i965/fs: Simplify a bunch of fs_inst::size_written calculations by using component_si...
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable
176 * offset and a portion done using reg_offset, which means that if you
177 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
178 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
179 * CSE can later notice that those loads are all the same and eliminate
180 * the redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 fs_reg &
439 fs_reg::set_smear(unsigned subreg)
440 {
441 assert(file != ARF && file != FIXED_GRF && file != IMM);
442 offset = ROUND_DOWN_TO(offset, REG_SIZE) + subreg * type_sz(type);
443 stride = 0;
444 return *this;
445 }
446
447 bool
448 fs_reg::is_contiguous() const
449 {
450 return stride == 1;
451 }
452
453 unsigned
454 fs_reg::component_size(unsigned width) const
455 {
456 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
457 hstride == 0 ? 0 :
458 1 << (hstride - 1));
459 return MAX2(width * stride, 1) * type_sz(type);
460 }
461
462 extern "C" int
463 type_size_scalar(const struct glsl_type *type)
464 {
465 unsigned int size, i;
466
467 switch (type->base_type) {
468 case GLSL_TYPE_UINT:
469 case GLSL_TYPE_INT:
470 case GLSL_TYPE_FLOAT:
471 case GLSL_TYPE_BOOL:
472 return type->components();
473 case GLSL_TYPE_DOUBLE:
474 return type->components() * 2;
475 case GLSL_TYPE_ARRAY:
476 return type_size_scalar(type->fields.array) * type->length;
477 case GLSL_TYPE_STRUCT:
478 size = 0;
479 for (i = 0; i < type->length; i++) {
480 size += type_size_scalar(type->fields.structure[i].type);
481 }
482 return size;
483 case GLSL_TYPE_SAMPLER:
484 /* Samplers take up no register space, since they're baked in at
485 * link time.
486 */
487 return 0;
488 case GLSL_TYPE_ATOMIC_UINT:
489 return 0;
490 case GLSL_TYPE_SUBROUTINE:
491 return 1;
492 case GLSL_TYPE_IMAGE:
493 return BRW_IMAGE_PARAM_SIZE;
494 case GLSL_TYPE_VOID:
495 case GLSL_TYPE_ERROR:
496 case GLSL_TYPE_INTERFACE:
497 case GLSL_TYPE_FUNCTION:
498 unreachable("not reached");
499 }
500
501 return 0;
502 }
503
504 /**
505 * Returns the number of scalar components needed to store type, assuming
506 * that vectors are padded out to vec4.
507 *
508 * This has the packing rules of type_size_vec4(), but counts components
509 * similar to type_size_scalar().
510 */
511 extern "C" int
512 type_size_vec4_times_4(const struct glsl_type *type)
513 {
514 return 4 * type_size_vec4(type);
515 }
516
517 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
518 * except for double-precision types, which are loaded as one dvec4.
519 */
520 extern "C" int
521 type_size_vs_input(const struct glsl_type *type)
522 {
523 if (type->is_double()) {
524 return type_size_dvec4(type);
525 } else {
526 return type_size_vec4(type);
527 }
528 }
529
530 /**
531 * Create a MOV to read the timestamp register.
532 *
533 * The caller is responsible for emitting the MOV. The return value is
534 * the destination of the MOV, with extra parameters set.
535 */
536 fs_reg
537 fs_visitor::get_timestamp(const fs_builder &bld)
538 {
539 assert(devinfo->gen >= 7);
540
541 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
542 BRW_ARF_TIMESTAMP,
543 0),
544 BRW_REGISTER_TYPE_UD));
545
546 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
547
548 /* We want to read the 3 fields we care about even if it's not enabled in
549 * the dispatch.
550 */
551 bld.group(4, 0).exec_all().MOV(dst, ts);
552
553 return dst;
554 }
555
556 void
557 fs_visitor::emit_shader_time_begin()
558 {
559 shader_start_time = get_timestamp(bld.annotate("shader time start"));
560
561 /* We want only the low 32 bits of the timestamp. Since it's running
562 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
563 * which is plenty of time for our purposes. It is identical across the
564 * EUs, but since it's tracking GPU core speed it will increment at a
565 * varying rate as render P-states change.
566 */
567 shader_start_time.set_smear(0);
568 }
569
570 void
571 fs_visitor::emit_shader_time_end()
572 {
573 /* Insert our code just before the final SEND with EOT. */
574 exec_node *end = this->instructions.get_tail();
575 assert(end && ((fs_inst *) end)->eot);
576 const fs_builder ibld = bld.annotate("shader time end")
577 .exec_all().at(NULL, end);
578
579 fs_reg shader_end_time = get_timestamp(ibld);
580
581 /* We only use the low 32 bits of the timestamp - see
582 * emit_shader_time_begin()).
583 *
584 * We could also check if render P-states have changed (or anything
585 * else that might disrupt timing) by setting smear to 2 and checking if
586 * that field is != 0.
587 */
588 shader_end_time.set_smear(0);
589
590 /* Check that there weren't any timestamp reset events (assuming these
591 * were the only two timestamp reads that happened).
592 */
593 fs_reg reset = shader_end_time;
594 reset.set_smear(2);
595 set_condmod(BRW_CONDITIONAL_Z,
596 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
597 ibld.IF(BRW_PREDICATE_NORMAL);
598
599 fs_reg start = shader_start_time;
600 start.negate = true;
601 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
602 diff.set_smear(0);
603
604 const fs_builder cbld = ibld.group(1, 0);
605 cbld.group(1, 0).ADD(diff, start, shader_end_time);
606
607 /* If there were no instructions between the two timestamp gets, the diff
608 * is 2 cycles. Remove that overhead, so I can forget about that when
609 * trying to determine the time taken for single instructions.
610 */
611 cbld.ADD(diff, diff, brw_imm_ud(-2u));
612 SHADER_TIME_ADD(cbld, 0, diff);
613 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
614 ibld.emit(BRW_OPCODE_ELSE);
615 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
616 ibld.emit(BRW_OPCODE_ENDIF);
617 }
618
619 void
620 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
621 int shader_time_subindex,
622 fs_reg value)
623 {
624 int index = shader_time_index * 3 + shader_time_subindex;
625 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
626
627 fs_reg payload;
628 if (dispatch_width == 8)
629 payload = vgrf(glsl_type::uvec2_type);
630 else
631 payload = vgrf(glsl_type::uint_type);
632
633 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
634 }
635
636 void
637 fs_visitor::vfail(const char *format, va_list va)
638 {
639 char *msg;
640
641 if (failed)
642 return;
643
644 failed = true;
645
646 msg = ralloc_vasprintf(mem_ctx, format, va);
647 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
648
649 this->fail_msg = msg;
650
651 if (debug_enabled) {
652 fprintf(stderr, "%s", msg);
653 }
654 }
655
656 void
657 fs_visitor::fail(const char *format, ...)
658 {
659 va_list va;
660
661 va_start(va, format);
662 vfail(format, va);
663 va_end(va);
664 }
665
666 /**
667 * Mark this program as impossible to compile with dispatch width greater
668 * than n.
669 *
670 * During the SIMD8 compile (which happens first), we can detect and flag
671 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
672 * SIMD16+ compile altogether.
673 *
674 * During a compile of dispatch width greater than n (if one happens anyway),
675 * this just calls fail().
676 */
677 void
678 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
679 {
680 if (dispatch_width > n) {
681 fail("%s", msg);
682 } else {
683 max_dispatch_width = n;
684 compiler->shader_perf_log(log_data,
685 "Shader dispatch width limited to SIMD%d: %s",
686 n, msg);
687 }
688 }
689
690 /**
691 * Returns true if the instruction has a flag that means it won't
692 * update an entire destination register.
693 *
694 * For example, dead code elimination and live variable analysis want to know
695 * when a write to a variable screens off any preceding values that were in
696 * it.
697 */
698 bool
699 fs_inst::is_partial_write() const
700 {
701 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
702 (this->exec_size * type_sz(this->dst.type)) < 32 ||
703 !this->dst.is_contiguous() ||
704 this->dst.offset % REG_SIZE != 0);
705 }
706
707 unsigned
708 fs_inst::components_read(unsigned i) const
709 {
710 /* Return zero if the source is not present. */
711 if (src[i].file == BAD_FILE)
712 return 0;
713
714 switch (opcode) {
715 case FS_OPCODE_LINTERP:
716 if (i == 0)
717 return 2;
718 else
719 return 1;
720
721 case FS_OPCODE_PIXEL_X:
722 case FS_OPCODE_PIXEL_Y:
723 assert(i == 0);
724 return 2;
725
726 case FS_OPCODE_FB_WRITE_LOGICAL:
727 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
728 /* First/second FB write color. */
729 if (i < 2)
730 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
731 else
732 return 1;
733
734 case SHADER_OPCODE_TEX_LOGICAL:
735 case SHADER_OPCODE_TXD_LOGICAL:
736 case SHADER_OPCODE_TXF_LOGICAL:
737 case SHADER_OPCODE_TXL_LOGICAL:
738 case SHADER_OPCODE_TXS_LOGICAL:
739 case FS_OPCODE_TXB_LOGICAL:
740 case SHADER_OPCODE_TXF_CMS_LOGICAL:
741 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
742 case SHADER_OPCODE_TXF_UMS_LOGICAL:
743 case SHADER_OPCODE_TXF_MCS_LOGICAL:
744 case SHADER_OPCODE_LOD_LOGICAL:
745 case SHADER_OPCODE_TG4_LOGICAL:
746 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
747 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
748 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
749 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
750 /* Texture coordinates. */
751 if (i == TEX_LOGICAL_SRC_COORDINATE)
752 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
753 /* Texture derivatives. */
754 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
755 opcode == SHADER_OPCODE_TXD_LOGICAL)
756 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
757 /* Texture offset. */
758 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
759 return 2;
760 /* MCS */
761 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
762 return 2;
763 else
764 return 1;
765
766 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
767 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
768 assert(src[3].file == IMM);
769 /* Surface coordinates. */
770 if (i == 0)
771 return src[3].ud;
772 /* Surface operation source (ignored for reads). */
773 else if (i == 1)
774 return 0;
775 else
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
779 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 /* Surface coordinates. */
783 if (i == 0)
784 return src[3].ud;
785 /* Surface operation source. */
786 else if (i == 1)
787 return src[4].ud;
788 else
789 return 1;
790
791 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
792 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
793 assert(src[3].file == IMM &&
794 src[4].file == IMM);
795 const unsigned op = src[4].ud;
796 /* Surface coordinates. */
797 if (i == 0)
798 return src[3].ud;
799 /* Surface operation source. */
800 else if (i == 1 && op == BRW_AOP_CMPWR)
801 return 2;
802 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
803 op == BRW_AOP_PREDEC))
804 return 0;
805 else
806 return 1;
807 }
808
809 default:
810 return 1;
811 }
812 }
813
814 unsigned
815 fs_inst::size_read(int arg) const
816 {
817 switch (opcode) {
818 case FS_OPCODE_FB_WRITE:
819 case FS_OPCODE_FB_READ:
820 case SHADER_OPCODE_URB_WRITE_SIMD8:
821 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
822 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
823 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
824 case SHADER_OPCODE_URB_READ_SIMD8:
825 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
826 case SHADER_OPCODE_UNTYPED_ATOMIC:
827 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
828 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
829 case SHADER_OPCODE_TYPED_ATOMIC:
830 case SHADER_OPCODE_TYPED_SURFACE_READ:
831 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
832 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
833 if (arg == 0)
834 return mlen * REG_SIZE;
835 break;
836
837 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
838 /* The payload is actually stored in src1 */
839 if (arg == 1)
840 return mlen * REG_SIZE;
841 break;
842
843 case FS_OPCODE_LINTERP:
844 if (arg == 1)
845 return 16;
846 break;
847
848 case SHADER_OPCODE_LOAD_PAYLOAD:
849 if (arg < this->header_size)
850 return REG_SIZE;
851 break;
852
853 case CS_OPCODE_CS_TERMINATE:
854 case SHADER_OPCODE_BARRIER:
855 return REG_SIZE;
856
857 case SHADER_OPCODE_MOV_INDIRECT:
858 if (arg == 0) {
859 assert(src[2].file == IMM);
860 return src[2].ud;
861 }
862 break;
863
864 default:
865 if (is_tex() && arg == 0 && src[0].file == VGRF)
866 return mlen * REG_SIZE;
867 break;
868 }
869
870 switch (src[arg].file) {
871 case UNIFORM:
872 case IMM:
873 return components_read(arg) * type_sz(src[arg].type);
874 case BAD_FILE:
875 case ARF:
876 case FIXED_GRF:
877 case VGRF:
878 case ATTR:
879 return components_read(arg) * src[arg].component_size(exec_size);
880 case MRF:
881 unreachable("MRF registers are not allowed as sources");
882 }
883 return 0;
884 }
885
886 namespace {
887 /* Return the subset of flag registers that an instruction could
888 * potentially read or write based on the execution controls and flag
889 * subregister number of the instruction.
890 */
891 unsigned
892 flag_mask(const fs_inst *inst)
893 {
894 const unsigned start = inst->flag_subreg * 16 + inst->group;
895 const unsigned end = start + inst->exec_size;
896 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
897 }
898 }
899
900 unsigned
901 fs_inst::flags_read(const gen_device_info *devinfo) const
902 {
903 /* XXX - This doesn't consider explicit uses of the flag register as source
904 * region.
905 */
906 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
907 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
908 /* The vertical predication modes combine corresponding bits from
909 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
910 */
911 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
912 return flag_mask(this) << shift | flag_mask(this);
913 } else if (predicate) {
914 return flag_mask(this);
915 } else {
916 return 0;
917 }
918 }
919
920 unsigned
921 fs_inst::flags_written() const
922 {
923 /* XXX - This doesn't consider explicit uses of the flag register as
924 * destination region.
925 */
926 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
927 opcode != BRW_OPCODE_IF &&
928 opcode != BRW_OPCODE_WHILE)) ||
929 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
930 return flag_mask(this);
931 } else {
932 return 0;
933 }
934 }
935
936 /**
937 * Returns how many MRFs an FS opcode will write over.
938 *
939 * Note that this is not the 0 or 1 implied writes in an actual gen
940 * instruction -- the FS opcodes often generate MOVs in addition.
941 */
942 int
943 fs_visitor::implied_mrf_writes(fs_inst *inst)
944 {
945 if (inst->mlen == 0)
946 return 0;
947
948 if (inst->base_mrf == -1)
949 return 0;
950
951 switch (inst->opcode) {
952 case SHADER_OPCODE_RCP:
953 case SHADER_OPCODE_RSQ:
954 case SHADER_OPCODE_SQRT:
955 case SHADER_OPCODE_EXP2:
956 case SHADER_OPCODE_LOG2:
957 case SHADER_OPCODE_SIN:
958 case SHADER_OPCODE_COS:
959 return 1 * dispatch_width / 8;
960 case SHADER_OPCODE_POW:
961 case SHADER_OPCODE_INT_QUOTIENT:
962 case SHADER_OPCODE_INT_REMAINDER:
963 return 2 * dispatch_width / 8;
964 case SHADER_OPCODE_TEX:
965 case FS_OPCODE_TXB:
966 case SHADER_OPCODE_TXD:
967 case SHADER_OPCODE_TXF:
968 case SHADER_OPCODE_TXF_CMS:
969 case SHADER_OPCODE_TXF_MCS:
970 case SHADER_OPCODE_TG4:
971 case SHADER_OPCODE_TG4_OFFSET:
972 case SHADER_OPCODE_TXL:
973 case SHADER_OPCODE_TXS:
974 case SHADER_OPCODE_LOD:
975 case SHADER_OPCODE_SAMPLEINFO:
976 return 1;
977 case FS_OPCODE_FB_WRITE:
978 return 2;
979 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
980 case SHADER_OPCODE_GEN4_SCRATCH_READ:
981 return 1;
982 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
983 return inst->mlen;
984 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
985 return inst->mlen;
986 default:
987 unreachable("not reached");
988 }
989 }
990
991 fs_reg
992 fs_visitor::vgrf(const glsl_type *const type)
993 {
994 int reg_width = dispatch_width / 8;
995 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
996 brw_type_for_base_type(type));
997 }
998
999 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1000 {
1001 init();
1002 this->file = file;
1003 this->nr = nr;
1004 this->type = BRW_REGISTER_TYPE_F;
1005 this->stride = (file == UNIFORM ? 0 : 1);
1006 }
1007
1008 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1009 {
1010 init();
1011 this->file = file;
1012 this->nr = nr;
1013 this->type = type;
1014 this->stride = (file == UNIFORM ? 0 : 1);
1015 }
1016
1017 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1018 * This brings in those uniform definitions
1019 */
1020 void
1021 fs_visitor::import_uniforms(fs_visitor *v)
1022 {
1023 this->push_constant_loc = v->push_constant_loc;
1024 this->pull_constant_loc = v->pull_constant_loc;
1025 this->uniforms = v->uniforms;
1026 }
1027
1028 void
1029 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1030 {
1031 assert(stage == MESA_SHADER_FRAGMENT);
1032
1033 /* gl_FragCoord.x */
1034 bld.MOV(wpos, this->pixel_x);
1035 wpos = offset(wpos, bld, 1);
1036
1037 /* gl_FragCoord.y */
1038 bld.MOV(wpos, this->pixel_y);
1039 wpos = offset(wpos, bld, 1);
1040
1041 /* gl_FragCoord.z */
1042 if (devinfo->gen >= 6) {
1043 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1044 } else {
1045 bld.emit(FS_OPCODE_LINTERP, wpos,
1046 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1047 interp_reg(VARYING_SLOT_POS, 2));
1048 }
1049 wpos = offset(wpos, bld, 1);
1050
1051 /* gl_FragCoord.w: Already set up in emit_interpolation */
1052 bld.MOV(wpos, this->wpos_w);
1053 }
1054
1055 enum brw_barycentric_mode
1056 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1057 {
1058 /* Barycentric modes don't make sense for flat inputs. */
1059 assert(mode != INTERP_MODE_FLAT);
1060
1061 unsigned bary;
1062 switch (op) {
1063 case nir_intrinsic_load_barycentric_pixel:
1064 case nir_intrinsic_load_barycentric_at_offset:
1065 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1066 break;
1067 case nir_intrinsic_load_barycentric_centroid:
1068 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1069 break;
1070 case nir_intrinsic_load_barycentric_sample:
1071 case nir_intrinsic_load_barycentric_at_sample:
1072 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1073 break;
1074 default:
1075 unreachable("invalid intrinsic");
1076 }
1077
1078 if (mode == INTERP_MODE_NOPERSPECTIVE)
1079 bary += 3;
1080
1081 return (enum brw_barycentric_mode) bary;
1082 }
1083
1084 /**
1085 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1086 */
1087 static enum brw_barycentric_mode
1088 centroid_to_pixel(enum brw_barycentric_mode bary)
1089 {
1090 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1091 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1092 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1093 }
1094
1095 fs_reg *
1096 fs_visitor::emit_frontfacing_interpolation()
1097 {
1098 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1099
1100 if (devinfo->gen >= 6) {
1101 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1102 * a boolean result from this (~0/true or 0/false).
1103 *
1104 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1105 * this task in only one instruction:
1106 * - a negation source modifier will flip the bit; and
1107 * - a W -> D type conversion will sign extend the bit into the high
1108 * word of the destination.
1109 *
1110 * An ASR 15 fills the low word of the destination.
1111 */
1112 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1113 g0.negate = true;
1114
1115 bld.ASR(*reg, g0, brw_imm_d(15));
1116 } else {
1117 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1118 * a boolean result from this (1/true or 0/false).
1119 *
1120 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1121 * the negation source modifier to flip it. Unfortunately the SHR
1122 * instruction only operates on UD (or D with an abs source modifier)
1123 * sources without negation.
1124 *
1125 * Instead, use ASR (which will give ~0/true or 0/false).
1126 */
1127 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1128 g1_6.negate = true;
1129
1130 bld.ASR(*reg, g1_6, brw_imm_d(31));
1131 }
1132
1133 return reg;
1134 }
1135
1136 void
1137 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1138 {
1139 assert(stage == MESA_SHADER_FRAGMENT);
1140 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1141 assert(dst.type == BRW_REGISTER_TYPE_F);
1142
1143 if (wm_prog_data->persample_dispatch) {
1144 /* Convert int_sample_pos to floating point */
1145 bld.MOV(dst, int_sample_pos);
1146 /* Scale to the range [0, 1] */
1147 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1148 }
1149 else {
1150 /* From ARB_sample_shading specification:
1151 * "When rendering to a non-multisample buffer, or if multisample
1152 * rasterization is disabled, gl_SamplePosition will always be
1153 * (0.5, 0.5).
1154 */
1155 bld.MOV(dst, brw_imm_f(0.5f));
1156 }
1157 }
1158
1159 fs_reg *
1160 fs_visitor::emit_samplepos_setup()
1161 {
1162 assert(devinfo->gen >= 6);
1163
1164 const fs_builder abld = bld.annotate("compute sample position");
1165 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1166 fs_reg pos = *reg;
1167 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1168 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1169
1170 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1171 * mode will be enabled.
1172 *
1173 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1174 * R31.1:0 Position Offset X/Y for Slot[3:0]
1175 * R31.3:2 Position Offset X/Y for Slot[7:4]
1176 * .....
1177 *
1178 * The X, Y sample positions come in as bytes in thread payload. So, read
1179 * the positions using vstride=16, width=8, hstride=2.
1180 */
1181 struct brw_reg sample_pos_reg =
1182 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1183 BRW_REGISTER_TYPE_B), 16, 8, 2);
1184
1185 if (dispatch_width == 8) {
1186 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1187 } else {
1188 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1189 abld.half(1).MOV(half(int_sample_x, 1),
1190 fs_reg(suboffset(sample_pos_reg, 16)));
1191 }
1192 /* Compute gl_SamplePosition.x */
1193 compute_sample_position(pos, int_sample_x);
1194 pos = offset(pos, abld, 1);
1195 if (dispatch_width == 8) {
1196 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1197 } else {
1198 abld.half(0).MOV(half(int_sample_y, 0),
1199 fs_reg(suboffset(sample_pos_reg, 1)));
1200 abld.half(1).MOV(half(int_sample_y, 1),
1201 fs_reg(suboffset(sample_pos_reg, 17)));
1202 }
1203 /* Compute gl_SamplePosition.y */
1204 compute_sample_position(pos, int_sample_y);
1205 return reg;
1206 }
1207
1208 fs_reg *
1209 fs_visitor::emit_sampleid_setup()
1210 {
1211 assert(stage == MESA_SHADER_FRAGMENT);
1212 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1213 assert(devinfo->gen >= 6);
1214
1215 const fs_builder abld = bld.annotate("compute sample id");
1216 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1217
1218 if (!key->multisample_fbo) {
1219 /* As per GL_ARB_sample_shading specification:
1220 * "When rendering to a non-multisample buffer, or if multisample
1221 * rasterization is disabled, gl_SampleID will always be zero."
1222 */
1223 abld.MOV(*reg, brw_imm_d(0));
1224 } else if (devinfo->gen >= 8) {
1225 /* Sample ID comes in as 4-bit numbers in g1.0:
1226 *
1227 * 15:12 Slot 3 SampleID (only used in SIMD16)
1228 * 11:8 Slot 2 SampleID (only used in SIMD16)
1229 * 7:4 Slot 1 SampleID
1230 * 3:0 Slot 0 SampleID
1231 *
1232 * Each slot corresponds to four channels, so we want to replicate each
1233 * half-byte value to 4 channels in a row:
1234 *
1235 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1236 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1237 *
1238 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1239 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1240 *
1241 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1242 * channels to read the first byte (7:0), and the second group of 8
1243 * channels to read the second byte (15:8). Then, we shift right by
1244 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1245 * values into place. Finally, we AND with 0xf to keep the low nibble.
1246 *
1247 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1248 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1249 *
1250 * TODO: These payload bits exist on Gen7 too, but they appear to always
1251 * be zero, so this code fails to work. We should find out why.
1252 */
1253 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1254
1255 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1256 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1257 brw_imm_v(0x44440000));
1258 abld.AND(*reg, tmp, brw_imm_w(0xf));
1259 } else {
1260 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1261 t1.set_smear(0);
1262 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1263
1264 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1265 * 8x multisampling, subspan 0 will represent sample N (where N
1266 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1267 * 7. We can find the value of N by looking at R0.0 bits 7:6
1268 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1269 * (since samples are always delivered in pairs). That is, we
1270 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1271 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1272 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1273 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1274 * populating a temporary variable with the sequence (0, 1, 2, 3),
1275 * and then reading from it using vstride=1, width=4, hstride=0.
1276 * These computations hold good for 4x multisampling as well.
1277 *
1278 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1279 * the first four slots are sample 0 of subspan 0; the next four
1280 * are sample 1 of subspan 0; the third group is sample 0 of
1281 * subspan 1, and finally sample 1 of subspan 1.
1282 */
1283
1284 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1285 * accomodate 16x MSAA.
1286 */
1287 abld.exec_all().group(1, 0)
1288 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1289 brw_imm_ud(0xc0));
1290 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1291
1292 /* This works for both SIMD8 and SIMD16 */
1293 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1294
1295 /* This special instruction takes care of setting vstride=1,
1296 * width=4, hstride=0 of t2 during an ADD instruction.
1297 */
1298 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1299 }
1300
1301 return reg;
1302 }
1303
1304 fs_reg *
1305 fs_visitor::emit_samplemaskin_setup()
1306 {
1307 assert(stage == MESA_SHADER_FRAGMENT);
1308 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1309 assert(devinfo->gen >= 6);
1310
1311 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1312
1313 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1314 BRW_REGISTER_TYPE_D));
1315
1316 if (wm_prog_data->persample_dispatch) {
1317 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1318 * and a mask representing which sample is being processed by the
1319 * current shader invocation.
1320 *
1321 * From the OES_sample_variables specification:
1322 * "When per-sample shading is active due to the use of a fragment input
1323 * qualified by "sample" or due to the use of the gl_SampleID or
1324 * gl_SamplePosition variables, only the bit for the current sample is
1325 * set in gl_SampleMaskIn."
1326 */
1327 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1328
1329 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1330 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1331
1332 fs_reg one = vgrf(glsl_type::int_type);
1333 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1334 abld.MOV(one, brw_imm_d(1));
1335 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1336 abld.AND(*reg, enabled_mask, coverage_mask);
1337 } else {
1338 /* In per-pixel mode, the coverage mask is sufficient. */
1339 *reg = coverage_mask;
1340 }
1341 return reg;
1342 }
1343
1344 fs_reg
1345 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1346 {
1347 if (!src.abs && !src.negate)
1348 return src;
1349
1350 fs_reg temp = bld.vgrf(src.type);
1351 bld.MOV(temp, src);
1352
1353 return temp;
1354 }
1355
1356 void
1357 fs_visitor::emit_discard_jump()
1358 {
1359 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1360
1361 /* For performance, after a discard, jump to the end of the
1362 * shader if all relevant channels have been discarded.
1363 */
1364 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1365 discard_jump->flag_subreg = 1;
1366
1367 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1368 discard_jump->predicate_inverse = true;
1369 }
1370
1371 void
1372 fs_visitor::emit_gs_thread_end()
1373 {
1374 assert(stage == MESA_SHADER_GEOMETRY);
1375
1376 struct brw_gs_prog_data *gs_prog_data =
1377 (struct brw_gs_prog_data *) prog_data;
1378
1379 if (gs_compile->control_data_header_size_bits > 0) {
1380 emit_gs_control_data_bits(this->final_gs_vertex_count);
1381 }
1382
1383 const fs_builder abld = bld.annotate("thread end");
1384 fs_inst *inst;
1385
1386 if (gs_prog_data->static_vertex_count != -1) {
1387 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1388 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1389 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1390 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1391 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1392 prev->eot = true;
1393
1394 /* Delete now dead instructions. */
1395 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1396 if (dead == prev)
1397 break;
1398 dead->remove();
1399 }
1400 return;
1401 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1402 break;
1403 }
1404 }
1405 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1406 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1407 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1408 inst->mlen = 1;
1409 } else {
1410 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1411 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1412 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1413 sources[1] = this->final_gs_vertex_count;
1414 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1415 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1416 inst->mlen = 2;
1417 }
1418 inst->eot = true;
1419 inst->offset = 0;
1420 }
1421
1422 void
1423 fs_visitor::assign_curb_setup()
1424 {
1425 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1426
1427 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1428 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1429 for (unsigned int i = 0; i < inst->sources; i++) {
1430 if (inst->src[i].file == UNIFORM) {
1431 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1432 int constant_nr;
1433 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1434 constant_nr = push_constant_loc[uniform_nr];
1435 } else {
1436 /* Section 5.11 of the OpenGL 4.1 spec says:
1437 * "Out-of-bounds reads return undefined values, which include
1438 * values from other variables of the active program or zero."
1439 * Just return the first push constant.
1440 */
1441 constant_nr = 0;
1442 }
1443
1444 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1445 constant_nr / 8,
1446 constant_nr % 8);
1447 brw_reg.abs = inst->src[i].abs;
1448 brw_reg.negate = inst->src[i].negate;
1449
1450 assert(inst->src[i].stride == 0);
1451 inst->src[i] = byte_offset(
1452 retype(brw_reg, inst->src[i].type),
1453 inst->src[i].offset % 4);
1454 }
1455 }
1456 }
1457
1458 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1459 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1460 }
1461
1462 void
1463 fs_visitor::calculate_urb_setup()
1464 {
1465 assert(stage == MESA_SHADER_FRAGMENT);
1466 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1467 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1468
1469 memset(prog_data->urb_setup, -1,
1470 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1471
1472 int urb_next = 0;
1473 /* Figure out where each of the incoming setup attributes lands. */
1474 if (devinfo->gen >= 6) {
1475 if (_mesa_bitcount_64(nir->info.inputs_read &
1476 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1477 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1478 * first 16 varying inputs, so we can put them wherever we want.
1479 * Just put them in order.
1480 *
1481 * This is useful because it means that (a) inputs not used by the
1482 * fragment shader won't take up valuable register space, and (b) we
1483 * won't have to recompile the fragment shader if it gets paired with
1484 * a different vertex (or geometry) shader.
1485 */
1486 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1487 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1488 BITFIELD64_BIT(i)) {
1489 prog_data->urb_setup[i] = urb_next++;
1490 }
1491 }
1492 } else {
1493 bool include_vue_header =
1494 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1495
1496 /* We have enough input varyings that the SF/SBE pipeline stage can't
1497 * arbitrarily rearrange them to suit our whim; we have to put them
1498 * in an order that matches the output of the previous pipeline stage
1499 * (geometry or vertex shader).
1500 */
1501 struct brw_vue_map prev_stage_vue_map;
1502 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1503 key->input_slots_valid,
1504 nir->info.separate_shader);
1505 int first_slot =
1506 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1507
1508 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1509 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1510 slot++) {
1511 int varying = prev_stage_vue_map.slot_to_varying[slot];
1512 if (varying != BRW_VARYING_SLOT_PAD &&
1513 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1514 BITFIELD64_BIT(varying))) {
1515 prog_data->urb_setup[varying] = slot - first_slot;
1516 }
1517 }
1518 urb_next = prev_stage_vue_map.num_slots - first_slot;
1519 }
1520 } else {
1521 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1522 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1523 /* Point size is packed into the header, not as a general attribute */
1524 if (i == VARYING_SLOT_PSIZ)
1525 continue;
1526
1527 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1528 /* The back color slot is skipped when the front color is
1529 * also written to. In addition, some slots can be
1530 * written in the vertex shader and not read in the
1531 * fragment shader. So the register number must always be
1532 * incremented, mapped or not.
1533 */
1534 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1535 prog_data->urb_setup[i] = urb_next;
1536 urb_next++;
1537 }
1538 }
1539
1540 /*
1541 * It's a FS only attribute, and we did interpolation for this attribute
1542 * in SF thread. So, count it here, too.
1543 *
1544 * See compile_sf_prog() for more info.
1545 */
1546 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1547 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1548 }
1549
1550 prog_data->num_varying_inputs = urb_next;
1551 }
1552
1553 void
1554 fs_visitor::assign_urb_setup()
1555 {
1556 assert(stage == MESA_SHADER_FRAGMENT);
1557 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1558
1559 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1560
1561 /* Offset all the urb_setup[] index by the actual position of the
1562 * setup regs, now that the location of the constants has been chosen.
1563 */
1564 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1565 if (inst->opcode == FS_OPCODE_LINTERP) {
1566 assert(inst->src[1].file == FIXED_GRF);
1567 inst->src[1].nr += urb_start;
1568 }
1569
1570 if (inst->opcode == FS_OPCODE_CINTERP) {
1571 assert(inst->src[0].file == FIXED_GRF);
1572 inst->src[0].nr += urb_start;
1573 }
1574 }
1575
1576 /* Each attribute is 4 setup channels, each of which is half a reg. */
1577 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1578 }
1579
1580 void
1581 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1582 {
1583 for (int i = 0; i < inst->sources; i++) {
1584 if (inst->src[i].file == ATTR) {
1585 int grf = payload.num_regs +
1586 prog_data->curb_read_length +
1587 inst->src[i].nr +
1588 inst->src[i].offset / REG_SIZE;
1589
1590 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1591 *
1592 * VertStride must be used to cross GRF register boundaries. This
1593 * rule implies that elements within a 'Width' cannot cross GRF
1594 * boundaries.
1595 *
1596 * So, for registers that are large enough, we have to split the exec
1597 * size in two and trust the compression state to sort it out.
1598 */
1599 unsigned total_size = inst->exec_size *
1600 inst->src[i].stride *
1601 type_sz(inst->src[i].type);
1602
1603 assert(total_size <= 2 * REG_SIZE);
1604 const unsigned exec_size =
1605 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1606
1607 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1608 struct brw_reg reg =
1609 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1610 inst->src[i].offset % REG_SIZE),
1611 exec_size * inst->src[i].stride,
1612 width, inst->src[i].stride);
1613 reg.abs = inst->src[i].abs;
1614 reg.negate = inst->src[i].negate;
1615
1616 inst->src[i] = reg;
1617 }
1618 }
1619 }
1620
1621 void
1622 fs_visitor::assign_vs_urb_setup()
1623 {
1624 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1625
1626 assert(stage == MESA_SHADER_VERTEX);
1627
1628 /* Each attribute is 4 regs. */
1629 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1630
1631 assert(vs_prog_data->base.urb_read_length <= 15);
1632
1633 /* Rewrite all ATTR file references to the hw grf that they land in. */
1634 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1635 convert_attr_sources_to_hw_regs(inst);
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_tcs_single_patch_urb_setup()
1641 {
1642 assert(stage == MESA_SHADER_TESS_CTRL);
1643
1644 /* Rewrite all ATTR file references to HW_REGs. */
1645 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1646 convert_attr_sources_to_hw_regs(inst);
1647 }
1648 }
1649
1650 void
1651 fs_visitor::assign_tes_urb_setup()
1652 {
1653 assert(stage == MESA_SHADER_TESS_EVAL);
1654
1655 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1656
1657 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1658
1659 /* Rewrite all ATTR file references to HW_REGs. */
1660 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1661 convert_attr_sources_to_hw_regs(inst);
1662 }
1663 }
1664
1665 void
1666 fs_visitor::assign_gs_urb_setup()
1667 {
1668 assert(stage == MESA_SHADER_GEOMETRY);
1669
1670 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1671
1672 first_non_payload_grf +=
1673 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1674
1675 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1676 /* Rewrite all ATTR file references to GRFs. */
1677 convert_attr_sources_to_hw_regs(inst);
1678 }
1679 }
1680
1681
1682 /**
1683 * Split large virtual GRFs into separate components if we can.
1684 *
1685 * This is mostly duplicated with what brw_fs_vector_splitting does,
1686 * but that's really conservative because it's afraid of doing
1687 * splitting that doesn't result in real progress after the rest of
1688 * the optimization phases, which would cause infinite looping in
1689 * optimization. We can do it once here, safely. This also has the
1690 * opportunity to split interpolated values, or maybe even uniforms,
1691 * which we don't have at the IR level.
1692 *
1693 * We want to split, because virtual GRFs are what we register
1694 * allocate and spill (due to contiguousness requirements for some
1695 * instructions), and they're what we naturally generate in the
1696 * codegen process, but most virtual GRFs don't actually need to be
1697 * contiguous sets of GRFs. If we split, we'll end up with reduced
1698 * live intervals and better dead code elimination and coalescing.
1699 */
1700 void
1701 fs_visitor::split_virtual_grfs()
1702 {
1703 int num_vars = this->alloc.count;
1704
1705 /* Count the total number of registers */
1706 int reg_count = 0;
1707 int vgrf_to_reg[num_vars];
1708 for (int i = 0; i < num_vars; i++) {
1709 vgrf_to_reg[i] = reg_count;
1710 reg_count += alloc.sizes[i];
1711 }
1712
1713 /* An array of "split points". For each register slot, this indicates
1714 * if this slot can be separated from the previous slot. Every time an
1715 * instruction uses multiple elements of a register (as a source or
1716 * destination), we mark the used slots as inseparable. Then we go
1717 * through and split the registers into the smallest pieces we can.
1718 */
1719 bool split_points[reg_count];
1720 memset(split_points, 0, sizeof(split_points));
1721
1722 /* Mark all used registers as fully splittable */
1723 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1724 if (inst->dst.file == VGRF) {
1725 int reg = vgrf_to_reg[inst->dst.nr];
1726 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1727 split_points[reg + j] = true;
1728 }
1729
1730 for (int i = 0; i < inst->sources; i++) {
1731 if (inst->src[i].file == VGRF) {
1732 int reg = vgrf_to_reg[inst->src[i].nr];
1733 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1734 split_points[reg + j] = true;
1735 }
1736 }
1737 }
1738
1739 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1740 if (inst->dst.file == VGRF) {
1741 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1742 for (unsigned j = 1; j < regs_written(inst); j++)
1743 split_points[reg + j] = false;
1744 }
1745 for (int i = 0; i < inst->sources; i++) {
1746 if (inst->src[i].file == VGRF) {
1747 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1748 for (unsigned j = 1; j < regs_read(inst, i); j++)
1749 split_points[reg + j] = false;
1750 }
1751 }
1752 }
1753
1754 int new_virtual_grf[reg_count];
1755 int new_reg_offset[reg_count];
1756
1757 int reg = 0;
1758 for (int i = 0; i < num_vars; i++) {
1759 /* The first one should always be 0 as a quick sanity check. */
1760 assert(split_points[reg] == false);
1761
1762 /* j = 0 case */
1763 new_reg_offset[reg] = 0;
1764 reg++;
1765 int offset = 1;
1766
1767 /* j > 0 case */
1768 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1769 /* If this is a split point, reset the offset to 0 and allocate a
1770 * new virtual GRF for the previous offset many registers
1771 */
1772 if (split_points[reg]) {
1773 assert(offset <= MAX_VGRF_SIZE);
1774 int grf = alloc.allocate(offset);
1775 for (int k = reg - offset; k < reg; k++)
1776 new_virtual_grf[k] = grf;
1777 offset = 0;
1778 }
1779 new_reg_offset[reg] = offset;
1780 offset++;
1781 reg++;
1782 }
1783
1784 /* The last one gets the original register number */
1785 assert(offset <= MAX_VGRF_SIZE);
1786 alloc.sizes[i] = offset;
1787 for (int k = reg - offset; k < reg; k++)
1788 new_virtual_grf[k] = i;
1789 }
1790 assert(reg == reg_count);
1791
1792 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1793 if (inst->dst.file == VGRF) {
1794 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1795 inst->dst.nr = new_virtual_grf[reg];
1796 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1797 inst->dst.offset % REG_SIZE;
1798 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1799 }
1800 for (int i = 0; i < inst->sources; i++) {
1801 if (inst->src[i].file == VGRF) {
1802 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1803 inst->src[i].nr = new_virtual_grf[reg];
1804 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1805 inst->src[i].offset % REG_SIZE;
1806 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1807 }
1808 }
1809 }
1810 invalidate_live_intervals();
1811 }
1812
1813 /**
1814 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1815 *
1816 * During code generation, we create tons of temporary variables, many of
1817 * which get immediately killed and are never used again. Yet, in later
1818 * optimization and analysis passes, such as compute_live_intervals, we need
1819 * to loop over all the virtual GRFs. Compacting them can save a lot of
1820 * overhead.
1821 */
1822 bool
1823 fs_visitor::compact_virtual_grfs()
1824 {
1825 bool progress = false;
1826 int remap_table[this->alloc.count];
1827 memset(remap_table, -1, sizeof(remap_table));
1828
1829 /* Mark which virtual GRFs are used. */
1830 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1831 if (inst->dst.file == VGRF)
1832 remap_table[inst->dst.nr] = 0;
1833
1834 for (int i = 0; i < inst->sources; i++) {
1835 if (inst->src[i].file == VGRF)
1836 remap_table[inst->src[i].nr] = 0;
1837 }
1838 }
1839
1840 /* Compact the GRF arrays. */
1841 int new_index = 0;
1842 for (unsigned i = 0; i < this->alloc.count; i++) {
1843 if (remap_table[i] == -1) {
1844 /* We just found an unused register. This means that we are
1845 * actually going to compact something.
1846 */
1847 progress = true;
1848 } else {
1849 remap_table[i] = new_index;
1850 alloc.sizes[new_index] = alloc.sizes[i];
1851 invalidate_live_intervals();
1852 ++new_index;
1853 }
1854 }
1855
1856 this->alloc.count = new_index;
1857
1858 /* Patch all the instructions to use the newly renumbered registers */
1859 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1860 if (inst->dst.file == VGRF)
1861 inst->dst.nr = remap_table[inst->dst.nr];
1862
1863 for (int i = 0; i < inst->sources; i++) {
1864 if (inst->src[i].file == VGRF)
1865 inst->src[i].nr = remap_table[inst->src[i].nr];
1866 }
1867 }
1868
1869 /* Patch all the references to delta_xy, since they're used in register
1870 * allocation. If they're unused, switch them to BAD_FILE so we don't
1871 * think some random VGRF is delta_xy.
1872 */
1873 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1874 if (delta_xy[i].file == VGRF) {
1875 if (remap_table[delta_xy[i].nr] != -1) {
1876 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1877 } else {
1878 delta_xy[i].file = BAD_FILE;
1879 }
1880 }
1881 }
1882
1883 return progress;
1884 }
1885
1886 static void
1887 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1888 int *push_constant_loc, int *pull_constant_loc,
1889 unsigned *num_push_constants,
1890 unsigned *num_pull_constants,
1891 const unsigned max_push_components,
1892 const unsigned max_chunk_size,
1893 struct brw_stage_prog_data *stage_prog_data)
1894 {
1895 /* This is the first live uniform in the chunk */
1896 if (*chunk_start < 0)
1897 *chunk_start = uniform;
1898
1899 /* If this element does not need to be contiguous with the next, we
1900 * split at this point and everything between chunk_start and u forms a
1901 * single chunk.
1902 */
1903 if (!contiguous) {
1904 unsigned chunk_size = uniform - *chunk_start + 1;
1905
1906 /* Decide whether we should push or pull this parameter. In the
1907 * Vulkan driver, push constants are explicitly exposed via the API
1908 * so we push everything. In GL, we only push small arrays.
1909 */
1910 if (stage_prog_data->pull_param == NULL ||
1911 (*num_push_constants + chunk_size <= max_push_components &&
1912 chunk_size <= max_chunk_size)) {
1913 assert(*num_push_constants + chunk_size <= max_push_components);
1914 for (unsigned j = *chunk_start; j <= uniform; j++)
1915 push_constant_loc[j] = (*num_push_constants)++;
1916 } else {
1917 for (unsigned j = *chunk_start; j <= uniform; j++)
1918 pull_constant_loc[j] = (*num_pull_constants)++;
1919 }
1920
1921 *chunk_start = -1;
1922 }
1923 }
1924
1925 /**
1926 * Assign UNIFORM file registers to either push constants or pull constants.
1927 *
1928 * We allow a fragment shader to have more than the specified minimum
1929 * maximum number of fragment shader uniform components (64). If
1930 * there are too many of these, they'd fill up all of register space.
1931 * So, this will push some of them out to the pull constant buffer and
1932 * update the program to load them.
1933 */
1934 void
1935 fs_visitor::assign_constant_locations()
1936 {
1937 /* Only the first compile gets to decide on locations. */
1938 if (dispatch_width != min_dispatch_width)
1939 return;
1940
1941 bool is_live[uniforms];
1942 memset(is_live, 0, sizeof(is_live));
1943 bool is_live_64bit[uniforms];
1944 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1945
1946 /* For each uniform slot, a value of true indicates that the given slot and
1947 * the next slot must remain contiguous. This is used to keep us from
1948 * splitting arrays apart.
1949 */
1950 bool contiguous[uniforms];
1951 memset(contiguous, 0, sizeof(contiguous));
1952
1953 int thread_local_id_index =
1954 (stage == MESA_SHADER_COMPUTE) ?
1955 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index : -1;
1956
1957 /* First, we walk through the instructions and do two things:
1958 *
1959 * 1) Figure out which uniforms are live.
1960 *
1961 * 2) Mark any indirectly used ranges of registers as contiguous.
1962 *
1963 * Note that we don't move constant-indexed accesses to arrays. No
1964 * testing has been done of the performance impact of this choice.
1965 */
1966 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1967 for (int i = 0 ; i < inst->sources; i++) {
1968 if (inst->src[i].file != UNIFORM)
1969 continue;
1970
1971 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1972
1973 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1974 assert(inst->src[2].ud % 4 == 0);
1975 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1976 assert(last < uniforms);
1977
1978 for (unsigned j = constant_nr; j < last; j++) {
1979 is_live[j] = true;
1980 contiguous[j] = true;
1981 if (type_sz(inst->src[i].type) == 8) {
1982 is_live_64bit[j] = true;
1983 }
1984 }
1985 is_live[last] = true;
1986 } else {
1987 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1988 int regs_read = inst->components_read(i) *
1989 type_sz(inst->src[i].type) / 4;
1990 for (int j = 0; j < regs_read; j++) {
1991 is_live[constant_nr + j] = true;
1992 if (type_sz(inst->src[i].type) == 8) {
1993 is_live_64bit[constant_nr + j] = true;
1994 }
1995 }
1996 }
1997 }
1998 }
1999 }
2000
2001 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2002 thread_local_id_index = -1;
2003
2004 /* Only allow 16 registers (128 uniform components) as push constants.
2005 *
2006 * Just demote the end of the list. We could probably do better
2007 * here, demoting things that are rarely used in the program first.
2008 *
2009 * If changing this value, note the limitation about total_regs in
2010 * brw_curbe.c.
2011 */
2012 unsigned int max_push_components = 16 * 8;
2013 if (thread_local_id_index >= 0)
2014 max_push_components--; /* Save a slot for the thread ID */
2015
2016 /* We push small arrays, but no bigger than 16 floats. This is big enough
2017 * for a vec4 but hopefully not large enough to push out other stuff. We
2018 * should probably use a better heuristic at some point.
2019 */
2020 const unsigned int max_chunk_size = 16;
2021
2022 unsigned int num_push_constants = 0;
2023 unsigned int num_pull_constants = 0;
2024
2025 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2026 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2027
2028 /* Default to -1 meaning no location */
2029 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2030 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2031
2032 int chunk_start = -1;
2033
2034 /* First push 64-bit uniforms to ensure they are properly aligned */
2035 for (unsigned u = 0; u < uniforms; u++) {
2036 if (!is_live[u] || !is_live_64bit[u])
2037 continue;
2038
2039 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2040 push_constant_loc, pull_constant_loc,
2041 &num_push_constants, &num_pull_constants,
2042 max_push_components, max_chunk_size,
2043 stage_prog_data);
2044
2045 }
2046
2047 /* Then push the rest of uniforms */
2048 for (unsigned u = 0; u < uniforms; u++) {
2049 if (!is_live[u] || is_live_64bit[u])
2050 continue;
2051
2052 /* Skip thread_local_id_index to put it in the last push register. */
2053 if (thread_local_id_index == (int)u)
2054 continue;
2055
2056 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2057 push_constant_loc, pull_constant_loc,
2058 &num_push_constants, &num_pull_constants,
2059 max_push_components, max_chunk_size,
2060 stage_prog_data);
2061 }
2062
2063 /* Add the CS local thread ID uniform at the end of the push constants */
2064 if (thread_local_id_index >= 0)
2065 push_constant_loc[thread_local_id_index] = num_push_constants++;
2066
2067 /* As the uniforms are going to be reordered, take the data from a temporary
2068 * copy of the original param[].
2069 */
2070 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2071 stage_prog_data->nr_params);
2072 memcpy(param, stage_prog_data->param,
2073 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2074 stage_prog_data->nr_params = num_push_constants;
2075 stage_prog_data->nr_pull_params = num_pull_constants;
2076
2077 /* Up until now, the param[] array has been indexed by reg + reg_offset
2078 * of UNIFORM registers. Move pull constants into pull_param[] and
2079 * condense param[] to only contain the uniforms we chose to push.
2080 *
2081 * NOTE: Because we are condensing the params[] array, we know that
2082 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2083 * having to make a copy.
2084 */
2085 int new_thread_local_id_index = -1;
2086 for (unsigned int i = 0; i < uniforms; i++) {
2087 const gl_constant_value *value = param[i];
2088
2089 if (pull_constant_loc[i] != -1) {
2090 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2091 } else if (push_constant_loc[i] != -1) {
2092 stage_prog_data->param[push_constant_loc[i]] = value;
2093 if (thread_local_id_index == (int)i)
2094 new_thread_local_id_index = push_constant_loc[i];
2095 }
2096 }
2097 ralloc_free(param);
2098
2099 if (stage == MESA_SHADER_COMPUTE)
2100 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index =
2101 new_thread_local_id_index;
2102 }
2103
2104 /**
2105 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2106 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2107 */
2108 void
2109 fs_visitor::lower_constant_loads()
2110 {
2111 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2112
2113 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2114 /* Set up the annotation tracking for new generated instructions. */
2115 const fs_builder ibld(this, block, inst);
2116
2117 for (int i = 0; i < inst->sources; i++) {
2118 if (inst->src[i].file != UNIFORM)
2119 continue;
2120
2121 /* We'll handle this case later */
2122 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2123 continue;
2124
2125 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2126 if (location >= uniforms)
2127 continue; /* Out of bounds access */
2128
2129 int pull_index = pull_constant_loc[location];
2130
2131 if (pull_index == -1)
2132 continue;
2133
2134 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2135 fs_reg dst;
2136
2137 if (type_sz(inst->src[i].type) <= 4)
2138 dst = vgrf(glsl_type::float_type);
2139 else
2140 dst = vgrf(glsl_type::double_type);
2141
2142 assert(inst->src[i].stride == 0);
2143
2144 const fs_builder ubld = ibld.exec_all().group(8, 0);
2145 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2146 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2147 dst, brw_imm_ud(index), offset);
2148
2149 /* Rewrite the instruction to use the temporary VGRF. */
2150 inst->src[i].file = VGRF;
2151 inst->src[i].nr = dst.nr;
2152 inst->src[i].offset %= 4;
2153 inst->src[i].set_smear((pull_index & 3) * 4 /
2154 type_sz(inst->src[i].type));
2155
2156 brw_mark_surface_used(prog_data, index);
2157 }
2158
2159 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2160 inst->src[0].file == UNIFORM) {
2161
2162 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2163 if (location >= uniforms)
2164 continue; /* Out of bounds access */
2165
2166 int pull_index = pull_constant_loc[location];
2167
2168 if (pull_index == -1)
2169 continue;
2170
2171 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2172 brw_imm_ud(index),
2173 inst->src[1],
2174 pull_index * 4);
2175 inst->remove(block);
2176
2177 brw_mark_surface_used(prog_data, index);
2178 }
2179 }
2180 invalidate_live_intervals();
2181 }
2182
2183 bool
2184 fs_visitor::opt_algebraic()
2185 {
2186 bool progress = false;
2187
2188 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2189 switch (inst->opcode) {
2190 case BRW_OPCODE_MOV:
2191 if (inst->src[0].file != IMM)
2192 break;
2193
2194 if (inst->saturate) {
2195 if (inst->dst.type != inst->src[0].type)
2196 assert(!"unimplemented: saturate mixed types");
2197
2198 if (brw_saturate_immediate(inst->dst.type,
2199 &inst->src[0].as_brw_reg())) {
2200 inst->saturate = false;
2201 progress = true;
2202 }
2203 }
2204 break;
2205
2206 case BRW_OPCODE_MUL:
2207 if (inst->src[1].file != IMM)
2208 continue;
2209
2210 /* a * 1.0 = a */
2211 if (inst->src[1].is_one()) {
2212 inst->opcode = BRW_OPCODE_MOV;
2213 inst->src[1] = reg_undef;
2214 progress = true;
2215 break;
2216 }
2217
2218 /* a * -1.0 = -a */
2219 if (inst->src[1].is_negative_one()) {
2220 inst->opcode = BRW_OPCODE_MOV;
2221 inst->src[0].negate = !inst->src[0].negate;
2222 inst->src[1] = reg_undef;
2223 progress = true;
2224 break;
2225 }
2226
2227 /* a * 0.0 = 0.0 */
2228 if (inst->src[1].is_zero()) {
2229 inst->opcode = BRW_OPCODE_MOV;
2230 inst->src[0] = inst->src[1];
2231 inst->src[1] = reg_undef;
2232 progress = true;
2233 break;
2234 }
2235
2236 if (inst->src[0].file == IMM) {
2237 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2238 inst->opcode = BRW_OPCODE_MOV;
2239 inst->src[0].f *= inst->src[1].f;
2240 inst->src[1] = reg_undef;
2241 progress = true;
2242 break;
2243 }
2244 break;
2245 case BRW_OPCODE_ADD:
2246 if (inst->src[1].file != IMM)
2247 continue;
2248
2249 /* a + 0.0 = a */
2250 if (inst->src[1].is_zero()) {
2251 inst->opcode = BRW_OPCODE_MOV;
2252 inst->src[1] = reg_undef;
2253 progress = true;
2254 break;
2255 }
2256
2257 if (inst->src[0].file == IMM) {
2258 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2259 inst->opcode = BRW_OPCODE_MOV;
2260 inst->src[0].f += inst->src[1].f;
2261 inst->src[1] = reg_undef;
2262 progress = true;
2263 break;
2264 }
2265 break;
2266 case BRW_OPCODE_OR:
2267 if (inst->src[0].equals(inst->src[1])) {
2268 inst->opcode = BRW_OPCODE_MOV;
2269 inst->src[1] = reg_undef;
2270 progress = true;
2271 break;
2272 }
2273 break;
2274 case BRW_OPCODE_LRP:
2275 if (inst->src[1].equals(inst->src[2])) {
2276 inst->opcode = BRW_OPCODE_MOV;
2277 inst->src[0] = inst->src[1];
2278 inst->src[1] = reg_undef;
2279 inst->src[2] = reg_undef;
2280 progress = true;
2281 break;
2282 }
2283 break;
2284 case BRW_OPCODE_CMP:
2285 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2286 inst->src[0].abs &&
2287 inst->src[0].negate &&
2288 inst->src[1].is_zero()) {
2289 inst->src[0].abs = false;
2290 inst->src[0].negate = false;
2291 inst->conditional_mod = BRW_CONDITIONAL_Z;
2292 progress = true;
2293 break;
2294 }
2295 break;
2296 case BRW_OPCODE_SEL:
2297 if (inst->src[0].equals(inst->src[1])) {
2298 inst->opcode = BRW_OPCODE_MOV;
2299 inst->src[1] = reg_undef;
2300 inst->predicate = BRW_PREDICATE_NONE;
2301 inst->predicate_inverse = false;
2302 progress = true;
2303 } else if (inst->saturate && inst->src[1].file == IMM) {
2304 switch (inst->conditional_mod) {
2305 case BRW_CONDITIONAL_LE:
2306 case BRW_CONDITIONAL_L:
2307 switch (inst->src[1].type) {
2308 case BRW_REGISTER_TYPE_F:
2309 if (inst->src[1].f >= 1.0f) {
2310 inst->opcode = BRW_OPCODE_MOV;
2311 inst->src[1] = reg_undef;
2312 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2313 progress = true;
2314 }
2315 break;
2316 default:
2317 break;
2318 }
2319 break;
2320 case BRW_CONDITIONAL_GE:
2321 case BRW_CONDITIONAL_G:
2322 switch (inst->src[1].type) {
2323 case BRW_REGISTER_TYPE_F:
2324 if (inst->src[1].f <= 0.0f) {
2325 inst->opcode = BRW_OPCODE_MOV;
2326 inst->src[1] = reg_undef;
2327 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2328 progress = true;
2329 }
2330 break;
2331 default:
2332 break;
2333 }
2334 default:
2335 break;
2336 }
2337 }
2338 break;
2339 case BRW_OPCODE_MAD:
2340 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2341 inst->opcode = BRW_OPCODE_MOV;
2342 inst->src[1] = reg_undef;
2343 inst->src[2] = reg_undef;
2344 progress = true;
2345 } else if (inst->src[0].is_zero()) {
2346 inst->opcode = BRW_OPCODE_MUL;
2347 inst->src[0] = inst->src[2];
2348 inst->src[2] = reg_undef;
2349 progress = true;
2350 } else if (inst->src[1].is_one()) {
2351 inst->opcode = BRW_OPCODE_ADD;
2352 inst->src[1] = inst->src[2];
2353 inst->src[2] = reg_undef;
2354 progress = true;
2355 } else if (inst->src[2].is_one()) {
2356 inst->opcode = BRW_OPCODE_ADD;
2357 inst->src[2] = reg_undef;
2358 progress = true;
2359 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2360 inst->opcode = BRW_OPCODE_ADD;
2361 inst->src[1].f *= inst->src[2].f;
2362 inst->src[2] = reg_undef;
2363 progress = true;
2364 }
2365 break;
2366 case SHADER_OPCODE_BROADCAST:
2367 if (is_uniform(inst->src[0])) {
2368 inst->opcode = BRW_OPCODE_MOV;
2369 inst->sources = 1;
2370 inst->force_writemask_all = true;
2371 progress = true;
2372 } else if (inst->src[1].file == IMM) {
2373 inst->opcode = BRW_OPCODE_MOV;
2374 inst->src[0] = component(inst->src[0],
2375 inst->src[1].ud);
2376 inst->sources = 1;
2377 inst->force_writemask_all = true;
2378 progress = true;
2379 }
2380 break;
2381
2382 default:
2383 break;
2384 }
2385
2386 /* Swap if src[0] is immediate. */
2387 if (progress && inst->is_commutative()) {
2388 if (inst->src[0].file == IMM) {
2389 fs_reg tmp = inst->src[1];
2390 inst->src[1] = inst->src[0];
2391 inst->src[0] = tmp;
2392 }
2393 }
2394 }
2395 return progress;
2396 }
2397
2398 /**
2399 * Optimize sample messages that have constant zero values for the trailing
2400 * texture coordinates. We can just reduce the message length for these
2401 * instructions instead of reserving a register for it. Trailing parameters
2402 * that aren't sent default to zero anyway. This will cause the dead code
2403 * eliminator to remove the MOV instruction that would otherwise be emitted to
2404 * set up the zero value.
2405 */
2406 bool
2407 fs_visitor::opt_zero_samples()
2408 {
2409 /* Gen4 infers the texturing opcode based on the message length so we can't
2410 * change it.
2411 */
2412 if (devinfo->gen < 5)
2413 return false;
2414
2415 bool progress = false;
2416
2417 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2418 if (!inst->is_tex())
2419 continue;
2420
2421 fs_inst *load_payload = (fs_inst *) inst->prev;
2422
2423 if (load_payload->is_head_sentinel() ||
2424 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2425 continue;
2426
2427 /* We don't want to remove the message header or the first parameter.
2428 * Removing the first parameter is not allowed, see the Haswell PRM
2429 * volume 7, page 149:
2430 *
2431 * "Parameter 0 is required except for the sampleinfo message, which
2432 * has no parameter 0"
2433 */
2434 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2435 load_payload->src[(inst->mlen - inst->header_size) /
2436 (inst->exec_size / 8) +
2437 inst->header_size - 1].is_zero()) {
2438 inst->mlen -= inst->exec_size / 8;
2439 progress = true;
2440 }
2441 }
2442
2443 if (progress)
2444 invalidate_live_intervals();
2445
2446 return progress;
2447 }
2448
2449 /**
2450 * Optimize sample messages which are followed by the final RT write.
2451 *
2452 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2453 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2454 * final texturing results copied to the framebuffer write payload and modify
2455 * them to write to the framebuffer directly.
2456 */
2457 bool
2458 fs_visitor::opt_sampler_eot()
2459 {
2460 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2461
2462 if (stage != MESA_SHADER_FRAGMENT)
2463 return false;
2464
2465 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2466 return false;
2467
2468 /* FINISHME: It should be possible to implement this optimization when there
2469 * are multiple drawbuffers.
2470 */
2471 if (key->nr_color_regions != 1)
2472 return false;
2473
2474 /* Requires emitting a bunch of saturating MOV instructions during logical
2475 * send lowering to clamp the color payload, which the sampler unit isn't
2476 * going to do for us.
2477 */
2478 if (key->clamp_fragment_color)
2479 return false;
2480
2481 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2482 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2483 fs_inst *fb_write = (fs_inst *)block->end();
2484 assert(fb_write->eot);
2485 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2486
2487 /* There wasn't one; nothing to do. */
2488 if (unlikely(fb_write->prev->is_head_sentinel()))
2489 return false;
2490
2491 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2492
2493 /* 3D Sampler » Messages » Message Format
2494 *
2495 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2496 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2497 */
2498 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2499 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2500 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2501 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2502 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2503 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2504 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2505 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2506 return false;
2507
2508 /* XXX - This shouldn't be necessary. */
2509 if (tex_inst->prev->is_head_sentinel())
2510 return false;
2511
2512 /* Check that the FB write sources are fully initialized by the single
2513 * texturing instruction.
2514 */
2515 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2516 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2517 if (!fb_write->src[i].equals(tex_inst->dst) ||
2518 fb_write->size_read(i) != tex_inst->size_written)
2519 return false;
2520 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2521 if (fb_write->src[i].file != BAD_FILE)
2522 return false;
2523 }
2524 }
2525
2526 assert(!tex_inst->eot); /* We can't get here twice */
2527 assert((tex_inst->offset & (0xff << 24)) == 0);
2528
2529 const fs_builder ibld(this, block, tex_inst);
2530
2531 tex_inst->offset |= fb_write->target << 24;
2532 tex_inst->eot = true;
2533 tex_inst->dst = ibld.null_reg_ud();
2534 tex_inst->size_written = 0;
2535 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2536
2537 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2538 * flag and submit a header together with the sampler message as required
2539 * by the hardware.
2540 */
2541 invalidate_live_intervals();
2542 return true;
2543 }
2544
2545 bool
2546 fs_visitor::opt_register_renaming()
2547 {
2548 bool progress = false;
2549 int depth = 0;
2550
2551 int remap[alloc.count];
2552 memset(remap, -1, sizeof(int) * alloc.count);
2553
2554 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2555 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2556 depth++;
2557 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2558 inst->opcode == BRW_OPCODE_WHILE) {
2559 depth--;
2560 }
2561
2562 /* Rewrite instruction sources. */
2563 for (int i = 0; i < inst->sources; i++) {
2564 if (inst->src[i].file == VGRF &&
2565 remap[inst->src[i].nr] != -1 &&
2566 remap[inst->src[i].nr] != inst->src[i].nr) {
2567 inst->src[i].nr = remap[inst->src[i].nr];
2568 progress = true;
2569 }
2570 }
2571
2572 const int dst = inst->dst.nr;
2573
2574 if (depth == 0 &&
2575 inst->dst.file == VGRF &&
2576 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2577 !inst->is_partial_write()) {
2578 if (remap[dst] == -1) {
2579 remap[dst] = dst;
2580 } else {
2581 remap[dst] = alloc.allocate(regs_written(inst));
2582 inst->dst.nr = remap[dst];
2583 progress = true;
2584 }
2585 } else if (inst->dst.file == VGRF &&
2586 remap[dst] != -1 &&
2587 remap[dst] != dst) {
2588 inst->dst.nr = remap[dst];
2589 progress = true;
2590 }
2591 }
2592
2593 if (progress) {
2594 invalidate_live_intervals();
2595
2596 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2597 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2598 delta_xy[i].nr = remap[delta_xy[i].nr];
2599 }
2600 }
2601 }
2602
2603 return progress;
2604 }
2605
2606 /**
2607 * Remove redundant or useless discard jumps.
2608 *
2609 * For example, we can eliminate jumps in the following sequence:
2610 *
2611 * discard-jump (redundant with the next jump)
2612 * discard-jump (useless; jumps to the next instruction)
2613 * placeholder-halt
2614 */
2615 bool
2616 fs_visitor::opt_redundant_discard_jumps()
2617 {
2618 bool progress = false;
2619
2620 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2621
2622 fs_inst *placeholder_halt = NULL;
2623 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2624 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2625 placeholder_halt = inst;
2626 break;
2627 }
2628 }
2629
2630 if (!placeholder_halt)
2631 return false;
2632
2633 /* Delete any HALTs immediately before the placeholder halt. */
2634 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2635 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2636 prev = (fs_inst *) placeholder_halt->prev) {
2637 prev->remove(last_bblock);
2638 progress = true;
2639 }
2640
2641 if (progress)
2642 invalidate_live_intervals();
2643
2644 return progress;
2645 }
2646
2647 /**
2648 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2649 * from \p r.offset which overlaps the region starting at \p s.offset and
2650 * spanning \p ds bytes.
2651 */
2652 static inline unsigned
2653 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2654 {
2655 const int rel_offset = reg_offset(s) - reg_offset(r);
2656 const int shift = rel_offset / REG_SIZE;
2657 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2658 assert(reg_space(r) == reg_space(s) &&
2659 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2660 return ((1 << n) - 1) << shift;
2661 }
2662
2663 bool
2664 fs_visitor::compute_to_mrf()
2665 {
2666 bool progress = false;
2667 int next_ip = 0;
2668
2669 /* No MRFs on Gen >= 7. */
2670 if (devinfo->gen >= 7)
2671 return false;
2672
2673 calculate_live_intervals();
2674
2675 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2676 int ip = next_ip;
2677 next_ip++;
2678
2679 if (inst->opcode != BRW_OPCODE_MOV ||
2680 inst->is_partial_write() ||
2681 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2682 inst->dst.type != inst->src[0].type ||
2683 inst->src[0].abs || inst->src[0].negate ||
2684 !inst->src[0].is_contiguous() ||
2685 inst->src[0].offset % REG_SIZE != 0)
2686 continue;
2687
2688 /* Can't compute-to-MRF this GRF if someone else was going to
2689 * read it later.
2690 */
2691 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2692 continue;
2693
2694 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2695 * things that computed the value of all GRFs of the source region. The
2696 * regs_left bitset keeps track of the registers we haven't yet found a
2697 * generating instruction for.
2698 */
2699 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2700
2701 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2702 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2703 inst->src[0], inst->size_read(0))) {
2704 /* Found the last thing to write our reg we want to turn
2705 * into a compute-to-MRF.
2706 */
2707
2708 /* If this one instruction didn't populate all the
2709 * channels, bail. We might be able to rewrite everything
2710 * that writes that reg, but it would require smarter
2711 * tracking.
2712 */
2713 if (scan_inst->is_partial_write())
2714 break;
2715
2716 /* Handling things not fully contained in the source of the copy
2717 * would need us to understand coalescing out more than one MOV at
2718 * a time.
2719 */
2720 if (scan_inst->dst.offset / REG_SIZE < inst->src[0].offset / REG_SIZE ||
2721 scan_inst->dst.offset / REG_SIZE + DIV_ROUND_UP(scan_inst->size_written, REG_SIZE) >
2722 inst->src[0].offset / REG_SIZE + DIV_ROUND_UP(inst->size_read(0), REG_SIZE))
2723 break;
2724
2725 /* SEND instructions can't have MRF as a destination. */
2726 if (scan_inst->mlen)
2727 break;
2728
2729 if (devinfo->gen == 6) {
2730 /* gen6 math instructions must have the destination be
2731 * GRF, so no compute-to-MRF for them.
2732 */
2733 if (scan_inst->is_math()) {
2734 break;
2735 }
2736 }
2737
2738 /* Clear the bits for any registers this instruction overwrites. */
2739 regs_left &= ~mask_relative_to(
2740 inst->src[0], scan_inst->dst, scan_inst->size_written);
2741 if (!regs_left)
2742 break;
2743 }
2744
2745 /* We don't handle control flow here. Most computation of
2746 * values that end up in MRFs are shortly before the MRF
2747 * write anyway.
2748 */
2749 if (block->start() == scan_inst)
2750 break;
2751
2752 /* You can't read from an MRF, so if someone else reads our
2753 * MRF's source GRF that we wanted to rewrite, that stops us.
2754 */
2755 bool interfered = false;
2756 for (int i = 0; i < scan_inst->sources; i++) {
2757 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2758 inst->src[0], inst->size_read(0))) {
2759 interfered = true;
2760 }
2761 }
2762 if (interfered)
2763 break;
2764
2765 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2766 inst->dst, inst->size_written)) {
2767 /* If somebody else writes our MRF here, we can't
2768 * compute-to-MRF before that.
2769 */
2770 break;
2771 }
2772
2773 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2774 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2775 inst->dst, inst->size_written)) {
2776 /* Found a SEND instruction, which means that there are
2777 * live values in MRFs from base_mrf to base_mrf +
2778 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2779 * above it.
2780 */
2781 break;
2782 }
2783 }
2784
2785 if (regs_left)
2786 continue;
2787
2788 /* Found all generating instructions of our MRF's source value, so it
2789 * should be safe to rewrite them to point to the MRF directly.
2790 */
2791 regs_left = (1 << regs_read(inst, 0)) - 1;
2792
2793 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2794 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2795 inst->src[0], inst->size_read(0))) {
2796 /* Clear the bits for any registers this instruction overwrites. */
2797 regs_left &= ~mask_relative_to(
2798 inst->src[0], scan_inst->dst, scan_inst->size_written);
2799
2800 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2801 reg_offset(inst->src[0]);
2802
2803 if (inst->dst.nr & BRW_MRF_COMPR4) {
2804 /* Apply the same address transformation done by the hardware
2805 * for COMPR4 MRF writes.
2806 */
2807 assert(rel_offset < 2 * REG_SIZE);
2808 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2809
2810 /* Clear the COMPR4 bit if the generating instruction is not
2811 * compressed.
2812 */
2813 if (scan_inst->size_written < 2 * REG_SIZE)
2814 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2815
2816 } else {
2817 /* Calculate the MRF number the result of this instruction is
2818 * ultimately written to.
2819 */
2820 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2821 }
2822
2823 scan_inst->dst.file = MRF;
2824 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2825 scan_inst->saturate |= inst->saturate;
2826 if (!regs_left)
2827 break;
2828 }
2829 }
2830
2831 assert(!regs_left);
2832 inst->remove(block);
2833 progress = true;
2834 }
2835
2836 if (progress)
2837 invalidate_live_intervals();
2838
2839 return progress;
2840 }
2841
2842 /**
2843 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2844 * flow. We could probably do better here with some form of divergence
2845 * analysis.
2846 */
2847 bool
2848 fs_visitor::eliminate_find_live_channel()
2849 {
2850 bool progress = false;
2851 unsigned depth = 0;
2852
2853 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2854 switch (inst->opcode) {
2855 case BRW_OPCODE_IF:
2856 case BRW_OPCODE_DO:
2857 depth++;
2858 break;
2859
2860 case BRW_OPCODE_ENDIF:
2861 case BRW_OPCODE_WHILE:
2862 depth--;
2863 break;
2864
2865 case FS_OPCODE_DISCARD_JUMP:
2866 /* This can potentially make control flow non-uniform until the end
2867 * of the program.
2868 */
2869 return progress;
2870
2871 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2872 if (depth == 0) {
2873 inst->opcode = BRW_OPCODE_MOV;
2874 inst->src[0] = brw_imm_ud(0u);
2875 inst->sources = 1;
2876 inst->force_writemask_all = true;
2877 progress = true;
2878 }
2879 break;
2880
2881 default:
2882 break;
2883 }
2884 }
2885
2886 return progress;
2887 }
2888
2889 /**
2890 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2891 * instructions to FS_OPCODE_REP_FB_WRITE.
2892 */
2893 void
2894 fs_visitor::emit_repclear_shader()
2895 {
2896 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2897 int base_mrf = 0;
2898 int color_mrf = base_mrf + 2;
2899 fs_inst *mov;
2900
2901 if (uniforms > 0) {
2902 mov = bld.exec_all().group(4, 0)
2903 .MOV(brw_message_reg(color_mrf),
2904 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2905 } else {
2906 struct brw_reg reg =
2907 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2908 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2909 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2910
2911 mov = bld.exec_all().group(4, 0)
2912 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2913 }
2914
2915 fs_inst *write;
2916 if (key->nr_color_regions == 1) {
2917 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2918 write->saturate = key->clamp_fragment_color;
2919 write->base_mrf = color_mrf;
2920 write->target = 0;
2921 write->header_size = 0;
2922 write->mlen = 1;
2923 } else {
2924 assume(key->nr_color_regions > 0);
2925 for (int i = 0; i < key->nr_color_regions; ++i) {
2926 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2927 write->saturate = key->clamp_fragment_color;
2928 write->base_mrf = base_mrf;
2929 write->target = i;
2930 write->header_size = 2;
2931 write->mlen = 3;
2932 }
2933 }
2934 write->eot = true;
2935
2936 calculate_cfg();
2937
2938 assign_constant_locations();
2939 assign_curb_setup();
2940
2941 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2942 if (uniforms > 0) {
2943 assert(mov->src[0].file == FIXED_GRF);
2944 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2945 }
2946 }
2947
2948 /**
2949 * Walks through basic blocks, looking for repeated MRF writes and
2950 * removing the later ones.
2951 */
2952 bool
2953 fs_visitor::remove_duplicate_mrf_writes()
2954 {
2955 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2956 bool progress = false;
2957
2958 /* Need to update the MRF tracking for compressed instructions. */
2959 if (dispatch_width >= 16)
2960 return false;
2961
2962 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2963
2964 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2965 if (inst->is_control_flow()) {
2966 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2967 }
2968
2969 if (inst->opcode == BRW_OPCODE_MOV &&
2970 inst->dst.file == MRF) {
2971 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2972 if (prev_inst && inst->equals(prev_inst)) {
2973 inst->remove(block);
2974 progress = true;
2975 continue;
2976 }
2977 }
2978
2979 /* Clear out the last-write records for MRFs that were overwritten. */
2980 if (inst->dst.file == MRF) {
2981 last_mrf_move[inst->dst.nr] = NULL;
2982 }
2983
2984 if (inst->mlen > 0 && inst->base_mrf != -1) {
2985 /* Found a SEND instruction, which will include two or fewer
2986 * implied MRF writes. We could do better here.
2987 */
2988 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2989 last_mrf_move[inst->base_mrf + i] = NULL;
2990 }
2991 }
2992
2993 /* Clear out any MRF move records whose sources got overwritten. */
2994 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2995 if (last_mrf_move[i] &&
2996 regions_overlap(inst->dst, inst->size_written,
2997 last_mrf_move[i]->src[0],
2998 last_mrf_move[i]->size_read(0))) {
2999 last_mrf_move[i] = NULL;
3000 }
3001 }
3002
3003 if (inst->opcode == BRW_OPCODE_MOV &&
3004 inst->dst.file == MRF &&
3005 inst->src[0].file != ARF &&
3006 !inst->is_partial_write()) {
3007 last_mrf_move[inst->dst.nr] = inst;
3008 }
3009 }
3010
3011 if (progress)
3012 invalidate_live_intervals();
3013
3014 return progress;
3015 }
3016
3017 static void
3018 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3019 {
3020 /* Clear the flag for registers that actually got read (as expected). */
3021 for (int i = 0; i < inst->sources; i++) {
3022 int grf;
3023 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3024 grf = inst->src[i].nr;
3025 } else {
3026 continue;
3027 }
3028
3029 if (grf >= first_grf &&
3030 grf < first_grf + grf_len) {
3031 deps[grf - first_grf] = false;
3032 if (inst->exec_size == 16)
3033 deps[grf - first_grf + 1] = false;
3034 }
3035 }
3036 }
3037
3038 /**
3039 * Implements this workaround for the original 965:
3040 *
3041 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3042 * check for post destination dependencies on this instruction, software
3043 * must ensure that there is no destination hazard for the case of ‘write
3044 * followed by a posted write’ shown in the following example.
3045 *
3046 * 1. mov r3 0
3047 * 2. send r3.xy <rest of send instruction>
3048 * 3. mov r2 r3
3049 *
3050 * Due to no post-destination dependency check on the ‘send’, the above
3051 * code sequence could have two instructions (1 and 2) in flight at the
3052 * same time that both consider ‘r3’ as the target of their final writes.
3053 */
3054 void
3055 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3056 fs_inst *inst)
3057 {
3058 int write_len = regs_written(inst);
3059 int first_write_grf = inst->dst.nr;
3060 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3061 assert(write_len < (int)sizeof(needs_dep) - 1);
3062
3063 memset(needs_dep, false, sizeof(needs_dep));
3064 memset(needs_dep, true, write_len);
3065
3066 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3067
3068 /* Walk backwards looking for writes to registers we're writing which
3069 * aren't read since being written. If we hit the start of the program,
3070 * we assume that there are no outstanding dependencies on entry to the
3071 * program.
3072 */
3073 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3074 /* If we hit control flow, assume that there *are* outstanding
3075 * dependencies, and force their cleanup before our instruction.
3076 */
3077 if (block->start() == scan_inst && block->num != 0) {
3078 for (int i = 0; i < write_len; i++) {
3079 if (needs_dep[i])
3080 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3081 first_write_grf + i);
3082 }
3083 return;
3084 }
3085
3086 /* We insert our reads as late as possible on the assumption that any
3087 * instruction but a MOV that might have left us an outstanding
3088 * dependency has more latency than a MOV.
3089 */
3090 if (scan_inst->dst.file == VGRF) {
3091 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3092 int reg = scan_inst->dst.nr + i;
3093
3094 if (reg >= first_write_grf &&
3095 reg < first_write_grf + write_len &&
3096 needs_dep[reg - first_write_grf]) {
3097 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3098 needs_dep[reg - first_write_grf] = false;
3099 if (scan_inst->exec_size == 16)
3100 needs_dep[reg - first_write_grf + 1] = false;
3101 }
3102 }
3103 }
3104
3105 /* Clear the flag for registers that actually got read (as expected). */
3106 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3107
3108 /* Continue the loop only if we haven't resolved all the dependencies */
3109 int i;
3110 for (i = 0; i < write_len; i++) {
3111 if (needs_dep[i])
3112 break;
3113 }
3114 if (i == write_len)
3115 return;
3116 }
3117 }
3118
3119 /**
3120 * Implements this workaround for the original 965:
3121 *
3122 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3123 * used as a destination register until after it has been sourced by an
3124 * instruction with a different destination register.
3125 */
3126 void
3127 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3128 {
3129 int write_len = regs_written(inst);
3130 int first_write_grf = inst->dst.nr;
3131 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3132 assert(write_len < (int)sizeof(needs_dep) - 1);
3133
3134 memset(needs_dep, false, sizeof(needs_dep));
3135 memset(needs_dep, true, write_len);
3136 /* Walk forwards looking for writes to registers we're writing which aren't
3137 * read before being written.
3138 */
3139 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3140 /* If we hit control flow, force resolve all remaining dependencies. */
3141 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3142 for (int i = 0; i < write_len; i++) {
3143 if (needs_dep[i])
3144 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3145 first_write_grf + i);
3146 }
3147 return;
3148 }
3149
3150 /* Clear the flag for registers that actually got read (as expected). */
3151 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3152
3153 /* We insert our reads as late as possible since they're reading the
3154 * result of a SEND, which has massive latency.
3155 */
3156 if (scan_inst->dst.file == VGRF &&
3157 scan_inst->dst.nr >= first_write_grf &&
3158 scan_inst->dst.nr < first_write_grf + write_len &&
3159 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3160 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3161 scan_inst->dst.nr);
3162 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3163 }
3164
3165 /* Continue the loop only if we haven't resolved all the dependencies */
3166 int i;
3167 for (i = 0; i < write_len; i++) {
3168 if (needs_dep[i])
3169 break;
3170 }
3171 if (i == write_len)
3172 return;
3173 }
3174 }
3175
3176 void
3177 fs_visitor::insert_gen4_send_dependency_workarounds()
3178 {
3179 if (devinfo->gen != 4 || devinfo->is_g4x)
3180 return;
3181
3182 bool progress = false;
3183
3184 /* Note that we're done with register allocation, so GRF fs_regs always
3185 * have a .reg_offset of 0.
3186 */
3187
3188 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3189 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3190 insert_gen4_pre_send_dependency_workarounds(block, inst);
3191 insert_gen4_post_send_dependency_workarounds(block, inst);
3192 progress = true;
3193 }
3194 }
3195
3196 if (progress)
3197 invalidate_live_intervals();
3198 }
3199
3200 /**
3201 * Turns the generic expression-style uniform pull constant load instruction
3202 * into a hardware-specific series of instructions for loading a pull
3203 * constant.
3204 *
3205 * The expression style allows the CSE pass before this to optimize out
3206 * repeated loads from the same offset, and gives the pre-register-allocation
3207 * scheduling full flexibility, while the conversion to native instructions
3208 * allows the post-register-allocation scheduler the best information
3209 * possible.
3210 *
3211 * Note that execution masking for setting up pull constant loads is special:
3212 * the channels that need to be written are unrelated to the current execution
3213 * mask, since a later instruction will use one of the result channels as a
3214 * source operand for all 8 or 16 of its channels.
3215 */
3216 void
3217 fs_visitor::lower_uniform_pull_constant_loads()
3218 {
3219 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3220 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3221 continue;
3222
3223 if (devinfo->gen >= 7) {
3224 /* The offset arg is a vec4-aligned immediate byte offset. */
3225 fs_reg const_offset_reg = inst->src[1];
3226 assert(const_offset_reg.file == IMM &&
3227 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3228 assert(const_offset_reg.ud % 16 == 0);
3229
3230 fs_reg payload, offset;
3231 if (devinfo->gen >= 9) {
3232 /* We have to use a message header on Skylake to get SIMD4x2
3233 * mode. Reserve space for the register.
3234 */
3235 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3236 offset.offset += REG_SIZE;
3237 inst->mlen = 2;
3238 } else {
3239 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3240 inst->mlen = 1;
3241 }
3242
3243 /* This is actually going to be a MOV, but since only the first dword
3244 * is accessed, we have a special opcode to do just that one. Note
3245 * that this needs to be an operation that will be considered a def
3246 * by live variable analysis, or register allocation will explode.
3247 */
3248 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3249 8, offset, const_offset_reg);
3250 setup->force_writemask_all = true;
3251
3252 setup->ir = inst->ir;
3253 setup->annotation = inst->annotation;
3254 inst->insert_before(block, setup);
3255
3256 /* Similarly, this will only populate the first 4 channels of the
3257 * result register (since we only use smear values from 0-3), but we
3258 * don't tell the optimizer.
3259 */
3260 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3261 inst->src[1] = payload;
3262
3263 invalidate_live_intervals();
3264 } else {
3265 /* Before register allocation, we didn't tell the scheduler about the
3266 * MRF we use. We know it's safe to use this MRF because nothing
3267 * else does except for register spill/unspill, which generates and
3268 * uses its MRF within a single IR instruction.
3269 */
3270 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3271 inst->mlen = 1;
3272 }
3273 }
3274 }
3275
3276 bool
3277 fs_visitor::lower_load_payload()
3278 {
3279 bool progress = false;
3280
3281 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3282 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3283 continue;
3284
3285 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3286 assert(inst->saturate == false);
3287 fs_reg dst = inst->dst;
3288
3289 /* Get rid of COMPR4. We'll add it back in if we need it */
3290 if (dst.file == MRF)
3291 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3292
3293 const fs_builder ibld(this, block, inst);
3294 const fs_builder hbld = ibld.exec_all().group(8, 0);
3295
3296 for (uint8_t i = 0; i < inst->header_size; i++) {
3297 if (inst->src[i].file != BAD_FILE) {
3298 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3299 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3300 hbld.MOV(mov_dst, mov_src);
3301 }
3302 dst = offset(dst, hbld, 1);
3303 }
3304
3305 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3306 inst->exec_size > 8) {
3307 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3308 * a straightforward copy. Instead, the result of the
3309 * LOAD_PAYLOAD is treated as interleaved and the first four
3310 * non-header sources are unpacked as:
3311 *
3312 * m + 0: r0
3313 * m + 1: g0
3314 * m + 2: b0
3315 * m + 3: a0
3316 * m + 4: r1
3317 * m + 5: g1
3318 * m + 6: b1
3319 * m + 7: a1
3320 *
3321 * This is used for gen <= 5 fb writes.
3322 */
3323 assert(inst->exec_size == 16);
3324 assert(inst->header_size + 4 <= inst->sources);
3325 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3326 if (inst->src[i].file != BAD_FILE) {
3327 if (devinfo->has_compr4) {
3328 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3329 compr4_dst.nr |= BRW_MRF_COMPR4;
3330 ibld.MOV(compr4_dst, inst->src[i]);
3331 } else {
3332 /* Platform doesn't have COMPR4. We have to fake it */
3333 fs_reg mov_dst = retype(dst, inst->src[i].type);
3334 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3335 mov_dst.nr += 4;
3336 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3337 }
3338 }
3339
3340 dst.nr++;
3341 }
3342
3343 /* The loop above only ever incremented us through the first set
3344 * of 4 registers. However, thanks to the magic of COMPR4, we
3345 * actually wrote to the first 8 registers, so we need to take
3346 * that into account now.
3347 */
3348 dst.nr += 4;
3349
3350 /* The COMPR4 code took care of the first 4 sources. We'll let
3351 * the regular path handle any remaining sources. Yes, we are
3352 * modifying the instruction but we're about to delete it so
3353 * this really doesn't hurt anything.
3354 */
3355 inst->header_size += 4;
3356 }
3357
3358 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3359 if (inst->src[i].file != BAD_FILE)
3360 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3361 dst = offset(dst, ibld, 1);
3362 }
3363
3364 inst->remove(block);
3365 progress = true;
3366 }
3367
3368 if (progress)
3369 invalidate_live_intervals();
3370
3371 return progress;
3372 }
3373
3374 bool
3375 fs_visitor::lower_integer_multiplication()
3376 {
3377 bool progress = false;
3378
3379 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3380 const fs_builder ibld(this, block, inst);
3381
3382 if (inst->opcode == BRW_OPCODE_MUL) {
3383 if (inst->dst.is_accumulator() ||
3384 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3385 inst->dst.type != BRW_REGISTER_TYPE_UD))
3386 continue;
3387
3388 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3389 * operation directly, but CHV/BXT cannot.
3390 */
3391 if (devinfo->gen >= 8 &&
3392 !devinfo->is_cherryview && !devinfo->is_broxton)
3393 continue;
3394
3395 if (inst->src[1].file == IMM &&
3396 inst->src[1].ud < (1 << 16)) {
3397 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3398 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3399 * src1 are used.
3400 *
3401 * If multiplying by an immediate value that fits in 16-bits, do a
3402 * single MUL instruction with that value in the proper location.
3403 */
3404 if (devinfo->gen < 7) {
3405 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3406 inst->dst.type);
3407 ibld.MOV(imm, inst->src[1]);
3408 ibld.MUL(inst->dst, imm, inst->src[0]);
3409 } else {
3410 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3411 ibld.MUL(inst->dst, inst->src[0],
3412 ud ? brw_imm_uw(inst->src[1].ud)
3413 : brw_imm_w(inst->src[1].d));
3414 }
3415 } else {
3416 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3417 * do 32-bit integer multiplication in one instruction, but instead
3418 * must do a sequence (which actually calculates a 64-bit result):
3419 *
3420 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3421 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3422 * mov(8) g2<1>D acc0<8,8,1>D
3423 *
3424 * But on Gen > 6, the ability to use second accumulator register
3425 * (acc1) for non-float data types was removed, preventing a simple
3426 * implementation in SIMD16. A 16-channel result can be calculated by
3427 * executing the three instructions twice in SIMD8, once with quarter
3428 * control of 1Q for the first eight channels and again with 2Q for
3429 * the second eight channels.
3430 *
3431 * Which accumulator register is implicitly accessed (by AccWrEnable
3432 * for instance) is determined by the quarter control. Unfortunately
3433 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3434 * implicit accumulator access by an instruction with 2Q will access
3435 * acc1 regardless of whether the data type is usable in acc1.
3436 *
3437 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3438 * integer data types.
3439 *
3440 * Since we only want the low 32-bits of the result, we can do two
3441 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3442 * adjust the high result and add them (like the mach is doing):
3443 *
3444 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3445 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3446 * shl(8) g9<1>D g8<8,8,1>D 16D
3447 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3448 *
3449 * We avoid the shl instruction by realizing that we only want to add
3450 * the low 16-bits of the "high" result to the high 16-bits of the
3451 * "low" result and using proper regioning on the add:
3452 *
3453 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3454 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3455 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3456 *
3457 * Since it does not use the (single) accumulator register, we can
3458 * schedule multi-component multiplications much better.
3459 */
3460
3461 fs_reg orig_dst = inst->dst;
3462 if (orig_dst.is_null() || orig_dst.file == MRF) {
3463 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3464 inst->dst.type);
3465 }
3466 fs_reg low = inst->dst;
3467 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3468 inst->dst.type);
3469
3470 if (devinfo->gen >= 7) {
3471 if (inst->src[1].file == IMM) {
3472 ibld.MUL(low, inst->src[0],
3473 brw_imm_uw(inst->src[1].ud & 0xffff));
3474 ibld.MUL(high, inst->src[0],
3475 brw_imm_uw(inst->src[1].ud >> 16));
3476 } else {
3477 ibld.MUL(low, inst->src[0],
3478 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3479 ibld.MUL(high, inst->src[0],
3480 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3481 }
3482 } else {
3483 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3484 inst->src[1]);
3485 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3486 inst->src[1]);
3487 }
3488
3489 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3490 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3491 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3492
3493 if (inst->conditional_mod || orig_dst.file == MRF) {
3494 set_condmod(inst->conditional_mod,
3495 ibld.MOV(orig_dst, inst->dst));
3496 }
3497 }
3498
3499 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3500 /* Should have been lowered to 8-wide. */
3501 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3502 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3503 inst->dst.type);
3504 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3505 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3506
3507 if (devinfo->gen >= 8) {
3508 /* Until Gen8, integer multiplies read 32-bits from one source,
3509 * and 16-bits from the other, and relying on the MACH instruction
3510 * to generate the high bits of the result.
3511 *
3512 * On Gen8, the multiply instruction does a full 32x32-bit
3513 * multiply, but in order to do a 64-bit multiply we can simulate
3514 * the previous behavior and then use a MACH instruction.
3515 *
3516 * FINISHME: Don't use source modifiers on src1.
3517 */
3518 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3519 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3520 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3521 mul->src[1].stride *= 2;
3522
3523 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3524 inst->group > 0) {
3525 /* Among other things the quarter control bits influence which
3526 * accumulator register is used by the hardware for instructions
3527 * that access the accumulator implicitly (e.g. MACH). A
3528 * second-half instruction would normally map to acc1, which
3529 * doesn't exist on Gen7 and up (the hardware does emulate it for
3530 * floating-point instructions *only* by taking advantage of the
3531 * extra precision of acc0 not normally used for floating point
3532 * arithmetic).
3533 *
3534 * HSW and up are careful enough not to try to access an
3535 * accumulator register that doesn't exist, but on earlier Gen7
3536 * hardware we need to make sure that the quarter control bits are
3537 * zero to avoid non-deterministic behaviour and emit an extra MOV
3538 * to get the result masked correctly according to the current
3539 * channel enables.
3540 */
3541 mach->group = 0;
3542 mach->force_writemask_all = true;
3543 mach->dst = ibld.vgrf(inst->dst.type);
3544 ibld.MOV(inst->dst, mach->dst);
3545 }
3546 } else {
3547 continue;
3548 }
3549
3550 inst->remove(block);
3551 progress = true;
3552 }
3553
3554 if (progress)
3555 invalidate_live_intervals();
3556
3557 return progress;
3558 }
3559
3560 bool
3561 fs_visitor::lower_minmax()
3562 {
3563 assert(devinfo->gen < 6);
3564
3565 bool progress = false;
3566
3567 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3568 const fs_builder ibld(this, block, inst);
3569
3570 if (inst->opcode == BRW_OPCODE_SEL &&
3571 inst->predicate == BRW_PREDICATE_NONE) {
3572 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3573 * the original SEL.L/GE instruction
3574 */
3575 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3576 inst->conditional_mod);
3577 inst->predicate = BRW_PREDICATE_NORMAL;
3578 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3579
3580 progress = true;
3581 }
3582 }
3583
3584 if (progress)
3585 invalidate_live_intervals();
3586
3587 return progress;
3588 }
3589
3590 static void
3591 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3592 fs_reg *dst, fs_reg color, unsigned components)
3593 {
3594 if (key->clamp_fragment_color) {
3595 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3596 assert(color.type == BRW_REGISTER_TYPE_F);
3597
3598 for (unsigned i = 0; i < components; i++)
3599 set_saturate(true,
3600 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3601
3602 color = tmp;
3603 }
3604
3605 for (unsigned i = 0; i < components; i++)
3606 dst[i] = offset(color, bld, i);
3607 }
3608
3609 static void
3610 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3611 const brw_wm_prog_data *prog_data,
3612 const brw_wm_prog_key *key,
3613 const fs_visitor::thread_payload &payload)
3614 {
3615 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3616 const gen_device_info *devinfo = bld.shader->devinfo;
3617 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3618 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3619 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3620 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3621 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3622 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3623 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3624 const unsigned components =
3625 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3626
3627 /* We can potentially have a message length of up to 15, so we have to set
3628 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3629 */
3630 fs_reg sources[15];
3631 int header_size = 2, payload_header_size;
3632 unsigned length = 0;
3633
3634 /* From the Sandy Bridge PRM, volume 4, page 198:
3635 *
3636 * "Dispatched Pixel Enables. One bit per pixel indicating
3637 * which pixels were originally enabled when the thread was
3638 * dispatched. This field is only required for the end-of-
3639 * thread message and on all dual-source messages."
3640 */
3641 if (devinfo->gen >= 6 &&
3642 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3643 color1.file == BAD_FILE &&
3644 key->nr_color_regions == 1) {
3645 header_size = 0;
3646 }
3647
3648 if (header_size != 0) {
3649 assert(header_size == 2);
3650 /* Allocate 2 registers for a header */
3651 length += 2;
3652 }
3653
3654 if (payload.aa_dest_stencil_reg) {
3655 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3656 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3657 .MOV(sources[length],
3658 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3659 length++;
3660 }
3661
3662 if (sample_mask.file != BAD_FILE) {
3663 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3664 BRW_REGISTER_TYPE_UD);
3665
3666 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3667 * relevant. Since it's unsigned single words one vgrf is always
3668 * 16-wide, but only the lower or higher 8 channels will be used by the
3669 * hardware when doing a SIMD8 write depending on whether we have
3670 * selected the subspans for the first or second half respectively.
3671 */
3672 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3673 sample_mask.type = BRW_REGISTER_TYPE_UW;
3674 sample_mask.stride *= 2;
3675
3676 bld.exec_all().annotate("FB write oMask")
3677 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3678 inst->group),
3679 sample_mask);
3680 length++;
3681 }
3682
3683 payload_header_size = length;
3684
3685 if (src0_alpha.file != BAD_FILE) {
3686 /* FIXME: This is being passed at the wrong location in the payload and
3687 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3688 * It's supposed to be immediately before oMask but there seems to be no
3689 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3690 * requires header sources to form a contiguous segment at the beginning
3691 * of the message and src0_alpha has per-channel semantics.
3692 */
3693 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3694 length++;
3695 }
3696
3697 setup_color_payload(bld, key, &sources[length], color0, components);
3698 length += 4;
3699
3700 if (color1.file != BAD_FILE) {
3701 setup_color_payload(bld, key, &sources[length], color1, components);
3702 length += 4;
3703 }
3704
3705 if (src_depth.file != BAD_FILE) {
3706 sources[length] = src_depth;
3707 length++;
3708 }
3709
3710 if (dst_depth.file != BAD_FILE) {
3711 sources[length] = dst_depth;
3712 length++;
3713 }
3714
3715 if (src_stencil.file != BAD_FILE) {
3716 assert(devinfo->gen >= 9);
3717 assert(bld.dispatch_width() != 16);
3718
3719 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3720 * available on gen9+. As such it's impossible to have both enabled at the
3721 * same time and therefore length cannot overrun the array.
3722 */
3723 assert(length < 15);
3724
3725 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3726 bld.exec_all().annotate("FB write OS")
3727 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3728 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3729 length++;
3730 }
3731
3732 fs_inst *load;
3733 if (devinfo->gen >= 7) {
3734 /* Send from the GRF */
3735 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3736 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3737 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3738 load->dst = payload;
3739
3740 inst->src[0] = payload;
3741 inst->resize_sources(1);
3742 } else {
3743 /* Send from the MRF */
3744 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3745 sources, length, payload_header_size);
3746
3747 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3748 * will do this for us if we just give it a COMPR4 destination.
3749 */
3750 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3751 load->dst.nr |= BRW_MRF_COMPR4;
3752
3753 inst->resize_sources(0);
3754 inst->base_mrf = 1;
3755 }
3756
3757 inst->opcode = FS_OPCODE_FB_WRITE;
3758 inst->mlen = regs_written(load);
3759 inst->header_size = header_size;
3760 }
3761
3762 static void
3763 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3764 {
3765 const fs_builder &ubld = bld.exec_all();
3766 const unsigned length = 2;
3767 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3768
3769 ubld.group(16, 0)
3770 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3771
3772 inst->resize_sources(1);
3773 inst->src[0] = header;
3774 inst->opcode = FS_OPCODE_FB_READ;
3775 inst->mlen = length;
3776 inst->header_size = length;
3777 }
3778
3779 static void
3780 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3781 const fs_reg &coordinate,
3782 const fs_reg &shadow_c,
3783 const fs_reg &lod, const fs_reg &lod2,
3784 const fs_reg &surface,
3785 const fs_reg &sampler,
3786 unsigned coord_components,
3787 unsigned grad_components)
3788 {
3789 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3790 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3791 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3792 fs_reg msg_end = msg_begin;
3793
3794 /* g0 header. */
3795 msg_end = offset(msg_end, bld.group(8, 0), 1);
3796
3797 for (unsigned i = 0; i < coord_components; i++)
3798 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3799 offset(coordinate, bld, i));
3800
3801 msg_end = offset(msg_end, bld, coord_components);
3802
3803 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3804 * require all three components to be present and zero if they are unused.
3805 */
3806 if (coord_components > 0 &&
3807 (has_lod || shadow_c.file != BAD_FILE ||
3808 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3809 for (unsigned i = coord_components; i < 3; i++)
3810 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3811
3812 msg_end = offset(msg_end, bld, 3 - coord_components);
3813 }
3814
3815 if (op == SHADER_OPCODE_TXD) {
3816 /* TXD unsupported in SIMD16 mode. */
3817 assert(bld.dispatch_width() == 8);
3818
3819 /* the slots for u and v are always present, but r is optional */
3820 if (coord_components < 2)
3821 msg_end = offset(msg_end, bld, 2 - coord_components);
3822
3823 /* P = u, v, r
3824 * dPdx = dudx, dvdx, drdx
3825 * dPdy = dudy, dvdy, drdy
3826 *
3827 * 1-arg: Does not exist.
3828 *
3829 * 2-arg: dudx dvdx dudy dvdy
3830 * dPdx.x dPdx.y dPdy.x dPdy.y
3831 * m4 m5 m6 m7
3832 *
3833 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3834 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3835 * m5 m6 m7 m8 m9 m10
3836 */
3837 for (unsigned i = 0; i < grad_components; i++)
3838 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3839
3840 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3841
3842 for (unsigned i = 0; i < grad_components; i++)
3843 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3844
3845 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3846 }
3847
3848 if (has_lod) {
3849 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3850 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3851 */
3852 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3853 bld.dispatch_width() == 16);
3854
3855 const brw_reg_type type =
3856 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3857 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3858 bld.MOV(retype(msg_end, type), lod);
3859 msg_end = offset(msg_end, bld, 1);
3860 }
3861
3862 if (shadow_c.file != BAD_FILE) {
3863 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3864 /* There's no plain shadow compare message, so we use shadow
3865 * compare with a bias of 0.0.
3866 */
3867 bld.MOV(msg_end, brw_imm_f(0.0f));
3868 msg_end = offset(msg_end, bld, 1);
3869 }
3870
3871 bld.MOV(msg_end, shadow_c);
3872 msg_end = offset(msg_end, bld, 1);
3873 }
3874
3875 inst->opcode = op;
3876 inst->src[0] = reg_undef;
3877 inst->src[1] = surface;
3878 inst->src[2] = sampler;
3879 inst->resize_sources(3);
3880 inst->base_mrf = msg_begin.nr;
3881 inst->mlen = msg_end.nr - msg_begin.nr;
3882 inst->header_size = 1;
3883 }
3884
3885 static void
3886 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3887 const fs_reg &coordinate,
3888 const fs_reg &shadow_c,
3889 const fs_reg &lod, const fs_reg &lod2,
3890 const fs_reg &sample_index,
3891 const fs_reg &surface,
3892 const fs_reg &sampler,
3893 const fs_reg &offset_value,
3894 unsigned coord_components,
3895 unsigned grad_components)
3896 {
3897 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3898 fs_reg msg_coords = message;
3899 unsigned header_size = 0;
3900
3901 if (offset_value.file != BAD_FILE) {
3902 /* The offsets set up by the visitor are in the m1 header, so we can't
3903 * go headerless.
3904 */
3905 header_size = 1;
3906 message.nr--;
3907 }
3908
3909 for (unsigned i = 0; i < coord_components; i++)
3910 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3911 offset(coordinate, bld, i));
3912
3913 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3914 fs_reg msg_lod = offset(msg_coords, bld, 4);
3915
3916 if (shadow_c.file != BAD_FILE) {
3917 fs_reg msg_shadow = msg_lod;
3918 bld.MOV(msg_shadow, shadow_c);
3919 msg_lod = offset(msg_shadow, bld, 1);
3920 msg_end = msg_lod;
3921 }
3922
3923 switch (op) {
3924 case SHADER_OPCODE_TXL:
3925 case FS_OPCODE_TXB:
3926 bld.MOV(msg_lod, lod);
3927 msg_end = offset(msg_lod, bld, 1);
3928 break;
3929 case SHADER_OPCODE_TXD:
3930 /**
3931 * P = u, v, r
3932 * dPdx = dudx, dvdx, drdx
3933 * dPdy = dudy, dvdy, drdy
3934 *
3935 * Load up these values:
3936 * - dudx dudy dvdx dvdy drdx drdy
3937 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3938 */
3939 msg_end = msg_lod;
3940 for (unsigned i = 0; i < grad_components; i++) {
3941 bld.MOV(msg_end, offset(lod, bld, i));
3942 msg_end = offset(msg_end, bld, 1);
3943
3944 bld.MOV(msg_end, offset(lod2, bld, i));
3945 msg_end = offset(msg_end, bld, 1);
3946 }
3947 break;
3948 case SHADER_OPCODE_TXS:
3949 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3950 bld.MOV(msg_lod, lod);
3951 msg_end = offset(msg_lod, bld, 1);
3952 break;
3953 case SHADER_OPCODE_TXF:
3954 msg_lod = offset(msg_coords, bld, 3);
3955 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3956 msg_end = offset(msg_lod, bld, 1);
3957 break;
3958 case SHADER_OPCODE_TXF_CMS:
3959 msg_lod = offset(msg_coords, bld, 3);
3960 /* lod */
3961 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3962 /* sample index */
3963 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3964 msg_end = offset(msg_lod, bld, 2);
3965 break;
3966 default:
3967 break;
3968 }
3969
3970 inst->opcode = op;
3971 inst->src[0] = reg_undef;
3972 inst->src[1] = surface;
3973 inst->src[2] = sampler;
3974 inst->resize_sources(3);
3975 inst->base_mrf = message.nr;
3976 inst->mlen = msg_end.nr - message.nr;
3977 inst->header_size = header_size;
3978
3979 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3980 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3981 }
3982
3983 static bool
3984 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3985 {
3986 if (devinfo->gen < 8 && !devinfo->is_haswell)
3987 return false;
3988
3989 return sampler.file != IMM || sampler.ud >= 16;
3990 }
3991
3992 static void
3993 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3994 const fs_reg &coordinate,
3995 const fs_reg &shadow_c,
3996 fs_reg lod, const fs_reg &lod2,
3997 const fs_reg &sample_index,
3998 const fs_reg &mcs,
3999 const fs_reg &surface,
4000 const fs_reg &sampler,
4001 const fs_reg &offset_value,
4002 unsigned coord_components,
4003 unsigned grad_components)
4004 {
4005 const gen_device_info *devinfo = bld.shader->devinfo;
4006 unsigned reg_width = bld.dispatch_width() / 8;
4007 unsigned header_size = 0, length = 0;
4008 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4009 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4010 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4011
4012 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4013 offset_value.file != BAD_FILE || inst->eot ||
4014 op == SHADER_OPCODE_SAMPLEINFO ||
4015 is_high_sampler(devinfo, sampler)) {
4016 /* For general texture offsets (no txf workaround), we need a header to
4017 * put them in. Note that we're only reserving space for it in the
4018 * message payload as it will be initialized implicitly by the
4019 * generator.
4020 *
4021 * TG4 needs to place its channel select in the header, for interaction
4022 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4023 * larger sampler numbers we need to offset the Sampler State Pointer in
4024 * the header.
4025 */
4026 header_size = 1;
4027 sources[0] = fs_reg();
4028 length++;
4029
4030 /* If we're requesting fewer than four channels worth of response,
4031 * and we have an explicit header, we need to set up the sampler
4032 * writemask. It's reversed from normal: 1 means "don't write".
4033 */
4034 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4035 assert(regs_written(inst) % reg_width == 0);
4036 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4037 inst->offset |= mask << 12;
4038 }
4039 }
4040
4041 if (shadow_c.file != BAD_FILE) {
4042 bld.MOV(sources[length], shadow_c);
4043 length++;
4044 }
4045
4046 bool coordinate_done = false;
4047
4048 /* Set up the LOD info */
4049 switch (op) {
4050 case FS_OPCODE_TXB:
4051 case SHADER_OPCODE_TXL:
4052 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4053 op = SHADER_OPCODE_TXL_LZ;
4054 break;
4055 }
4056 bld.MOV(sources[length], lod);
4057 length++;
4058 break;
4059 case SHADER_OPCODE_TXD:
4060 /* TXD should have been lowered in SIMD16 mode. */
4061 assert(bld.dispatch_width() == 8);
4062
4063 /* Load dPdx and the coordinate together:
4064 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4065 */
4066 for (unsigned i = 0; i < coord_components; i++) {
4067 bld.MOV(sources[length++], offset(coordinate, bld, i));
4068
4069 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4070 * only derivatives for (u, v, r).
4071 */
4072 if (i < grad_components) {
4073 bld.MOV(sources[length++], offset(lod, bld, i));
4074 bld.MOV(sources[length++], offset(lod2, bld, i));
4075 }
4076 }
4077
4078 coordinate_done = true;
4079 break;
4080 case SHADER_OPCODE_TXS:
4081 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4082 length++;
4083 break;
4084 case SHADER_OPCODE_TXF:
4085 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4086 * On Gen9 they are u, v, lod, r
4087 */
4088 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4089
4090 if (devinfo->gen >= 9) {
4091 if (coord_components >= 2) {
4092 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4093 offset(coordinate, bld, 1));
4094 } else {
4095 sources[length] = brw_imm_d(0);
4096 }
4097 length++;
4098 }
4099
4100 if (devinfo->gen >= 9 && lod.is_zero()) {
4101 op = SHADER_OPCODE_TXF_LZ;
4102 } else {
4103 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4104 length++;
4105 }
4106
4107 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4108 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4109 offset(coordinate, bld, i));
4110
4111 coordinate_done = true;
4112 break;
4113
4114 case SHADER_OPCODE_TXF_CMS:
4115 case SHADER_OPCODE_TXF_CMS_W:
4116 case SHADER_OPCODE_TXF_UMS:
4117 case SHADER_OPCODE_TXF_MCS:
4118 if (op == SHADER_OPCODE_TXF_UMS ||
4119 op == SHADER_OPCODE_TXF_CMS ||
4120 op == SHADER_OPCODE_TXF_CMS_W) {
4121 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4122 length++;
4123 }
4124
4125 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4126 /* Data from the multisample control surface. */
4127 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4128 length++;
4129
4130 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4131 * the MCS data.
4132 */
4133 if (op == SHADER_OPCODE_TXF_CMS_W) {
4134 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4135 mcs.file == IMM ?
4136 mcs :
4137 offset(mcs, bld, 1));
4138 length++;
4139 }
4140 }
4141
4142 /* There is no offsetting for this message; just copy in the integer
4143 * texture coordinates.
4144 */
4145 for (unsigned i = 0; i < coord_components; i++)
4146 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4147 offset(coordinate, bld, i));
4148
4149 coordinate_done = true;
4150 break;
4151 case SHADER_OPCODE_TG4_OFFSET:
4152 /* More crazy intermixing */
4153 for (unsigned i = 0; i < 2; i++) /* u, v */
4154 bld.MOV(sources[length++], offset(coordinate, bld, i));
4155
4156 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4157 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4158 offset(offset_value, bld, i));
4159
4160 if (coord_components == 3) /* r if present */
4161 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4162
4163 coordinate_done = true;
4164 break;
4165 default:
4166 break;
4167 }
4168
4169 /* Set up the coordinate (except for cases where it was done above) */
4170 if (!coordinate_done) {
4171 for (unsigned i = 0; i < coord_components; i++)
4172 bld.MOV(sources[length++], offset(coordinate, bld, i));
4173 }
4174
4175 int mlen;
4176 if (reg_width == 2)
4177 mlen = length * reg_width - header_size;
4178 else
4179 mlen = length * reg_width;
4180
4181 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4182 BRW_REGISTER_TYPE_F);
4183 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4184
4185 /* Generate the SEND. */
4186 inst->opcode = op;
4187 inst->src[0] = src_payload;
4188 inst->src[1] = surface;
4189 inst->src[2] = sampler;
4190 inst->resize_sources(3);
4191 inst->mlen = mlen;
4192 inst->header_size = header_size;
4193
4194 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4195 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4196 }
4197
4198 static void
4199 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4200 {
4201 const gen_device_info *devinfo = bld.shader->devinfo;
4202 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4203 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4204 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4205 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4206 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4207 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4208 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4209 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4210 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4211 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4212 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4213 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4214 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4215
4216 if (devinfo->gen >= 7) {
4217 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4218 shadow_c, lod, lod2, sample_index,
4219 mcs, surface, sampler, offset_value,
4220 coord_components, grad_components);
4221 } else if (devinfo->gen >= 5) {
4222 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4223 shadow_c, lod, lod2, sample_index,
4224 surface, sampler, offset_value,
4225 coord_components, grad_components);
4226 } else {
4227 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4228 shadow_c, lod, lod2,
4229 surface, sampler,
4230 coord_components, grad_components);
4231 }
4232 }
4233
4234 /**
4235 * Initialize the header present in some typed and untyped surface
4236 * messages.
4237 */
4238 static fs_reg
4239 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4240 {
4241 fs_builder ubld = bld.exec_all().group(8, 0);
4242 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4243 ubld.MOV(dst, brw_imm_d(0));
4244 ubld.MOV(component(dst, 7), sample_mask);
4245 return dst;
4246 }
4247
4248 static void
4249 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4250 const fs_reg &sample_mask)
4251 {
4252 /* Get the logical send arguments. */
4253 const fs_reg &addr = inst->src[0];
4254 const fs_reg &src = inst->src[1];
4255 const fs_reg &surface = inst->src[2];
4256 const UNUSED fs_reg &dims = inst->src[3];
4257 const fs_reg &arg = inst->src[4];
4258
4259 /* Calculate the total number of components of the payload. */
4260 const unsigned addr_sz = inst->components_read(0);
4261 const unsigned src_sz = inst->components_read(1);
4262 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4263 const unsigned sz = header_sz + addr_sz + src_sz;
4264
4265 /* Allocate space for the payload. */
4266 fs_reg *const components = new fs_reg[sz];
4267 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4268 unsigned n = 0;
4269
4270 /* Construct the payload. */
4271 if (header_sz)
4272 components[n++] = emit_surface_header(bld, sample_mask);
4273
4274 for (unsigned i = 0; i < addr_sz; i++)
4275 components[n++] = offset(addr, bld, i);
4276
4277 for (unsigned i = 0; i < src_sz; i++)
4278 components[n++] = offset(src, bld, i);
4279
4280 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4281
4282 /* Update the original instruction. */
4283 inst->opcode = op;
4284 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4285 inst->header_size = header_sz;
4286
4287 inst->src[0] = payload;
4288 inst->src[1] = surface;
4289 inst->src[2] = arg;
4290 inst->resize_sources(3);
4291
4292 delete[] components;
4293 }
4294
4295 static void
4296 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4297 {
4298 const gen_device_info *devinfo = bld.shader->devinfo;
4299
4300 if (devinfo->gen >= 7) {
4301 /* We are switching the instruction from an ALU-like instruction to a
4302 * send-from-grf instruction. Since sends can't handle strides or
4303 * source modifiers, we have to make a copy of the offset source.
4304 */
4305 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4306 bld.MOV(tmp, inst->src[1]);
4307 inst->src[1] = tmp;
4308
4309 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4310
4311 } else {
4312 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4313 BRW_REGISTER_TYPE_UD);
4314
4315 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4316
4317 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4318 inst->resize_sources(1);
4319 inst->base_mrf = payload.nr;
4320 inst->header_size = 1;
4321 inst->mlen = 1 + inst->exec_size / 8;
4322 }
4323 }
4324
4325 static void
4326 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4327 {
4328 assert(bld.shader->devinfo->gen < 6);
4329
4330 inst->base_mrf = 2;
4331 inst->mlen = inst->sources * inst->exec_size / 8;
4332
4333 if (inst->sources > 1) {
4334 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4335 * "Message Payload":
4336 *
4337 * "Operand0[7]. For the INT DIV functions, this operand is the
4338 * denominator."
4339 * ...
4340 * "Operand1[7]. For the INT DIV functions, this operand is the
4341 * numerator."
4342 */
4343 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4344 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4345 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4346
4347 inst->resize_sources(1);
4348 inst->src[0] = src0;
4349
4350 assert(inst->exec_size == 8);
4351 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4352 }
4353 }
4354
4355 bool
4356 fs_visitor::lower_logical_sends()
4357 {
4358 bool progress = false;
4359
4360 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4361 const fs_builder ibld(this, block, inst);
4362
4363 switch (inst->opcode) {
4364 case FS_OPCODE_FB_WRITE_LOGICAL:
4365 assert(stage == MESA_SHADER_FRAGMENT);
4366 lower_fb_write_logical_send(ibld, inst,
4367 (const brw_wm_prog_data *)prog_data,
4368 (const brw_wm_prog_key *)key,
4369 payload);
4370 break;
4371
4372 case FS_OPCODE_FB_READ_LOGICAL:
4373 lower_fb_read_logical_send(ibld, inst);
4374 break;
4375
4376 case SHADER_OPCODE_TEX_LOGICAL:
4377 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4378 break;
4379
4380 case SHADER_OPCODE_TXD_LOGICAL:
4381 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4382 break;
4383
4384 case SHADER_OPCODE_TXF_LOGICAL:
4385 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4386 break;
4387
4388 case SHADER_OPCODE_TXL_LOGICAL:
4389 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4390 break;
4391
4392 case SHADER_OPCODE_TXS_LOGICAL:
4393 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4394 break;
4395
4396 case FS_OPCODE_TXB_LOGICAL:
4397 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4398 break;
4399
4400 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4401 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4402 break;
4403
4404 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4405 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4406 break;
4407
4408 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4409 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4410 break;
4411
4412 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4413 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4414 break;
4415
4416 case SHADER_OPCODE_LOD_LOGICAL:
4417 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4418 break;
4419
4420 case SHADER_OPCODE_TG4_LOGICAL:
4421 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4422 break;
4423
4424 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4425 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4426 break;
4427
4428 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4429 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4430 break;
4431
4432 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4433 lower_surface_logical_send(ibld, inst,
4434 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4435 fs_reg());
4436 break;
4437
4438 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4439 lower_surface_logical_send(ibld, inst,
4440 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4441 ibld.sample_mask_reg());
4442 break;
4443
4444 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4445 lower_surface_logical_send(ibld, inst,
4446 SHADER_OPCODE_UNTYPED_ATOMIC,
4447 ibld.sample_mask_reg());
4448 break;
4449
4450 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4451 lower_surface_logical_send(ibld, inst,
4452 SHADER_OPCODE_TYPED_SURFACE_READ,
4453 brw_imm_d(0xffff));
4454 break;
4455
4456 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4457 lower_surface_logical_send(ibld, inst,
4458 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4459 ibld.sample_mask_reg());
4460 break;
4461
4462 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4463 lower_surface_logical_send(ibld, inst,
4464 SHADER_OPCODE_TYPED_ATOMIC,
4465 ibld.sample_mask_reg());
4466 break;
4467
4468 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4469 lower_varying_pull_constant_logical_send(ibld, inst);
4470 break;
4471
4472 case SHADER_OPCODE_RCP:
4473 case SHADER_OPCODE_RSQ:
4474 case SHADER_OPCODE_SQRT:
4475 case SHADER_OPCODE_EXP2:
4476 case SHADER_OPCODE_LOG2:
4477 case SHADER_OPCODE_SIN:
4478 case SHADER_OPCODE_COS:
4479 case SHADER_OPCODE_POW:
4480 case SHADER_OPCODE_INT_QUOTIENT:
4481 case SHADER_OPCODE_INT_REMAINDER:
4482 /* The math opcodes are overloaded for the send-like and
4483 * expression-like instructions which seems kind of icky. Gen6+ has
4484 * a native (but rather quirky) MATH instruction so we don't need to
4485 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4486 * logical instructions (which we can easily recognize because they
4487 * have mlen = 0) into send-like virtual instructions.
4488 */
4489 if (devinfo->gen < 6 && inst->mlen == 0) {
4490 lower_math_logical_send(ibld, inst);
4491 break;
4492
4493 } else {
4494 continue;
4495 }
4496
4497 default:
4498 continue;
4499 }
4500
4501 progress = true;
4502 }
4503
4504 if (progress)
4505 invalidate_live_intervals();
4506
4507 return progress;
4508 }
4509
4510 /**
4511 * Get the closest allowed SIMD width for instruction \p inst accounting for
4512 * some common regioning and execution control restrictions that apply to FPU
4513 * instructions. These restrictions don't necessarily have any relevance to
4514 * instructions not executed by the FPU pipeline like extended math, control
4515 * flow or send message instructions.
4516 *
4517 * For virtual opcodes it's really up to the instruction -- In some cases
4518 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4519 * instructions) it may simplify virtual instruction lowering if we can
4520 * enforce FPU-like regioning restrictions already on the virtual instruction,
4521 * in other cases (e.g. virtual send-like instructions) this may be
4522 * excessively restrictive.
4523 */
4524 static unsigned
4525 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4526 const fs_inst *inst)
4527 {
4528 /* Maximum execution size representable in the instruction controls. */
4529 unsigned max_width = MIN2(32, inst->exec_size);
4530
4531 /* According to the PRMs:
4532 * "A. In Direct Addressing mode, a source cannot span more than 2
4533 * adjacent GRF registers.
4534 * B. A destination cannot span more than 2 adjacent GRF registers."
4535 *
4536 * Look for the source or destination with the largest register region
4537 * which is the one that is going to limit the overall execution size of
4538 * the instruction due to this rule.
4539 */
4540 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4541
4542 for (unsigned i = 0; i < inst->sources; i++)
4543 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4544
4545 /* Calculate the maximum execution size of the instruction based on the
4546 * factor by which it goes over the hardware limit of 2 GRFs.
4547 */
4548 if (reg_count > 2)
4549 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4550
4551 /* According to the IVB PRMs:
4552 * "When destination spans two registers, the source MUST span two
4553 * registers. The exception to the above rule:
4554 *
4555 * - When source is scalar, the source registers are not incremented.
4556 * - When source is packed integer Word and destination is packed
4557 * integer DWord, the source register is not incremented but the
4558 * source sub register is incremented."
4559 *
4560 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4561 * restrictions. The code below intentionally doesn't check whether the
4562 * destination type is integer because empirically the hardware doesn't
4563 * seem to care what the actual type is as long as it's dword-aligned.
4564 */
4565 if (devinfo->gen < 8) {
4566 for (unsigned i = 0; i < inst->sources; i++) {
4567 if (inst->size_written > REG_SIZE &&
4568 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4569 !is_uniform(inst->src[i]) &&
4570 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4571 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4572 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4573 max_width = MIN2(max_width, inst->exec_size / reg_count);
4574 }
4575 }
4576 }
4577
4578 /* From the IVB PRMs:
4579 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4580 * are applied for both halves of the SIMD32 instruction. If different
4581 * execution mask channels are required, split the instruction into two
4582 * SIMD16 instructions."
4583 *
4584 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4585 * 32-wide control flow support in hardware and will behave similarly.
4586 */
4587 if (devinfo->gen < 8 && !inst->force_writemask_all)
4588 max_width = MIN2(max_width, 16);
4589
4590 /* From the IVB PRMs (applies to HSW too):
4591 * "Instructions with condition modifiers must not use SIMD32."
4592 *
4593 * From the BDW PRMs (applies to later hardware too):
4594 * "Ternary instruction with condition modifiers must not use SIMD32."
4595 */
4596 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4597 max_width = MIN2(max_width, 16);
4598
4599 /* From the IVB PRMs (applies to other devices that don't have the
4600 * gen_device_info::supports_simd16_3src flag set):
4601 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4602 * SIMD8 is not allowed for DF operations."
4603 */
4604 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4605 max_width = MIN2(max_width, inst->exec_size / reg_count);
4606
4607 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4608 * the 8-bit quarter of the execution mask signals specified in the
4609 * instruction control fields) for the second compressed half of any
4610 * single-precision instruction (for double-precision instructions
4611 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4612 * the EU will apply the wrong execution controls for the second
4613 * sequential GRF write if the number of channels per GRF is not exactly
4614 * eight in single-precision mode (or four in double-float mode).
4615 *
4616 * In this situation we calculate the maximum size of the split
4617 * instructions so they only ever write to a single register.
4618 */
4619 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4620 !inst->force_writemask_all) {
4621 const unsigned channels_per_grf = inst->exec_size /
4622 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4623 unsigned exec_type_size = 0;
4624 for (int i = 0; i < inst->sources; i++) {
4625 if (inst->src[i].file != BAD_FILE)
4626 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4627 }
4628 assert(exec_type_size);
4629
4630 /* The hardware shifts exactly 8 channels per compressed half of the
4631 * instruction in single-precision mode and exactly 4 in double-precision.
4632 */
4633 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4634 max_width = MIN2(max_width, channels_per_grf);
4635 }
4636
4637 /* Only power-of-two execution sizes are representable in the instruction
4638 * control fields.
4639 */
4640 return 1 << _mesa_logbase2(max_width);
4641 }
4642
4643 /**
4644 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4645 * various payload size restrictions that apply to sampler message
4646 * instructions.
4647 *
4648 * This is only intended to provide a maximum theoretical bound for the
4649 * execution size of the message based on the number of argument components
4650 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4651 * variant of the message can be used, though some messages may have
4652 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4653 * the message length to determine the exact SIMD width and argument count,
4654 * which makes a number of sampler message combinations impossible to
4655 * represent).
4656 */
4657 static unsigned
4658 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4659 const fs_inst *inst)
4660 {
4661 /* Calculate the number of coordinate components that have to be present
4662 * assuming that additional arguments follow the texel coordinates in the
4663 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4664 * need to pad to four or three components depending on the message,
4665 * pre-ILK we need to pad to at most three components.
4666 */
4667 const unsigned req_coord_components =
4668 (devinfo->gen >= 7 ||
4669 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4670 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4671 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4672 3;
4673
4674 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4675 * variant of the TXL or TXF message.
4676 */
4677 const bool implicit_lod = devinfo->gen >= 9 &&
4678 (inst->opcode == SHADER_OPCODE_TXL ||
4679 inst->opcode == SHADER_OPCODE_TXF) &&
4680 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4681
4682 /* Calculate the total number of argument components that need to be passed
4683 * to the sampler unit.
4684 */
4685 const unsigned num_payload_components =
4686 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4687 req_coord_components) +
4688 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4689 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4690 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4691 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4692 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4693 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4694 inst->components_read(TEX_LOGICAL_SRC_MCS);
4695
4696 /* SIMD16 messages with more than five arguments exceed the maximum message
4697 * size supported by the sampler, regardless of whether a header is
4698 * provided or not.
4699 */
4700 return MIN2(inst->exec_size,
4701 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4702 }
4703
4704 /**
4705 * Get the closest native SIMD width supported by the hardware for instruction
4706 * \p inst. The instruction will be left untouched by
4707 * fs_visitor::lower_simd_width() if the returned value is equal to the
4708 * original execution size.
4709 */
4710 static unsigned
4711 get_lowered_simd_width(const struct gen_device_info *devinfo,
4712 const fs_inst *inst)
4713 {
4714 switch (inst->opcode) {
4715 case BRW_OPCODE_MOV:
4716 case BRW_OPCODE_SEL:
4717 case BRW_OPCODE_NOT:
4718 case BRW_OPCODE_AND:
4719 case BRW_OPCODE_OR:
4720 case BRW_OPCODE_XOR:
4721 case BRW_OPCODE_SHR:
4722 case BRW_OPCODE_SHL:
4723 case BRW_OPCODE_ASR:
4724 case BRW_OPCODE_CMPN:
4725 case BRW_OPCODE_CSEL:
4726 case BRW_OPCODE_F32TO16:
4727 case BRW_OPCODE_F16TO32:
4728 case BRW_OPCODE_BFREV:
4729 case BRW_OPCODE_BFE:
4730 case BRW_OPCODE_ADD:
4731 case BRW_OPCODE_MUL:
4732 case BRW_OPCODE_AVG:
4733 case BRW_OPCODE_FRC:
4734 case BRW_OPCODE_RNDU:
4735 case BRW_OPCODE_RNDD:
4736 case BRW_OPCODE_RNDE:
4737 case BRW_OPCODE_RNDZ:
4738 case BRW_OPCODE_LZD:
4739 case BRW_OPCODE_FBH:
4740 case BRW_OPCODE_FBL:
4741 case BRW_OPCODE_CBIT:
4742 case BRW_OPCODE_SAD2:
4743 case BRW_OPCODE_MAD:
4744 case BRW_OPCODE_LRP:
4745 case FS_OPCODE_PACK:
4746 return get_fpu_lowered_simd_width(devinfo, inst);
4747
4748 case BRW_OPCODE_CMP: {
4749 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4750 * when the destination is a GRF the dependency-clear bit on the flag
4751 * register is cleared early.
4752 *
4753 * Suggested workarounds are to disable coissuing CMP instructions
4754 * or to split CMP(16) instructions into two CMP(8) instructions.
4755 *
4756 * We choose to split into CMP(8) instructions since disabling
4757 * coissuing would affect CMP instructions not otherwise affected by
4758 * the errata.
4759 */
4760 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4761 !inst->dst.is_null() ? 8 : ~0);
4762 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4763 }
4764 case BRW_OPCODE_BFI1:
4765 case BRW_OPCODE_BFI2:
4766 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4767 * should
4768 * "Force BFI instructions to be executed always in SIMD8."
4769 */
4770 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4771 get_fpu_lowered_simd_width(devinfo, inst));
4772
4773 case BRW_OPCODE_IF:
4774 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4775 return inst->exec_size;
4776
4777 case SHADER_OPCODE_RCP:
4778 case SHADER_OPCODE_RSQ:
4779 case SHADER_OPCODE_SQRT:
4780 case SHADER_OPCODE_EXP2:
4781 case SHADER_OPCODE_LOG2:
4782 case SHADER_OPCODE_SIN:
4783 case SHADER_OPCODE_COS:
4784 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4785 * Gen6.
4786 */
4787 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4788 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4789 MIN2(8, inst->exec_size));
4790
4791 case SHADER_OPCODE_POW:
4792 /* SIMD16 is only allowed on Gen7+. */
4793 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4794 MIN2(8, inst->exec_size));
4795
4796 case SHADER_OPCODE_INT_QUOTIENT:
4797 case SHADER_OPCODE_INT_REMAINDER:
4798 /* Integer division is limited to SIMD8 on all generations. */
4799 return MIN2(8, inst->exec_size);
4800
4801 case FS_OPCODE_LINTERP:
4802 case FS_OPCODE_GET_BUFFER_SIZE:
4803 case FS_OPCODE_DDX_COARSE:
4804 case FS_OPCODE_DDX_FINE:
4805 case FS_OPCODE_DDY_COARSE:
4806 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4807 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4808 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4809 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4810 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4811 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4812 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4813 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4814 return MIN2(16, inst->exec_size);
4815
4816 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4817 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4818 * message used to implement varying pull constant loads, so expand it
4819 * to SIMD16. An alternative with longer message payload length but
4820 * shorter return payload would be to use the SIMD8 sampler message that
4821 * takes (header, u, v, r) as parameters instead of (header, u).
4822 */
4823 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4824
4825 case FS_OPCODE_DDY_FINE:
4826 /* The implementation of this virtual opcode may require emitting
4827 * compressed Align16 instructions, which are severely limited on some
4828 * generations.
4829 *
4830 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4831 * Region Restrictions):
4832 *
4833 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4834 * and SIMD8 is not allowed for DF operations."
4835 *
4836 * In this context, "DW operations" means "operations acting on 32-bit
4837 * values", so it includes operations on floats.
4838 *
4839 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4840 * (Instruction Compression -> Rules and Restrictions):
4841 *
4842 * "A compressed instruction must be in Align1 access mode. Align16
4843 * mode instructions cannot be compressed."
4844 *
4845 * Similar text exists in the g45 PRM.
4846 *
4847 * Empirically, compressed align16 instructions using odd register
4848 * numbers don't appear to work on Sandybridge either.
4849 */
4850 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4851 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4852 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4853
4854 case SHADER_OPCODE_MULH:
4855 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4856 * is 8-wide on Gen7+.
4857 */
4858 return (devinfo->gen >= 7 ? 8 :
4859 get_fpu_lowered_simd_width(devinfo, inst));
4860
4861 case FS_OPCODE_FB_WRITE_LOGICAL:
4862 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4863 * here.
4864 */
4865 assert(devinfo->gen != 6 ||
4866 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4867 inst->exec_size == 8);
4868 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4869 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4870 8 : MIN2(16, inst->exec_size));
4871
4872 case FS_OPCODE_FB_READ_LOGICAL:
4873 return MIN2(16, inst->exec_size);
4874
4875 case SHADER_OPCODE_TEX_LOGICAL:
4876 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4877 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4878 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4879 case SHADER_OPCODE_LOD_LOGICAL:
4880 case SHADER_OPCODE_TG4_LOGICAL:
4881 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4882 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4883 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4884 return get_sampler_lowered_simd_width(devinfo, inst);
4885
4886 case SHADER_OPCODE_TXD_LOGICAL:
4887 /* TXD is unsupported in SIMD16 mode. */
4888 return 8;
4889
4890 case SHADER_OPCODE_TXL_LOGICAL:
4891 case FS_OPCODE_TXB_LOGICAL:
4892 /* Only one execution size is representable pre-ILK depending on whether
4893 * the shadow reference argument is present.
4894 */
4895 if (devinfo->gen == 4)
4896 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4897 else
4898 return get_sampler_lowered_simd_width(devinfo, inst);
4899
4900 case SHADER_OPCODE_TXF_LOGICAL:
4901 case SHADER_OPCODE_TXS_LOGICAL:
4902 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4903 * messages. Use SIMD16 instead.
4904 */
4905 if (devinfo->gen == 4)
4906 return 16;
4907 else
4908 return get_sampler_lowered_simd_width(devinfo, inst);
4909
4910 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4911 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4912 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4913 return 8;
4914
4915 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4916 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4917 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4918 return MIN2(16, inst->exec_size);
4919
4920 case SHADER_OPCODE_URB_READ_SIMD8:
4921 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4922 case SHADER_OPCODE_URB_WRITE_SIMD8:
4923 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4924 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4925 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4926 return MIN2(8, inst->exec_size);
4927
4928 case SHADER_OPCODE_MOV_INDIRECT:
4929 /* Prior to Broadwell, we only have 8 address subregisters */
4930 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4931 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4932 inst->exec_size);
4933
4934 case SHADER_OPCODE_LOAD_PAYLOAD: {
4935 const unsigned reg_count =
4936 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4937
4938 if (reg_count > 2) {
4939 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4940 * can be easily lowered (which excludes headers and heterogeneous
4941 * types).
4942 */
4943 assert(!inst->header_size);
4944 for (unsigned i = 0; i < inst->sources; i++)
4945 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4946 inst->src[i].file == BAD_FILE);
4947
4948 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4949 } else {
4950 return inst->exec_size;
4951 }
4952 }
4953 default:
4954 return inst->exec_size;
4955 }
4956 }
4957
4958 /**
4959 * Return true if splitting out the group of channels of instruction \p inst
4960 * given by lbld.group() requires allocating a temporary for the i-th source
4961 * of the lowered instruction.
4962 */
4963 static inline bool
4964 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4965 {
4966 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4967 (inst->components_read(i) == 1 &&
4968 lbld.dispatch_width() <= inst->exec_size));
4969 }
4970
4971 /**
4972 * Extract the data that would be consumed by the channel group given by
4973 * lbld.group() from the i-th source region of instruction \p inst and return
4974 * it as result in packed form. If any copy instructions are required they
4975 * will be emitted before the given \p inst in \p block.
4976 */
4977 static fs_reg
4978 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4979 unsigned i)
4980 {
4981 /* Specified channel group from the source region. */
4982 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4983
4984 if (needs_src_copy(lbld, inst, i)) {
4985 /* Builder of the right width to perform the copy avoiding uninitialized
4986 * data if the lowered execution size is greater than the original
4987 * execution size of the instruction.
4988 */
4989 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4990 inst->exec_size), 0);
4991 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4992
4993 for (unsigned k = 0; k < inst->components_read(i); ++k)
4994 cbld.at(block, inst)
4995 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4996
4997 return tmp;
4998
4999 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5000 /* The source is invariant for all dispatch_width-wide groups of the
5001 * original region.
5002 */
5003 return inst->src[i];
5004
5005 } else {
5006 /* We can just point the lowered instruction at the right channel group
5007 * from the original region.
5008 */
5009 return src;
5010 }
5011 }
5012
5013 /**
5014 * Return true if splitting out the group of channels of instruction \p inst
5015 * given by lbld.group() requires allocating a temporary for the destination
5016 * of the lowered instruction and copying the data back to the original
5017 * destination region.
5018 */
5019 static inline bool
5020 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5021 {
5022 /* If the instruction writes more than one component we'll have to shuffle
5023 * the results of multiple lowered instructions in order to make sure that
5024 * they end up arranged correctly in the original destination region.
5025 */
5026 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5027 return true;
5028
5029 /* If the lowered execution size is larger than the original the result of
5030 * the instruction won't fit in the original destination, so we'll have to
5031 * allocate a temporary in any case.
5032 */
5033 if (lbld.dispatch_width() > inst->exec_size)
5034 return true;
5035
5036 for (unsigned i = 0; i < inst->sources; i++) {
5037 /* If we already made a copy of the source for other reasons there won't
5038 * be any overlap with the destination.
5039 */
5040 if (needs_src_copy(lbld, inst, i))
5041 continue;
5042
5043 /* In order to keep the logic simple we emit a copy whenever the
5044 * destination region doesn't exactly match an overlapping source, which
5045 * may point at the source and destination not being aligned group by
5046 * group which could cause one of the lowered instructions to overwrite
5047 * the data read from the same source by other lowered instructions.
5048 */
5049 if (regions_overlap(inst->dst, inst->size_written,
5050 inst->src[i], inst->size_read(i)) &&
5051 !inst->dst.equals(inst->src[i]))
5052 return true;
5053 }
5054
5055 return false;
5056 }
5057
5058 /**
5059 * Insert data from a packed temporary into the channel group given by
5060 * lbld.group() of the destination region of instruction \p inst and return
5061 * the temporary as result. If any copy instructions are required they will
5062 * be emitted around the given \p inst in \p block.
5063 */
5064 static fs_reg
5065 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5066 {
5067 /* Builder of the right width to perform the copy avoiding uninitialized
5068 * data if the lowered execution size is greater than the original
5069 * execution size of the instruction.
5070 */
5071 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5072 inst->exec_size), 0);
5073
5074 /* Specified channel group from the destination region. */
5075 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5076 const unsigned dst_size = inst->size_written /
5077 inst->dst.component_size(inst->exec_size);
5078
5079 if (needs_dst_copy(lbld, inst)) {
5080 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5081
5082 if (inst->predicate) {
5083 /* Handle predication by copying the original contents of
5084 * the destination into the temporary before emitting the
5085 * lowered instruction.
5086 */
5087 for (unsigned k = 0; k < dst_size; ++k)
5088 cbld.at(block, inst)
5089 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5090 }
5091
5092 for (unsigned k = 0; k < dst_size; ++k)
5093 cbld.at(block, inst->next)
5094 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5095
5096 return tmp;
5097
5098 } else {
5099 /* No need to allocate a temporary for the lowered instruction, just
5100 * take the right group of channels from the original region.
5101 */
5102 return dst;
5103 }
5104 }
5105
5106 bool
5107 fs_visitor::lower_simd_width()
5108 {
5109 bool progress = false;
5110
5111 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5112 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5113
5114 if (lower_width != inst->exec_size) {
5115 /* Builder matching the original instruction. We may also need to
5116 * emit an instruction of width larger than the original, set the
5117 * execution size of the builder to the highest of both for now so
5118 * we're sure that both cases can be handled.
5119 */
5120 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5121 const fs_builder ibld = bld.at(block, inst)
5122 .exec_all(inst->force_writemask_all)
5123 .group(max_width, inst->group / max_width);
5124
5125 /* Split the copies in chunks of the execution width of either the
5126 * original or the lowered instruction, whichever is lower.
5127 */
5128 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5129 const unsigned dst_size = inst->size_written /
5130 inst->dst.component_size(inst->exec_size);
5131
5132 assert(!inst->writes_accumulator && !inst->mlen);
5133
5134 for (unsigned i = 0; i < n; i++) {
5135 /* Emit a copy of the original instruction with the lowered width.
5136 * If the EOT flag was set throw it away except for the last
5137 * instruction to avoid killing the thread prematurely.
5138 */
5139 fs_inst split_inst = *inst;
5140 split_inst.exec_size = lower_width;
5141 split_inst.eot = inst->eot && i == n - 1;
5142
5143 /* Select the correct channel enables for the i-th group, then
5144 * transform the sources and destination and emit the lowered
5145 * instruction.
5146 */
5147 const fs_builder lbld = ibld.group(lower_width, i);
5148
5149 for (unsigned j = 0; j < inst->sources; j++)
5150 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5151
5152 split_inst.dst = emit_zip(lbld, block, inst);
5153 split_inst.size_written =
5154 split_inst.dst.component_size(lower_width) * dst_size;
5155
5156 lbld.emit(split_inst);
5157 }
5158
5159 inst->remove(block);
5160 progress = true;
5161 }
5162 }
5163
5164 if (progress)
5165 invalidate_live_intervals();
5166
5167 return progress;
5168 }
5169
5170 void
5171 fs_visitor::dump_instructions()
5172 {
5173 dump_instructions(NULL);
5174 }
5175
5176 void
5177 fs_visitor::dump_instructions(const char *name)
5178 {
5179 FILE *file = stderr;
5180 if (name && geteuid() != 0) {
5181 file = fopen(name, "w");
5182 if (!file)
5183 file = stderr;
5184 }
5185
5186 if (cfg) {
5187 calculate_register_pressure();
5188 int ip = 0, max_pressure = 0;
5189 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5190 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5191 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5192 dump_instruction(inst, file);
5193 ip++;
5194 }
5195 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5196 } else {
5197 int ip = 0;
5198 foreach_in_list(backend_instruction, inst, &instructions) {
5199 fprintf(file, "%4d: ", ip++);
5200 dump_instruction(inst, file);
5201 }
5202 }
5203
5204 if (file != stderr) {
5205 fclose(file);
5206 }
5207 }
5208
5209 void
5210 fs_visitor::dump_instruction(backend_instruction *be_inst)
5211 {
5212 dump_instruction(be_inst, stderr);
5213 }
5214
5215 void
5216 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5217 {
5218 fs_inst *inst = (fs_inst *)be_inst;
5219
5220 if (inst->predicate) {
5221 fprintf(file, "(%cf0.%d) ",
5222 inst->predicate_inverse ? '-' : '+',
5223 inst->flag_subreg);
5224 }
5225
5226 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5227 if (inst->saturate)
5228 fprintf(file, ".sat");
5229 if (inst->conditional_mod) {
5230 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5231 if (!inst->predicate &&
5232 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5233 inst->opcode != BRW_OPCODE_IF &&
5234 inst->opcode != BRW_OPCODE_WHILE))) {
5235 fprintf(file, ".f0.%d", inst->flag_subreg);
5236 }
5237 }
5238 fprintf(file, "(%d) ", inst->exec_size);
5239
5240 if (inst->mlen) {
5241 fprintf(file, "(mlen: %d) ", inst->mlen);
5242 }
5243
5244 if (inst->eot) {
5245 fprintf(file, "(EOT) ");
5246 }
5247
5248 switch (inst->dst.file) {
5249 case VGRF:
5250 fprintf(file, "vgrf%d", inst->dst.nr);
5251 if (alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written ||
5252 inst->dst.offset % REG_SIZE)
5253 fprintf(file, "+%d.%d",
5254 inst->dst.offset / REG_SIZE, inst->dst.offset % REG_SIZE);
5255 break;
5256 case FIXED_GRF:
5257 fprintf(file, "g%d", inst->dst.nr);
5258 break;
5259 case MRF:
5260 fprintf(file, "m%d", inst->dst.nr);
5261 break;
5262 case BAD_FILE:
5263 fprintf(file, "(null)");
5264 break;
5265 case UNIFORM:
5266 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.offset / 4);
5267 break;
5268 case ATTR:
5269 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.offset / REG_SIZE);
5270 break;
5271 case ARF:
5272 switch (inst->dst.nr) {
5273 case BRW_ARF_NULL:
5274 fprintf(file, "null");
5275 break;
5276 case BRW_ARF_ADDRESS:
5277 fprintf(file, "a0.%d", inst->dst.subnr);
5278 break;
5279 case BRW_ARF_ACCUMULATOR:
5280 fprintf(file, "acc%d", inst->dst.subnr);
5281 break;
5282 case BRW_ARF_FLAG:
5283 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5284 break;
5285 default:
5286 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5287 break;
5288 }
5289 if (inst->dst.subnr)
5290 fprintf(file, "+%d", inst->dst.subnr);
5291 break;
5292 case IMM:
5293 unreachable("not reached");
5294 }
5295 if (inst->dst.stride != 1)
5296 fprintf(file, "<%u>", inst->dst.stride);
5297 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5298
5299 for (int i = 0; i < inst->sources; i++) {
5300 if (inst->src[i].negate)
5301 fprintf(file, "-");
5302 if (inst->src[i].abs)
5303 fprintf(file, "|");
5304 switch (inst->src[i].file) {
5305 case VGRF:
5306 fprintf(file, "vgrf%d", inst->src[i].nr);
5307 if (alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i) ||
5308 inst->src[i].offset % REG_SIZE != 0)
5309 fprintf(file, "+%d.%d", inst->src[i].offset / REG_SIZE,
5310 inst->src[i].offset % REG_SIZE);
5311 break;
5312 case FIXED_GRF:
5313 fprintf(file, "g%d", inst->src[i].nr);
5314 break;
5315 case MRF:
5316 fprintf(file, "***m%d***", inst->src[i].nr);
5317 break;
5318 case ATTR:
5319 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].offset / REG_SIZE);
5320 break;
5321 case UNIFORM:
5322 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].offset / 4);
5323 if (inst->src[i].offset % 4 != 0) {
5324 fprintf(file, "+%d.%d", inst->src[i].offset / 4,
5325 inst->src[i].offset % 4);
5326 }
5327 break;
5328 case BAD_FILE:
5329 fprintf(file, "(null)");
5330 break;
5331 case IMM:
5332 switch (inst->src[i].type) {
5333 case BRW_REGISTER_TYPE_F:
5334 fprintf(file, "%-gf", inst->src[i].f);
5335 break;
5336 case BRW_REGISTER_TYPE_DF:
5337 fprintf(file, "%fdf", inst->src[i].df);
5338 break;
5339 case BRW_REGISTER_TYPE_W:
5340 case BRW_REGISTER_TYPE_D:
5341 fprintf(file, "%dd", inst->src[i].d);
5342 break;
5343 case BRW_REGISTER_TYPE_UW:
5344 case BRW_REGISTER_TYPE_UD:
5345 fprintf(file, "%uu", inst->src[i].ud);
5346 break;
5347 case BRW_REGISTER_TYPE_VF:
5348 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5349 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5350 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5351 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5352 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5353 break;
5354 default:
5355 fprintf(file, "???");
5356 break;
5357 }
5358 break;
5359 case ARF:
5360 switch (inst->src[i].nr) {
5361 case BRW_ARF_NULL:
5362 fprintf(file, "null");
5363 break;
5364 case BRW_ARF_ADDRESS:
5365 fprintf(file, "a0.%d", inst->src[i].subnr);
5366 break;
5367 case BRW_ARF_ACCUMULATOR:
5368 fprintf(file, "acc%d", inst->src[i].subnr);
5369 break;
5370 case BRW_ARF_FLAG:
5371 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5372 break;
5373 default:
5374 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5375 break;
5376 }
5377 if (inst->src[i].subnr)
5378 fprintf(file, "+%d", inst->src[i].subnr);
5379 break;
5380 }
5381 if (inst->src[i].abs)
5382 fprintf(file, "|");
5383
5384 if (inst->src[i].file != IMM) {
5385 unsigned stride;
5386 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5387 unsigned hstride = inst->src[i].hstride;
5388 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5389 } else {
5390 stride = inst->src[i].stride;
5391 }
5392 if (stride != 1)
5393 fprintf(file, "<%u>", stride);
5394
5395 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5396 }
5397
5398 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5399 fprintf(file, ", ");
5400 }
5401
5402 fprintf(file, " ");
5403
5404 if (inst->force_writemask_all)
5405 fprintf(file, "NoMask ");
5406
5407 if (inst->exec_size != dispatch_width)
5408 fprintf(file, "group%d ", inst->group);
5409
5410 fprintf(file, "\n");
5411 }
5412
5413 /**
5414 * Possibly returns an instruction that set up @param reg.
5415 *
5416 * Sometimes we want to take the result of some expression/variable
5417 * dereference tree and rewrite the instruction generating the result
5418 * of the tree. When processing the tree, we know that the
5419 * instructions generated are all writing temporaries that are dead
5420 * outside of this tree. So, if we have some instructions that write
5421 * a temporary, we're free to point that temp write somewhere else.
5422 *
5423 * Note that this doesn't guarantee that the instruction generated
5424 * only reg -- it might be the size=4 destination of a texture instruction.
5425 */
5426 fs_inst *
5427 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5428 fs_inst *end,
5429 const fs_reg &reg)
5430 {
5431 if (end == start ||
5432 end->is_partial_write() ||
5433 !reg.equals(end->dst)) {
5434 return NULL;
5435 } else {
5436 return end;
5437 }
5438 }
5439
5440 void
5441 fs_visitor::setup_fs_payload_gen6()
5442 {
5443 assert(stage == MESA_SHADER_FRAGMENT);
5444 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
5445
5446 unsigned barycentric_interp_modes =
5447 (stage == MESA_SHADER_FRAGMENT) ?
5448 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
5449
5450 assert(devinfo->gen >= 6);
5451
5452 /* R0-1: masks, pixel X/Y coordinates. */
5453 payload.num_regs = 2;
5454 /* R2: only for 32-pixel dispatch.*/
5455
5456 /* R3-26: barycentric interpolation coordinates. These appear in the
5457 * same order that they appear in the brw_barycentric_mode
5458 * enum. Each set of coordinates occupies 2 registers if dispatch width
5459 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5460 * appear if they were enabled using the "Barycentric Interpolation
5461 * Mode" bits in WM_STATE.
5462 */
5463 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5464 if (barycentric_interp_modes & (1 << i)) {
5465 payload.barycentric_coord_reg[i] = payload.num_regs;
5466 payload.num_regs += 2;
5467 if (dispatch_width == 16) {
5468 payload.num_regs += 2;
5469 }
5470 }
5471 }
5472
5473 /* R27: interpolated depth if uses source depth */
5474 prog_data->uses_src_depth =
5475 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5476 if (prog_data->uses_src_depth) {
5477 payload.source_depth_reg = payload.num_regs;
5478 payload.num_regs++;
5479 if (dispatch_width == 16) {
5480 /* R28: interpolated depth if not SIMD8. */
5481 payload.num_regs++;
5482 }
5483 }
5484
5485 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5486 prog_data->uses_src_w =
5487 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5488 if (prog_data->uses_src_w) {
5489 payload.source_w_reg = payload.num_regs;
5490 payload.num_regs++;
5491 if (dispatch_width == 16) {
5492 /* R30: interpolated W if not SIMD8. */
5493 payload.num_regs++;
5494 }
5495 }
5496
5497 /* R31: MSAA position offsets. */
5498 if (prog_data->persample_dispatch &&
5499 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5500 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5501 *
5502 * "MSDISPMODE_PERSAMPLE is required in order to select
5503 * POSOFFSET_SAMPLE"
5504 *
5505 * So we can only really get sample positions if we are doing real
5506 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5507 * persample dispatch, we hard-code it to 0.5.
5508 */
5509 prog_data->uses_pos_offset = true;
5510 payload.sample_pos_reg = payload.num_regs;
5511 payload.num_regs++;
5512 }
5513
5514 /* R32: MSAA input coverage mask */
5515 prog_data->uses_sample_mask =
5516 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5517 if (prog_data->uses_sample_mask) {
5518 assert(devinfo->gen >= 7);
5519 payload.sample_mask_in_reg = payload.num_regs;
5520 payload.num_regs++;
5521 if (dispatch_width == 16) {
5522 /* R33: input coverage mask if not SIMD8. */
5523 payload.num_regs++;
5524 }
5525 }
5526
5527 /* R34-: bary for 32-pixel. */
5528 /* R58-59: interp W for 32-pixel. */
5529
5530 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5531 source_depth_to_render_target = true;
5532 }
5533 }
5534
5535 void
5536 fs_visitor::setup_vs_payload()
5537 {
5538 /* R0: thread header, R1: urb handles */
5539 payload.num_regs = 2;
5540 }
5541
5542 void
5543 fs_visitor::setup_gs_payload()
5544 {
5545 assert(stage == MESA_SHADER_GEOMETRY);
5546
5547 struct brw_gs_prog_data *gs_prog_data =
5548 (struct brw_gs_prog_data *) prog_data;
5549 struct brw_vue_prog_data *vue_prog_data =
5550 (struct brw_vue_prog_data *) prog_data;
5551
5552 /* R0: thread header, R1: output URB handles */
5553 payload.num_regs = 2;
5554
5555 if (gs_prog_data->include_primitive_id) {
5556 /* R2: Primitive ID 0..7 */
5557 payload.num_regs++;
5558 }
5559
5560 /* Use a maximum of 24 registers for push-model inputs. */
5561 const unsigned max_push_components = 24;
5562
5563 /* If pushing our inputs would take too many registers, reduce the URB read
5564 * length (which is in HWords, or 8 registers), and resort to pulling.
5565 *
5566 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5567 * have to multiply by VerticesIn to obtain the total storage requirement.
5568 */
5569 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5570 max_push_components || gs_prog_data->invocations > 1) {
5571 gs_prog_data->base.include_vue_handles = true;
5572
5573 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5574 payload.num_regs += nir->info.gs.vertices_in;
5575
5576 vue_prog_data->urb_read_length =
5577 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5578 }
5579 }
5580
5581 void
5582 fs_visitor::setup_cs_payload()
5583 {
5584 assert(devinfo->gen >= 7);
5585 payload.num_regs = 1;
5586 }
5587
5588 void
5589 fs_visitor::calculate_register_pressure()
5590 {
5591 invalidate_live_intervals();
5592 calculate_live_intervals();
5593
5594 unsigned num_instructions = 0;
5595 foreach_block(block, cfg)
5596 num_instructions += block->instructions.length();
5597
5598 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5599
5600 for (unsigned reg = 0; reg < alloc.count; reg++) {
5601 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5602 regs_live_at_ip[ip] += alloc.sizes[reg];
5603 }
5604 }
5605
5606 /**
5607 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5608 *
5609 * The needs_unlit_centroid_workaround ends up producing one of these per
5610 * channel of centroid input, so it's good to clean them up.
5611 *
5612 * An assumption here is that nothing ever modifies the dispatched pixels
5613 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5614 * dictates that anyway.
5615 */
5616 bool
5617 fs_visitor::opt_drop_redundant_mov_to_flags()
5618 {
5619 bool flag_mov_found[2] = {false};
5620 bool progress = false;
5621
5622 /* Instructions removed by this pass can only be added if this were true */
5623 if (!devinfo->needs_unlit_centroid_workaround)
5624 return false;
5625
5626 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5627 if (inst->is_control_flow()) {
5628 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5629 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5630 if (!flag_mov_found[inst->flag_subreg]) {
5631 flag_mov_found[inst->flag_subreg] = true;
5632 } else {
5633 inst->remove(block);
5634 progress = true;
5635 }
5636 } else if (inst->flags_written()) {
5637 flag_mov_found[inst->flag_subreg] = false;
5638 }
5639 }
5640
5641 return progress;
5642 }
5643
5644 void
5645 fs_visitor::optimize()
5646 {
5647 /* Start by validating the shader we currently have. */
5648 validate();
5649
5650 /* bld is the common builder object pointing at the end of the program we
5651 * used to translate it into i965 IR. For the optimization and lowering
5652 * passes coming next, any code added after the end of the program without
5653 * having explicitly called fs_builder::at() clearly points at a mistake.
5654 * Ideally optimization passes wouldn't be part of the visitor so they
5655 * wouldn't have access to bld at all, but they do, so just in case some
5656 * pass forgets to ask for a location explicitly set it to NULL here to
5657 * make it trip. The dispatch width is initialized to a bogus value to
5658 * make sure that optimizations set the execution controls explicitly to
5659 * match the code they are manipulating instead of relying on the defaults.
5660 */
5661 bld = fs_builder(this, 64);
5662
5663 assign_constant_locations();
5664 lower_constant_loads();
5665
5666 validate();
5667
5668 split_virtual_grfs();
5669 validate();
5670
5671 #define OPT(pass, args...) ({ \
5672 pass_num++; \
5673 bool this_progress = pass(args); \
5674 \
5675 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5676 char filename[64]; \
5677 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5678 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5679 \
5680 backend_shader::dump_instructions(filename); \
5681 } \
5682 \
5683 validate(); \
5684 \
5685 progress = progress || this_progress; \
5686 this_progress; \
5687 })
5688
5689 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5690 char filename[64];
5691 snprintf(filename, 64, "%s%d-%s-00-00-start",
5692 stage_abbrev, dispatch_width, nir->info.name);
5693
5694 backend_shader::dump_instructions(filename);
5695 }
5696
5697 bool progress = false;
5698 int iteration = 0;
5699 int pass_num = 0;
5700
5701 OPT(opt_drop_redundant_mov_to_flags);
5702
5703 do {
5704 progress = false;
5705 pass_num = 0;
5706 iteration++;
5707
5708 OPT(remove_duplicate_mrf_writes);
5709
5710 OPT(opt_algebraic);
5711 OPT(opt_cse);
5712 OPT(opt_copy_propagate);
5713 OPT(opt_predicated_break, this);
5714 OPT(opt_cmod_propagation);
5715 OPT(dead_code_eliminate);
5716 OPT(opt_peephole_sel);
5717 OPT(dead_control_flow_eliminate, this);
5718 OPT(opt_register_renaming);
5719 OPT(opt_saturate_propagation);
5720 OPT(register_coalesce);
5721 OPT(compute_to_mrf);
5722 OPT(eliminate_find_live_channel);
5723
5724 OPT(compact_virtual_grfs);
5725 } while (progress);
5726
5727 progress = false;
5728 pass_num = 0;
5729
5730 if (OPT(lower_pack)) {
5731 OPT(register_coalesce);
5732 OPT(dead_code_eliminate);
5733 }
5734
5735 if (OPT(lower_d2x)) {
5736 OPT(opt_copy_propagate);
5737 OPT(dead_code_eliminate);
5738 }
5739
5740 OPT(lower_simd_width);
5741
5742 /* After SIMD lowering just in case we had to unroll the EOT send. */
5743 OPT(opt_sampler_eot);
5744
5745 OPT(lower_logical_sends);
5746
5747 if (progress) {
5748 OPT(opt_copy_propagate);
5749 /* Only run after logical send lowering because it's easier to implement
5750 * in terms of physical sends.
5751 */
5752 if (OPT(opt_zero_samples))
5753 OPT(opt_copy_propagate);
5754 /* Run after logical send lowering to give it a chance to CSE the
5755 * LOAD_PAYLOAD instructions created to construct the payloads of
5756 * e.g. texturing messages in cases where it wasn't possible to CSE the
5757 * whole logical instruction.
5758 */
5759 OPT(opt_cse);
5760 OPT(register_coalesce);
5761 OPT(compute_to_mrf);
5762 OPT(dead_code_eliminate);
5763 OPT(remove_duplicate_mrf_writes);
5764 OPT(opt_peephole_sel);
5765 }
5766
5767 OPT(opt_redundant_discard_jumps);
5768
5769 if (OPT(lower_load_payload)) {
5770 split_virtual_grfs();
5771 OPT(register_coalesce);
5772 OPT(compute_to_mrf);
5773 OPT(dead_code_eliminate);
5774 }
5775
5776 OPT(opt_combine_constants);
5777 OPT(lower_integer_multiplication);
5778
5779 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5780 OPT(opt_cmod_propagation);
5781 OPT(opt_cse);
5782 OPT(opt_copy_propagate);
5783 OPT(dead_code_eliminate);
5784 }
5785
5786 lower_uniform_pull_constant_loads();
5787
5788 validate();
5789 }
5790
5791 /**
5792 * Three source instruction must have a GRF/MRF destination register.
5793 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5794 */
5795 void
5796 fs_visitor::fixup_3src_null_dest()
5797 {
5798 bool progress = false;
5799
5800 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5801 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5802 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5803 inst->dst.type);
5804 progress = true;
5805 }
5806 }
5807
5808 if (progress)
5809 invalidate_live_intervals();
5810 }
5811
5812 void
5813 fs_visitor::allocate_registers(bool allow_spilling)
5814 {
5815 bool allocated_without_spills;
5816
5817 static const enum instruction_scheduler_mode pre_modes[] = {
5818 SCHEDULE_PRE,
5819 SCHEDULE_PRE_NON_LIFO,
5820 SCHEDULE_PRE_LIFO,
5821 };
5822
5823 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5824
5825 /* Try each scheduling heuristic to see if it can successfully register
5826 * allocate without spilling. They should be ordered by decreasing
5827 * performance but increasing likelihood of allocating.
5828 */
5829 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5830 schedule_instructions(pre_modes[i]);
5831
5832 if (0) {
5833 assign_regs_trivial();
5834 allocated_without_spills = true;
5835 } else {
5836 allocated_without_spills = assign_regs(false, spill_all);
5837 }
5838 if (allocated_without_spills)
5839 break;
5840 }
5841
5842 if (!allocated_without_spills) {
5843 if (!allow_spilling)
5844 fail("Failure to register allocate and spilling is not allowed.");
5845
5846 /* We assume that any spilling is worse than just dropping back to
5847 * SIMD8. There's probably actually some intermediate point where
5848 * SIMD16 with a couple of spills is still better.
5849 */
5850 if (dispatch_width > min_dispatch_width) {
5851 fail("Failure to register allocate. Reduce number of "
5852 "live scalar values to avoid this.");
5853 } else {
5854 compiler->shader_perf_log(log_data,
5855 "%s shader triggered register spilling. "
5856 "Try reducing the number of live scalar "
5857 "values to improve performance.\n",
5858 stage_name);
5859 }
5860
5861 /* Since we're out of heuristics, just go spill registers until we
5862 * get an allocation.
5863 */
5864 while (!assign_regs(true, spill_all)) {
5865 if (failed)
5866 break;
5867 }
5868 }
5869
5870 /* This must come after all optimization and register allocation, since
5871 * it inserts dead code that happens to have side effects, and it does
5872 * so based on the actual physical registers in use.
5873 */
5874 insert_gen4_send_dependency_workarounds();
5875
5876 if (failed)
5877 return;
5878
5879 schedule_instructions(SCHEDULE_POST);
5880
5881 if (last_scratch > 0) {
5882 unsigned max_scratch_size = 2 * 1024 * 1024;
5883
5884 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5885
5886 if (stage == MESA_SHADER_COMPUTE) {
5887 if (devinfo->is_haswell) {
5888 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5889 * field documentation, Haswell supports a minimum of 2kB of
5890 * scratch space for compute shaders, unlike every other stage
5891 * and platform.
5892 */
5893 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5894 } else if (devinfo->gen <= 7) {
5895 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5896 * field documentation, platforms prior to Haswell measure scratch
5897 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5898 */
5899 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5900 max_scratch_size = 12 * 1024;
5901 }
5902 }
5903
5904 /* We currently only support up to 2MB of scratch space. If we
5905 * need to support more eventually, the documentation suggests
5906 * that we could allocate a larger buffer, and partition it out
5907 * ourselves. We'd just have to undo the hardware's address
5908 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5909 * and then add FFTID * (Larger Per Thread Scratch Space).
5910 *
5911 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5912 * Thread Group Tracking > Local Memory/Scratch Space.
5913 */
5914 assert(prog_data->total_scratch < max_scratch_size);
5915 }
5916 }
5917
5918 bool
5919 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5920 {
5921 assert(stage == MESA_SHADER_VERTEX);
5922
5923 setup_vs_payload();
5924
5925 if (shader_time_index >= 0)
5926 emit_shader_time_begin();
5927
5928 emit_nir_code();
5929
5930 if (failed)
5931 return false;
5932
5933 compute_clip_distance(clip_planes);
5934
5935 emit_urb_writes();
5936
5937 if (shader_time_index >= 0)
5938 emit_shader_time_end();
5939
5940 calculate_cfg();
5941
5942 optimize();
5943
5944 assign_curb_setup();
5945 assign_vs_urb_setup();
5946
5947 fixup_3src_null_dest();
5948 allocate_registers(true);
5949
5950 return !failed;
5951 }
5952
5953 bool
5954 fs_visitor::run_tcs_single_patch()
5955 {
5956 assert(stage == MESA_SHADER_TESS_CTRL);
5957
5958 struct brw_tcs_prog_data *tcs_prog_data =
5959 (struct brw_tcs_prog_data *) prog_data;
5960
5961 /* r1-r4 contain the ICP handles. */
5962 payload.num_regs = 5;
5963
5964 if (shader_time_index >= 0)
5965 emit_shader_time_begin();
5966
5967 /* Initialize gl_InvocationID */
5968 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5969 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5970 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5971 bld.MOV(channels_ud, channels_uw);
5972
5973 if (tcs_prog_data->instances == 1) {
5974 invocation_id = channels_ud;
5975 } else {
5976 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5977
5978 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5979 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5980 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5981 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5982 brw_imm_ud(INTEL_MASK(23, 17)));
5983 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5984
5985 bld.ADD(invocation_id, instance_times_8, channels_ud);
5986 }
5987
5988 /* Fix the disptach mask */
5989 if (nir->info.tcs.vertices_out % 8) {
5990 bld.CMP(bld.null_reg_ud(), invocation_id,
5991 brw_imm_ud(nir->info.tcs.vertices_out), BRW_CONDITIONAL_L);
5992 bld.IF(BRW_PREDICATE_NORMAL);
5993 }
5994
5995 emit_nir_code();
5996
5997 if (nir->info.tcs.vertices_out % 8) {
5998 bld.emit(BRW_OPCODE_ENDIF);
5999 }
6000
6001 /* Emit EOT write; set TR DS Cache bit */
6002 fs_reg srcs[3] = {
6003 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6004 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6005 fs_reg(brw_imm_ud(0)),
6006 };
6007 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6008 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6009
6010 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6011 bld.null_reg_ud(), payload);
6012 inst->mlen = 3;
6013 inst->eot = true;
6014
6015 if (shader_time_index >= 0)
6016 emit_shader_time_end();
6017
6018 if (failed)
6019 return false;
6020
6021 calculate_cfg();
6022
6023 optimize();
6024
6025 assign_curb_setup();
6026 assign_tcs_single_patch_urb_setup();
6027
6028 fixup_3src_null_dest();
6029 allocate_registers(true);
6030
6031 return !failed;
6032 }
6033
6034 bool
6035 fs_visitor::run_tes()
6036 {
6037 assert(stage == MESA_SHADER_TESS_EVAL);
6038
6039 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6040 payload.num_regs = 5;
6041
6042 if (shader_time_index >= 0)
6043 emit_shader_time_begin();
6044
6045 emit_nir_code();
6046
6047 if (failed)
6048 return false;
6049
6050 emit_urb_writes();
6051
6052 if (shader_time_index >= 0)
6053 emit_shader_time_end();
6054
6055 calculate_cfg();
6056
6057 optimize();
6058
6059 assign_curb_setup();
6060 assign_tes_urb_setup();
6061
6062 fixup_3src_null_dest();
6063 allocate_registers(true);
6064
6065 return !failed;
6066 }
6067
6068 bool
6069 fs_visitor::run_gs()
6070 {
6071 assert(stage == MESA_SHADER_GEOMETRY);
6072
6073 setup_gs_payload();
6074
6075 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6076
6077 if (gs_compile->control_data_header_size_bits > 0) {
6078 /* Create a VGRF to store accumulated control data bits. */
6079 this->control_data_bits = vgrf(glsl_type::uint_type);
6080
6081 /* If we're outputting more than 32 control data bits, then EmitVertex()
6082 * will set control_data_bits to 0 after emitting the first vertex.
6083 * Otherwise, we need to initialize it to 0 here.
6084 */
6085 if (gs_compile->control_data_header_size_bits <= 32) {
6086 const fs_builder abld = bld.annotate("initialize control data bits");
6087 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6088 }
6089 }
6090
6091 if (shader_time_index >= 0)
6092 emit_shader_time_begin();
6093
6094 emit_nir_code();
6095
6096 emit_gs_thread_end();
6097
6098 if (shader_time_index >= 0)
6099 emit_shader_time_end();
6100
6101 if (failed)
6102 return false;
6103
6104 calculate_cfg();
6105
6106 optimize();
6107
6108 assign_curb_setup();
6109 assign_gs_urb_setup();
6110
6111 fixup_3src_null_dest();
6112 allocate_registers(true);
6113
6114 return !failed;
6115 }
6116
6117 bool
6118 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6119 {
6120 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
6121 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6122
6123 assert(stage == MESA_SHADER_FRAGMENT);
6124
6125 if (devinfo->gen >= 6)
6126 setup_fs_payload_gen6();
6127 else
6128 setup_fs_payload_gen4();
6129
6130 if (0) {
6131 emit_dummy_fs();
6132 } else if (do_rep_send) {
6133 assert(dispatch_width == 16);
6134 emit_repclear_shader();
6135 } else {
6136 if (shader_time_index >= 0)
6137 emit_shader_time_begin();
6138
6139 calculate_urb_setup();
6140 if (nir->info.inputs_read > 0 ||
6141 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6142 if (devinfo->gen < 6)
6143 emit_interpolation_setup_gen4();
6144 else
6145 emit_interpolation_setup_gen6();
6146 }
6147
6148 /* We handle discards by keeping track of the still-live pixels in f0.1.
6149 * Initialize it with the dispatched pixels.
6150 */
6151 if (wm_prog_data->uses_kill) {
6152 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6153 discard_init->flag_subreg = 1;
6154 }
6155
6156 /* Generate FS IR for main(). (the visitor only descends into
6157 * functions called "main").
6158 */
6159 emit_nir_code();
6160
6161 if (failed)
6162 return false;
6163
6164 if (wm_prog_data->uses_kill)
6165 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6166
6167 if (wm_key->alpha_test_func)
6168 emit_alpha_test();
6169
6170 emit_fb_writes();
6171
6172 if (shader_time_index >= 0)
6173 emit_shader_time_end();
6174
6175 calculate_cfg();
6176
6177 optimize();
6178
6179 assign_curb_setup();
6180 assign_urb_setup();
6181
6182 fixup_3src_null_dest();
6183 allocate_registers(allow_spilling);
6184
6185 if (failed)
6186 return false;
6187 }
6188
6189 return !failed;
6190 }
6191
6192 bool
6193 fs_visitor::run_cs()
6194 {
6195 assert(stage == MESA_SHADER_COMPUTE);
6196
6197 setup_cs_payload();
6198
6199 if (shader_time_index >= 0)
6200 emit_shader_time_begin();
6201
6202 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6203 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6204 const fs_builder abld = bld.exec_all().group(1, 0);
6205 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
6206 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6207 }
6208
6209 emit_nir_code();
6210
6211 if (failed)
6212 return false;
6213
6214 emit_cs_terminate();
6215
6216 if (shader_time_index >= 0)
6217 emit_shader_time_end();
6218
6219 calculate_cfg();
6220
6221 optimize();
6222
6223 assign_curb_setup();
6224
6225 fixup_3src_null_dest();
6226 allocate_registers(true);
6227
6228 if (failed)
6229 return false;
6230
6231 return !failed;
6232 }
6233
6234 /**
6235 * Return a bitfield where bit n is set if barycentric interpolation mode n
6236 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6237 *
6238 * We examine the load_barycentric intrinsics rather than looking at input
6239 * variables so that we catch interpolateAtCentroid() messages too, which
6240 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6241 */
6242 static unsigned
6243 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6244 const nir_shader *shader)
6245 {
6246 unsigned barycentric_interp_modes = 0;
6247
6248 nir_foreach_function(f, shader) {
6249 if (!f->impl)
6250 continue;
6251
6252 nir_foreach_block(block, f->impl) {
6253 nir_foreach_instr(instr, block) {
6254 if (instr->type != nir_instr_type_intrinsic)
6255 continue;
6256
6257 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6258 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6259 continue;
6260
6261 /* Ignore WPOS; it doesn't require interpolation. */
6262 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6263 continue;
6264
6265 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6266 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6267 nir_intrinsic_interp_mode(intrin);
6268 nir_intrinsic_op bary_op = intrin->intrinsic;
6269 enum brw_barycentric_mode bary =
6270 brw_barycentric_mode(interp, bary_op);
6271
6272 barycentric_interp_modes |= 1 << bary;
6273
6274 if (devinfo->needs_unlit_centroid_workaround &&
6275 bary_op == nir_intrinsic_load_barycentric_centroid)
6276 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6277 }
6278 }
6279 }
6280
6281 return barycentric_interp_modes;
6282 }
6283
6284 static void
6285 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6286 const nir_shader *shader)
6287 {
6288 prog_data->flat_inputs = 0;
6289
6290 nir_foreach_variable(var, &shader->inputs) {
6291 int input_index = prog_data->urb_setup[var->data.location];
6292
6293 if (input_index < 0)
6294 continue;
6295
6296 /* flat shading */
6297 if (var->data.interpolation == INTERP_MODE_FLAT)
6298 prog_data->flat_inputs |= (1 << input_index);
6299 }
6300 }
6301
6302 static uint8_t
6303 computed_depth_mode(const nir_shader *shader)
6304 {
6305 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6306 switch (shader->info.fs.depth_layout) {
6307 case FRAG_DEPTH_LAYOUT_NONE:
6308 case FRAG_DEPTH_LAYOUT_ANY:
6309 return BRW_PSCDEPTH_ON;
6310 case FRAG_DEPTH_LAYOUT_GREATER:
6311 return BRW_PSCDEPTH_ON_GE;
6312 case FRAG_DEPTH_LAYOUT_LESS:
6313 return BRW_PSCDEPTH_ON_LE;
6314 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6315 return BRW_PSCDEPTH_OFF;
6316 }
6317 }
6318 return BRW_PSCDEPTH_OFF;
6319 }
6320
6321 /**
6322 * Move load_interpolated_input with simple (payload-based) barycentric modes
6323 * to the top of the program so we don't emit multiple PLNs for the same input.
6324 *
6325 * This works around CSE not being able to handle non-dominating cases
6326 * such as:
6327 *
6328 * if (...) {
6329 * interpolate input
6330 * } else {
6331 * interpolate the same exact input
6332 * }
6333 *
6334 * This should be replaced by global value numbering someday.
6335 */
6336 void
6337 move_interpolation_to_top(nir_shader *nir)
6338 {
6339 nir_foreach_function(f, nir) {
6340 if (!f->impl)
6341 continue;
6342
6343 nir_block *top = nir_start_block(f->impl);
6344 exec_node *cursor_node = NULL;
6345
6346 nir_foreach_block(block, f->impl) {
6347 if (block == top)
6348 continue;
6349
6350 nir_foreach_instr_safe(instr, block) {
6351 if (instr->type != nir_instr_type_intrinsic)
6352 continue;
6353
6354 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6355 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6356 continue;
6357 nir_intrinsic_instr *bary_intrinsic =
6358 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6359 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6360
6361 /* Leave interpolateAtSample/Offset() where they are. */
6362 if (op == nir_intrinsic_load_barycentric_at_sample ||
6363 op == nir_intrinsic_load_barycentric_at_offset)
6364 continue;
6365
6366 nir_instr *move[3] = {
6367 &bary_intrinsic->instr,
6368 intrin->src[1].ssa->parent_instr,
6369 instr
6370 };
6371
6372 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6373 if (move[i]->block != top) {
6374 move[i]->block = top;
6375 exec_node_remove(&move[i]->node);
6376 if (cursor_node) {
6377 exec_node_insert_after(cursor_node, &move[i]->node);
6378 } else {
6379 exec_list_push_head(&top->instr_list, &move[i]->node);
6380 }
6381 cursor_node = &move[i]->node;
6382 }
6383 }
6384 }
6385 }
6386 nir_metadata_preserve(f->impl, (nir_metadata)
6387 ((unsigned) nir_metadata_block_index |
6388 (unsigned) nir_metadata_dominance));
6389 }
6390 }
6391
6392 /**
6393 * Apply default interpolation settings to FS inputs which don't specify any.
6394 */
6395 static void
6396 brw_nir_set_default_interpolation(const struct gen_device_info *devinfo,
6397 struct nir_shader *nir,
6398 bool api_flat_shade,
6399 bool per_sample_interpolation)
6400 {
6401 assert(nir->stage == MESA_SHADER_FRAGMENT);
6402
6403 nir_foreach_variable(var, &nir->inputs) {
6404 /* Apply default interpolation mode.
6405 *
6406 * Everything defaults to smooth except for the legacy GL color
6407 * built-in variables, which might be flat depending on API state.
6408 */
6409 if (var->data.interpolation == INTERP_MODE_NONE) {
6410 const bool flat = api_flat_shade &&
6411 (var->data.location == VARYING_SLOT_COL0 ||
6412 var->data.location == VARYING_SLOT_COL1);
6413
6414 var->data.interpolation = flat ? INTERP_MODE_FLAT
6415 : INTERP_MODE_SMOOTH;
6416 }
6417
6418 /* Apply 'sample' if necessary for API state. */
6419 if (per_sample_interpolation &&
6420 var->data.interpolation != INTERP_MODE_FLAT) {
6421 var->data.centroid = false;
6422 var->data.sample = true;
6423 }
6424
6425 /* On Ironlake and below, there is only one interpolation mode.
6426 * Centroid interpolation doesn't mean anything on this hardware --
6427 * there is no multisampling.
6428 */
6429 if (devinfo->gen < 6) {
6430 var->data.centroid = false;
6431 var->data.sample = false;
6432 }
6433 }
6434 }
6435
6436 /**
6437 * Demote per-sample barycentric intrinsics to centroid.
6438 *
6439 * Useful when rendering to a non-multisampled buffer.
6440 */
6441 static void
6442 demote_sample_qualifiers(nir_shader *nir)
6443 {
6444 nir_foreach_function(f, nir) {
6445 if (!f->impl)
6446 continue;
6447
6448 nir_builder b;
6449 nir_builder_init(&b, f->impl);
6450
6451 nir_foreach_block(block, f->impl) {
6452 nir_foreach_instr_safe(instr, block) {
6453 if (instr->type != nir_instr_type_intrinsic)
6454 continue;
6455
6456 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6457 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6458 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6459 continue;
6460
6461 b.cursor = nir_before_instr(instr);
6462 nir_ssa_def *centroid =
6463 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6464 nir_intrinsic_interp_mode(intrin));
6465 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6466 nir_src_for_ssa(centroid));
6467 nir_instr_remove(instr);
6468 }
6469 }
6470
6471 nir_metadata_preserve(f->impl, (nir_metadata)
6472 ((unsigned) nir_metadata_block_index |
6473 (unsigned) nir_metadata_dominance));
6474 }
6475 }
6476
6477 const unsigned *
6478 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6479 void *mem_ctx,
6480 const struct brw_wm_prog_key *key,
6481 struct brw_wm_prog_data *prog_data,
6482 const nir_shader *src_shader,
6483 struct gl_program *prog,
6484 int shader_time_index8, int shader_time_index16,
6485 bool allow_spilling,
6486 bool use_rep_send,
6487 unsigned *final_assembly_size,
6488 char **error_str)
6489 {
6490 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6491 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6492 true);
6493 brw_nir_set_default_interpolation(compiler->devinfo, shader,
6494 key->flat_shade, key->persample_interp);
6495 brw_nir_lower_fs_inputs(shader);
6496 brw_nir_lower_fs_outputs(shader);
6497 if (!key->multisample_fbo)
6498 NIR_PASS_V(shader, demote_sample_qualifiers);
6499 NIR_PASS_V(shader, move_interpolation_to_top);
6500 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6501
6502 /* key->alpha_test_func means simulating alpha testing via discards,
6503 * so the shader definitely kills pixels.
6504 */
6505 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
6506 prog_data->uses_omask = key->multisample_fbo &&
6507 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6508 prog_data->computed_depth_mode = computed_depth_mode(shader);
6509 prog_data->computed_stencil =
6510 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6511
6512 prog_data->persample_dispatch =
6513 key->multisample_fbo &&
6514 (key->persample_interp ||
6515 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6516 SYSTEM_BIT_SAMPLE_POS)) ||
6517 shader->info.fs.uses_sample_qualifier ||
6518 shader->info.outputs_read);
6519
6520 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6521
6522 prog_data->barycentric_interp_modes =
6523 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6524
6525 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6526 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6527 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6528
6529 fs_visitor v8(compiler, log_data, mem_ctx, key,
6530 &prog_data->base, prog, shader, 8,
6531 shader_time_index8);
6532 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6533 if (error_str)
6534 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6535
6536 return NULL;
6537 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6538 simd8_cfg = v8.cfg;
6539 simd8_grf_start = v8.payload.num_regs;
6540 simd8_grf_used = v8.grf_used;
6541 }
6542
6543 if (v8.max_dispatch_width >= 16 &&
6544 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6545 /* Try a SIMD16 compile */
6546 fs_visitor v16(compiler, log_data, mem_ctx, key,
6547 &prog_data->base, prog, shader, 16,
6548 shader_time_index16);
6549 v16.import_uniforms(&v8);
6550 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6551 compiler->shader_perf_log(log_data,
6552 "SIMD16 shader failed to compile: %s",
6553 v16.fail_msg);
6554 } else {
6555 simd16_cfg = v16.cfg;
6556 simd16_grf_start = v16.payload.num_regs;
6557 simd16_grf_used = v16.grf_used;
6558 }
6559 }
6560
6561 /* When the caller requests a repclear shader, they want SIMD16-only */
6562 if (use_rep_send)
6563 simd8_cfg = NULL;
6564
6565 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6566 * at the top to select the shader. We've never implemented that.
6567 * Instead, we just give them exactly one shader and we pick the widest one
6568 * available.
6569 */
6570 if (compiler->devinfo->gen < 5 && simd16_cfg)
6571 simd8_cfg = NULL;
6572
6573 if (prog_data->persample_dispatch) {
6574 /* Starting with SandyBridge (where we first get MSAA), the different
6575 * pixel dispatch combinations are grouped into classifications A
6576 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6577 * generations, the only configurations supporting persample dispatch
6578 * are are this in which only one dispatch width is enabled.
6579 *
6580 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6581 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6582 */
6583 if (compiler->devinfo->gen == 6 &&
6584 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6585 simd16_cfg = NULL;
6586 } else if (simd16_cfg) {
6587 simd8_cfg = NULL;
6588 }
6589 }
6590
6591 /* We have to compute the flat inputs after the visitor is finished running
6592 * because it relies on prog_data->urb_setup which is computed in
6593 * fs_visitor::calculate_urb_setup().
6594 */
6595 brw_compute_flat_inputs(prog_data, shader);
6596
6597 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6598 v8.promoted_constants, v8.runtime_check_aads_emit,
6599 MESA_SHADER_FRAGMENT);
6600
6601 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6602 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6603 shader->info.label ? shader->info.label :
6604 "unnamed",
6605 shader->info.name));
6606 }
6607
6608 if (simd8_cfg) {
6609 prog_data->dispatch_8 = true;
6610 g.generate_code(simd8_cfg, 8);
6611 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6612 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6613
6614 if (simd16_cfg) {
6615 prog_data->dispatch_16 = true;
6616 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6617 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6618 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6619 }
6620 } else if (simd16_cfg) {
6621 prog_data->dispatch_16 = true;
6622 g.generate_code(simd16_cfg, 16);
6623 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6624 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6625 }
6626
6627 return g.get_assembly(final_assembly_size);
6628 }
6629
6630 fs_reg *
6631 fs_visitor::emit_cs_work_group_id_setup()
6632 {
6633 assert(stage == MESA_SHADER_COMPUTE);
6634
6635 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6636
6637 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6638 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6639 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6640
6641 bld.MOV(*reg, r0_1);
6642 bld.MOV(offset(*reg, bld, 1), r0_6);
6643 bld.MOV(offset(*reg, bld, 2), r0_7);
6644
6645 return reg;
6646 }
6647
6648 static void
6649 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6650 {
6651 block->dwords = dwords;
6652 block->regs = DIV_ROUND_UP(dwords, 8);
6653 block->size = block->regs * 32;
6654 }
6655
6656 static void
6657 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6658 struct brw_cs_prog_data *cs_prog_data)
6659 {
6660 const struct brw_stage_prog_data *prog_data =
6661 (struct brw_stage_prog_data*) cs_prog_data;
6662 bool fill_thread_id =
6663 cs_prog_data->thread_local_id_index >= 0 &&
6664 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6665 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6666
6667 /* The thread ID should be stored in the last param dword */
6668 assert(prog_data->nr_params > 0 || !fill_thread_id);
6669 assert(!fill_thread_id ||
6670 cs_prog_data->thread_local_id_index ==
6671 (int)prog_data->nr_params - 1);
6672
6673 unsigned cross_thread_dwords, per_thread_dwords;
6674 if (!cross_thread_supported) {
6675 cross_thread_dwords = 0u;
6676 per_thread_dwords = prog_data->nr_params;
6677 } else if (fill_thread_id) {
6678 /* Fill all but the last register with cross-thread payload */
6679 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6680 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6681 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6682 } else {
6683 /* Fill all data using cross-thread payload */
6684 cross_thread_dwords = prog_data->nr_params;
6685 per_thread_dwords = 0u;
6686 }
6687
6688 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6689 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6690
6691 unsigned total_dwords =
6692 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6693 cs_prog_data->push.cross_thread.size) / 4;
6694 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6695
6696 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6697 cs_prog_data->push.per_thread.size == 0);
6698 assert(cs_prog_data->push.cross_thread.dwords +
6699 cs_prog_data->push.per_thread.dwords ==
6700 prog_data->nr_params);
6701 }
6702
6703 static void
6704 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6705 {
6706 cs_prog_data->simd_size = size;
6707 unsigned group_size = cs_prog_data->local_size[0] *
6708 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6709 cs_prog_data->threads = (group_size + size - 1) / size;
6710 }
6711
6712 const unsigned *
6713 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6714 void *mem_ctx,
6715 const struct brw_cs_prog_key *key,
6716 struct brw_cs_prog_data *prog_data,
6717 const nir_shader *src_shader,
6718 int shader_time_index,
6719 unsigned *final_assembly_size,
6720 char **error_str)
6721 {
6722 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6723 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6724 true);
6725 brw_nir_lower_cs_shared(shader);
6726 prog_data->base.total_shared += shader->num_shared;
6727
6728 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6729 * the thread_local_id_index.
6730 */
6731 assert(prog_data->thread_local_id_index >= 0);
6732 shader->num_uniforms =
6733 MAX2(shader->num_uniforms,
6734 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6735
6736 brw_nir_lower_intrinsics(shader, &prog_data->base);
6737 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6738
6739 prog_data->local_size[0] = shader->info.cs.local_size[0];
6740 prog_data->local_size[1] = shader->info.cs.local_size[1];
6741 prog_data->local_size[2] = shader->info.cs.local_size[2];
6742 unsigned local_workgroup_size =
6743 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6744 shader->info.cs.local_size[2];
6745
6746 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6747 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6748
6749 cfg_t *cfg = NULL;
6750 const char *fail_msg = NULL;
6751
6752 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6753 */
6754 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6755 NULL, /* Never used in core profile */
6756 shader, 8, shader_time_index);
6757 if (simd_required <= 8) {
6758 if (!v8.run_cs()) {
6759 fail_msg = v8.fail_msg;
6760 } else {
6761 cfg = v8.cfg;
6762 cs_set_simd_size(prog_data, 8);
6763 cs_fill_push_const_info(compiler->devinfo, prog_data);
6764 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6765 }
6766 }
6767
6768 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6769 NULL, /* Never used in core profile */
6770 shader, 16, shader_time_index);
6771 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6772 !fail_msg && v8.max_dispatch_width >= 16 &&
6773 simd_required <= 16) {
6774 /* Try a SIMD16 compile */
6775 if (simd_required <= 8)
6776 v16.import_uniforms(&v8);
6777 if (!v16.run_cs()) {
6778 compiler->shader_perf_log(log_data,
6779 "SIMD16 shader failed to compile: %s",
6780 v16.fail_msg);
6781 if (!cfg) {
6782 fail_msg =
6783 "Couldn't generate SIMD16 program and not "
6784 "enough threads for SIMD8";
6785 }
6786 } else {
6787 cfg = v16.cfg;
6788 cs_set_simd_size(prog_data, 16);
6789 cs_fill_push_const_info(compiler->devinfo, prog_data);
6790 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6791 }
6792 }
6793
6794 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6795 NULL, /* Never used in core profile */
6796 shader, 32, shader_time_index);
6797 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6798 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6799 /* Try a SIMD32 compile */
6800 if (simd_required <= 8)
6801 v32.import_uniforms(&v8);
6802 else if (simd_required <= 16)
6803 v32.import_uniforms(&v16);
6804
6805 if (!v32.run_cs()) {
6806 compiler->shader_perf_log(log_data,
6807 "SIMD32 shader failed to compile: %s",
6808 v16.fail_msg);
6809 if (!cfg) {
6810 fail_msg =
6811 "Couldn't generate SIMD32 program and not "
6812 "enough threads for SIMD16";
6813 }
6814 } else {
6815 cfg = v32.cfg;
6816 cs_set_simd_size(prog_data, 32);
6817 cs_fill_push_const_info(compiler->devinfo, prog_data);
6818 }
6819 }
6820
6821 if (unlikely(cfg == NULL)) {
6822 assert(fail_msg);
6823 if (error_str)
6824 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6825
6826 return NULL;
6827 }
6828
6829 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6830 v8.promoted_constants, v8.runtime_check_aads_emit,
6831 MESA_SHADER_COMPUTE);
6832 if (INTEL_DEBUG & DEBUG_CS) {
6833 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6834 shader->info.label ? shader->info.label :
6835 "unnamed",
6836 shader->info.name);
6837 g.enable_debug(name);
6838 }
6839
6840 g.generate_code(cfg, prog_data->simd_size);
6841
6842 return g.get_assembly(final_assembly_size);
6843 }