22e6e2e736896db535c67a9a8a9b2d51dc264dd4
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 extern "C" {
29
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "main/uniforms.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "program/prog_optimize.h"
38 #include "program/register_allocate.h"
39 #include "program/sampler.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "talloc.h"
45 }
46 #include "brw_fs.h"
47 #include "../glsl/glsl_types.h"
48 #include "../glsl/ir_optimization.h"
49 #include "../glsl/ir_print_visitor.h"
50
51 static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
52
53 struct gl_shader *
54 brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
55 {
56 struct brw_shader *shader;
57
58 shader = talloc_zero(NULL, struct brw_shader);
59 if (shader) {
60 shader->base.Type = type;
61 shader->base.Name = name;
62 _mesa_init_shader(ctx, &shader->base);
63 }
64
65 return &shader->base;
66 }
67
68 struct gl_shader_program *
69 brw_new_shader_program(struct gl_context *ctx, GLuint name)
70 {
71 struct brw_shader_program *prog;
72 prog = talloc_zero(NULL, struct brw_shader_program);
73 if (prog) {
74 prog->base.Name = name;
75 _mesa_init_shader_program(ctx, &prog->base);
76 }
77 return &prog->base;
78 }
79
80 GLboolean
81 brw_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
82 {
83 if (!_mesa_ir_compile_shader(ctx, shader))
84 return GL_FALSE;
85
86 return GL_TRUE;
87 }
88
89 GLboolean
90 brw_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
91 {
92 struct brw_context *brw = brw_context(ctx);
93 struct intel_context *intel = &brw->intel;
94
95 struct brw_shader *shader =
96 (struct brw_shader *)prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
97 if (shader != NULL) {
98 void *mem_ctx = talloc_new(NULL);
99 bool progress;
100
101 if (shader->ir)
102 talloc_free(shader->ir);
103 shader->ir = new(shader) exec_list;
104 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
105
106 do_mat_op_to_vec(shader->ir);
107 lower_instructions(shader->ir,
108 MOD_TO_FRACT |
109 DIV_TO_MUL_RCP |
110 SUB_TO_ADD_NEG |
111 EXP_TO_EXP2 |
112 LOG_TO_LOG2);
113
114 /* Pre-gen6 HW can only nest if-statements 16 deep. Beyond this,
115 * if-statements need to be flattened.
116 */
117 if (intel->gen < 6)
118 lower_if_to_cond_assign(shader->ir, 16);
119
120 do_lower_texture_projection(shader->ir);
121 do_vec_index_to_cond_assign(shader->ir);
122 brw_do_cubemap_normalize(shader->ir);
123
124 do {
125 progress = false;
126
127 brw_do_channel_expressions(shader->ir);
128 brw_do_vector_splitting(shader->ir);
129
130 progress = do_lower_jumps(shader->ir, true, true,
131 true, /* main return */
132 false, /* continue */
133 false /* loops */
134 ) || progress;
135
136 progress = do_common_optimization(shader->ir, true, 32) || progress;
137
138 progress = lower_noise(shader->ir) || progress;
139 progress =
140 lower_variable_index_to_cond_assign(shader->ir,
141 GL_TRUE, /* input */
142 GL_TRUE, /* output */
143 GL_TRUE, /* temp */
144 GL_TRUE /* uniform */
145 ) || progress;
146 progress = lower_quadop_vector(shader->ir, false) || progress;
147 } while (progress);
148
149 validate_ir_tree(shader->ir);
150
151 reparent_ir(shader->ir, shader->ir);
152 talloc_free(mem_ctx);
153 }
154
155 if (!_mesa_ir_link_shader(ctx, prog))
156 return GL_FALSE;
157
158 return GL_TRUE;
159 }
160
161 static int
162 type_size(const struct glsl_type *type)
163 {
164 unsigned int size, i;
165
166 switch (type->base_type) {
167 case GLSL_TYPE_UINT:
168 case GLSL_TYPE_INT:
169 case GLSL_TYPE_FLOAT:
170 case GLSL_TYPE_BOOL:
171 return type->components();
172 case GLSL_TYPE_ARRAY:
173 return type_size(type->fields.array) * type->length;
174 case GLSL_TYPE_STRUCT:
175 size = 0;
176 for (i = 0; i < type->length; i++) {
177 size += type_size(type->fields.structure[i].type);
178 }
179 return size;
180 case GLSL_TYPE_SAMPLER:
181 /* Samplers take up no register space, since they're baked in at
182 * link time.
183 */
184 return 0;
185 default:
186 assert(!"not reached");
187 return 0;
188 }
189 }
190
191 /**
192 * Returns how many MRFs an FS opcode will write over.
193 *
194 * Note that this is not the 0 or 1 implied writes in an actual gen
195 * instruction -- the FS opcodes often generate MOVs in addition.
196 */
197 int
198 fs_visitor::implied_mrf_writes(fs_inst *inst)
199 {
200 if (inst->mlen == 0)
201 return 0;
202
203 switch (inst->opcode) {
204 case FS_OPCODE_RCP:
205 case FS_OPCODE_RSQ:
206 case FS_OPCODE_SQRT:
207 case FS_OPCODE_EXP2:
208 case FS_OPCODE_LOG2:
209 case FS_OPCODE_SIN:
210 case FS_OPCODE_COS:
211 return 1;
212 case FS_OPCODE_POW:
213 return 2;
214 case FS_OPCODE_TEX:
215 case FS_OPCODE_TXB:
216 case FS_OPCODE_TXL:
217 return 1;
218 case FS_OPCODE_FB_WRITE:
219 return 2;
220 case FS_OPCODE_PULL_CONSTANT_LOAD:
221 case FS_OPCODE_UNSPILL:
222 return 1;
223 case FS_OPCODE_SPILL:
224 return 2;
225 default:
226 assert(!"not reached");
227 return inst->mlen;
228 }
229 }
230
231 int
232 fs_visitor::virtual_grf_alloc(int size)
233 {
234 if (virtual_grf_array_size <= virtual_grf_next) {
235 if (virtual_grf_array_size == 0)
236 virtual_grf_array_size = 16;
237 else
238 virtual_grf_array_size *= 2;
239 virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
240 int, virtual_grf_array_size);
241
242 /* This slot is always unused. */
243 virtual_grf_sizes[0] = 0;
244 }
245 virtual_grf_sizes[virtual_grf_next] = size;
246 return virtual_grf_next++;
247 }
248
249 /** Fixed HW reg constructor. */
250 fs_reg::fs_reg(enum register_file file, int hw_reg)
251 {
252 init();
253 this->file = file;
254 this->hw_reg = hw_reg;
255 this->type = BRW_REGISTER_TYPE_F;
256 }
257
258 /** Fixed HW reg constructor. */
259 fs_reg::fs_reg(enum register_file file, int hw_reg, uint32_t type)
260 {
261 init();
262 this->file = file;
263 this->hw_reg = hw_reg;
264 this->type = type;
265 }
266
267 int
268 brw_type_for_base_type(const struct glsl_type *type)
269 {
270 switch (type->base_type) {
271 case GLSL_TYPE_FLOAT:
272 return BRW_REGISTER_TYPE_F;
273 case GLSL_TYPE_INT:
274 case GLSL_TYPE_BOOL:
275 return BRW_REGISTER_TYPE_D;
276 case GLSL_TYPE_UINT:
277 return BRW_REGISTER_TYPE_UD;
278 case GLSL_TYPE_ARRAY:
279 case GLSL_TYPE_STRUCT:
280 case GLSL_TYPE_SAMPLER:
281 /* These should be overridden with the type of the member when
282 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
283 * way to trip up if we don't.
284 */
285 return BRW_REGISTER_TYPE_UD;
286 default:
287 assert(!"not reached");
288 return BRW_REGISTER_TYPE_F;
289 }
290 }
291
292 /** Automatic reg constructor. */
293 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
294 {
295 init();
296
297 this->file = GRF;
298 this->reg = v->virtual_grf_alloc(type_size(type));
299 this->reg_offset = 0;
300 this->type = brw_type_for_base_type(type);
301 }
302
303 fs_reg *
304 fs_visitor::variable_storage(ir_variable *var)
305 {
306 return (fs_reg *)hash_table_find(this->variable_ht, var);
307 }
308
309 /* Our support for uniforms is piggy-backed on the struct
310 * gl_fragment_program, because that's where the values actually
311 * get stored, rather than in some global gl_shader_program uniform
312 * store.
313 */
314 int
315 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
316 {
317 unsigned int offset = 0;
318 float *vec_values;
319
320 if (type->is_matrix()) {
321 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
322 type->vector_elements,
323 1);
324
325 for (unsigned int i = 0; i < type->matrix_columns; i++) {
326 offset += setup_uniform_values(loc + offset, column);
327 }
328
329 return offset;
330 }
331
332 switch (type->base_type) {
333 case GLSL_TYPE_FLOAT:
334 case GLSL_TYPE_UINT:
335 case GLSL_TYPE_INT:
336 case GLSL_TYPE_BOOL:
337 vec_values = fp->Base.Parameters->ParameterValues[loc];
338 for (unsigned int i = 0; i < type->vector_elements; i++) {
339 unsigned int param = c->prog_data.nr_params++;
340
341 assert(param < ARRAY_SIZE(c->prog_data.param));
342
343 switch (type->base_type) {
344 case GLSL_TYPE_FLOAT:
345 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
346 break;
347 case GLSL_TYPE_UINT:
348 c->prog_data.param_convert[param] = PARAM_CONVERT_F2U;
349 break;
350 case GLSL_TYPE_INT:
351 c->prog_data.param_convert[param] = PARAM_CONVERT_F2I;
352 break;
353 case GLSL_TYPE_BOOL:
354 c->prog_data.param_convert[param] = PARAM_CONVERT_F2B;
355 break;
356 default:
357 assert(!"not reached");
358 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
359 break;
360 }
361
362 c->prog_data.param[param] = &vec_values[i];
363 }
364 return 1;
365
366 case GLSL_TYPE_STRUCT:
367 for (unsigned int i = 0; i < type->length; i++) {
368 offset += setup_uniform_values(loc + offset,
369 type->fields.structure[i].type);
370 }
371 return offset;
372
373 case GLSL_TYPE_ARRAY:
374 for (unsigned int i = 0; i < type->length; i++) {
375 offset += setup_uniform_values(loc + offset, type->fields.array);
376 }
377 return offset;
378
379 case GLSL_TYPE_SAMPLER:
380 /* The sampler takes up a slot, but we don't use any values from it. */
381 return 1;
382
383 default:
384 assert(!"not reached");
385 return 0;
386 }
387 }
388
389
390 /* Our support for builtin uniforms is even scarier than non-builtin.
391 * It sits on top of the PROG_STATE_VAR parameters that are
392 * automatically updated from GL context state.
393 */
394 void
395 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
396 {
397 const struct gl_builtin_uniform_desc *statevar = NULL;
398
399 for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
400 statevar = &_mesa_builtin_uniform_desc[i];
401 if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
402 break;
403 }
404
405 if (!statevar->name) {
406 this->fail = true;
407 printf("Failed to find builtin uniform `%s'\n", ir->name);
408 return;
409 }
410
411 int array_count;
412 if (ir->type->is_array()) {
413 array_count = ir->type->length;
414 } else {
415 array_count = 1;
416 }
417
418 for (int a = 0; a < array_count; a++) {
419 for (unsigned int i = 0; i < statevar->num_elements; i++) {
420 struct gl_builtin_uniform_element *element = &statevar->elements[i];
421 int tokens[STATE_LENGTH];
422
423 memcpy(tokens, element->tokens, sizeof(element->tokens));
424 if (ir->type->is_array()) {
425 tokens[1] = a;
426 }
427
428 /* This state reference has already been setup by ir_to_mesa,
429 * but we'll get the same index back here.
430 */
431 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
432 (gl_state_index *)tokens);
433 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
434
435 /* Add each of the unique swizzles of the element as a
436 * parameter. This'll end up matching the expected layout of
437 * the array/matrix/structure we're trying to fill in.
438 */
439 int last_swiz = -1;
440 for (unsigned int i = 0; i < 4; i++) {
441 int swiz = GET_SWZ(element->swizzle, i);
442 if (swiz == last_swiz)
443 break;
444 last_swiz = swiz;
445
446 c->prog_data.param_convert[c->prog_data.nr_params] =
447 PARAM_NO_CONVERT;
448 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
449 }
450 }
451 }
452 }
453
454 fs_reg *
455 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
456 {
457 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
458 fs_reg wpos = *reg;
459 fs_reg neg_y = this->pixel_y;
460 neg_y.negate = true;
461 bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
462
463 /* gl_FragCoord.x */
464 if (ir->pixel_center_integer) {
465 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
466 } else {
467 emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
468 }
469 wpos.reg_offset++;
470
471 /* gl_FragCoord.y */
472 if (!flip && ir->pixel_center_integer) {
473 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
474 } else {
475 fs_reg pixel_y = this->pixel_y;
476 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
477
478 if (flip) {
479 pixel_y.negate = true;
480 offset += c->key.drawable_height - 1.0;
481 }
482
483 emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
484 }
485 wpos.reg_offset++;
486
487 /* gl_FragCoord.z */
488 if (intel->gen >= 6) {
489 emit(fs_inst(BRW_OPCODE_MOV, wpos,
490 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
491 } else {
492 emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
493 interp_reg(FRAG_ATTRIB_WPOS, 2)));
494 }
495 wpos.reg_offset++;
496
497 /* gl_FragCoord.w: Already set up in emit_interpolation */
498 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
499
500 return reg;
501 }
502
503 fs_reg *
504 fs_visitor::emit_general_interpolation(ir_variable *ir)
505 {
506 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
507 /* Interpolation is always in floating point regs. */
508 reg->type = BRW_REGISTER_TYPE_F;
509 fs_reg attr = *reg;
510
511 unsigned int array_elements;
512 const glsl_type *type;
513
514 if (ir->type->is_array()) {
515 array_elements = ir->type->length;
516 if (array_elements == 0) {
517 this->fail = true;
518 }
519 type = ir->type->fields.array;
520 } else {
521 array_elements = 1;
522 type = ir->type;
523 }
524
525 int location = ir->location;
526 for (unsigned int i = 0; i < array_elements; i++) {
527 for (unsigned int j = 0; j < type->matrix_columns; j++) {
528 if (urb_setup[location] == -1) {
529 /* If there's no incoming setup data for this slot, don't
530 * emit interpolation for it.
531 */
532 attr.reg_offset += type->vector_elements;
533 location++;
534 continue;
535 }
536
537 for (unsigned int c = 0; c < type->vector_elements; c++) {
538 struct brw_reg interp = interp_reg(location, c);
539 emit(fs_inst(FS_OPCODE_LINTERP,
540 attr,
541 this->delta_x,
542 this->delta_y,
543 fs_reg(interp)));
544 attr.reg_offset++;
545 }
546
547 if (intel->gen < 6) {
548 attr.reg_offset -= type->vector_elements;
549 for (unsigned int c = 0; c < type->vector_elements; c++) {
550 emit(fs_inst(BRW_OPCODE_MUL,
551 attr,
552 attr,
553 this->pixel_w));
554 attr.reg_offset++;
555 }
556 }
557 location++;
558 }
559 }
560
561 return reg;
562 }
563
564 fs_reg *
565 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
566 {
567 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
568
569 /* The frontfacing comes in as a bit in the thread payload. */
570 if (intel->gen >= 6) {
571 emit(fs_inst(BRW_OPCODE_ASR,
572 *reg,
573 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
574 fs_reg(15)));
575 emit(fs_inst(BRW_OPCODE_NOT,
576 *reg,
577 *reg));
578 emit(fs_inst(BRW_OPCODE_AND,
579 *reg,
580 *reg,
581 fs_reg(1)));
582 } else {
583 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
584 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
585 * us front face
586 */
587 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
588 *reg,
589 fs_reg(r1_6ud),
590 fs_reg(1u << 31)));
591 inst->conditional_mod = BRW_CONDITIONAL_L;
592 emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
593 }
594
595 return reg;
596 }
597
598 fs_inst *
599 fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src)
600 {
601 switch (opcode) {
602 case FS_OPCODE_RCP:
603 case FS_OPCODE_RSQ:
604 case FS_OPCODE_SQRT:
605 case FS_OPCODE_EXP2:
606 case FS_OPCODE_LOG2:
607 case FS_OPCODE_SIN:
608 case FS_OPCODE_COS:
609 break;
610 default:
611 assert(!"not reached: bad math opcode");
612 return NULL;
613 }
614
615 /* Can't do hstride == 0 args to gen6 math, so expand it out. We
616 * might be able to do better by doing execsize = 1 math and then
617 * expanding that result out, but we would need to be careful with
618 * masking.
619 *
620 * The hardware ignores source modifiers (negate and abs) on math
621 * instructions, so we also move to a temp to set those up.
622 */
623 if (intel->gen >= 6 && (src.file == UNIFORM ||
624 src.abs ||
625 src.negate)) {
626 fs_reg expanded = fs_reg(this, glsl_type::float_type);
627 emit(fs_inst(BRW_OPCODE_MOV, expanded, src));
628 src = expanded;
629 }
630
631 fs_inst *inst = emit(fs_inst(opcode, dst, src));
632
633 if (intel->gen < 6) {
634 inst->base_mrf = 2;
635 inst->mlen = 1;
636 }
637
638 return inst;
639 }
640
641 fs_inst *
642 fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src0, fs_reg src1)
643 {
644 int base_mrf = 2;
645 fs_inst *inst;
646
647 assert(opcode == FS_OPCODE_POW);
648
649 if (intel->gen >= 6) {
650 /* Can't do hstride == 0 args to gen6 math, so expand it out. */
651 if (src0.file == UNIFORM) {
652 fs_reg expanded = fs_reg(this, glsl_type::float_type);
653 emit(fs_inst(BRW_OPCODE_MOV, expanded, src0));
654 src0 = expanded;
655 }
656
657 if (src1.file == UNIFORM) {
658 fs_reg expanded = fs_reg(this, glsl_type::float_type);
659 emit(fs_inst(BRW_OPCODE_MOV, expanded, src1));
660 src1 = expanded;
661 }
662
663 inst = emit(fs_inst(opcode, dst, src0, src1));
664 } else {
665 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1), src1));
666 inst = emit(fs_inst(opcode, dst, src0, reg_null_f));
667
668 inst->base_mrf = base_mrf;
669 inst->mlen = 2;
670 }
671 return inst;
672 }
673
674 void
675 fs_visitor::visit(ir_variable *ir)
676 {
677 fs_reg *reg = NULL;
678
679 if (variable_storage(ir))
680 return;
681
682 if (strcmp(ir->name, "gl_FragColor") == 0) {
683 this->frag_color = ir;
684 } else if (strcmp(ir->name, "gl_FragData") == 0) {
685 this->frag_data = ir;
686 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
687 this->frag_depth = ir;
688 }
689
690 if (ir->mode == ir_var_in) {
691 if (!strcmp(ir->name, "gl_FragCoord")) {
692 reg = emit_fragcoord_interpolation(ir);
693 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
694 reg = emit_frontfacing_interpolation(ir);
695 } else {
696 reg = emit_general_interpolation(ir);
697 }
698 assert(reg);
699 hash_table_insert(this->variable_ht, reg, ir);
700 return;
701 }
702
703 if (ir->mode == ir_var_uniform) {
704 int param_index = c->prog_data.nr_params;
705
706 if (!strncmp(ir->name, "gl_", 3)) {
707 setup_builtin_uniform_values(ir);
708 } else {
709 setup_uniform_values(ir->location, ir->type);
710 }
711
712 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
713 reg->type = brw_type_for_base_type(ir->type);
714 }
715
716 if (!reg)
717 reg = new(this->mem_ctx) fs_reg(this, ir->type);
718
719 hash_table_insert(this->variable_ht, reg, ir);
720 }
721
722 void
723 fs_visitor::visit(ir_dereference_variable *ir)
724 {
725 fs_reg *reg = variable_storage(ir->var);
726 this->result = *reg;
727 }
728
729 void
730 fs_visitor::visit(ir_dereference_record *ir)
731 {
732 const glsl_type *struct_type = ir->record->type;
733
734 ir->record->accept(this);
735
736 unsigned int offset = 0;
737 for (unsigned int i = 0; i < struct_type->length; i++) {
738 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
739 break;
740 offset += type_size(struct_type->fields.structure[i].type);
741 }
742 this->result.reg_offset += offset;
743 this->result.type = brw_type_for_base_type(ir->type);
744 }
745
746 void
747 fs_visitor::visit(ir_dereference_array *ir)
748 {
749 ir_constant *index;
750 int element_size;
751
752 ir->array->accept(this);
753 index = ir->array_index->as_constant();
754
755 element_size = type_size(ir->type);
756 this->result.type = brw_type_for_base_type(ir->type);
757
758 if (index) {
759 assert(this->result.file == UNIFORM ||
760 (this->result.file == GRF &&
761 this->result.reg != 0));
762 this->result.reg_offset += index->value.i[0] * element_size;
763 } else {
764 assert(!"FINISHME: non-constant array element");
765 }
766 }
767
768 /* Instruction selection: Produce a MOV.sat instead of
769 * MIN(MAX(val, 0), 1) when possible.
770 */
771 bool
772 fs_visitor::try_emit_saturate(ir_expression *ir)
773 {
774 ir_rvalue *sat_val = ir->as_rvalue_to_saturate();
775
776 if (!sat_val)
777 return false;
778
779 sat_val->accept(this);
780 fs_reg src = this->result;
781
782 this->result = fs_reg(this, ir->type);
783 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, src));
784 inst->saturate = true;
785
786 return true;
787 }
788
789 static uint32_t
790 brw_conditional_for_comparison(unsigned int op)
791 {
792 switch (op) {
793 case ir_binop_less:
794 return BRW_CONDITIONAL_L;
795 case ir_binop_greater:
796 return BRW_CONDITIONAL_G;
797 case ir_binop_lequal:
798 return BRW_CONDITIONAL_LE;
799 case ir_binop_gequal:
800 return BRW_CONDITIONAL_GE;
801 case ir_binop_equal:
802 case ir_binop_all_equal: /* same as equal for scalars */
803 return BRW_CONDITIONAL_Z;
804 case ir_binop_nequal:
805 case ir_binop_any_nequal: /* same as nequal for scalars */
806 return BRW_CONDITIONAL_NZ;
807 default:
808 assert(!"not reached: bad operation for comparison");
809 return BRW_CONDITIONAL_NZ;
810 }
811 }
812
813 void
814 fs_visitor::visit(ir_expression *ir)
815 {
816 unsigned int operand;
817 fs_reg op[2], temp;
818 fs_inst *inst;
819
820 assert(ir->get_num_operands() <= 2);
821
822 if (try_emit_saturate(ir))
823 return;
824
825 for (operand = 0; operand < ir->get_num_operands(); operand++) {
826 ir->operands[operand]->accept(this);
827 if (this->result.file == BAD_FILE) {
828 ir_print_visitor v;
829 printf("Failed to get tree for expression operand:\n");
830 ir->operands[operand]->accept(&v);
831 this->fail = true;
832 }
833 op[operand] = this->result;
834
835 /* Matrix expression operands should have been broken down to vector
836 * operations already.
837 */
838 assert(!ir->operands[operand]->type->is_matrix());
839 /* And then those vector operands should have been broken down to scalar.
840 */
841 assert(!ir->operands[operand]->type->is_vector());
842 }
843
844 /* Storage for our result. If our result goes into an assignment, it will
845 * just get copy-propagated out, so no worries.
846 */
847 this->result = fs_reg(this, ir->type);
848
849 switch (ir->operation) {
850 case ir_unop_logic_not:
851 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
852 * ones complement of the whole register, not just bit 0.
853 */
854 emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1)));
855 break;
856 case ir_unop_neg:
857 op[0].negate = !op[0].negate;
858 this->result = op[0];
859 break;
860 case ir_unop_abs:
861 op[0].abs = true;
862 this->result = op[0];
863 break;
864 case ir_unop_sign:
865 temp = fs_reg(this, ir->type);
866
867 emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
868
869 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f)));
870 inst->conditional_mod = BRW_CONDITIONAL_G;
871 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
872 inst->predicated = true;
873
874 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f)));
875 inst->conditional_mod = BRW_CONDITIONAL_L;
876 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
877 inst->predicated = true;
878
879 break;
880 case ir_unop_rcp:
881 emit_math(FS_OPCODE_RCP, this->result, op[0]);
882 break;
883
884 case ir_unop_exp2:
885 emit_math(FS_OPCODE_EXP2, this->result, op[0]);
886 break;
887 case ir_unop_log2:
888 emit_math(FS_OPCODE_LOG2, this->result, op[0]);
889 break;
890 case ir_unop_exp:
891 case ir_unop_log:
892 assert(!"not reached: should be handled by ir_explog_to_explog2");
893 break;
894 case ir_unop_sin:
895 case ir_unop_sin_reduced:
896 emit_math(FS_OPCODE_SIN, this->result, op[0]);
897 break;
898 case ir_unop_cos:
899 case ir_unop_cos_reduced:
900 emit_math(FS_OPCODE_COS, this->result, op[0]);
901 break;
902
903 case ir_unop_dFdx:
904 emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
905 break;
906 case ir_unop_dFdy:
907 emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
908 break;
909
910 case ir_binop_add:
911 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
912 break;
913 case ir_binop_sub:
914 assert(!"not reached: should be handled by ir_sub_to_add_neg");
915 break;
916
917 case ir_binop_mul:
918 emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
919 break;
920 case ir_binop_div:
921 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
922 break;
923 case ir_binop_mod:
924 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
925 break;
926
927 case ir_binop_less:
928 case ir_binop_greater:
929 case ir_binop_lequal:
930 case ir_binop_gequal:
931 case ir_binop_equal:
932 case ir_binop_all_equal:
933 case ir_binop_nequal:
934 case ir_binop_any_nequal:
935 temp = this->result;
936 /* original gen4 does implicit conversion before comparison. */
937 if (intel->gen < 5)
938 temp.type = op[0].type;
939
940 inst = emit(fs_inst(BRW_OPCODE_CMP, temp, op[0], op[1]));
941 inst->conditional_mod = brw_conditional_for_comparison(ir->operation);
942 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
943 break;
944
945 case ir_binop_logic_xor:
946 emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
947 break;
948
949 case ir_binop_logic_or:
950 emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
951 break;
952
953 case ir_binop_logic_and:
954 emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
955 break;
956
957 case ir_binop_dot:
958 case ir_unop_any:
959 assert(!"not reached: should be handled by brw_fs_channel_expressions");
960 break;
961
962 case ir_unop_noise:
963 assert(!"not reached: should be handled by lower_noise");
964 break;
965
966 case ir_quadop_vector:
967 assert(!"not reached: should be handled by lower_quadop_vector");
968 break;
969
970 case ir_unop_sqrt:
971 emit_math(FS_OPCODE_SQRT, this->result, op[0]);
972 break;
973
974 case ir_unop_rsq:
975 emit_math(FS_OPCODE_RSQ, this->result, op[0]);
976 break;
977
978 case ir_unop_i2f:
979 case ir_unop_b2f:
980 case ir_unop_b2i:
981 case ir_unop_f2i:
982 emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
983 break;
984 case ir_unop_f2b:
985 case ir_unop_i2b:
986 temp = this->result;
987 /* original gen4 does implicit conversion before comparison. */
988 if (intel->gen < 5)
989 temp.type = op[0].type;
990
991 inst = emit(fs_inst(BRW_OPCODE_CMP, temp, op[0], fs_reg(0.0f)));
992 inst->conditional_mod = BRW_CONDITIONAL_NZ;
993 inst = emit(fs_inst(BRW_OPCODE_AND, this->result,
994 this->result, fs_reg(1)));
995 break;
996
997 case ir_unop_trunc:
998 emit(fs_inst(BRW_OPCODE_RNDZ, this->result, op[0]));
999 break;
1000 case ir_unop_ceil:
1001 op[0].negate = !op[0].negate;
1002 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1003 this->result.negate = true;
1004 break;
1005 case ir_unop_floor:
1006 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1007 break;
1008 case ir_unop_fract:
1009 inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1010 break;
1011 case ir_unop_round_even:
1012 emit(fs_inst(BRW_OPCODE_RNDE, this->result, op[0]));
1013 break;
1014
1015 case ir_binop_min:
1016 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1017 inst->conditional_mod = BRW_CONDITIONAL_L;
1018
1019 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1020 inst->predicated = true;
1021 break;
1022 case ir_binop_max:
1023 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1024 inst->conditional_mod = BRW_CONDITIONAL_G;
1025
1026 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1027 inst->predicated = true;
1028 break;
1029
1030 case ir_binop_pow:
1031 emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
1032 break;
1033
1034 case ir_unop_bit_not:
1035 inst = emit(fs_inst(BRW_OPCODE_NOT, this->result, op[0]));
1036 break;
1037 case ir_binop_bit_and:
1038 inst = emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1039 break;
1040 case ir_binop_bit_xor:
1041 inst = emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1042 break;
1043 case ir_binop_bit_or:
1044 inst = emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1045 break;
1046
1047 case ir_unop_u2f:
1048 case ir_binop_lshift:
1049 case ir_binop_rshift:
1050 assert(!"GLSL 1.30 features unsupported");
1051 break;
1052 }
1053 }
1054
1055 void
1056 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1057 const glsl_type *type, bool predicated)
1058 {
1059 switch (type->base_type) {
1060 case GLSL_TYPE_FLOAT:
1061 case GLSL_TYPE_UINT:
1062 case GLSL_TYPE_INT:
1063 case GLSL_TYPE_BOOL:
1064 for (unsigned int i = 0; i < type->components(); i++) {
1065 l.type = brw_type_for_base_type(type);
1066 r.type = brw_type_for_base_type(type);
1067
1068 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1069 inst->predicated = predicated;
1070
1071 l.reg_offset++;
1072 r.reg_offset++;
1073 }
1074 break;
1075 case GLSL_TYPE_ARRAY:
1076 for (unsigned int i = 0; i < type->length; i++) {
1077 emit_assignment_writes(l, r, type->fields.array, predicated);
1078 }
1079 break;
1080
1081 case GLSL_TYPE_STRUCT:
1082 for (unsigned int i = 0; i < type->length; i++) {
1083 emit_assignment_writes(l, r, type->fields.structure[i].type,
1084 predicated);
1085 }
1086 break;
1087
1088 case GLSL_TYPE_SAMPLER:
1089 break;
1090
1091 default:
1092 assert(!"not reached");
1093 break;
1094 }
1095 }
1096
1097 void
1098 fs_visitor::visit(ir_assignment *ir)
1099 {
1100 struct fs_reg l, r;
1101 fs_inst *inst;
1102
1103 /* FINISHME: arrays on the lhs */
1104 ir->lhs->accept(this);
1105 l = this->result;
1106
1107 ir->rhs->accept(this);
1108 r = this->result;
1109
1110 assert(l.file != BAD_FILE);
1111 assert(r.file != BAD_FILE);
1112
1113 if (ir->condition) {
1114 emit_bool_to_cond_code(ir->condition);
1115 }
1116
1117 if (ir->lhs->type->is_scalar() ||
1118 ir->lhs->type->is_vector()) {
1119 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1120 if (ir->write_mask & (1 << i)) {
1121 inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1122 if (ir->condition)
1123 inst->predicated = true;
1124 r.reg_offset++;
1125 }
1126 l.reg_offset++;
1127 }
1128 } else {
1129 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1130 }
1131 }
1132
1133 fs_inst *
1134 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1135 {
1136 int mlen;
1137 int base_mrf = 1;
1138 bool simd16 = false;
1139 fs_reg orig_dst;
1140
1141 /* g0 header. */
1142 mlen = 1;
1143
1144 if (ir->shadow_comparitor) {
1145 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1146 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1147 coordinate));
1148 coordinate.reg_offset++;
1149 }
1150 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1151 mlen += 3;
1152
1153 if (ir->op == ir_tex) {
1154 /* There's no plain shadow compare message, so we use shadow
1155 * compare with a bias of 0.0.
1156 */
1157 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1158 fs_reg(0.0f)));
1159 mlen++;
1160 } else if (ir->op == ir_txb) {
1161 ir->lod_info.bias->accept(this);
1162 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1163 this->result));
1164 mlen++;
1165 } else {
1166 assert(ir->op == ir_txl);
1167 ir->lod_info.lod->accept(this);
1168 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1169 this->result));
1170 mlen++;
1171 }
1172
1173 ir->shadow_comparitor->accept(this);
1174 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1175 mlen++;
1176 } else if (ir->op == ir_tex) {
1177 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1178 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1179 coordinate));
1180 coordinate.reg_offset++;
1181 }
1182 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1183 mlen += 3;
1184 } else {
1185 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1186 * instructions. We'll need to do SIMD16 here.
1187 */
1188 assert(ir->op == ir_txb || ir->op == ir_txl);
1189
1190 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1191 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2),
1192 coordinate));
1193 coordinate.reg_offset++;
1194 }
1195
1196 /* lod/bias appears after u/v/r. */
1197 mlen += 6;
1198
1199 if (ir->op == ir_txb) {
1200 ir->lod_info.bias->accept(this);
1201 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1202 this->result));
1203 mlen++;
1204 } else {
1205 ir->lod_info.lod->accept(this);
1206 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1207 this->result));
1208 mlen++;
1209 }
1210
1211 /* The unused upper half. */
1212 mlen++;
1213
1214 /* Now, since we're doing simd16, the return is 2 interleaved
1215 * vec4s where the odd-indexed ones are junk. We'll need to move
1216 * this weirdness around to the expected layout.
1217 */
1218 simd16 = true;
1219 orig_dst = dst;
1220 dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1221 2));
1222 dst.type = BRW_REGISTER_TYPE_F;
1223 }
1224
1225 fs_inst *inst = NULL;
1226 switch (ir->op) {
1227 case ir_tex:
1228 inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1229 break;
1230 case ir_txb:
1231 inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1232 break;
1233 case ir_txl:
1234 inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1235 break;
1236 case ir_txd:
1237 case ir_txf:
1238 assert(!"GLSL 1.30 features unsupported");
1239 break;
1240 }
1241 inst->base_mrf = base_mrf;
1242 inst->mlen = mlen;
1243
1244 if (simd16) {
1245 for (int i = 0; i < 4; i++) {
1246 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1247 orig_dst.reg_offset++;
1248 dst.reg_offset += 2;
1249 }
1250 }
1251
1252 return inst;
1253 }
1254
1255 fs_inst *
1256 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1257 {
1258 /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1259 * optional parameters like shadow comparitor or LOD bias. If
1260 * optional parameters aren't present, those base slots are
1261 * optional and don't need to be included in the message.
1262 *
1263 * We don't fill in the unnecessary slots regardless, which may
1264 * look surprising in the disassembly.
1265 */
1266 int mlen = 1; /* g0 header always present. */
1267 int base_mrf = 1;
1268
1269 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1270 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1271 coordinate));
1272 coordinate.reg_offset++;
1273 }
1274 mlen += ir->coordinate->type->vector_elements;
1275
1276 if (ir->shadow_comparitor) {
1277 mlen = MAX2(mlen, 5);
1278
1279 ir->shadow_comparitor->accept(this);
1280 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1281 mlen++;
1282 }
1283
1284 fs_inst *inst = NULL;
1285 switch (ir->op) {
1286 case ir_tex:
1287 inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1288 break;
1289 case ir_txb:
1290 ir->lod_info.bias->accept(this);
1291 mlen = MAX2(mlen, 5);
1292 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1293 mlen++;
1294
1295 inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1296 break;
1297 case ir_txl:
1298 ir->lod_info.lod->accept(this);
1299 mlen = MAX2(mlen, 5);
1300 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1301 mlen++;
1302
1303 inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1304 break;
1305 case ir_txd:
1306 case ir_txf:
1307 assert(!"GLSL 1.30 features unsupported");
1308 break;
1309 }
1310 inst->base_mrf = base_mrf;
1311 inst->mlen = mlen;
1312
1313 return inst;
1314 }
1315
1316 void
1317 fs_visitor::visit(ir_texture *ir)
1318 {
1319 int sampler;
1320 fs_inst *inst = NULL;
1321
1322 ir->coordinate->accept(this);
1323 fs_reg coordinate = this->result;
1324
1325 /* Should be lowered by do_lower_texture_projection */
1326 assert(!ir->projector);
1327
1328 sampler = _mesa_get_sampler_uniform_value(ir->sampler,
1329 ctx->Shader.CurrentFragmentProgram,
1330 &brw->fragment_program->Base);
1331 sampler = c->fp->program.Base.SamplerUnits[sampler];
1332
1333 /* The 965 requires the EU to do the normalization of GL rectangle
1334 * texture coordinates. We use the program parameter state
1335 * tracking to get the scaling factor.
1336 */
1337 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1338 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1339 int tokens[STATE_LENGTH] = {
1340 STATE_INTERNAL,
1341 STATE_TEXRECT_SCALE,
1342 sampler,
1343 0,
1344 0
1345 };
1346
1347 c->prog_data.param_convert[c->prog_data.nr_params] =
1348 PARAM_NO_CONVERT;
1349 c->prog_data.param_convert[c->prog_data.nr_params + 1] =
1350 PARAM_NO_CONVERT;
1351
1352 fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1353 fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1354 GLuint index = _mesa_add_state_reference(params,
1355 (gl_state_index *)tokens);
1356 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
1357
1358 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[0];
1359 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[1];
1360
1361 fs_reg dst = fs_reg(this, ir->coordinate->type);
1362 fs_reg src = coordinate;
1363 coordinate = dst;
1364
1365 emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_x));
1366 dst.reg_offset++;
1367 src.reg_offset++;
1368 emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_y));
1369 }
1370
1371 /* Writemasking doesn't eliminate channels on SIMD8 texture
1372 * samples, so don't worry about them.
1373 */
1374 fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1375
1376 if (intel->gen < 5) {
1377 inst = emit_texture_gen4(ir, dst, coordinate);
1378 } else {
1379 inst = emit_texture_gen5(ir, dst, coordinate);
1380 }
1381
1382 inst->sampler = sampler;
1383
1384 this->result = dst;
1385
1386 if (ir->shadow_comparitor)
1387 inst->shadow_compare = true;
1388
1389 if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1390 fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1391
1392 for (int i = 0; i < 4; i++) {
1393 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1394 fs_reg l = swizzle_dst;
1395 l.reg_offset += i;
1396
1397 if (swiz == SWIZZLE_ZERO) {
1398 emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
1399 } else if (swiz == SWIZZLE_ONE) {
1400 emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
1401 } else {
1402 fs_reg r = dst;
1403 r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1404 emit(fs_inst(BRW_OPCODE_MOV, l, r));
1405 }
1406 }
1407 this->result = swizzle_dst;
1408 }
1409 }
1410
1411 void
1412 fs_visitor::visit(ir_swizzle *ir)
1413 {
1414 ir->val->accept(this);
1415 fs_reg val = this->result;
1416
1417 if (ir->type->vector_elements == 1) {
1418 this->result.reg_offset += ir->mask.x;
1419 return;
1420 }
1421
1422 fs_reg result = fs_reg(this, ir->type);
1423 this->result = result;
1424
1425 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1426 fs_reg channel = val;
1427 int swiz = 0;
1428
1429 switch (i) {
1430 case 0:
1431 swiz = ir->mask.x;
1432 break;
1433 case 1:
1434 swiz = ir->mask.y;
1435 break;
1436 case 2:
1437 swiz = ir->mask.z;
1438 break;
1439 case 3:
1440 swiz = ir->mask.w;
1441 break;
1442 }
1443
1444 channel.reg_offset += swiz;
1445 emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1446 result.reg_offset++;
1447 }
1448 }
1449
1450 void
1451 fs_visitor::visit(ir_discard *ir)
1452 {
1453 fs_reg temp = fs_reg(this, glsl_type::uint_type);
1454
1455 assert(ir->condition == NULL); /* FINISHME */
1456
1457 emit(fs_inst(FS_OPCODE_DISCARD_NOT, temp, reg_null_d));
1458 emit(fs_inst(FS_OPCODE_DISCARD_AND, reg_null_d, temp));
1459 kill_emitted = true;
1460 }
1461
1462 void
1463 fs_visitor::visit(ir_constant *ir)
1464 {
1465 /* Set this->result to reg at the bottom of the function because some code
1466 * paths will cause this visitor to be applied to other fields. This will
1467 * cause the value stored in this->result to be modified.
1468 *
1469 * Make reg constant so that it doesn't get accidentally modified along the
1470 * way. Yes, I actually had this problem. :(
1471 */
1472 const fs_reg reg(this, ir->type);
1473 fs_reg dst_reg = reg;
1474
1475 if (ir->type->is_array()) {
1476 const unsigned size = type_size(ir->type->fields.array);
1477
1478 for (unsigned i = 0; i < ir->type->length; i++) {
1479 ir->array_elements[i]->accept(this);
1480 fs_reg src_reg = this->result;
1481
1482 dst_reg.type = src_reg.type;
1483 for (unsigned j = 0; j < size; j++) {
1484 emit(fs_inst(BRW_OPCODE_MOV, dst_reg, src_reg));
1485 src_reg.reg_offset++;
1486 dst_reg.reg_offset++;
1487 }
1488 }
1489 } else if (ir->type->is_record()) {
1490 foreach_list(node, &ir->components) {
1491 ir_instruction *const field = (ir_instruction *) node;
1492 const unsigned size = type_size(field->type);
1493
1494 field->accept(this);
1495 fs_reg src_reg = this->result;
1496
1497 dst_reg.type = src_reg.type;
1498 for (unsigned j = 0; j < size; j++) {
1499 emit(fs_inst(BRW_OPCODE_MOV, dst_reg, src_reg));
1500 src_reg.reg_offset++;
1501 dst_reg.reg_offset++;
1502 }
1503 }
1504 } else {
1505 const unsigned size = type_size(ir->type);
1506
1507 for (unsigned i = 0; i < size; i++) {
1508 switch (ir->type->base_type) {
1509 case GLSL_TYPE_FLOAT:
1510 emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.f[i])));
1511 break;
1512 case GLSL_TYPE_UINT:
1513 emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.u[i])));
1514 break;
1515 case GLSL_TYPE_INT:
1516 emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg(ir->value.i[i])));
1517 break;
1518 case GLSL_TYPE_BOOL:
1519 emit(fs_inst(BRW_OPCODE_MOV, dst_reg, fs_reg((int)ir->value.b[i])));
1520 break;
1521 default:
1522 assert(!"Non-float/uint/int/bool constant");
1523 }
1524 dst_reg.reg_offset++;
1525 }
1526 }
1527
1528 this->result = reg;
1529 }
1530
1531 void
1532 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1533 {
1534 ir_expression *expr = ir->as_expression();
1535
1536 if (expr) {
1537 fs_reg op[2];
1538 fs_inst *inst;
1539
1540 assert(expr->get_num_operands() <= 2);
1541 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1542 assert(expr->operands[i]->type->is_scalar());
1543
1544 expr->operands[i]->accept(this);
1545 op[i] = this->result;
1546 }
1547
1548 switch (expr->operation) {
1549 case ir_unop_logic_not:
1550 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1)));
1551 inst->conditional_mod = BRW_CONDITIONAL_Z;
1552 break;
1553
1554 case ir_binop_logic_xor:
1555 inst = emit(fs_inst(BRW_OPCODE_XOR, reg_null_d, op[0], op[1]));
1556 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1557 break;
1558
1559 case ir_binop_logic_or:
1560 inst = emit(fs_inst(BRW_OPCODE_OR, reg_null_d, op[0], op[1]));
1561 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1562 break;
1563
1564 case ir_binop_logic_and:
1565 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], op[1]));
1566 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1567 break;
1568
1569 case ir_unop_f2b:
1570 if (intel->gen >= 6) {
1571 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d,
1572 op[0], fs_reg(0.0f)));
1573 } else {
1574 inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_f, op[0]));
1575 }
1576 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1577 break;
1578
1579 case ir_unop_i2b:
1580 if (intel->gen >= 6) {
1581 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0)));
1582 } else {
1583 inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, op[0]));
1584 }
1585 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1586 break;
1587
1588 case ir_binop_greater:
1589 case ir_binop_gequal:
1590 case ir_binop_less:
1591 case ir_binop_lequal:
1592 case ir_binop_equal:
1593 case ir_binop_all_equal:
1594 case ir_binop_nequal:
1595 case ir_binop_any_nequal:
1596 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_cmp, op[0], op[1]));
1597 inst->conditional_mod =
1598 brw_conditional_for_comparison(expr->operation);
1599 break;
1600
1601 default:
1602 assert(!"not reached");
1603 this->fail = true;
1604 break;
1605 }
1606 return;
1607 }
1608
1609 ir->accept(this);
1610
1611 if (intel->gen >= 6) {
1612 fs_inst *inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d,
1613 this->result, fs_reg(1)));
1614 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1615 } else {
1616 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, this->result));
1617 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1618 }
1619 }
1620
1621 /**
1622 * Emit a gen6 IF statement with the comparison folded into the IF
1623 * instruction.
1624 */
1625 void
1626 fs_visitor::emit_if_gen6(ir_if *ir)
1627 {
1628 ir_expression *expr = ir->condition->as_expression();
1629
1630 if (expr) {
1631 fs_reg op[2];
1632 fs_inst *inst;
1633 fs_reg temp;
1634
1635 assert(expr->get_num_operands() <= 2);
1636 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1637 assert(expr->operands[i]->type->is_scalar());
1638
1639 expr->operands[i]->accept(this);
1640 op[i] = this->result;
1641 }
1642
1643 switch (expr->operation) {
1644 case ir_unop_logic_not:
1645 inst = emit(fs_inst(BRW_OPCODE_IF, temp, op[0], fs_reg(0)));
1646 inst->conditional_mod = BRW_CONDITIONAL_Z;
1647 return;
1648
1649 case ir_binop_logic_xor:
1650 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1]));
1651 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1652 return;
1653
1654 case ir_binop_logic_or:
1655 temp = fs_reg(this, glsl_type::bool_type);
1656 emit(fs_inst(BRW_OPCODE_OR, temp, op[0], op[1]));
1657 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0)));
1658 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1659 return;
1660
1661 case ir_binop_logic_and:
1662 temp = fs_reg(this, glsl_type::bool_type);
1663 emit(fs_inst(BRW_OPCODE_AND, temp, op[0], op[1]));
1664 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0)));
1665 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1666 return;
1667
1668 case ir_unop_f2b:
1669 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0)));
1670 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1671 return;
1672
1673 case ir_unop_i2b:
1674 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0)));
1675 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1676 return;
1677
1678 case ir_binop_greater:
1679 case ir_binop_gequal:
1680 case ir_binop_less:
1681 case ir_binop_lequal:
1682 case ir_binop_equal:
1683 case ir_binop_all_equal:
1684 case ir_binop_nequal:
1685 case ir_binop_any_nequal:
1686 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1]));
1687 inst->conditional_mod =
1688 brw_conditional_for_comparison(expr->operation);
1689 return;
1690 default:
1691 assert(!"not reached");
1692 inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0)));
1693 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1694 this->fail = true;
1695 return;
1696 }
1697 return;
1698 }
1699
1700 ir->condition->accept(this);
1701
1702 fs_inst *inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0)));
1703 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1704 }
1705
1706 void
1707 fs_visitor::visit(ir_if *ir)
1708 {
1709 fs_inst *inst;
1710
1711 /* Don't point the annotation at the if statement, because then it plus
1712 * the then and else blocks get printed.
1713 */
1714 this->base_ir = ir->condition;
1715
1716 if (intel->gen >= 6) {
1717 emit_if_gen6(ir);
1718 } else {
1719 emit_bool_to_cond_code(ir->condition);
1720
1721 inst = emit(fs_inst(BRW_OPCODE_IF));
1722 inst->predicated = true;
1723 }
1724
1725 foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1726 ir_instruction *ir = (ir_instruction *)iter.get();
1727 this->base_ir = ir;
1728
1729 ir->accept(this);
1730 }
1731
1732 if (!ir->else_instructions.is_empty()) {
1733 emit(fs_inst(BRW_OPCODE_ELSE));
1734
1735 foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1736 ir_instruction *ir = (ir_instruction *)iter.get();
1737 this->base_ir = ir;
1738
1739 ir->accept(this);
1740 }
1741 }
1742
1743 emit(fs_inst(BRW_OPCODE_ENDIF));
1744 }
1745
1746 void
1747 fs_visitor::visit(ir_loop *ir)
1748 {
1749 fs_reg counter = reg_undef;
1750
1751 if (ir->counter) {
1752 this->base_ir = ir->counter;
1753 ir->counter->accept(this);
1754 counter = *(variable_storage(ir->counter));
1755
1756 if (ir->from) {
1757 this->base_ir = ir->from;
1758 ir->from->accept(this);
1759
1760 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1761 }
1762 }
1763
1764 emit(fs_inst(BRW_OPCODE_DO));
1765
1766 if (ir->to) {
1767 this->base_ir = ir->to;
1768 ir->to->accept(this);
1769
1770 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_cmp,
1771 counter, this->result));
1772 inst->conditional_mod = brw_conditional_for_comparison(ir->cmp);
1773
1774 inst = emit(fs_inst(BRW_OPCODE_BREAK));
1775 inst->predicated = true;
1776 }
1777
1778 foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1779 ir_instruction *ir = (ir_instruction *)iter.get();
1780
1781 this->base_ir = ir;
1782 ir->accept(this);
1783 }
1784
1785 if (ir->increment) {
1786 this->base_ir = ir->increment;
1787 ir->increment->accept(this);
1788 emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1789 }
1790
1791 emit(fs_inst(BRW_OPCODE_WHILE));
1792 }
1793
1794 void
1795 fs_visitor::visit(ir_loop_jump *ir)
1796 {
1797 switch (ir->mode) {
1798 case ir_loop_jump::jump_break:
1799 emit(fs_inst(BRW_OPCODE_BREAK));
1800 break;
1801 case ir_loop_jump::jump_continue:
1802 emit(fs_inst(BRW_OPCODE_CONTINUE));
1803 break;
1804 }
1805 }
1806
1807 void
1808 fs_visitor::visit(ir_call *ir)
1809 {
1810 assert(!"FINISHME");
1811 }
1812
1813 void
1814 fs_visitor::visit(ir_return *ir)
1815 {
1816 assert(!"FINISHME");
1817 }
1818
1819 void
1820 fs_visitor::visit(ir_function *ir)
1821 {
1822 /* Ignore function bodies other than main() -- we shouldn't see calls to
1823 * them since they should all be inlined before we get to ir_to_mesa.
1824 */
1825 if (strcmp(ir->name, "main") == 0) {
1826 const ir_function_signature *sig;
1827 exec_list empty;
1828
1829 sig = ir->matching_signature(&empty);
1830
1831 assert(sig);
1832
1833 foreach_iter(exec_list_iterator, iter, sig->body) {
1834 ir_instruction *ir = (ir_instruction *)iter.get();
1835 this->base_ir = ir;
1836
1837 ir->accept(this);
1838 }
1839 }
1840 }
1841
1842 void
1843 fs_visitor::visit(ir_function_signature *ir)
1844 {
1845 assert(!"not reached");
1846 (void)ir;
1847 }
1848
1849 fs_inst *
1850 fs_visitor::emit(fs_inst inst)
1851 {
1852 fs_inst *list_inst = new(mem_ctx) fs_inst;
1853 *list_inst = inst;
1854
1855 list_inst->annotation = this->current_annotation;
1856 list_inst->ir = this->base_ir;
1857
1858 this->instructions.push_tail(list_inst);
1859
1860 return list_inst;
1861 }
1862
1863 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1864 void
1865 fs_visitor::emit_dummy_fs()
1866 {
1867 /* Everyone's favorite color. */
1868 emit(fs_inst(BRW_OPCODE_MOV,
1869 fs_reg(MRF, 2),
1870 fs_reg(1.0f)));
1871 emit(fs_inst(BRW_OPCODE_MOV,
1872 fs_reg(MRF, 3),
1873 fs_reg(0.0f)));
1874 emit(fs_inst(BRW_OPCODE_MOV,
1875 fs_reg(MRF, 4),
1876 fs_reg(1.0f)));
1877 emit(fs_inst(BRW_OPCODE_MOV,
1878 fs_reg(MRF, 5),
1879 fs_reg(0.0f)));
1880
1881 fs_inst *write;
1882 write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1883 fs_reg(0),
1884 fs_reg(0)));
1885 write->base_mrf = 0;
1886 }
1887
1888 /* The register location here is relative to the start of the URB
1889 * data. It will get adjusted to be a real location before
1890 * generate_code() time.
1891 */
1892 struct brw_reg
1893 fs_visitor::interp_reg(int location, int channel)
1894 {
1895 int regnr = urb_setup[location] * 2 + channel / 2;
1896 int stride = (channel & 1) * 4;
1897
1898 assert(urb_setup[location] != -1);
1899
1900 return brw_vec1_grf(regnr, stride);
1901 }
1902
1903 /** Emits the interpolation for the varying inputs. */
1904 void
1905 fs_visitor::emit_interpolation_setup_gen4()
1906 {
1907 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1908
1909 this->current_annotation = "compute pixel centers";
1910 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1911 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1912 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1913 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1914 emit(fs_inst(BRW_OPCODE_ADD,
1915 this->pixel_x,
1916 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1917 fs_reg(brw_imm_v(0x10101010))));
1918 emit(fs_inst(BRW_OPCODE_ADD,
1919 this->pixel_y,
1920 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1921 fs_reg(brw_imm_v(0x11001100))));
1922
1923 this->current_annotation = "compute pixel deltas from v0";
1924 if (brw->has_pln) {
1925 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1926 this->delta_y = this->delta_x;
1927 this->delta_y.reg_offset++;
1928 } else {
1929 this->delta_x = fs_reg(this, glsl_type::float_type);
1930 this->delta_y = fs_reg(this, glsl_type::float_type);
1931 }
1932 emit(fs_inst(BRW_OPCODE_ADD,
1933 this->delta_x,
1934 this->pixel_x,
1935 fs_reg(negate(brw_vec1_grf(1, 0)))));
1936 emit(fs_inst(BRW_OPCODE_ADD,
1937 this->delta_y,
1938 this->pixel_y,
1939 fs_reg(negate(brw_vec1_grf(1, 1)))));
1940
1941 this->current_annotation = "compute pos.w and 1/pos.w";
1942 /* Compute wpos.w. It's always in our setup, since it's needed to
1943 * interpolate the other attributes.
1944 */
1945 this->wpos_w = fs_reg(this, glsl_type::float_type);
1946 emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1947 interp_reg(FRAG_ATTRIB_WPOS, 3)));
1948 /* Compute the pixel 1/W value from wpos.w. */
1949 this->pixel_w = fs_reg(this, glsl_type::float_type);
1950 emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1951 this->current_annotation = NULL;
1952 }
1953
1954 /** Emits the interpolation for the varying inputs. */
1955 void
1956 fs_visitor::emit_interpolation_setup_gen6()
1957 {
1958 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1959
1960 /* If the pixel centers end up used, the setup is the same as for gen4. */
1961 this->current_annotation = "compute pixel centers";
1962 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1963 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1964 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1965 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1966 emit(fs_inst(BRW_OPCODE_ADD,
1967 int_pixel_x,
1968 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1969 fs_reg(brw_imm_v(0x10101010))));
1970 emit(fs_inst(BRW_OPCODE_ADD,
1971 int_pixel_y,
1972 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1973 fs_reg(brw_imm_v(0x11001100))));
1974
1975 /* As of gen6, we can no longer mix float and int sources. We have
1976 * to turn the integer pixel centers into floats for their actual
1977 * use.
1978 */
1979 this->pixel_x = fs_reg(this, glsl_type::float_type);
1980 this->pixel_y = fs_reg(this, glsl_type::float_type);
1981 emit(fs_inst(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x));
1982 emit(fs_inst(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y));
1983
1984 this->current_annotation = "compute 1/pos.w";
1985 this->wpos_w = fs_reg(brw_vec8_grf(c->source_w_reg, 0));
1986 this->pixel_w = fs_reg(this, glsl_type::float_type);
1987 emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1988
1989 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1990 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1991
1992 this->current_annotation = NULL;
1993 }
1994
1995 void
1996 fs_visitor::emit_fb_writes()
1997 {
1998 this->current_annotation = "FB write header";
1999 GLboolean header_present = GL_TRUE;
2000 int nr = 0;
2001
2002 if (intel->gen >= 6 &&
2003 !this->kill_emitted &&
2004 c->key.nr_color_regions == 1) {
2005 header_present = false;
2006 }
2007
2008 if (header_present) {
2009 /* m0, m1 header */
2010 nr += 2;
2011 }
2012
2013 if (c->aa_dest_stencil_reg) {
2014 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2015 fs_reg(brw_vec8_grf(c->aa_dest_stencil_reg, 0))));
2016 }
2017
2018 /* Reserve space for color. It'll be filled in per MRT below. */
2019 int color_mrf = nr;
2020 nr += 4;
2021
2022 if (c->source_depth_to_render_target) {
2023 if (c->computes_depth) {
2024 /* Hand over gl_FragDepth. */
2025 assert(this->frag_depth);
2026 fs_reg depth = *(variable_storage(this->frag_depth));
2027
2028 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
2029 } else {
2030 /* Pass through the payload depth. */
2031 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2032 fs_reg(brw_vec8_grf(c->source_depth_reg, 0))));
2033 }
2034 }
2035
2036 if (c->dest_depth_reg) {
2037 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
2038 fs_reg(brw_vec8_grf(c->dest_depth_reg, 0))));
2039 }
2040
2041 fs_reg color = reg_undef;
2042 if (this->frag_color)
2043 color = *(variable_storage(this->frag_color));
2044 else if (this->frag_data) {
2045 color = *(variable_storage(this->frag_data));
2046 color.type = BRW_REGISTER_TYPE_F;
2047 }
2048
2049 for (int target = 0; target < c->key.nr_color_regions; target++) {
2050 this->current_annotation = talloc_asprintf(this->mem_ctx,
2051 "FB write target %d",
2052 target);
2053 if (this->frag_color || this->frag_data) {
2054 for (int i = 0; i < 4; i++) {
2055 emit(fs_inst(BRW_OPCODE_MOV,
2056 fs_reg(MRF, color_mrf + i),
2057 color));
2058 color.reg_offset++;
2059 }
2060 }
2061
2062 if (this->frag_color)
2063 color.reg_offset -= 4;
2064
2065 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
2066 reg_undef, reg_undef));
2067 inst->target = target;
2068 inst->base_mrf = 0;
2069 inst->mlen = nr;
2070 if (target == c->key.nr_color_regions - 1)
2071 inst->eot = true;
2072 inst->header_present = header_present;
2073 }
2074
2075 if (c->key.nr_color_regions == 0) {
2076 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
2077 reg_undef, reg_undef));
2078 inst->base_mrf = 0;
2079 inst->mlen = nr;
2080 inst->eot = true;
2081 inst->header_present = header_present;
2082 }
2083
2084 this->current_annotation = NULL;
2085 }
2086
2087 void
2088 fs_visitor::generate_fb_write(fs_inst *inst)
2089 {
2090 GLboolean eot = inst->eot;
2091 struct brw_reg implied_header;
2092
2093 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
2094 * move, here's g1.
2095 */
2096 brw_push_insn_state(p);
2097 brw_set_mask_control(p, BRW_MASK_DISABLE);
2098 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
2099
2100 if (inst->header_present) {
2101 if (intel->gen >= 6) {
2102 brw_MOV(p,
2103 brw_message_reg(inst->base_mrf),
2104 brw_vec8_grf(0, 0));
2105
2106 if (inst->target > 0) {
2107 /* Set the render target index for choosing BLEND_STATE. */
2108 brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 2),
2109 BRW_REGISTER_TYPE_UD),
2110 brw_imm_ud(inst->target));
2111 }
2112
2113 /* Clear viewport index, render target array index. */
2114 brw_AND(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 0),
2115 BRW_REGISTER_TYPE_UD),
2116 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2117 brw_imm_ud(0xf7ff));
2118
2119 implied_header = brw_null_reg();
2120 } else {
2121 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
2122 }
2123
2124 brw_MOV(p,
2125 brw_message_reg(inst->base_mrf + 1),
2126 brw_vec8_grf(1, 0));
2127 } else {
2128 implied_header = brw_null_reg();
2129 }
2130
2131 brw_pop_insn_state(p);
2132
2133 brw_fb_WRITE(p,
2134 8, /* dispatch_width */
2135 retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
2136 inst->base_mrf,
2137 implied_header,
2138 inst->target,
2139 inst->mlen,
2140 0,
2141 eot,
2142 inst->header_present);
2143 }
2144
2145 void
2146 fs_visitor::generate_linterp(fs_inst *inst,
2147 struct brw_reg dst, struct brw_reg *src)
2148 {
2149 struct brw_reg delta_x = src[0];
2150 struct brw_reg delta_y = src[1];
2151 struct brw_reg interp = src[2];
2152
2153 if (brw->has_pln &&
2154 delta_y.nr == delta_x.nr + 1 &&
2155 (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
2156 brw_PLN(p, dst, interp, delta_x);
2157 } else {
2158 brw_LINE(p, brw_null_reg(), interp, delta_x);
2159 brw_MAC(p, dst, suboffset(interp, 1), delta_y);
2160 }
2161 }
2162
2163 void
2164 fs_visitor::generate_math(fs_inst *inst,
2165 struct brw_reg dst, struct brw_reg *src)
2166 {
2167 int op;
2168
2169 switch (inst->opcode) {
2170 case FS_OPCODE_RCP:
2171 op = BRW_MATH_FUNCTION_INV;
2172 break;
2173 case FS_OPCODE_RSQ:
2174 op = BRW_MATH_FUNCTION_RSQ;
2175 break;
2176 case FS_OPCODE_SQRT:
2177 op = BRW_MATH_FUNCTION_SQRT;
2178 break;
2179 case FS_OPCODE_EXP2:
2180 op = BRW_MATH_FUNCTION_EXP;
2181 break;
2182 case FS_OPCODE_LOG2:
2183 op = BRW_MATH_FUNCTION_LOG;
2184 break;
2185 case FS_OPCODE_POW:
2186 op = BRW_MATH_FUNCTION_POW;
2187 break;
2188 case FS_OPCODE_SIN:
2189 op = BRW_MATH_FUNCTION_SIN;
2190 break;
2191 case FS_OPCODE_COS:
2192 op = BRW_MATH_FUNCTION_COS;
2193 break;
2194 default:
2195 assert(!"not reached: unknown math function");
2196 op = 0;
2197 break;
2198 }
2199
2200 if (intel->gen >= 6) {
2201 assert(inst->mlen == 0);
2202
2203 if (inst->opcode == FS_OPCODE_POW) {
2204 brw_math2(p, dst, op, src[0], src[1]);
2205 } else {
2206 brw_math(p, dst,
2207 op,
2208 inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2209 BRW_MATH_SATURATE_NONE,
2210 0, src[0],
2211 BRW_MATH_DATA_VECTOR,
2212 BRW_MATH_PRECISION_FULL);
2213 }
2214 } else {
2215 assert(inst->mlen >= 1);
2216
2217 brw_math(p, dst,
2218 op,
2219 inst->saturate ? BRW_MATH_SATURATE_SATURATE :
2220 BRW_MATH_SATURATE_NONE,
2221 inst->base_mrf, src[0],
2222 BRW_MATH_DATA_VECTOR,
2223 BRW_MATH_PRECISION_FULL);
2224 }
2225 }
2226
2227 void
2228 fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst)
2229 {
2230 int msg_type = -1;
2231 int rlen = 4;
2232 uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
2233
2234 if (intel->gen >= 5) {
2235 switch (inst->opcode) {
2236 case FS_OPCODE_TEX:
2237 if (inst->shadow_compare) {
2238 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
2239 } else {
2240 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2241 }
2242 break;
2243 case FS_OPCODE_TXB:
2244 if (inst->shadow_compare) {
2245 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2246 } else {
2247 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2248 }
2249 break;
2250 }
2251 } else {
2252 switch (inst->opcode) {
2253 case FS_OPCODE_TEX:
2254 /* Note that G45 and older determines shadow compare and dispatch width
2255 * from message length for most messages.
2256 */
2257 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2258 if (inst->shadow_compare) {
2259 assert(inst->mlen == 6);
2260 } else {
2261 assert(inst->mlen <= 4);
2262 }
2263 break;
2264 case FS_OPCODE_TXB:
2265 if (inst->shadow_compare) {
2266 assert(inst->mlen == 6);
2267 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2268 } else {
2269 assert(inst->mlen == 9);
2270 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2271 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2272 }
2273 break;
2274 }
2275 }
2276 assert(msg_type != -1);
2277
2278 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2279 rlen = 8;
2280 dst = vec16(dst);
2281 }
2282
2283 brw_SAMPLE(p,
2284 retype(dst, BRW_REGISTER_TYPE_UW),
2285 inst->base_mrf,
2286 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2287 SURF_INDEX_TEXTURE(inst->sampler),
2288 inst->sampler,
2289 WRITEMASK_XYZW,
2290 msg_type,
2291 rlen,
2292 inst->mlen,
2293 0,
2294 1,
2295 simd_mode);
2296 }
2297
2298
2299 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2300 * looking like:
2301 *
2302 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2303 *
2304 * and we're trying to produce:
2305 *
2306 * DDX DDY
2307 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
2308 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
2309 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
2310 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
2311 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
2312 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
2313 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
2314 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
2315 *
2316 * and add another set of two more subspans if in 16-pixel dispatch mode.
2317 *
2318 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2319 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2320 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2321 * between each other. We could probably do it like ddx and swizzle the right
2322 * order later, but bail for now and just produce
2323 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2324 */
2325 void
2326 fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2327 {
2328 struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2329 BRW_REGISTER_TYPE_F,
2330 BRW_VERTICAL_STRIDE_2,
2331 BRW_WIDTH_2,
2332 BRW_HORIZONTAL_STRIDE_0,
2333 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2334 struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2335 BRW_REGISTER_TYPE_F,
2336 BRW_VERTICAL_STRIDE_2,
2337 BRW_WIDTH_2,
2338 BRW_HORIZONTAL_STRIDE_0,
2339 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2340 brw_ADD(p, dst, src0, negate(src1));
2341 }
2342
2343 void
2344 fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2345 {
2346 struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2347 BRW_REGISTER_TYPE_F,
2348 BRW_VERTICAL_STRIDE_4,
2349 BRW_WIDTH_4,
2350 BRW_HORIZONTAL_STRIDE_0,
2351 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2352 struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2353 BRW_REGISTER_TYPE_F,
2354 BRW_VERTICAL_STRIDE_4,
2355 BRW_WIDTH_4,
2356 BRW_HORIZONTAL_STRIDE_0,
2357 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2358 brw_ADD(p, dst, src0, negate(src1));
2359 }
2360
2361 void
2362 fs_visitor::generate_discard_not(fs_inst *inst, struct brw_reg mask)
2363 {
2364 if (intel->gen >= 6) {
2365 /* Gen6 no longer has the mask reg for us to just read the
2366 * active channels from. However, cmp updates just the channels
2367 * of the flag reg that are enabled, so we can get at the
2368 * channel enables that way. In this step, make a reg of ones
2369 * we'll compare to.
2370 */
2371 brw_MOV(p, mask, brw_imm_ud(1));
2372 } else {
2373 brw_push_insn_state(p);
2374 brw_set_mask_control(p, BRW_MASK_DISABLE);
2375 brw_NOT(p, mask, brw_mask_reg(1)); /* IMASK */
2376 brw_pop_insn_state(p);
2377 }
2378 }
2379
2380 void
2381 fs_visitor::generate_discard_and(fs_inst *inst, struct brw_reg mask)
2382 {
2383 if (intel->gen >= 6) {
2384 struct brw_reg f0 = brw_flag_reg();
2385 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
2386
2387 brw_push_insn_state(p);
2388 brw_set_mask_control(p, BRW_MASK_DISABLE);
2389 brw_MOV(p, f0, brw_imm_uw(0xffff)); /* inactive channels undiscarded */
2390 brw_pop_insn_state(p);
2391
2392 brw_CMP(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
2393 BRW_CONDITIONAL_Z, mask, brw_imm_ud(0)); /* active channels fail test */
2394 /* Undo CMP's whacking of predication*/
2395 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2396
2397 brw_push_insn_state(p);
2398 brw_set_mask_control(p, BRW_MASK_DISABLE);
2399 brw_AND(p, g1, f0, g1);
2400 brw_pop_insn_state(p);
2401 } else {
2402 struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2403
2404 mask = brw_uw1_reg(mask.file, mask.nr, 0);
2405
2406 brw_push_insn_state(p);
2407 brw_set_mask_control(p, BRW_MASK_DISABLE);
2408 brw_AND(p, g0, mask, g0);
2409 brw_pop_insn_state(p);
2410 }
2411 }
2412
2413 void
2414 fs_visitor::generate_spill(fs_inst *inst, struct brw_reg src)
2415 {
2416 assert(inst->mlen != 0);
2417
2418 brw_MOV(p,
2419 retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD),
2420 retype(src, BRW_REGISTER_TYPE_UD));
2421 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1,
2422 inst->offset);
2423 }
2424
2425 void
2426 fs_visitor::generate_unspill(fs_inst *inst, struct brw_reg dst)
2427 {
2428 assert(inst->mlen != 0);
2429
2430 /* Clear any post destination dependencies that would be ignored by
2431 * the block read. See the B-Spec for pre-gen5 send instruction.
2432 *
2433 * This could use a better solution, since texture sampling and
2434 * math reads could potentially run into it as well -- anywhere
2435 * that we have a SEND with a destination that is a register that
2436 * was written but not read within the last N instructions (what's
2437 * N? unsure). This is rare because of dead code elimination, but
2438 * not impossible.
2439 */
2440 if (intel->gen == 4 && !intel->is_g4x)
2441 brw_MOV(p, brw_null_reg(), dst);
2442
2443 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1,
2444 inst->offset);
2445
2446 if (intel->gen == 4 && !intel->is_g4x) {
2447 /* gen4 errata: destination from a send can't be used as a
2448 * destination until it's been read. Just read it so we don't
2449 * have to worry.
2450 */
2451 brw_MOV(p, brw_null_reg(), dst);
2452 }
2453 }
2454
2455
2456 void
2457 fs_visitor::generate_pull_constant_load(fs_inst *inst, struct brw_reg dst)
2458 {
2459 assert(inst->mlen != 0);
2460
2461 /* Clear any post destination dependencies that would be ignored by
2462 * the block read. See the B-Spec for pre-gen5 send instruction.
2463 *
2464 * This could use a better solution, since texture sampling and
2465 * math reads could potentially run into it as well -- anywhere
2466 * that we have a SEND with a destination that is a register that
2467 * was written but not read within the last N instructions (what's
2468 * N? unsure). This is rare because of dead code elimination, but
2469 * not impossible.
2470 */
2471 if (intel->gen == 4 && !intel->is_g4x)
2472 brw_MOV(p, brw_null_reg(), dst);
2473
2474 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
2475 inst->offset, SURF_INDEX_FRAG_CONST_BUFFER);
2476
2477 if (intel->gen == 4 && !intel->is_g4x) {
2478 /* gen4 errata: destination from a send can't be used as a
2479 * destination until it's been read. Just read it so we don't
2480 * have to worry.
2481 */
2482 brw_MOV(p, brw_null_reg(), dst);
2483 }
2484 }
2485
2486 void
2487 fs_visitor::assign_curb_setup()
2488 {
2489 c->prog_data.first_curbe_grf = c->nr_payload_regs;
2490 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2491
2492 /* Map the offsets in the UNIFORM file to fixed HW regs. */
2493 foreach_iter(exec_list_iterator, iter, this->instructions) {
2494 fs_inst *inst = (fs_inst *)iter.get();
2495
2496 for (unsigned int i = 0; i < 3; i++) {
2497 if (inst->src[i].file == UNIFORM) {
2498 int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2499 struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2500 constant_nr / 8,
2501 constant_nr % 8);
2502
2503 inst->src[i].file = FIXED_HW_REG;
2504 inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
2505 }
2506 }
2507 }
2508 }
2509
2510 void
2511 fs_visitor::calculate_urb_setup()
2512 {
2513 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2514 urb_setup[i] = -1;
2515 }
2516
2517 int urb_next = 0;
2518 /* Figure out where each of the incoming setup attributes lands. */
2519 if (intel->gen >= 6) {
2520 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2521 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)) {
2522 urb_setup[i] = urb_next++;
2523 }
2524 }
2525 } else {
2526 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2527 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2528 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2529 int fp_index;
2530
2531 if (i >= VERT_RESULT_VAR0)
2532 fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2533 else if (i <= VERT_RESULT_TEX7)
2534 fp_index = i;
2535 else
2536 fp_index = -1;
2537
2538 if (fp_index >= 0)
2539 urb_setup[fp_index] = urb_next++;
2540 }
2541 }
2542 }
2543
2544 /* Each attribute is 4 setup channels, each of which is half a reg. */
2545 c->prog_data.urb_read_length = urb_next * 2;
2546 }
2547
2548 void
2549 fs_visitor::assign_urb_setup()
2550 {
2551 int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2552
2553 /* Offset all the urb_setup[] index by the actual position of the
2554 * setup regs, now that the location of the constants has been chosen.
2555 */
2556 foreach_iter(exec_list_iterator, iter, this->instructions) {
2557 fs_inst *inst = (fs_inst *)iter.get();
2558
2559 if (inst->opcode != FS_OPCODE_LINTERP)
2560 continue;
2561
2562 assert(inst->src[2].file == FIXED_HW_REG);
2563
2564 inst->src[2].fixed_hw_reg.nr += urb_start;
2565 }
2566
2567 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2568 }
2569
2570 /**
2571 * Split large virtual GRFs into separate components if we can.
2572 *
2573 * This is mostly duplicated with what brw_fs_vector_splitting does,
2574 * but that's really conservative because it's afraid of doing
2575 * splitting that doesn't result in real progress after the rest of
2576 * the optimization phases, which would cause infinite looping in
2577 * optimization. We can do it once here, safely. This also has the
2578 * opportunity to split interpolated values, or maybe even uniforms,
2579 * which we don't have at the IR level.
2580 *
2581 * We want to split, because virtual GRFs are what we register
2582 * allocate and spill (due to contiguousness requirements for some
2583 * instructions), and they're what we naturally generate in the
2584 * codegen process, but most virtual GRFs don't actually need to be
2585 * contiguous sets of GRFs. If we split, we'll end up with reduced
2586 * live intervals and better dead code elimination and coalescing.
2587 */
2588 void
2589 fs_visitor::split_virtual_grfs()
2590 {
2591 int num_vars = this->virtual_grf_next;
2592 bool split_grf[num_vars];
2593 int new_virtual_grf[num_vars];
2594
2595 /* Try to split anything > 0 sized. */
2596 for (int i = 0; i < num_vars; i++) {
2597 if (this->virtual_grf_sizes[i] != 1)
2598 split_grf[i] = true;
2599 else
2600 split_grf[i] = false;
2601 }
2602
2603 if (brw->has_pln) {
2604 /* PLN opcodes rely on the delta_xy being contiguous. */
2605 split_grf[this->delta_x.reg] = false;
2606 }
2607
2608 foreach_iter(exec_list_iterator, iter, this->instructions) {
2609 fs_inst *inst = (fs_inst *)iter.get();
2610
2611 /* Texturing produces 4 contiguous registers, so no splitting. */
2612 if ((inst->opcode == FS_OPCODE_TEX ||
2613 inst->opcode == FS_OPCODE_TXB ||
2614 inst->opcode == FS_OPCODE_TXL) &&
2615 inst->dst.file == GRF) {
2616 split_grf[inst->dst.reg] = false;
2617 }
2618 }
2619
2620 /* Allocate new space for split regs. Note that the virtual
2621 * numbers will be contiguous.
2622 */
2623 for (int i = 0; i < num_vars; i++) {
2624 if (split_grf[i]) {
2625 new_virtual_grf[i] = virtual_grf_alloc(1);
2626 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
2627 int reg = virtual_grf_alloc(1);
2628 assert(reg == new_virtual_grf[i] + j - 1);
2629 (void) reg;
2630 }
2631 this->virtual_grf_sizes[i] = 1;
2632 }
2633 }
2634
2635 foreach_iter(exec_list_iterator, iter, this->instructions) {
2636 fs_inst *inst = (fs_inst *)iter.get();
2637
2638 if (inst->dst.file == GRF &&
2639 split_grf[inst->dst.reg] &&
2640 inst->dst.reg_offset != 0) {
2641 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
2642 inst->dst.reg_offset - 1);
2643 inst->dst.reg_offset = 0;
2644 }
2645 for (int i = 0; i < 3; i++) {
2646 if (inst->src[i].file == GRF &&
2647 split_grf[inst->src[i].reg] &&
2648 inst->src[i].reg_offset != 0) {
2649 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
2650 inst->src[i].reg_offset - 1);
2651 inst->src[i].reg_offset = 0;
2652 }
2653 }
2654 }
2655 }
2656
2657 /**
2658 * Choose accesses from the UNIFORM file to demote to using the pull
2659 * constant buffer.
2660 *
2661 * We allow a fragment shader to have more than the specified minimum
2662 * maximum number of fragment shader uniform components (64). If
2663 * there are too many of these, they'd fill up all of register space.
2664 * So, this will push some of them out to the pull constant buffer and
2665 * update the program to load them.
2666 */
2667 void
2668 fs_visitor::setup_pull_constants()
2669 {
2670 /* Only allow 16 registers (128 uniform components) as push constants. */
2671 unsigned int max_uniform_components = 16 * 8;
2672 if (c->prog_data.nr_params <= max_uniform_components)
2673 return;
2674
2675 /* Just demote the end of the list. We could probably do better
2676 * here, demoting things that are rarely used in the program first.
2677 */
2678 int pull_uniform_base = max_uniform_components;
2679 int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
2680
2681 foreach_iter(exec_list_iterator, iter, this->instructions) {
2682 fs_inst *inst = (fs_inst *)iter.get();
2683
2684 for (int i = 0; i < 3; i++) {
2685 if (inst->src[i].file != UNIFORM)
2686 continue;
2687
2688 int uniform_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2689 if (uniform_nr < pull_uniform_base)
2690 continue;
2691
2692 fs_reg dst = fs_reg(this, glsl_type::float_type);
2693 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
2694 dst);
2695 pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15;
2696 pull->ir = inst->ir;
2697 pull->annotation = inst->annotation;
2698 pull->base_mrf = 14;
2699 pull->mlen = 1;
2700
2701 inst->insert_before(pull);
2702
2703 inst->src[i].file = GRF;
2704 inst->src[i].reg = dst.reg;
2705 inst->src[i].reg_offset = 0;
2706 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
2707 }
2708 }
2709
2710 for (int i = 0; i < pull_uniform_count; i++) {
2711 c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
2712 c->prog_data.pull_param_convert[i] =
2713 c->prog_data.param_convert[pull_uniform_base + i];
2714 }
2715 c->prog_data.nr_params -= pull_uniform_count;
2716 c->prog_data.nr_pull_params = pull_uniform_count;
2717 }
2718
2719 void
2720 fs_visitor::calculate_live_intervals()
2721 {
2722 int num_vars = this->virtual_grf_next;
2723 int *def = talloc_array(mem_ctx, int, num_vars);
2724 int *use = talloc_array(mem_ctx, int, num_vars);
2725 int loop_depth = 0;
2726 int loop_start = 0;
2727 int bb_header_ip = 0;
2728
2729 for (int i = 0; i < num_vars; i++) {
2730 def[i] = 1 << 30;
2731 use[i] = -1;
2732 }
2733
2734 int ip = 0;
2735 foreach_iter(exec_list_iterator, iter, this->instructions) {
2736 fs_inst *inst = (fs_inst *)iter.get();
2737
2738 if (inst->opcode == BRW_OPCODE_DO) {
2739 if (loop_depth++ == 0)
2740 loop_start = ip;
2741 } else if (inst->opcode == BRW_OPCODE_WHILE) {
2742 loop_depth--;
2743
2744 if (loop_depth == 0) {
2745 /* Patches up the use of vars marked for being live across
2746 * the whole loop.
2747 */
2748 for (int i = 0; i < num_vars; i++) {
2749 if (use[i] == loop_start) {
2750 use[i] = ip;
2751 }
2752 }
2753 }
2754 } else {
2755 for (unsigned int i = 0; i < 3; i++) {
2756 if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2757 int reg = inst->src[i].reg;
2758
2759 if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 &&
2760 def[reg] >= bb_header_ip)) {
2761 use[reg] = ip;
2762 } else {
2763 def[reg] = MIN2(loop_start, def[reg]);
2764 use[reg] = loop_start;
2765
2766 /* Nobody else is going to go smash our start to
2767 * later in the loop now, because def[reg] now
2768 * points before the bb header.
2769 */
2770 }
2771 }
2772 }
2773 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2774 int reg = inst->dst.reg;
2775
2776 if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 &&
2777 !inst->predicated)) {
2778 def[reg] = MIN2(def[reg], ip);
2779 } else {
2780 def[reg] = MIN2(def[reg], loop_start);
2781 }
2782 }
2783 }
2784
2785 ip++;
2786
2787 /* Set the basic block header IP. This is used for determining
2788 * if a complete def of single-register virtual GRF in a loop
2789 * dominates a use in the same basic block. It's a quick way to
2790 * reduce the live interval range of most register used in a
2791 * loop.
2792 */
2793 if (inst->opcode == BRW_OPCODE_IF ||
2794 inst->opcode == BRW_OPCODE_ELSE ||
2795 inst->opcode == BRW_OPCODE_ENDIF ||
2796 inst->opcode == BRW_OPCODE_DO ||
2797 inst->opcode == BRW_OPCODE_WHILE ||
2798 inst->opcode == BRW_OPCODE_BREAK ||
2799 inst->opcode == BRW_OPCODE_CONTINUE) {
2800 bb_header_ip = ip;
2801 }
2802 }
2803
2804 talloc_free(this->virtual_grf_def);
2805 talloc_free(this->virtual_grf_use);
2806 this->virtual_grf_def = def;
2807 this->virtual_grf_use = use;
2808 }
2809
2810 /**
2811 * Attempts to move immediate constants into the immediate
2812 * constant slot of following instructions.
2813 *
2814 * Immediate constants are a bit tricky -- they have to be in the last
2815 * operand slot, you can't do abs/negate on them,
2816 */
2817
2818 bool
2819 fs_visitor::propagate_constants()
2820 {
2821 bool progress = false;
2822
2823 foreach_iter(exec_list_iterator, iter, this->instructions) {
2824 fs_inst *inst = (fs_inst *)iter.get();
2825
2826 if (inst->opcode != BRW_OPCODE_MOV ||
2827 inst->predicated ||
2828 inst->dst.file != GRF || inst->src[0].file != IMM ||
2829 inst->dst.type != inst->src[0].type)
2830 continue;
2831
2832 /* Don't bother with cases where we should have had the
2833 * operation on the constant folded in GLSL already.
2834 */
2835 if (inst->saturate)
2836 continue;
2837
2838 /* Found a move of a constant to a GRF. Find anything else using the GRF
2839 * before it's written, and replace it with the constant if we can.
2840 */
2841 exec_list_iterator scan_iter = iter;
2842 scan_iter.next();
2843 for (; scan_iter.has_next(); scan_iter.next()) {
2844 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2845
2846 if (scan_inst->opcode == BRW_OPCODE_DO ||
2847 scan_inst->opcode == BRW_OPCODE_WHILE ||
2848 scan_inst->opcode == BRW_OPCODE_ELSE ||
2849 scan_inst->opcode == BRW_OPCODE_ENDIF) {
2850 break;
2851 }
2852
2853 for (int i = 2; i >= 0; i--) {
2854 if (scan_inst->src[i].file != GRF ||
2855 scan_inst->src[i].reg != inst->dst.reg ||
2856 scan_inst->src[i].reg_offset != inst->dst.reg_offset)
2857 continue;
2858
2859 /* Don't bother with cases where we should have had the
2860 * operation on the constant folded in GLSL already.
2861 */
2862 if (scan_inst->src[i].negate || scan_inst->src[i].abs)
2863 continue;
2864
2865 switch (scan_inst->opcode) {
2866 case BRW_OPCODE_MOV:
2867 scan_inst->src[i] = inst->src[0];
2868 progress = true;
2869 break;
2870
2871 case BRW_OPCODE_MUL:
2872 case BRW_OPCODE_ADD:
2873 if (i == 1) {
2874 scan_inst->src[i] = inst->src[0];
2875 progress = true;
2876 } else if (i == 0 && scan_inst->src[1].file != IMM) {
2877 /* Fit this constant in by commuting the operands */
2878 scan_inst->src[0] = scan_inst->src[1];
2879 scan_inst->src[1] = inst->src[0];
2880 }
2881 break;
2882 case BRW_OPCODE_CMP:
2883 case BRW_OPCODE_SEL:
2884 if (i == 1) {
2885 scan_inst->src[i] = inst->src[0];
2886 progress = true;
2887 }
2888 }
2889 }
2890
2891 if (scan_inst->dst.file == GRF &&
2892 scan_inst->dst.reg == inst->dst.reg &&
2893 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2894 scan_inst->opcode == FS_OPCODE_TEX)) {
2895 break;
2896 }
2897 }
2898 }
2899
2900 return progress;
2901 }
2902 /**
2903 * Must be called after calculate_live_intervales() to remove unused
2904 * writes to registers -- register allocation will fail otherwise
2905 * because something deffed but not used won't be considered to
2906 * interfere with other regs.
2907 */
2908 bool
2909 fs_visitor::dead_code_eliminate()
2910 {
2911 bool progress = false;
2912 int pc = 0;
2913
2914 foreach_iter(exec_list_iterator, iter, this->instructions) {
2915 fs_inst *inst = (fs_inst *)iter.get();
2916
2917 if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
2918 inst->remove();
2919 progress = true;
2920 }
2921
2922 pc++;
2923 }
2924
2925 return progress;
2926 }
2927
2928 bool
2929 fs_visitor::register_coalesce()
2930 {
2931 bool progress = false;
2932
2933 foreach_iter(exec_list_iterator, iter, this->instructions) {
2934 fs_inst *inst = (fs_inst *)iter.get();
2935
2936 if (inst->opcode != BRW_OPCODE_MOV ||
2937 inst->predicated ||
2938 inst->saturate ||
2939 inst->dst.file != GRF || inst->src[0].file != GRF ||
2940 inst->dst.type != inst->src[0].type)
2941 continue;
2942
2943 /* Found a move of a GRF to a GRF. Let's see if we can coalesce
2944 * them: check for no writes to either one until the exit of the
2945 * program.
2946 */
2947 bool interfered = false;
2948 exec_list_iterator scan_iter = iter;
2949 scan_iter.next();
2950 for (; scan_iter.has_next(); scan_iter.next()) {
2951 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2952
2953 if (scan_inst->opcode == BRW_OPCODE_DO ||
2954 scan_inst->opcode == BRW_OPCODE_WHILE ||
2955 scan_inst->opcode == BRW_OPCODE_ENDIF) {
2956 interfered = true;
2957 iter = scan_iter;
2958 break;
2959 }
2960
2961 if (scan_inst->dst.file == GRF) {
2962 if (scan_inst->dst.reg == inst->dst.reg &&
2963 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2964 scan_inst->opcode == FS_OPCODE_TEX)) {
2965 interfered = true;
2966 break;
2967 }
2968 if (scan_inst->dst.reg == inst->src[0].reg &&
2969 (scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
2970 scan_inst->opcode == FS_OPCODE_TEX)) {
2971 interfered = true;
2972 break;
2973 }
2974 }
2975 }
2976 if (interfered) {
2977 continue;
2978 }
2979
2980 /* Update live interval so we don't have to recalculate. */
2981 this->virtual_grf_use[inst->src[0].reg] = MAX2(virtual_grf_use[inst->src[0].reg],
2982 virtual_grf_use[inst->dst.reg]);
2983
2984 /* Rewrite the later usage to point at the source of the move to
2985 * be removed.
2986 */
2987 for (exec_list_iterator scan_iter = iter; scan_iter.has_next();
2988 scan_iter.next()) {
2989 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2990
2991 for (int i = 0; i < 3; i++) {
2992 if (scan_inst->src[i].file == GRF &&
2993 scan_inst->src[i].reg == inst->dst.reg &&
2994 scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
2995 scan_inst->src[i].reg = inst->src[0].reg;
2996 scan_inst->src[i].reg_offset = inst->src[0].reg_offset;
2997 scan_inst->src[i].abs |= inst->src[0].abs;
2998 scan_inst->src[i].negate ^= inst->src[0].negate;
2999 scan_inst->src[i].smear = inst->src[0].smear;
3000 }
3001 }
3002 }
3003
3004 inst->remove();
3005 progress = true;
3006 }
3007
3008 return progress;
3009 }
3010
3011
3012 bool
3013 fs_visitor::compute_to_mrf()
3014 {
3015 bool progress = false;
3016 int next_ip = 0;
3017
3018 foreach_iter(exec_list_iterator, iter, this->instructions) {
3019 fs_inst *inst = (fs_inst *)iter.get();
3020
3021 int ip = next_ip;
3022 next_ip++;
3023
3024 if (inst->opcode != BRW_OPCODE_MOV ||
3025 inst->predicated ||
3026 inst->dst.file != MRF || inst->src[0].file != GRF ||
3027 inst->dst.type != inst->src[0].type ||
3028 inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
3029 continue;
3030
3031 /* Can't compute-to-MRF this GRF if someone else was going to
3032 * read it later.
3033 */
3034 if (this->virtual_grf_use[inst->src[0].reg] > ip)
3035 continue;
3036
3037 /* Found a move of a GRF to a MRF. Let's see if we can go
3038 * rewrite the thing that made this GRF to write into the MRF.
3039 */
3040 fs_inst *scan_inst;
3041 for (scan_inst = (fs_inst *)inst->prev;
3042 scan_inst->prev != NULL;
3043 scan_inst = (fs_inst *)scan_inst->prev) {
3044 if (scan_inst->dst.file == GRF &&
3045 scan_inst->dst.reg == inst->src[0].reg) {
3046 /* Found the last thing to write our reg we want to turn
3047 * into a compute-to-MRF.
3048 */
3049
3050 if (scan_inst->opcode == FS_OPCODE_TEX) {
3051 /* texturing writes several continuous regs, so we can't
3052 * compute-to-mrf that.
3053 */
3054 break;
3055 }
3056
3057 /* If it's predicated, it (probably) didn't populate all
3058 * the channels.
3059 */
3060 if (scan_inst->predicated)
3061 break;
3062
3063 /* SEND instructions can't have MRF as a destination. */
3064 if (scan_inst->mlen)
3065 break;
3066
3067 if (intel->gen >= 6) {
3068 /* gen6 math instructions must have the destination be
3069 * GRF, so no compute-to-MRF for them.
3070 */
3071 if (scan_inst->opcode == FS_OPCODE_RCP ||
3072 scan_inst->opcode == FS_OPCODE_RSQ ||
3073 scan_inst->opcode == FS_OPCODE_SQRT ||
3074 scan_inst->opcode == FS_OPCODE_EXP2 ||
3075 scan_inst->opcode == FS_OPCODE_LOG2 ||
3076 scan_inst->opcode == FS_OPCODE_SIN ||
3077 scan_inst->opcode == FS_OPCODE_COS ||
3078 scan_inst->opcode == FS_OPCODE_POW) {
3079 break;
3080 }
3081 }
3082
3083 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
3084 /* Found the creator of our MRF's source value. */
3085 scan_inst->dst.file = MRF;
3086 scan_inst->dst.hw_reg = inst->dst.hw_reg;
3087 scan_inst->saturate |= inst->saturate;
3088 inst->remove();
3089 progress = true;
3090 }
3091 break;
3092 }
3093
3094 /* We don't handle flow control here. Most computation of
3095 * values that end up in MRFs are shortly before the MRF
3096 * write anyway.
3097 */
3098 if (scan_inst->opcode == BRW_OPCODE_DO ||
3099 scan_inst->opcode == BRW_OPCODE_WHILE ||
3100 scan_inst->opcode == BRW_OPCODE_ENDIF) {
3101 break;
3102 }
3103
3104 /* You can't read from an MRF, so if someone else reads our
3105 * MRF's source GRF that we wanted to rewrite, that stops us.
3106 */
3107 bool interfered = false;
3108 for (int i = 0; i < 3; i++) {
3109 if (scan_inst->src[i].file == GRF &&
3110 scan_inst->src[i].reg == inst->src[0].reg &&
3111 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
3112 interfered = true;
3113 }
3114 }
3115 if (interfered)
3116 break;
3117
3118 if (scan_inst->dst.file == MRF &&
3119 scan_inst->dst.hw_reg == inst->dst.hw_reg) {
3120 /* Somebody else wrote our MRF here, so we can't can't
3121 * compute-to-MRF before that.
3122 */
3123 break;
3124 }
3125
3126 if (scan_inst->mlen > 0) {
3127 /* Found a SEND instruction, which means that there are
3128 * live values in MRFs from base_mrf to base_mrf +
3129 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3130 * above it.
3131 */
3132 if (inst->dst.hw_reg >= scan_inst->base_mrf &&
3133 inst->dst.hw_reg < scan_inst->base_mrf + scan_inst->mlen) {
3134 break;
3135 }
3136 }
3137 }
3138 }
3139
3140 return progress;
3141 }
3142
3143 /**
3144 * Walks through basic blocks, locking for repeated MRF writes and
3145 * removing the later ones.
3146 */
3147 bool
3148 fs_visitor::remove_duplicate_mrf_writes()
3149 {
3150 fs_inst *last_mrf_move[16];
3151 bool progress = false;
3152
3153 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3154
3155 foreach_iter(exec_list_iterator, iter, this->instructions) {
3156 fs_inst *inst = (fs_inst *)iter.get();
3157
3158 switch (inst->opcode) {
3159 case BRW_OPCODE_DO:
3160 case BRW_OPCODE_WHILE:
3161 case BRW_OPCODE_IF:
3162 case BRW_OPCODE_ELSE:
3163 case BRW_OPCODE_ENDIF:
3164 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3165 continue;
3166 default:
3167 break;
3168 }
3169
3170 if (inst->opcode == BRW_OPCODE_MOV &&
3171 inst->dst.file == MRF) {
3172 fs_inst *prev_inst = last_mrf_move[inst->dst.hw_reg];
3173 if (prev_inst && inst->equals(prev_inst)) {
3174 inst->remove();
3175 progress = true;
3176 continue;
3177 }
3178 }
3179
3180 /* Clear out the last-write records for MRFs that were overwritten. */
3181 if (inst->dst.file == MRF) {
3182 last_mrf_move[inst->dst.hw_reg] = NULL;
3183 }
3184
3185 if (inst->mlen > 0) {
3186 /* Found a SEND instruction, which will include two of fewer
3187 * implied MRF writes. We could do better here.
3188 */
3189 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3190 last_mrf_move[inst->base_mrf + i] = NULL;
3191 }
3192 }
3193
3194 /* Clear out any MRF move records whose sources got overwritten. */
3195 if (inst->dst.file == GRF) {
3196 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
3197 if (last_mrf_move[i] &&
3198 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
3199 last_mrf_move[i] = NULL;
3200 }
3201 }
3202 }
3203
3204 if (inst->opcode == BRW_OPCODE_MOV &&
3205 inst->dst.file == MRF &&
3206 inst->src[0].file == GRF &&
3207 !inst->predicated) {
3208 last_mrf_move[inst->dst.hw_reg] = inst;
3209 }
3210 }
3211
3212 return progress;
3213 }
3214
3215 bool
3216 fs_visitor::virtual_grf_interferes(int a, int b)
3217 {
3218 int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
3219 int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
3220
3221 /* For dead code, just check if the def interferes with the other range. */
3222 if (this->virtual_grf_use[a] == -1) {
3223 return (this->virtual_grf_def[a] >= this->virtual_grf_def[b] &&
3224 this->virtual_grf_def[a] < this->virtual_grf_use[b]);
3225 }
3226 if (this->virtual_grf_use[b] == -1) {
3227 return (this->virtual_grf_def[b] >= this->virtual_grf_def[a] &&
3228 this->virtual_grf_def[b] < this->virtual_grf_use[a]);
3229 }
3230
3231 return start < end;
3232 }
3233
3234 static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
3235 {
3236 struct brw_reg brw_reg;
3237
3238 switch (reg->file) {
3239 case GRF:
3240 case ARF:
3241 case MRF:
3242 if (reg->smear == -1) {
3243 brw_reg = brw_vec8_reg(reg->file,
3244 reg->hw_reg, 0);
3245 } else {
3246 brw_reg = brw_vec1_reg(reg->file,
3247 reg->hw_reg, reg->smear);
3248 }
3249 brw_reg = retype(brw_reg, reg->type);
3250 break;
3251 case IMM:
3252 switch (reg->type) {
3253 case BRW_REGISTER_TYPE_F:
3254 brw_reg = brw_imm_f(reg->imm.f);
3255 break;
3256 case BRW_REGISTER_TYPE_D:
3257 brw_reg = brw_imm_d(reg->imm.i);
3258 break;
3259 case BRW_REGISTER_TYPE_UD:
3260 brw_reg = brw_imm_ud(reg->imm.u);
3261 break;
3262 default:
3263 assert(!"not reached");
3264 brw_reg = brw_null_reg();
3265 break;
3266 }
3267 break;
3268 case FIXED_HW_REG:
3269 brw_reg = reg->fixed_hw_reg;
3270 break;
3271 case BAD_FILE:
3272 /* Probably unused. */
3273 brw_reg = brw_null_reg();
3274 break;
3275 case UNIFORM:
3276 assert(!"not reached");
3277 brw_reg = brw_null_reg();
3278 break;
3279 default:
3280 assert(!"not reached");
3281 brw_reg = brw_null_reg();
3282 break;
3283 }
3284 if (reg->abs)
3285 brw_reg = brw_abs(brw_reg);
3286 if (reg->negate)
3287 brw_reg = negate(brw_reg);
3288
3289 return brw_reg;
3290 }
3291
3292 void
3293 fs_visitor::generate_code()
3294 {
3295 int last_native_inst = 0;
3296 struct brw_instruction *if_stack[16], *loop_stack[16];
3297 int if_stack_depth = 0, loop_stack_depth = 0;
3298 int if_depth_in_loop[16];
3299 const char *last_annotation_string = NULL;
3300 ir_instruction *last_annotation_ir = NULL;
3301
3302 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3303 printf("Native code for fragment shader %d:\n",
3304 ctx->Shader.CurrentFragmentProgram->Name);
3305 }
3306
3307 if_depth_in_loop[loop_stack_depth] = 0;
3308
3309 memset(&if_stack, 0, sizeof(if_stack));
3310 foreach_iter(exec_list_iterator, iter, this->instructions) {
3311 fs_inst *inst = (fs_inst *)iter.get();
3312 struct brw_reg src[3], dst;
3313
3314 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3315 if (last_annotation_ir != inst->ir) {
3316 last_annotation_ir = inst->ir;
3317 if (last_annotation_ir) {
3318 printf(" ");
3319 last_annotation_ir->print();
3320 printf("\n");
3321 }
3322 }
3323 if (last_annotation_string != inst->annotation) {
3324 last_annotation_string = inst->annotation;
3325 if (last_annotation_string)
3326 printf(" %s\n", last_annotation_string);
3327 }
3328 }
3329
3330 for (unsigned int i = 0; i < 3; i++) {
3331 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
3332 }
3333 dst = brw_reg_from_fs_reg(&inst->dst);
3334
3335 brw_set_conditionalmod(p, inst->conditional_mod);
3336 brw_set_predicate_control(p, inst->predicated);
3337 brw_set_saturate(p, inst->saturate);
3338
3339 switch (inst->opcode) {
3340 case BRW_OPCODE_MOV:
3341 brw_MOV(p, dst, src[0]);
3342 break;
3343 case BRW_OPCODE_ADD:
3344 brw_ADD(p, dst, src[0], src[1]);
3345 break;
3346 case BRW_OPCODE_MUL:
3347 brw_MUL(p, dst, src[0], src[1]);
3348 break;
3349
3350 case BRW_OPCODE_FRC:
3351 brw_FRC(p, dst, src[0]);
3352 break;
3353 case BRW_OPCODE_RNDD:
3354 brw_RNDD(p, dst, src[0]);
3355 break;
3356 case BRW_OPCODE_RNDE:
3357 brw_RNDE(p, dst, src[0]);
3358 break;
3359 case BRW_OPCODE_RNDZ:
3360 brw_RNDZ(p, dst, src[0]);
3361 break;
3362
3363 case BRW_OPCODE_AND:
3364 brw_AND(p, dst, src[0], src[1]);
3365 break;
3366 case BRW_OPCODE_OR:
3367 brw_OR(p, dst, src[0], src[1]);
3368 break;
3369 case BRW_OPCODE_XOR:
3370 brw_XOR(p, dst, src[0], src[1]);
3371 break;
3372 case BRW_OPCODE_NOT:
3373 brw_NOT(p, dst, src[0]);
3374 break;
3375 case BRW_OPCODE_ASR:
3376 brw_ASR(p, dst, src[0], src[1]);
3377 break;
3378 case BRW_OPCODE_SHR:
3379 brw_SHR(p, dst, src[0], src[1]);
3380 break;
3381 case BRW_OPCODE_SHL:
3382 brw_SHL(p, dst, src[0], src[1]);
3383 break;
3384
3385 case BRW_OPCODE_CMP:
3386 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
3387 break;
3388 case BRW_OPCODE_SEL:
3389 brw_SEL(p, dst, src[0], src[1]);
3390 break;
3391
3392 case BRW_OPCODE_IF:
3393 assert(if_stack_depth < 16);
3394 if (inst->src[0].file != BAD_FILE) {
3395 assert(intel->gen >= 6);
3396 if_stack[if_stack_depth] = brw_IF_gen6(p, inst->conditional_mod, src[0], src[1]);
3397 } else {
3398 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
3399 }
3400 if_depth_in_loop[loop_stack_depth]++;
3401 if_stack_depth++;
3402 break;
3403
3404 case BRW_OPCODE_ELSE:
3405 if_stack[if_stack_depth - 1] =
3406 brw_ELSE(p, if_stack[if_stack_depth - 1]);
3407 break;
3408 case BRW_OPCODE_ENDIF:
3409 if_stack_depth--;
3410 brw_ENDIF(p , if_stack[if_stack_depth]);
3411 if_depth_in_loop[loop_stack_depth]--;
3412 break;
3413
3414 case BRW_OPCODE_DO:
3415 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
3416 if_depth_in_loop[loop_stack_depth] = 0;
3417 break;
3418
3419 case BRW_OPCODE_BREAK:
3420 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
3421 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3422 break;
3423 case BRW_OPCODE_CONTINUE:
3424 /* FINISHME: We need to write the loop instruction support still. */
3425 if (intel->gen >= 6)
3426 brw_CONT_gen6(p, loop_stack[loop_stack_depth - 1]);
3427 else
3428 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
3429 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3430 break;
3431
3432 case BRW_OPCODE_WHILE: {
3433 struct brw_instruction *inst0, *inst1;
3434 GLuint br = 1;
3435
3436 if (intel->gen >= 5)
3437 br = 2;
3438
3439 assert(loop_stack_depth > 0);
3440 loop_stack_depth--;
3441 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
3442 if (intel->gen < 6) {
3443 /* patch all the BREAK/CONT instructions from last BGNLOOP */
3444 while (inst0 > loop_stack[loop_stack_depth]) {
3445 inst0--;
3446 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
3447 inst0->bits3.if_else.jump_count == 0) {
3448 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
3449 }
3450 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
3451 inst0->bits3.if_else.jump_count == 0) {
3452 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
3453 }
3454 }
3455 }
3456 }
3457 break;
3458
3459 case FS_OPCODE_RCP:
3460 case FS_OPCODE_RSQ:
3461 case FS_OPCODE_SQRT:
3462 case FS_OPCODE_EXP2:
3463 case FS_OPCODE_LOG2:
3464 case FS_OPCODE_POW:
3465 case FS_OPCODE_SIN:
3466 case FS_OPCODE_COS:
3467 generate_math(inst, dst, src);
3468 break;
3469 case FS_OPCODE_LINTERP:
3470 generate_linterp(inst, dst, src);
3471 break;
3472 case FS_OPCODE_TEX:
3473 case FS_OPCODE_TXB:
3474 case FS_OPCODE_TXL:
3475 generate_tex(inst, dst);
3476 break;
3477 case FS_OPCODE_DISCARD_NOT:
3478 generate_discard_not(inst, dst);
3479 break;
3480 case FS_OPCODE_DISCARD_AND:
3481 generate_discard_and(inst, src[0]);
3482 break;
3483 case FS_OPCODE_DDX:
3484 generate_ddx(inst, dst, src[0]);
3485 break;
3486 case FS_OPCODE_DDY:
3487 generate_ddy(inst, dst, src[0]);
3488 break;
3489
3490 case FS_OPCODE_SPILL:
3491 generate_spill(inst, src[0]);
3492 break;
3493
3494 case FS_OPCODE_UNSPILL:
3495 generate_unspill(inst, dst);
3496 break;
3497
3498 case FS_OPCODE_PULL_CONSTANT_LOAD:
3499 generate_pull_constant_load(inst, dst);
3500 break;
3501
3502 case FS_OPCODE_FB_WRITE:
3503 generate_fb_write(inst);
3504 break;
3505 default:
3506 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
3507 _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
3508 brw_opcodes[inst->opcode].name);
3509 } else {
3510 _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
3511 }
3512 this->fail = true;
3513 }
3514
3515 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3516 for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
3517 if (0) {
3518 printf("0x%08x 0x%08x 0x%08x 0x%08x ",
3519 ((uint32_t *)&p->store[i])[3],
3520 ((uint32_t *)&p->store[i])[2],
3521 ((uint32_t *)&p->store[i])[1],
3522 ((uint32_t *)&p->store[i])[0]);
3523 }
3524 brw_disasm(stdout, &p->store[i], intel->gen);
3525 }
3526 }
3527
3528 last_native_inst = p->nr_insn;
3529 }
3530
3531 brw_set_uip_jip(p);
3532
3533 /* OK, while the INTEL_DEBUG=wm above is very nice for debugging FS
3534 * emit issues, it doesn't get the jump distances into the output,
3535 * which is often something we want to debug. So this is here in
3536 * case you're doing that.
3537 */
3538 if (0) {
3539 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3540 for (unsigned int i = 0; i < p->nr_insn; i++) {
3541 printf("0x%08x 0x%08x 0x%08x 0x%08x ",
3542 ((uint32_t *)&p->store[i])[3],
3543 ((uint32_t *)&p->store[i])[2],
3544 ((uint32_t *)&p->store[i])[1],
3545 ((uint32_t *)&p->store[i])[0]);
3546 brw_disasm(stdout, &p->store[i], intel->gen);
3547 }
3548 }
3549 }
3550 }
3551
3552 GLboolean
3553 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
3554 {
3555 struct intel_context *intel = &brw->intel;
3556 struct gl_context *ctx = &intel->ctx;
3557 struct gl_shader_program *prog = ctx->Shader.CurrentFragmentProgram;
3558
3559 if (!prog)
3560 return GL_FALSE;
3561
3562 struct brw_shader *shader =
3563 (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3564 if (!shader)
3565 return GL_FALSE;
3566
3567 /* We always use 8-wide mode, at least for now. For one, flow
3568 * control only works in 8-wide. Also, when we're fragment shader
3569 * bound, we're almost always under register pressure as well, so
3570 * 8-wide would save us from the performance cliff of spilling
3571 * regs.
3572 */
3573 c->dispatch_width = 8;
3574
3575 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
3576 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
3577 _mesa_print_ir(shader->ir, NULL);
3578 printf("\n");
3579 }
3580
3581 /* Now the main event: Visit the shader IR and generate our FS IR for it.
3582 */
3583 fs_visitor v(c, shader);
3584
3585 if (0) {
3586 v.emit_dummy_fs();
3587 } else {
3588 v.calculate_urb_setup();
3589 if (intel->gen < 6)
3590 v.emit_interpolation_setup_gen4();
3591 else
3592 v.emit_interpolation_setup_gen6();
3593
3594 /* Generate FS IR for main(). (the visitor only descends into
3595 * functions called "main").
3596 */
3597 foreach_iter(exec_list_iterator, iter, *shader->ir) {
3598 ir_instruction *ir = (ir_instruction *)iter.get();
3599 v.base_ir = ir;
3600 ir->accept(&v);
3601 }
3602
3603 v.emit_fb_writes();
3604
3605 v.split_virtual_grfs();
3606 v.setup_pull_constants();
3607
3608 v.assign_curb_setup();
3609 v.assign_urb_setup();
3610
3611 bool progress;
3612 do {
3613 progress = false;
3614
3615 progress = v.remove_duplicate_mrf_writes() || progress;
3616
3617 v.calculate_live_intervals();
3618 progress = v.propagate_constants() || progress;
3619 progress = v.register_coalesce() || progress;
3620 progress = v.compute_to_mrf() || progress;
3621 progress = v.dead_code_eliminate() || progress;
3622 } while (progress);
3623
3624 if (0) {
3625 /* Debug of register spilling: Go spill everything. */
3626 int virtual_grf_count = v.virtual_grf_next;
3627 for (int i = 1; i < virtual_grf_count; i++) {
3628 v.spill_reg(i);
3629 }
3630 v.calculate_live_intervals();
3631 }
3632
3633 if (0)
3634 v.assign_regs_trivial();
3635 else {
3636 while (!v.assign_regs()) {
3637 if (v.fail)
3638 break;
3639
3640 v.calculate_live_intervals();
3641 }
3642 }
3643 }
3644
3645 if (!v.fail)
3646 v.generate_code();
3647
3648 assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
3649
3650 if (v.fail)
3651 return GL_FALSE;
3652
3653 c->prog_data.total_grf = v.grf_used;
3654
3655 return GL_TRUE;
3656 }