters instead of (header, u).
4811 */
4812 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4813
4814 case FS_OPCODE_DDY_FINE:
4815 /* The implementation of this virtual opcode may require emitting
4816 * compressed Align16 instructions, which are severely limited on some
4817 * generations.
4818 *
4819 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4820 * Region Restrictions):
4821 *
4822 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4823 * and SIMD8 is not allowed for DF operations."
4824 *
4825 * In this context, "DW operations" means "operations acting on 32-bit
4826 * values", so it includes operations on floats.
4827 *
4828 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4829 * (Instruction Compression -> Rules and Restrictions):
4830 *
4831 * "A compressed instruction must be in Align1 access mode. Align16
4832 * mode instructions cannot be compressed."
4833 *
4834 * Similar text exists in the g45 PRM.
4835 *
4836 * Empirically, compressed align16 instructions using odd register
4837 * numbers don't appear to work on Sandybridge either.
4838 */
4839 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4840 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4841 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4842
4843 case SHADER_OPCODE_MULH:
4844 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4845 * is 8-wide on Gen7+.
4846 */
4847 return (devinfo->gen >= 7 ? 8 :
4848 get_fpu_lowered_simd_width(devinfo, inst));
4849
4850 case FS_OPCODE_FB_WRITE_LOGICAL:
4851 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4852 * here.
4853 */
4854 assert(devinfo->gen != 6 ||
4855 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4856 inst->exec_size == 8);
4857 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4858 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4859 8 : MIN2(16, inst->exec_size));
4860
4861 case FS_OPCODE_FB_READ_LOGICAL:
4862 return MIN2(16, inst->exec_size);
4863
4864 case SHADER_OPCODE_TEX_LOGICAL:
4865 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4866 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4867 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4868 case SHADER_OPCODE_LOD_LOGICAL:
4869 case SHADER_OPCODE_TG4_LOGICAL:
4870 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4871 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4872 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4873 return get_sampler_lowered_simd_width(devinfo, inst);
4874
4875 case SHADER_OPCODE_TXD_LOGICAL:
4876 /* TXD is unsupported in SIMD16 mode. */
4877 return 8;
4878
4879 case SHADER_OPCODE_TXL_LOGICAL:
4880 case FS_OPCODE_TXB_LOGICAL:
4881 /* Only one execution size is representable pre-ILK depending on whether
4882 * the shadow reference argument is present.
4883 */
4884 if (devinfo->gen == 4)
4885 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4886 else
4887 return get_sampler_lowered_simd_width(devinfo, inst);
4888
4889 case SHADER_OPCODE_TXF_LOGICAL:
4890 case SHADER_OPCODE_TXS_LOGICAL:
4891 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4892 * messages. Use SIMD16 instead.
4893 */
4894 if (devinfo->gen == 4)
4895 return 16;
4896 else
4897 return get_sampler_lowered_simd_width(devinfo, inst);
4898
4899 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4900 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4901 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4902 return 8;
4903
4904 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4905 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4906 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4907 return MIN2(16, inst->exec_size);
4908
4909 case SHADER_OPCODE_URB_READ_SIMD8:
4910 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4911 case SHADER_OPCODE_URB_WRITE_SIMD8:
4912 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4913 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4914 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4915 return MIN2(8, inst->exec_size);
4916
4917 case SHADER_OPCODE_MOV_INDIRECT:
4918 /* Prior to Broadwell, we only have 8 address subregisters */
4919 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4920 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4921 inst->exec_size);
4922
4923 case SHADER_OPCODE_LOAD_PAYLOAD: {
4924 const unsigned reg_count =
4925 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4926
4927 if (reg_count > 2) {
4928 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4929 * can be easily lowered (which excludes headers and heterogeneous
4930 * types).
4931 */
4932 assert(!inst->header_size);
4933 for (unsigned i = 0; i < inst->sources; i++)
4934 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4935 inst->src[i].file == BAD_FILE);
4936
4937 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4938 } else {
4939 return inst->exec_size;
4940 }
4941 }
4942 default:
4943 return inst->exec_size;
4944 }
4945 }
4946
4947 /**
4948 * Return true if splitting out the group of channels of instruction \p inst
4949 * given by lbld.group() requires allocating a temporary for the i-th source
4950 * of the lowered instruction.
4951 */
4952 static inline bool
4953 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4954 {
4955 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4956 (inst->components_read(i) == 1 &&
4957 lbld.dispatch_width() <= inst->exec_size));
4958 }
4959
4960 /**
4961 * Extract the data that would be consumed by the channel group given by
4962 * lbld.group() from the i-th source region of instruction \p inst and return
4963 * it as result in packed form. If any copy instructions are required they
4964 * will be emitted before the given \p inst in \p block.
4965 */
4966 static fs_reg
4967 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4968 unsigned i)
4969 {
4970 /* Specified channel group from the source region. */
4971 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4972
4973 if (needs_src_copy(lbld, inst, i)) {
4974 /* Builder of the right width to perform the copy avoiding uninitialized
4975 * data if the lowered execution size is greater than the original
4976 * execution size of the instruction.
4977 */
4978 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4979 inst->exec_size), 0);
4980 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4981
4982 for (unsigned k = 0; k < inst->components_read(i); ++k)
4983 cbld.at(block, inst)
4984 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4985
4986 return tmp;
4987
4988 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4989 /* The source is invariant for all dispatch_width-wide groups of the
4990 * original region.
4991 */
4992 return inst->src[i];
4993
4994 } else {
4995 /* We can just point the lowered instruction at the right channel group
4996 * from the original region.
4997 */
4998 return src;
4999 }
5000 }
5001
5002 /**
5003 * Return true if splitting out the group of channels of instruction \p inst
5004 * given by lbld.group() requires allocating a temporary for the destination
5005 * of the lowered instruction and copying the data back to the original
5006 * destination region.
5007 */
5008 static inline bool
5009 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5010 {
5011 /* If the instruction writes more than one component we'll have to shuffle
5012 * the results of multiple lowered instructions in order to make sure that
5013 * they end up arranged correctly in the original destination region.
5014 */
5015 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5016 return true;
5017
5018 /* If the lowered execution size is larger than the original the result of
5019 * the instruction won't fit in the original destination, so we'll have to
5020 * allocate a temporary in any case.
5021 */
5022 if (lbld.dispatch_width() > inst->exec_size)
5023 return true;
5024
5025 for (unsigned i = 0; i < inst->sources; i++) {
5026 /* If we already made a copy of the source for other reasons there won't
5027 * be any overlap with the destination.
5028 */
5029 if (needs_src_copy(lbld, inst, i))
5030 continue;
5031
5032 /* In order to keep the logic simple we emit a copy whenever the
5033 * destination region doesn't exactly match an overlapping source, which
5034 * may point at the source and destination not being aligned group by
5035 * group which could cause one of the lowered instructions to overwrite
5036 * the data read from the same source by other lowered instructions.
5037 */
5038 if (regions_overlap(inst->dst, inst->size_written,
5039 inst->src[i], inst->size_read(i)) &&
5040 !inst->dst.equals(inst->src[i]))
5041 return true;
5042 }
5043
5044 return false;
5045 }
5046
5047 /**
5048 * Insert data from a packed temporary into the channel group given by
5049 * lbld.group() of the destination region of instruction \p inst and return
5050 * the temporary as result. If any copy instructions are required they will
5051 * be emitted around the given \p inst in \p block.
5052 */
5053 static fs_reg
5054 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5055 {
5056 /* Builder of the right width to perform the copy avoiding uninitialized
5057 * data if the lowered execution size is greater than the original
5058 * execution size of the instruction.
5059 */
5060 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5061 inst->exec_size), 0);
5062
5063 /* Specified channel group from the destination region. */
5064 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5065 const unsigned dst_size = inst->size_written /
5066 inst->dst.component_size(inst->exec_size);
5067
5068 if (needs_dst_copy(lbld, inst)) {
5069 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5070
5071 if (inst->predicate) {
5072 /* Handle predication by copying the original contents of
5073 * the destination into the temporary before emitting the
5074 * lowered instruction.
5075 */
5076 for (unsigned k = 0; k < dst_size; ++k)
5077 cbld.at(block, inst)
5078 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5079 }
5080
5081 for (unsigned k = 0; k < dst_size; ++k)
5082 cbld.at(block, inst->next)
5083 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5084
5085 return tmp;
5086
5087 } else {
5088 /* No need to allocate a temporary for the lowered instruction, just
5089 * take the right group of channels from the original region.
5090 */
5091 return dst;
5092 }
5093 }
5094
5095 bool
5096 fs_visitor::lower_simd_width()
5097 {
5098 bool progress = false;
5099
5100 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5101 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5102
5103 if (lower_width != inst->exec_size) {
5104 /* Builder matching the original instruction. We may also need to
5105 * emit an instruction of width larger than the original, set the
5106 * execution size of the builder to the highest of both for now so
5107 * we're sure that both cases can be handled.
5108 */
5109 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5110 const fs_builder ibld = bld.at(block, inst)
5111 .exec_all(inst->force_writemask_all)
5112 .group(max_width, inst->group / max_width);
5113
5114 /* Split the copies in chunks of the execution width of either the
5115 * original or the lowered instruction, whichever is lower.
5116 */
5117 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5118 const unsigned dst_size = inst->size_written /
5119 inst->dst.component_size(inst->exec_size);
5120
5121 assert(!inst->writes_accumulator && !inst->mlen);
5122
5123 for (unsigned i = 0; i < n; i++) {
5124 /* Emit a copy of the original instruction with the lowered width.
5125 * If the EOT flag was set throw it away except for the last
5126 * instruction to avoid killing the thread prematurely.
5127 */
5128 fs_inst split_inst = *inst;
5129 split_inst.exec_size = lower_width;
5130 split_inst.eot = inst->eot && i == n - 1;
5131
5132 /* Select the correct channel enables for the i-th group, then
5133 * transform the sources and destination and emit the lowered
5134 * instruction.
5135 */
5136 const fs_builder lbld = ibld.group(lower_width, i);
5137
5138 for (unsigned j = 0; j < inst->sources; j++)
5139 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5140
5141 split_inst.dst = emit_zip(lbld, block, inst);
5142 split_inst.size_written =
5143 split_inst.dst.component_size(lower_width) * dst_size;
5144
5145 lbld.emit(split_inst);
5146 }
5147
5148 inst->remove(block);
5149 progress = true;
5150 }
5151 }
5152
5153 if (progress)
5154 invalidate_live_intervals();
5155
5156 return progress;
5157 }
5158
5159 void
5160 fs_visitor::dump_instructions()
5161 {
5162 dump_instructions(NULL);
5163 }
5164
5165 void
5166 fs_visitor::dump_instructions(const char *name)
5167 {
5168 FILE *file = stderr;
5169 if (name && geteuid() != 0) {
5170 file = fopen(name, "w");
5171 if (!file)
5172 file = stderr;
5173 }
5174
5175 if (cfg) {
5176 calculate_register_pressure();
5177 int ip = 0, max_pressure = 0;
5178 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5179 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5180 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5181 dump_instruction(inst, file);
5182 ip++;
5183 }
5184 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5185 } else {
5186 int ip = 0;
5187 foreach_in_list(backend_instruction, inst, &instructions) {
5188 fprintf(file, "%4d: ", ip++);
5189 dump_instruction(inst, file);
5190 }
5191 }
5192
5193 if (file != stderr) {
5194 fclose(file);
5195 }
5196 }
5197
5198 void
5199 fs_visitor::dump_instruction(backend_instruction *be_inst)
5200 {
5201 dump_instruction(be_inst, stderr);
5202 }
5203
5204 void
5205 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5206 {
5207 fs_inst *inst = (fs_inst *)be_inst;
5208
5209 if (inst->predicate) {
5210 fprintf(file, "(%cf0.%d) ",
5211 inst->predicate_inverse ? '-' : '+',
5212 inst->flag_subreg);
5213 }
5214
5215 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5216 if (inst->saturate)
5217 fprintf(file, ".sat");
5218 if (inst->conditional_mod) {
5219 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5220 if (!inst->predicate &&
5221 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5222 inst->opcode != BRW_OPCODE_IF &&
5223 inst->opcode != BRW_OPCODE_WHILE))) {
5224 fprintf(file, ".f0.%d", inst->flag_subreg);
5225 }
5226 }
5227 fprintf(file, "(%d) ", inst->exec_size);
5228
5229 if (inst->mlen) {
5230 fprintf(file, "(mlen: %d) ", inst->mlen);
5231 }
5232
5233 if (inst->eot) {
5234 fprintf(file, "(EOT) ");
5235 }
5236
5237 switch (inst->dst.file) {
5238 case VGRF:
5239 fprintf(file, "vgrf%d", inst->dst.nr);
5240 break;
5241 case FIXED_GRF:
5242 fprintf(file, "g%d", inst->dst.nr);
5243 break;
5244 case MRF:
5245 fprintf(file, "m%d", inst->dst.nr);
5246 break;
5247 case BAD_FILE:
5248 fprintf(file, "(null)");
5249 break;
5250 case UNIFORM:
5251 fprintf(file, "***u%d***", inst->dst.nr);
5252 break;
5253 case ATTR:
5254 fprintf(file, "***attr%d***", inst->dst.nr);
5255 break;
5256 case ARF:
5257 switch (inst->dst.nr) {
5258 case BRW_ARF_NULL:
5259 fprintf(file, "null");
5260 break;
5261 case BRW_ARF_ADDRESS:
5262 fprintf(file, "a0.%d", inst->dst.subnr);
5263 break;
5264 case BRW_ARF_ACCUMULATOR:
5265 fprintf(file, "acc%d", inst->dst.subnr);
5266 break;
5267 case BRW_ARF_FLAG:
5268 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5269 break;
5270 default:
5271 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5272 break;
5273 }
5274 break;
5275 case IMM:
5276 unreachable("not reached");
5277 }
5278
5279 if (inst->dst.offset ||
5280 (inst->dst.file == VGRF &&
5281 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5282 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5283 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5284 inst->dst.offset % reg_size);
5285 }
5286
5287 if (inst->dst.stride != 1)
5288 fprintf(file, "<%u>", inst->dst.stride);
5289 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5290
5291 for (int i = 0; i < inst->sources; i++) {
5292 if (inst->src[i].negate)
5293 fprintf(file, "-");
5294 if (inst->src[i].abs)
5295 fprintf(file, "|");
5296 switch (inst->src[i].file) {
5297 case VGRF:
5298 fprintf(file, "vgrf%d", inst->src[i].nr);
5299 break;
5300 case FIXED_GRF:
5301 fprintf(file, "g%d", inst->src[i].nr);
5302 break;
5303 case MRF:
5304 fprintf(file, "***m%d***", inst->src[i].nr);
5305 break;
5306 case ATTR:
5307 fprintf(file, "attr%d", inst->src[i].nr);
5308 break;
5309 case UNIFORM:
5310 fprintf(file, "u%d", inst->src[i].nr);
5311 break;
5312 case BAD_FILE:
5313 fprintf(file, "(null)");
5314 break;
5315 case IMM:
5316 switch (inst->src[i].type) {
5317 case BRW_REGISTER_TYPE_F:
5318 fprintf(file, "%-gf", inst->src[i].f);
5319 break;
5320 case BRW_REGISTER_TYPE_DF:
5321 fprintf(file, "%fdf", inst->src[i].df);
5322 break;
5323 case BRW_REGISTER_TYPE_W:
5324 case BRW_REGISTER_TYPE_D:
5325 fprintf(file, "%dd", inst->src[i].d);
5326 break;
5327 case BRW_REGISTER_TYPE_UW:
5328 case BRW_REGISTER_TYPE_UD:
5329 fprintf(file, "%uu", inst->src[i].ud);
5330 break;
5331 case BRW_REGISTER_TYPE_VF:
5332 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5333 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5334 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5335 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5336 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5337 break;
5338 default:
5339 fprintf(file, "???");
5340 break;
5341 }
5342 break;
5343 case ARF:
5344 switch (inst->src[i].nr) {
5345 case BRW_ARF_NULL:
5346 fprintf(file, "null");
5347 break;
5348 case BRW_ARF_ADDRESS:
5349 fprintf(file, "a0.%d", inst->src[i].subnr);
5350 break;
5351 case BRW_ARF_ACCUMULATOR:
5352 fprintf(file, "acc%d", inst->src[i].subnr);
5353 break;
5354 case BRW_ARF_FLAG:
5355 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5356 break;
5357 default:
5358 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5359 break;
5360 }
5361 break;
5362 }
5363
5364 if (inst->src[i].offset ||
5365 (inst->src[i].file == VGRF &&
5366 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5367 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5368 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5369 inst->src[i].offset % reg_size);
5370 }
5371
5372 if (inst->src[i].abs)
5373 fprintf(file, "|");
5374
5375 if (inst->src[i].file != IMM) {
5376 unsigned stride;
5377 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5378 unsigned hstride = inst->src[i].hstride;
5379 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5380 } else {
5381 stride = inst->src[i].stride;
5382 }
5383 if (stride != 1)
5384 fprintf(file, "<%u>", stride);
5385
5386 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5387 }
5388
5389 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5390 fprintf(file, ", ");
5391 }
5392
5393 fprintf(file, " ");
5394
5395 if (inst->force_writemask_all)
5396 fprintf(file, "NoMask ");
5397
5398 if (inst->exec_size != dispatch_width)
5399 fprintf(file, "group%d ", inst->group);
5400
5401 fprintf(file, "\n");
5402 }
5403
5404 /**
5405 * Possibly returns an instruction that set up @param reg.
5406 *
5407 * Sometimes we want to take the result of some expression/variable
5408 * dereference tree and rewrite the instruction generating the result
5409 * of the tree. When processing the tree, we know that the
5410 * instructions generated are all writing temporaries that are dead
5411 * outside of this tree. So, if we have some instructions that write
5412 * a temporary, we're free to point that temp write somewhere else.
5413 *
5414 * Note that this doesn't guarantee that the instruction generated
5415 * only reg -- it might be the size=4 destination of a texture instruction.
5416 */
5417 fs_inst *
5418 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5419 fs_inst *end,
5420 const fs_reg &reg)
5421 {
5422 if (end == start ||
5423 end->is_partial_write() ||
5424 !reg.equals(end->dst)) {
5425 return NULL;
5426 } else {
5427 return end;
5428 }
5429 }
5430
5431 void
5432 fs_visitor::setup_fs_payload_gen6()
5433 {
5434 assert(stage == MESA_SHADER_FRAGMENT);
5435 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
5436
5437 unsigned barycentric_interp_modes =
5438 (stage == MESA_SHADER_FRAGMENT) ?
5439 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
5440
5441 assert(devinfo->gen >= 6);
5442
5443 /* R0-1: masks, pixel X/Y coordinates. */
5444 payload.num_regs = 2;
5445 /* R2: only for 32-pixel dispatch.*/
5446
5447 /* R3-26: barycentric interpolation coordinates. These appear in the
5448 * same order that they appear in the brw_barycentric_mode
5449 * enum. Each set of coordinates occupies 2 registers if dispatch width
5450 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5451 * appear if they were enabled using the "Barycentric Interpolation
5452 * Mode" bits in WM_STATE.
5453 */
5454 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5455 if (barycentric_interp_modes & (1 << i)) {
5456 payload.barycentric_coord_reg[i] = payload.num_regs;
5457 payload.num_regs += 2;
5458 if (dispatch_width == 16) {
5459 payload.num_regs += 2;
5460 }
5461 }
5462 }
5463
5464 /* R27: interpolated depth if uses source depth */
5465 prog_data->uses_src_depth =
5466 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5467 if (prog_data->uses_src_depth) {
5468 payload.source_depth_reg = payload.num_regs;
5469 payload.num_regs++;
5470 if (dispatch_width == 16) {
5471 /* R28: interpolated depth if not SIMD8. */
5472 payload.num_regs++;
5473 }
5474 }
5475
5476 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5477 prog_data->uses_src_w =
5478 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5479 if (prog_data->uses_src_w) {
5480 payload.source_w_reg = payload.num_regs;
5481 payload.num_regs++;
5482 if (dispatch_width == 16) {
5483 /* R30: interpolated W if not SIMD8. */
5484 payload.num_regs++;
5485 }
5486 }
5487
5488 /* R31: MSAA position offsets. */
5489 if (prog_data->persample_dispatch &&
5490 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5491 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5492 *
5493 * "MSDISPMODE_PERSAMPLE is required in order to select
5494 * POSOFFSET_SAMPLE"
5495 *
5496 * So we can only really get sample positions if we are doing real
5497 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5498 * persample dispatch, we hard-code it to 0.5.
5499 */
5500 prog_data->uses_pos_offset = true;
5501 payload.sample_pos_reg = payload.num_regs;
5502 payload.num_regs++;
5503 }
5504
5505 /* R32: MSAA input coverage mask */
5506 prog_data->uses_sample_mask =
5507 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5508 if (prog_data->uses_sample_mask) {
5509 assert(devinfo->gen >= 7);
5510 payload.sample_mask_in_reg = payload.num_regs;
5511 payload.num_regs++;
5512 if (dispatch_width == 16) {
5513 /* R33: input coverage mask if not SIMD8. */
5514 payload.num_regs++;
5515 }
5516 }
5517
5518 /* R34-: bary for 32-pixel. */
5519 /* R58-59: interp W for 32-pixel. */
5520
5521 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5522 source_depth_to_render_target = true;
5523 }
5524 }
5525
5526 void
5527 fs_visitor::setup_vs_payload()
5528 {
5529 /* R0: thread header, R1: urb handles */
5530 payload.num_regs = 2;
5531 }
5532
5533 void
5534 fs_visitor::setup_gs_payload()
5535 {
5536 assert(stage == MESA_SHADER_GEOMETRY);
5537
5538 struct brw_gs_prog_data *gs_prog_data =
5539 (struct brw_gs_prog_data *) prog_data;
5540 struct brw_vue_prog_data *vue_prog_data =
5541 (struct brw_vue_prog_data *) prog_data;
5542
5543 /* R0: thread header, R1: output URB handles */
5544 payload.num_regs = 2;
5545
5546 if (gs_prog_data->include_primitive_id) {
5547 /* R2: Primitive ID 0..7 */
5548 payload.num_regs++;
5549 }
5550
5551 /* Use a maximum of 24 registers for push-model inputs. */
5552 const unsigned max_push_components = 24;
5553
5554 /* If pushing our inputs would take too many registers, reduce the URB read
5555 * length (which is in HWords, or 8 registers), and resort to pulling.
5556 *
5557 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5558 * have to multiply by VerticesIn to obtain the total storage requirement.
5559 */
5560 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5561 max_push_components || gs_prog_data->invocations > 1) {
5562 gs_prog_data->base.include_vue_handles = true;
5563
5564 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5565 payload.num_regs += nir->info.gs.vertices_in;
5566
5567 vue_prog_data->urb_read_length =
5568 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5569 }
5570 }
5571
5572 void
5573 fs_visitor::setup_cs_payload()
5574 {
5575 assert(devinfo->gen >= 7);
5576 payload.num_regs = 1;
5577 }
5578
5579 void
5580 fs_visitor::calculate_register_pressure()
5581 {
5582 invalidate_live_intervals();
5583 calculate_live_intervals();
5584
5585 unsigned num_instructions = 0;
5586 foreach_block(block, cfg)
5587 num_instructions += block->instructions.length();
5588
5589 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5590
5591 for (unsigned reg = 0; reg < alloc.count; reg++) {
5592 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5593 regs_live_at_ip[ip] += alloc.sizes[reg];
5594 }
5595 }
5596
5597 /**
5598 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5599 *
5600 * The needs_unlit_centroid_workaround ends up producing one of these per
5601 * channel of centroid input, so it's good to clean them up.
5602 *
5603 * An assumption here is that nothing ever modifies the dispatched pixels
5604 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5605 * dictates that anyway.
5606 */
5607 bool
5608 fs_visitor::opt_drop_redundant_mov_to_flags()
5609 {
5610 bool flag_mov_found[2] = {false};
5611 bool progress = false;
5612
5613 /* Instructions removed by this pass can only be added if this were true */
5614 if (!devinfo->needs_unlit_centroid_workaround)
5615 return false;
5616
5617 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5618 if (inst->is_control_flow()) {
5619 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5620 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5621 if (!flag_mov_found[inst->flag_subreg]) {
5622 flag_mov_found[inst->flag_subreg] = true;
5623 } else {
5624 inst->remove(block);
5625 progress = true;
5626 }
5627 } else if (inst->flags_written()) {
5628 flag_mov_found[inst->flag_subreg] = false;
5629 }
5630 }
5631
5632 return progress;
5633 }
5634
5635 void
5636 fs_visitor::optimize()
5637 {
5638 /* Start by validating the shader we currently have. */
5639 validate();
5640
5641 /* bld is the common builder object pointing at the end of the program we
5642 * used to translate it into i965 IR. For the optimization and lowering
5643 * passes coming next, any code added after the end of the program without
5644 * having explicitly called fs_builder::at() clearly points at a mistake.
5645 * Ideally optimization passes wouldn't be part of the visitor so they
5646 * wouldn't have access to bld at all, but they do, so just in case some
5647 * pass forgets to ask for a location explicitly set it to NULL here to
5648 * make it trip. The dispatch width is initialized to a bogus value to
5649 * make sure that optimizations set the execution controls explicitly to
5650 * match the code they are manipulating instead of relying on the defaults.
5651 */
5652 bld = fs_builder(this, 64);
5653
5654 assign_constant_locations();
5655 lower_constant_loads();
5656
5657 validate();
5658
5659 split_virtual_grfs();
5660 validate();
5661
5662 #define OPT(pass, args...) ({ \
5663 pass_num++; \
5664 bool this_progress = pass(args); \
5665 \
5666 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5667 char filename[64]; \
5668 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5669 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5670 \
5671 backend_shader::dump_instructions(filename); \
5672 } \
5673 \
5674 validate(); \
5675 \
5676 progress = progress || this_progress; \
5677 this_progress; \
5678 })
5679
5680 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5681 char filename[64];
5682 snprintf(filename, 64, "%s%d-%s-00-00-start",
5683 stage_abbrev, dispatch_width, nir->info.name);
5684
5685 backend_shader::dump_instructions(filename);
5686 }
5687
5688 bool progress = false;
5689 int iteration = 0;
5690 int pass_num = 0;
5691
5692 OPT(opt_drop_redundant_mov_to_flags);
5693
5694 do {
5695 progress = false;
5696 pass_num = 0;
5697 iteration++;
5698
5699 OPT(remove_duplicate_mrf_writes);
5700
5701 OPT(opt_algebraic);
5702 OPT(opt_cse);
5703 OPT(opt_copy_propagate);
5704 OPT(opt_predicated_break, this);
5705 OPT(opt_cmod_propagation);
5706 OPT(dead_code_eliminate);
5707 OPT(opt_peephole_sel);
5708 OPT(dead_control_flow_eliminate, this);
5709 OPT(opt_register_renaming);
5710 OPT(opt_saturate_propagation);
5711 OPT(register_coalesce);
5712 OPT(compute_to_mrf);
5713 OPT(eliminate_find_live_channel);
5714
5715 OPT(compact_virtual_grfs);
5716 } while (progress);
5717
5718 progress = false;
5719 pass_num = 0;
5720
5721 if (OPT(lower_pack)) {
5722 OPT(register_coalesce);
5723 OPT(dead_code_eliminate);
5724 }
5725
5726 if (OPT(lower_d2x)) {
5727 OPT(opt_copy_propagate);
5728 OPT(dead_code_eliminate);
5729 }
5730
5731 OPT(lower_simd_width);
5732
5733 /* After SIMD lowering just in case we had to unroll the EOT send. */
5734 OPT(opt_sampler_eot);
5735
5736 OPT(lower_logical_sends);
5737
5738 if (progress) {
5739 OPT(opt_copy_propagate);
5740 /* Only run after logical send lowering because it's easier to implement
5741 * in terms of physical sends.
5742 */
5743 if (OPT(opt_zero_samples))
5744 OPT(opt_copy_propagate);
5745 /* Run after logical send lowering to give it a chance to CSE the
5746 * LOAD_PAYLOAD instructions created to construct the payloads of
5747 * e.g. texturing messages in cases where it wasn't possible to CSE the
5748 * whole logical instruction.
5749 */
5750 OPT(opt_cse);
5751 OPT(register_coalesce);
5752 OPT(compute_to_mrf);
5753 OPT(dead_code_eliminate);
5754 OPT(remove_duplicate_mrf_writes);
5755 OPT(opt_peephole_sel);
5756 }
5757
5758 OPT(opt_redundant_discard_jumps);
5759
5760 if (OPT(lower_load_payload)) {
5761 split_virtual_grfs();
5762 OPT(register_coalesce);
5763 OPT(compute_to_mrf);
5764 OPT(dead_code_eliminate);
5765 }
5766
5767 OPT(opt_combine_constants);
5768 OPT(lower_integer_multiplication);
5769
5770 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5771 OPT(opt_cmod_propagation);
5772 OPT(opt_cse);
5773 OPT(opt_copy_propagate);
5774 OPT(dead_code_eliminate);
5775 }
5776
5777 lower_uniform_pull_constant_loads();
5778
5779 validate();
5780 }
5781
5782 /**
5783 * Three source instruction must have a GRF/MRF destination register.
5784 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5785 */
5786 void
5787 fs_visitor::fixup_3src_null_dest()
5788 {
5789 bool progress = false;
5790
5791 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5792 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5793 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5794 inst->dst.type);
5795 progress = true;
5796 }
5797 }
5798
5799 if (progress)
5800 invalidate_live_intervals();
5801 }
5802
5803 void
5804 fs_visitor::allocate_registers(bool allow_spilling)
5805 {
5806 bool allocated_without_spills;
5807
5808 static const enum instruction_scheduler_mode pre_modes[] = {
5809 SCHEDULE_PRE,
5810 SCHEDULE_PRE_NON_LIFO,
5811 SCHEDULE_PRE_LIFO,
5812 };
5813
5814 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5815
5816 /* Try each scheduling heuristic to see if it can successfully register
5817 * allocate without spilling. They should be ordered by decreasing
5818 * performance but increasing likelihood of allocating.
5819 */
5820 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5821 schedule_instructions(pre_modes[i]);
5822
5823 if (0) {
5824 assign_regs_trivial();
5825 allocated_without_spills = true;
5826 } else {
5827 allocated_without_spills = assign_regs(false, spill_all);
5828 }
5829 if (allocated_without_spills)
5830 break;
5831 }
5832
5833 if (!allocated_without_spills) {
5834 if (!allow_spilling)
5835 fail("Failure to register allocate and spilling is not allowed.");
5836
5837 /* We assume that any spilling is worse than just dropping back to
5838 * SIMD8. There's probably actually some intermediate point where
5839 * SIMD16 with a couple of spills is still better.
5840 */
5841 if (dispatch_width > min_dispatch_width) {
5842 fail("Failure to register allocate. Reduce number of "
5843 "live scalar values to avoid this.");
5844 } else {
5845 compiler->shader_perf_log(log_data,
5846 "%s shader triggered register spilling. "
5847 "Try reducing the number of live scalar "
5848 "values to improve performance.\n",
5849 stage_name);
5850 }
5851
5852 /* Since we're out of heuristics, just go spill registers until we
5853 * get an allocation.
5854 */
5855 while (!assign_regs(true, spill_all)) {
5856 if (failed)
5857 break;
5858 }
5859 }
5860
5861 /* This must come after all optimization and register allocation, since
5862 * it inserts dead code that happens to have side effects, and it does
5863 * so based on the actual physical registers in use.
5864 */
5865 insert_gen4_send_dependency_workarounds();
5866
5867 if (failed)
5868 return;
5869
5870 schedule_instructions(SCHEDULE_POST);
5871
5872 if (last_scratch > 0) {
5873 unsigned max_scratch_size = 2 * 1024 * 1024;
5874
5875 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5876
5877 if (stage == MESA_SHADER_COMPUTE) {
5878 if (devinfo->is_haswell) {
5879 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5880 * field documentation, Haswell supports a minimum of 2kB of
5881 * scratch space for compute shaders, unlike every other stage
5882 * and platform.
5883 */
5884 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5885 } else if (devinfo->gen <= 7) {
5886 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5887 * field documentation, platforms prior to Haswell measure scratch
5888 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5889 */
5890 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5891 max_scratch_size = 12 * 1024;
5892 }
5893 }
5894
5895 /* We currently only support up to 2MB of scratch space. If we
5896 * need to support more eventually, the documentation suggests
5897 * that we could allocate a larger buffer, and partition it out
5898 * ourselves. We'd just have to undo the hardware's address
5899 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5900 * and then add FFTID * (Larger Per Thread Scratch Space).
5901 *
5902 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5903 * Thread Group Tracking > Local Memory/Scratch Space.
5904 */
5905 assert(prog_data->total_scratch < max_scratch_size);
5906 }
5907 }
5908
5909 bool
5910 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5911 {
5912 assert(stage == MESA_SHADER_VERTEX);
5913
5914 setup_vs_payload();
5915
5916 if (shader_time_index >= 0)
5917 emit_shader_time_begin();
5918
5919 emit_nir_code();
5920
5921 if (failed)
5922 return false;
5923
5924 compute_clip_distance(clip_planes);
5925
5926 emit_urb_writes();
5927
5928 if (shader_time_index >= 0)
5929 emit_shader_time_end();
5930
5931 calculate_cfg();
5932
5933 optimize();
5934
5935 assign_curb_setup();
5936 assign_vs_urb_setup();
5937
5938 fixup_3src_null_dest();
5939 allocate_registers(true);
5940
5941 return !failed;
5942 }
5943
5944 bool
5945 fs_visitor::run_tcs_single_patch()
5946 {
5947 assert(stage == MESA_SHADER_TESS_CTRL);
5948
5949 struct brw_tcs_prog_data *tcs_prog_data =
5950 (struct brw_tcs_prog_data *) prog_data;
5951
5952 /* r1-r4 contain the ICP handles. */
5953 payload.num_regs = 5;
5954
5955 if (shader_time_index >= 0)
5956 emit_shader_time_begin();
5957
5958 /* Initialize gl_InvocationID */
5959 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5960 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5961 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5962 bld.MOV(channels_ud, channels_uw);
5963
5964 if (tcs_prog_data->instances == 1) {
5965 invocation_id = channels_ud;
5966 } else {
5967 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5968
5969 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5970 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5971 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5972 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5973 brw_imm_ud(INTEL_MASK(23, 17)));
5974 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5975
5976 bld.ADD(invocation_id, instance_times_8, channels_ud);
5977 }
5978
5979 /* Fix the disptach mask */
5980 if (nir->info.tcs.vertices_out % 8) {
5981 bld.CMP(bld.null_reg_ud(), invocation_id,
5982 brw_imm_ud(nir->info.tcs.vertices_out), BRW_CONDITIONAL_L);
5983 bld.IF(BRW_PREDICATE_NORMAL);
5984 }
5985
5986 emit_nir_code();
5987
5988 if (nir->info.tcs.vertices_out % 8) {
5989 bld.emit(BRW_OPCODE_ENDIF);
5990 }
5991
5992 /* Emit EOT write; set TR DS Cache bit */
5993 fs_reg srcs[3] = {
5994 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5995 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5996 fs_reg(brw_imm_ud(0)),
5997 };
5998 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5999 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6000
6001 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6002 bld.null_reg_ud(), payload);
6003 inst->mlen = 3;
6004 inst->eot = true;
6005
6006 if (shader_time_index >= 0)
6007 emit_shader_time_end();
6008
6009 if (failed)
6010 return false;
6011
6012 calculate_cfg();
6013
6014 optimize();
6015
6016 assign_curb_setup();
6017 assign_tcs_single_patch_urb_setup();
6018
6019 fixup_3src_null_dest();
6020 allocate_registers(true);
6021
6022 return !failed;
6023 }
6024
6025 bool
6026 fs_visitor::run_tes()
6027 {
6028 assert(stage == MESA_SHADER_TESS_EVAL);
6029
6030 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6031 payload.num_regs = 5;
6032
6033 if (shader_time_index >= 0)
6034 emit_shader_time_begin();
6035
6036 emit_nir_code();
6037
6038 if (failed)
6039 return false;
6040
6041 emit_urb_writes();
6042
6043 if (shader_time_index >= 0)
6044 emit_shader_time_end();
6045
6046 calculate_cfg();
6047
6048 optimize();
6049
6050 assign_curb_setup();
6051 assign_tes_urb_setup();
6052
6053 fixup_3src_null_dest();
6054 allocate_registers(true);
6055
6056 return !failed;
6057 }
6058
6059 bool
6060 fs_visitor::run_gs()
6061 {
6062 assert(stage == MESA_SHADER_GEOMETRY);
6063
6064 setup_gs_payload();
6065
6066 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6067
6068 if (gs_compile->control_data_header_size_bits > 0) {
6069 /* Create a VGRF to store accumulated control data bits. */
6070 this->control_data_bits = vgrf(glsl_type::uint_type);
6071
6072 /* If we're outputting more than 32 control data bits, then EmitVertex()
6073 * will set control_data_bits to 0 after emitting the first vertex.
6074 * Otherwise, we need to initialize it to 0 here.
6075 */
6076 if (gs_compile->control_data_header_size_bits <= 32) {
6077 const fs_builder abld = bld.annotate("initialize control data bits");
6078 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6079 }
6080 }
6081
6082 if (shader_time_index >= 0)
6083 emit_shader_time_begin();
6084
6085 emit_nir_code();
6086
6087 emit_gs_thread_end();
6088
6089 if (shader_time_index >= 0)
6090 emit_shader_time_end();
6091
6092 if (failed)
6093 return false;
6094
6095 calculate_cfg();
6096
6097 optimize();
6098
6099 assign_curb_setup();
6100 assign_gs_urb_setup();
6101
6102 fixup_3src_null_dest();
6103 allocate_registers(true);
6104
6105 return !failed;
6106 }
6107
6108 bool
6109 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6110 {
6111 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
6112 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6113
6114 assert(stage == MESA_SHADER_FRAGMENT);
6115
6116 if (devinfo->gen >= 6)
6117 setup_fs_payload_gen6();
6118 else
6119 setup_fs_payload_gen4();
6120
6121 if (0) {
6122 emit_dummy_fs();
6123 } else if (do_rep_send) {
6124 assert(dispatch_width == 16);
6125 emit_repclear_shader();
6126 } else {
6127 if (shader_time_index >= 0)
6128 emit_shader_time_begin();
6129
6130 calculate_urb_setup();
6131 if (nir->info.inputs_read > 0 ||
6132 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6133 if (devinfo->gen < 6)
6134 emit_interpolation_setup_gen4();
6135 else
6136 emit_interpolation_setup_gen6();
6137 }
6138
6139 /* We handle discards by keeping track of the still-live pixels in f0.1.
6140 * Initialize it with the dispatched pixels.
6141 */
6142 if (wm_prog_data->uses_kill) {
6143 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6144 discard_init->flag_subreg = 1;
6145 }
6146
6147 /* Generate FS IR for main(). (the visitor only descends into
6148 * functions called "main").
6149 */
6150 emit_nir_code();
6151
6152 if (failed)
6153 return false;
6154
6155 if (wm_prog_data->uses_kill)
6156 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6157
6158 if (wm_key->alpha_test_func)
6159 emit_alpha_test();
6160
6161 emit_fb_writes();
6162
6163 if (shader_time_index >= 0)
6164 emit_shader_time_end();
6165
6166 calculate_cfg();
6167
6168 optimize();
6169
6170 assign_curb_setup();
6171 assign_urb_setup();
6172
6173 fixup_3src_null_dest();
6174 allocate_registers(allow_spilling);
6175
6176 if (failed)
6177 return false;
6178 }
6179
6180 return !failed;
6181 }
6182
6183 bool
6184 fs_visitor::run_cs()
6185 {
6186 assert(stage == MESA_SHADER_COMPUTE);
6187
6188 setup_cs_payload();
6189
6190 if (shader_time_index >= 0)
6191 emit_shader_time_begin();
6192
6193 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6194 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6195 const fs_builder abld = bld.exec_all().group(1, 0);
6196 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6197 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6198 }
6199
6200 emit_nir_code();
6201
6202 if (failed)
6203 return false;
6204
6205 emit_cs_terminate();
6206
6207 if (shader_time_index >= 0)
6208 emit_shader_time_end();
6209
6210 calculate_cfg();
6211
6212 optimize();
6213
6214 assign_curb_setup();
6215
6216 fixup_3src_null_dest();
6217 allocate_registers(true);
6218
6219 if (failed)
6220 return false;
6221
6222 return !failed;
6223 }
6224
6225 /**
6226 * Return a bitfield where bit n is set if barycentric interpolation mode n
6227 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6228 *
6229 * We examine the load_barycentric intrinsics rather than looking at input
6230 * variables so that we catch interpolateAtCentroid() messages too, which
6231 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6232 */
6233 static unsigned
6234 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6235 const nir_shader *shader)
6236 {
6237 unsigned barycentric_interp_modes = 0;
6238
6239 nir_foreach_function(f, shader) {
6240 if (!f->impl)
6241 continue;
6242
6243 nir_foreach_block(block, f->impl) {
6244 nir_foreach_instr(instr, block) {
6245 if (instr->type != nir_instr_type_intrinsic)
6246 continue;
6247
6248 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6249 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6250 continue;
6251
6252 /* Ignore WPOS; it doesn't require interpolation. */
6253 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6254 continue;
6255
6256 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6257 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6258 nir_intrinsic_interp_mode(intrin);
6259 nir_intrinsic_op bary_op = intrin->intrinsic;
6260 enum brw_barycentric_mode bary =
6261 brw_barycentric_mode(interp, bary_op);
6262
6263 barycentric_interp_modes |= 1 << bary;
6264
6265 if (devinfo->needs_unlit_centroid_workaround &&
6266 bary_op == nir_intrinsic_load_barycentric_centroid)
6267 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6268 }
6269 }
6270 }
6271
6272 return barycentric_interp_modes;
6273 }
6274
6275 static void
6276 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6277 const nir_shader *shader)
6278 {
6279 prog_data->flat_inputs = 0;
6280
6281 nir_foreach_variable(var, &shader->inputs) {
6282 int input_index = prog_data->urb_setup[var->data.location];
6283
6284 if (input_index < 0)
6285 continue;
6286
6287 /* flat shading */
6288 if (var->data.interpolation == INTERP_MODE_FLAT)
6289 prog_data->flat_inputs |= (1 << input_index);
6290 }
6291 }
6292
6293 static uint8_t
6294 computed_depth_mode(const nir_shader *shader)
6295 {
6296 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6297 switch (shader->info.fs.depth_layout) {
6298 case FRAG_DEPTH_LAYOUT_NONE:
6299 case FRAG_DEPTH_LAYOUT_ANY:
6300 return BRW_PSCDEPTH_ON;
6301 case FRAG_DEPTH_LAYOUT_GREATER:
6302 return BRW_PSCDEPTH_ON_GE;
6303 case FRAG_DEPTH_LAYOUT_LESS:
6304 return BRW_PSCDEPTH_ON_LE;
6305 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6306 return BRW_PSCDEPTH_OFF;
6307 }
6308 }
6309 return BRW_PSCDEPTH_OFF;
6310 }
6311
6312 /**
6313 * Move load_interpolated_input with simple (payload-based) barycentric modes
6314 * to the top of the program so we don't emit multiple PLNs for the same input.
6315 *
6316 * This works around CSE not being able to handle non-dominating cases
6317 * such as:
6318 *
6319 * if (...) {
6320 * interpolate input
6321 * } else {
6322 * interpolate the same exact input
6323 * }
6324 *
6325 * This should be replaced by global value numbering someday.
6326 */
6327 void
6328 move_interpolation_to_top(nir_shader *nir)
6329 {
6330 nir_foreach_function(f, nir) {
6331 if (!f->impl)
6332 continue;
6333
6334 nir_block *top = nir_start_block(f->impl);
6335 exec_node *cursor_node = NULL;
6336
6337 nir_foreach_block(block, f->impl) {
6338 if (block == top)
6339 continue;
6340
6341 nir_foreach_instr_safe(instr, block) {
6342 if (instr->type != nir_instr_type_intrinsic)
6343 continue;
6344
6345 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6346 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6347 continue;
6348 nir_intrinsic_instr *bary_intrinsic =
6349 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6350 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6351
6352 /* Leave interpolateAtSample/Offset() where they are. */
6353 if (op == nir_intrinsic_load_barycentric_at_sample ||
6354 op == nir_intrinsic_load_barycentric_at_offset)
6355 continue;
6356
6357 nir_instr *move[3] = {
6358 &bary_intrinsic->instr,
6359 intrin->src[1].ssa->parent_instr,
6360 instr
6361 };
6362
6363 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6364 if (move[i]->block != top) {
6365 move[i]->block = top;
6366 exec_node_remove(&move[i]->node);
6367 if (cursor_node) {
6368 exec_node_insert_after(cursor_node, &move[i]->node);
6369 } else {
6370 exec_list_push_head(&top->instr_list, &move[i]->node);
6371 }
6372 cursor_node = &move[i]->node;
6373 }
6374 }
6375 }
6376 }
6377 nir_metadata_preserve(f->impl, (nir_metadata)
6378 ((unsigned) nir_metadata_block_index |
6379 (unsigned) nir_metadata_dominance));
6380 }
6381 }
6382
6383 /**
6384 * Demote per-sample barycentric intrinsics to centroid.
6385 *
6386 * Useful when rendering to a non-multisampled buffer.
6387 */
6388 static void
6389 demote_sample_qualifiers(nir_shader *nir)
6390 {
6391 nir_foreach_function(f, nir) {
6392 if (!f->impl)
6393 continue;
6394
6395 nir_builder b;
6396 nir_builder_init(&b, f->impl);
6397
6398 nir_foreach_block(block, f->impl) {
6399 nir_foreach_instr_safe(instr, block) {
6400 if (instr->type != nir_instr_type_intrinsic)
6401 continue;
6402
6403 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6404 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6405 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6406 continue;
6407
6408 b.cursor = nir_before_instr(instr);
6409 nir_ssa_def *centroid =
6410 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6411 nir_intrinsic_interp_mode(intrin));
6412 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6413 nir_src_for_ssa(centroid));
6414 nir_instr_remove(instr);
6415 }
6416 }
6417
6418 nir_metadata_preserve(f->impl, (nir_metadata)
6419 ((unsigned) nir_metadata_block_index |
6420 (unsigned) nir_metadata_dominance));
6421 }
6422 }
6423
6424 const unsigned *
6425 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6426 void *mem_ctx,
6427 const struct brw_wm_prog_key *key,
6428 struct brw_wm_prog_data *prog_data,
6429 const nir_shader *src_shader,
6430 struct gl_program *prog,
6431 int shader_time_index8, int shader_time_index16,
6432 bool allow_spilling,
6433 bool use_rep_send,
6434 unsigned *final_assembly_size,
6435 char **error_str)
6436 {
6437 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6438 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6439 true);
6440 brw_nir_lower_fs_inputs(shader, compiler->devinfo, key);
6441 brw_nir_lower_fs_outputs(shader);
6442 if (!key->multisample_fbo)
6443 NIR_PASS_V(shader, demote_sample_qualifiers);
6444 NIR_PASS_V(shader, move_interpolation_to_top);
6445 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6446
6447 /* key->alpha_test_func means simulating alpha testing via discards,
6448 * so the shader definitely kills pixels.
6449 */
6450 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
6451 prog_data->uses_omask = key->multisample_fbo &&
6452 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6453 prog_data->computed_depth_mode = computed_depth_mode(shader);
6454 prog_data->computed_stencil =
6455 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6456
6457 prog_data->persample_dispatch =
6458 key->multisample_fbo &&
6459 (key->persample_interp ||
6460 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6461 SYSTEM_BIT_SAMPLE_POS)) ||
6462 shader->info.fs.uses_sample_qualifier ||
6463 shader->info.outputs_read);
6464
6465 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6466
6467 prog_data->barycentric_interp_modes =
6468 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6469
6470 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6471 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6472 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6473
6474 fs_visitor v8(compiler, log_data, mem_ctx, key,
6475 &prog_data->base, prog, shader, 8,
6476 shader_time_index8);
6477 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6478 if (error_str)
6479 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6480
6481 return NULL;
6482 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6483 simd8_cfg = v8.cfg;
6484 simd8_grf_start = v8.payload.num_regs;
6485 simd8_grf_used = v8.grf_used;
6486 }
6487
6488 if (v8.max_dispatch_width >= 16 &&
6489 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6490 /* Try a SIMD16 compile */
6491 fs_visitor v16(compiler, log_data, mem_ctx, key,
6492 &prog_data->base, prog, shader, 16,
6493 shader_time_index16);
6494 v16.import_uniforms(&v8);
6495 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6496 compiler->shader_perf_log(log_data,
6497 "SIMD16 shader failed to compile: %s",
6498 v16.fail_msg);
6499 } else {
6500 simd16_cfg = v16.cfg;
6501 simd16_grf_start = v16.payload.num_regs;
6502 simd16_grf_used = v16.grf_used;
6503 }
6504 }
6505
6506 /* When the caller requests a repclear shader, they want SIMD16-only */
6507 if (use_rep_send)
6508 simd8_cfg = NULL;
6509
6510 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6511 * at the top to select the shader. We've never implemented that.
6512 * Instead, we just give them exactly one shader and we pick the widest one
6513 * available.
6514 */
6515 if (compiler->devinfo->gen < 5 && simd16_cfg)
6516 simd8_cfg = NULL;
6517
6518 if (prog_data->persample_dispatch) {
6519 /* Starting with SandyBridge (where we first get MSAA), the different
6520 * pixel dispatch combinations are grouped into classifications A
6521 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6522 * generations, the only configurations supporting persample dispatch
6523 * are are this in which only one dispatch width is enabled.
6524 *
6525 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6526 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6527 */
6528 if (compiler->devinfo->gen == 6 &&
6529 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6530 simd16_cfg = NULL;
6531 } else if (simd16_cfg) {
6532 simd8_cfg = NULL;
6533 }
6534 }
6535
6536 /* We have to compute the flat inputs after the visitor is finished running
6537 * because it relies on prog_data->urb_setup which is computed in
6538 * fs_visitor::calculate_urb_setup().
6539 */
6540 brw_compute_flat_inputs(prog_data, shader);
6541
6542 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6543 v8.promoted_constants, v8.runtime_check_aads_emit,
6544 MESA_SHADER_FRAGMENT);
6545
6546 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6547 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6548 shader->info.label ? shader->info.label :
6549 "unnamed",
6550 shader->info.name));
6551 }
6552
6553 if (simd8_cfg) {
6554 prog_data->dispatch_8 = true;
6555 g.generate_code(simd8_cfg, 8);
6556 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6557 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6558
6559 if (simd16_cfg) {
6560 prog_data->dispatch_16 = true;
6561 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6562 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6563 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6564 }
6565 } else if (simd16_cfg) {
6566 prog_data->dispatch_16 = true;
6567 g.generate_code(simd16_cfg, 16);
6568 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6569 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6570 }
6571
6572 return g.get_assembly(final_assembly_size);
6573 }
6574
6575 fs_reg *
6576 fs_visitor::emit_cs_work_group_id_setup()
6577 {
6578 assert(stage == MESA_SHADER_COMPUTE);
6579
6580 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6581
6582 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6583 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6584 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6585
6586 bld.MOV(*reg, r0_1);
6587 bld.MOV(offset(*reg, bld, 1), r0_6);
6588 bld.MOV(offset(*reg, bld, 2), r0_7);
6589
6590 return reg;
6591 }
6592
6593 static void
6594 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6595 {
6596 block->dwords = dwords;
6597 block->regs = DIV_ROUND_UP(dwords, 8);
6598 block->size = block->regs * 32;
6599 }
6600
6601 static void
6602 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6603 struct brw_cs_prog_data *cs_prog_data)
6604 {
6605 const struct brw_stage_prog_data *prog_data =
6606 (struct brw_stage_prog_data*) cs_prog_data;
6607 bool fill_thread_id =
6608 cs_prog_data->thread_local_id_index >= 0 &&
6609 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6610 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6611
6612 /* The thread ID should be stored in the last param dword */
6613 assert(prog_data->nr_params > 0 || !fill_thread_id);
6614 assert(!fill_thread_id ||
6615 cs_prog_data->thread_local_id_index ==
6616 (int)prog_data->nr_params - 1);
6617
6618 unsigned cross_thread_dwords, per_thread_dwords;
6619 if (!cross_thread_supported) {
6620 cross_thread_dwords = 0u;
6621 per_thread_dwords = prog_data->nr_params;
6622 } else if (fill_thread_id) {
6623 /* Fill all but the last register with cross-thread payload */
6624 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6625 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6626 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6627 } else {
6628 /* Fill all data using cross-thread payload */
6629 cross_thread_dwords = prog_data->nr_params;
6630 per_thread_dwords = 0u;
6631 }
6632
6633 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6634 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6635
6636 unsigned total_dwords =
6637 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6638 cs_prog_data->push.cross_thread.size) / 4;
6639 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6640
6641 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6642 cs_prog_data->push.per_thread.size == 0);
6643 assert(cs_prog_data->push.cross_thread.dwords +
6644 cs_prog_data->push.per_thread.dwords ==
6645 prog_data->nr_params);
6646 }
6647
6648 static void
6649 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6650 {
6651 cs_prog_data->simd_size = size;
6652 unsigned group_size = cs_prog_data->local_size[0] *
6653 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6654 cs_prog_data->threads = (group_size + size - 1) / size;
6655 }
6656
6657 const unsigned *
6658 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6659 void *mem_ctx,
6660 const struct brw_cs_prog_key *key,
6661 struct brw_cs_prog_data *prog_data,
6662 const nir_shader *src_shader,
6663 int shader_time_index,
6664 unsigned *final_assembly_size,
6665 char **error_str)
6666 {
6667 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6668 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6669 true);
6670 brw_nir_lower_cs_shared(shader);
6671 prog_data->base.total_shared += shader->num_shared;
6672
6673 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6674 * the thread_local_id_index.
6675 */
6676 assert(prog_data->thread_local_id_index >= 0);
6677 shader->num_uniforms =
6678 MAX2(shader->num_uniforms,
6679 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6680
6681 brw_nir_lower_intrinsics(shader, &prog_data->base);
6682 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6683
6684 prog_data->local_size[0] = shader->info.cs.local_size[0];
6685 prog_data->local_size[1] = shader->info.cs.local_size[1];
6686 prog_data->local_size[2] = shader->info.cs.local_size[2];
6687 unsigned local_workgroup_size =
6688 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6689 shader->info.cs.local_size[2];
6690
6691 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6692 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6693
6694 cfg_t *cfg = NULL;
6695 const char *fail_msg = NULL;
6696
6697 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6698 */
6699 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6700 NULL, /* Never used in core profile */
6701 shader, 8, shader_time_index);
6702 if (simd_required <= 8) {
6703 if (!v8.run_cs()) {
6704 fail_msg = v8.fail_msg;
6705 } else {
6706 cfg = v8.cfg;
6707 cs_set_simd_size(prog_data, 8);
6708 cs_fill_push_const_info(compiler->devinfo, prog_data);
6709 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6710 }
6711 }
6712
6713 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6714 NULL, /* Never used in core profile */
6715 shader, 16, shader_time_index);
6716 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6717 !fail_msg && v8.max_dispatch_width >= 16 &&
6718 simd_required <= 16) {
6719 /* Try a SIMD16 compile */
6720 if (simd_required <= 8)
6721 v16.import_uniforms(&v8);
6722 if (!v16.run_cs()) {
6723 compiler->shader_perf_log(log_data,
6724 "SIMD16 shader failed to compile: %s",
6725 v16.fail_msg);
6726 if (!cfg) {
6727 fail_msg =
6728 "Couldn't generate SIMD16 program and not "
6729 "enough threads for SIMD8";
6730 }
6731 } else {
6732 cfg = v16.cfg;
6733 cs_set_simd_size(prog_data, 16);
6734 cs_fill_push_const_info(compiler->devinfo, prog_data);
6735 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6736 }
6737 }
6738
6739 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6740 NULL, /* Never used in core profile */
6741 shader, 32, shader_time_index);
6742 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6743 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6744 /* Try a SIMD32 compile */
6745 if (simd_required <= 8)
6746 v32.import_uniforms(&v8);
6747 else if (simd_required <= 16)
6748 v32.import_uniforms(&v16);
6749
6750 if (!v32.run_cs()) {
6751 compiler->shader_perf_log(log_data,
6752 "SIMD32 shader failed to compile: %s",
6753 v16.fail_msg);
6754 if (!cfg) {
6755 fail_msg =
6756 "Couldn't generate SIMD32 program and not "
6757 "enough threads for SIMD16";
6758 }
6759 } else {
6760 cfg = v32.cfg;
6761 cs_set_simd_size(prog_data, 32);
6762 cs_fill_push_const_info(compiler->devinfo, prog_data);
6763 }
6764 }
6765
6766 if (unlikely(cfg == NULL)) {
6767 assert(fail_msg);
6768 if (error_str)
6769 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6770
6771 return NULL;
6772 }
6773
6774 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6775 v8.promoted_constants, v8.runtime_check_aads_emit,
6776 MESA_SHADER_COMPUTE);
6777 if (INTEL_DEBUG & DEBUG_CS) {
6778 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6779 shader->info.label ? shader->info.label :
6780 "unnamed",
6781 shader->info.name);
6782 g.enable_debug(name);
6783 }
6784
6785 g.generate_code(cfg, prog_data->simd_size);
6786
6787 return g.get_assembly(final_assembly_size);
6788 }
6789
6790 /**
6791 * Test the dispatch mask packing assumptions of
6792 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6793 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6794 * executed with an unexpected dispatch mask.
6795 */
6796 static UNUSED void
6797 brw_fs_test_dispatch_packing(const fs_builder &bld)
6798 {
6799 const gl_shader_stage stage = bld.shader->stage;
6800
6801 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6802 bld.shader->stage_prog_data)) {
6803 const fs_builder ubld = bld.exec_all().group(1, 0);
6804 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6805 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6806 brw_dmask_reg());
6807
6808 ubld.ADD(tmp, mask, brw_imm_ud(1));
6809 ubld.AND(tmp, mask, tmp);
6810
6811 /* This will loop forever if the dispatch mask doesn't have the expected
6812 * form '2^n-1', in which case tmp will be non-zero.
6813 */
6814 bld.emit(BRW_OPCODE_DO);
6815 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6816 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6817 }
6818 }