i965: "Fix" aux offsets
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 bool
439 fs_reg::is_contiguous() const
440 {
441 return stride == 1;
442 }
443
444 unsigned
445 fs_reg::component_size(unsigned width) const
446 {
447 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448 hstride == 0 ? 0 :
449 1 << (hstride - 1));
450 return MAX2(width * stride, 1) * type_sz(type);
451 }
452
453 extern "C" int
454 type_size_scalar(const struct glsl_type *type)
455 {
456 unsigned int size, i;
457
458 switch (type->base_type) {
459 case GLSL_TYPE_UINT:
460 case GLSL_TYPE_INT:
461 case GLSL_TYPE_FLOAT:
462 case GLSL_TYPE_BOOL:
463 return type->components();
464 case GLSL_TYPE_DOUBLE:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
496 * except for double-precision types, which are loaded as one dvec4.
497 */
498 extern "C" int
499 type_size_vs_input(const struct glsl_type *type)
500 {
501 if (type->is_double()) {
502 return type_size_dvec4(type);
503 } else {
504 return type_size_vec4(type);
505 }
506 }
507
508 /**
509 * Create a MOV to read the timestamp register.
510 *
511 * The caller is responsible for emitting the MOV. The return value is
512 * the destination of the MOV, with extra parameters set.
513 */
514 fs_reg
515 fs_visitor::get_timestamp(const fs_builder &bld)
516 {
517 assert(devinfo->gen >= 7);
518
519 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
520 BRW_ARF_TIMESTAMP,
521 0),
522 BRW_REGISTER_TYPE_UD));
523
524 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
525
526 /* We want to read the 3 fields we care about even if it's not enabled in
527 * the dispatch.
528 */
529 bld.group(4, 0).exec_all().MOV(dst, ts);
530
531 return dst;
532 }
533
534 void
535 fs_visitor::emit_shader_time_begin()
536 {
537 /* We want only the low 32 bits of the timestamp. Since it's running
538 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
539 * which is plenty of time for our purposes. It is identical across the
540 * EUs, but since it's tracking GPU core speed it will increment at a
541 * varying rate as render P-states change.
542 */
543 shader_start_time = component(
544 get_timestamp(bld.annotate("shader time start")), 0);
545 }
546
547 void
548 fs_visitor::emit_shader_time_end()
549 {
550 /* Insert our code just before the final SEND with EOT. */
551 exec_node *end = this->instructions.get_tail();
552 assert(end && ((fs_inst *) end)->eot);
553 const fs_builder ibld = bld.annotate("shader time end")
554 .exec_all().at(NULL, end);
555 const fs_reg timestamp = get_timestamp(ibld);
556
557 /* We only use the low 32 bits of the timestamp - see
558 * emit_shader_time_begin()).
559 *
560 * We could also check if render P-states have changed (or anything
561 * else that might disrupt timing) by setting smear to 2 and checking if
562 * that field is != 0.
563 */
564 const fs_reg shader_end_time = component(timestamp, 0);
565
566 /* Check that there weren't any timestamp reset events (assuming these
567 * were the only two timestamp reads that happened).
568 */
569 const fs_reg reset = component(timestamp, 2);
570 set_condmod(BRW_CONDITIONAL_Z,
571 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
572 ibld.IF(BRW_PREDICATE_NORMAL);
573
574 fs_reg start = shader_start_time;
575 start.negate = true;
576 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
577 BRW_REGISTER_TYPE_UD),
578 0);
579 const fs_builder cbld = ibld.group(1, 0);
580 cbld.group(1, 0).ADD(diff, start, shader_end_time);
581
582 /* If there were no instructions between the two timestamp gets, the diff
583 * is 2 cycles. Remove that overhead, so I can forget about that when
584 * trying to determine the time taken for single instructions.
585 */
586 cbld.ADD(diff, diff, brw_imm_ud(-2u));
587 SHADER_TIME_ADD(cbld, 0, diff);
588 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
589 ibld.emit(BRW_OPCODE_ELSE);
590 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
591 ibld.emit(BRW_OPCODE_ENDIF);
592 }
593
594 void
595 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
596 int shader_time_subindex,
597 fs_reg value)
598 {
599 int index = shader_time_index * 3 + shader_time_subindex;
600 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
601
602 fs_reg payload;
603 if (dispatch_width == 8)
604 payload = vgrf(glsl_type::uvec2_type);
605 else
606 payload = vgrf(glsl_type::uint_type);
607
608 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
609 }
610
611 void
612 fs_visitor::vfail(const char *format, va_list va)
613 {
614 char *msg;
615
616 if (failed)
617 return;
618
619 failed = true;
620
621 msg = ralloc_vasprintf(mem_ctx, format, va);
622 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
623
624 this->fail_msg = msg;
625
626 if (debug_enabled) {
627 fprintf(stderr, "%s", msg);
628 }
629 }
630
631 void
632 fs_visitor::fail(const char *format, ...)
633 {
634 va_list va;
635
636 va_start(va, format);
637 vfail(format, va);
638 va_end(va);
639 }
640
641 /**
642 * Mark this program as impossible to compile with dispatch width greater
643 * than n.
644 *
645 * During the SIMD8 compile (which happens first), we can detect and flag
646 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
647 * SIMD16+ compile altogether.
648 *
649 * During a compile of dispatch width greater than n (if one happens anyway),
650 * this just calls fail().
651 */
652 void
653 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
654 {
655 if (dispatch_width > n) {
656 fail("%s", msg);
657 } else {
658 max_dispatch_width = n;
659 compiler->shader_perf_log(log_data,
660 "Shader dispatch width limited to SIMD%d: %s",
661 n, msg);
662 }
663 }
664
665 /**
666 * Returns true if the instruction has a flag that means it won't
667 * update an entire destination register.
668 *
669 * For example, dead code elimination and live variable analysis want to know
670 * when a write to a variable screens off any preceding values that were in
671 * it.
672 */
673 bool
674 fs_inst::is_partial_write() const
675 {
676 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
677 (this->exec_size * type_sz(this->dst.type)) < 32 ||
678 !this->dst.is_contiguous() ||
679 this->dst.offset % REG_SIZE != 0);
680 }
681
682 unsigned
683 fs_inst::components_read(unsigned i) const
684 {
685 /* Return zero if the source is not present. */
686 if (src[i].file == BAD_FILE)
687 return 0;
688
689 switch (opcode) {
690 case FS_OPCODE_LINTERP:
691 if (i == 0)
692 return 2;
693 else
694 return 1;
695
696 case FS_OPCODE_PIXEL_X:
697 case FS_OPCODE_PIXEL_Y:
698 assert(i == 0);
699 return 2;
700
701 case FS_OPCODE_FB_WRITE_LOGICAL:
702 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
703 /* First/second FB write color. */
704 if (i < 2)
705 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
706 else
707 return 1;
708
709 case SHADER_OPCODE_TEX_LOGICAL:
710 case SHADER_OPCODE_TXD_LOGICAL:
711 case SHADER_OPCODE_TXF_LOGICAL:
712 case SHADER_OPCODE_TXL_LOGICAL:
713 case SHADER_OPCODE_TXS_LOGICAL:
714 case FS_OPCODE_TXB_LOGICAL:
715 case SHADER_OPCODE_TXF_CMS_LOGICAL:
716 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
717 case SHADER_OPCODE_TXF_UMS_LOGICAL:
718 case SHADER_OPCODE_TXF_MCS_LOGICAL:
719 case SHADER_OPCODE_LOD_LOGICAL:
720 case SHADER_OPCODE_TG4_LOGICAL:
721 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
722 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
723 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
724 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
725 /* Texture coordinates. */
726 if (i == TEX_LOGICAL_SRC_COORDINATE)
727 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
728 /* Texture derivatives. */
729 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
730 opcode == SHADER_OPCODE_TXD_LOGICAL)
731 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
732 /* Texture offset. */
733 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
734 return 2;
735 /* MCS */
736 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
737 return 2;
738 else
739 return 1;
740
741 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
742 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
743 assert(src[3].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source (ignored for reads). */
748 else if (i == 1)
749 return 0;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
754 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 /* Surface coordinates. */
758 if (i == 0)
759 return src[3].ud;
760 /* Surface operation source. */
761 else if (i == 1)
762 return src[4].ud;
763 else
764 return 1;
765
766 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
767 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
768 assert(src[3].file == IMM &&
769 src[4].file == IMM);
770 const unsigned op = src[4].ud;
771 /* Surface coordinates. */
772 if (i == 0)
773 return src[3].ud;
774 /* Surface operation source. */
775 else if (i == 1 && op == BRW_AOP_CMPWR)
776 return 2;
777 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
778 op == BRW_AOP_PREDEC))
779 return 0;
780 else
781 return 1;
782 }
783
784 default:
785 return 1;
786 }
787 }
788
789 unsigned
790 fs_inst::size_read(int arg) const
791 {
792 switch (opcode) {
793 case FS_OPCODE_FB_WRITE:
794 case FS_OPCODE_FB_READ:
795 case SHADER_OPCODE_URB_WRITE_SIMD8:
796 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
797 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
798 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
799 case SHADER_OPCODE_URB_READ_SIMD8:
800 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
801 case SHADER_OPCODE_UNTYPED_ATOMIC:
802 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
803 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
804 case SHADER_OPCODE_TYPED_ATOMIC:
805 case SHADER_OPCODE_TYPED_SURFACE_READ:
806 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
807 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
808 if (arg == 0)
809 return mlen * REG_SIZE;
810 break;
811
812 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
813 /* The payload is actually stored in src1 */
814 if (arg == 1)
815 return mlen * REG_SIZE;
816 break;
817
818 case FS_OPCODE_LINTERP:
819 if (arg == 1)
820 return 16;
821 break;
822
823 case SHADER_OPCODE_LOAD_PAYLOAD:
824 if (arg < this->header_size)
825 return REG_SIZE;
826 break;
827
828 case CS_OPCODE_CS_TERMINATE:
829 case SHADER_OPCODE_BARRIER:
830 return REG_SIZE;
831
832 case SHADER_OPCODE_MOV_INDIRECT:
833 if (arg == 0) {
834 assert(src[2].file == IMM);
835 return src[2].ud;
836 }
837 break;
838
839 default:
840 if (is_tex() && arg == 0 && src[0].file == VGRF)
841 return mlen * REG_SIZE;
842 break;
843 }
844
845 switch (src[arg].file) {
846 case UNIFORM:
847 case IMM:
848 return components_read(arg) * type_sz(src[arg].type);
849 case BAD_FILE:
850 case ARF:
851 case FIXED_GRF:
852 case VGRF:
853 case ATTR:
854 return components_read(arg) * src[arg].component_size(exec_size);
855 case MRF:
856 unreachable("MRF registers are not allowed as sources");
857 }
858 return 0;
859 }
860
861 namespace {
862 /* Return the subset of flag registers that an instruction could
863 * potentially read or write based on the execution controls and flag
864 * subregister number of the instruction.
865 */
866 unsigned
867 flag_mask(const fs_inst *inst)
868 {
869 const unsigned start = inst->flag_subreg * 16 + inst->group;
870 const unsigned end = start + inst->exec_size;
871 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
872 }
873 }
874
875 unsigned
876 fs_inst::flags_read(const gen_device_info *devinfo) const
877 {
878 /* XXX - This doesn't consider explicit uses of the flag register as source
879 * region.
880 */
881 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
882 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
883 /* The vertical predication modes combine corresponding bits from
884 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
885 */
886 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
887 return flag_mask(this) << shift | flag_mask(this);
888 } else if (predicate) {
889 return flag_mask(this);
890 } else {
891 return 0;
892 }
893 }
894
895 unsigned
896 fs_inst::flags_written() const
897 {
898 /* XXX - This doesn't consider explicit uses of the flag register as
899 * destination region.
900 */
901 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
902 opcode != BRW_OPCODE_IF &&
903 opcode != BRW_OPCODE_WHILE)) ||
904 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
905 return flag_mask(this);
906 } else {
907 return 0;
908 }
909 }
910
911 /**
912 * Returns how many MRFs an FS opcode will write over.
913 *
914 * Note that this is not the 0 or 1 implied writes in an actual gen
915 * instruction -- the FS opcodes often generate MOVs in addition.
916 */
917 int
918 fs_visitor::implied_mrf_writes(fs_inst *inst)
919 {
920 if (inst->mlen == 0)
921 return 0;
922
923 if (inst->base_mrf == -1)
924 return 0;
925
926 switch (inst->opcode) {
927 case SHADER_OPCODE_RCP:
928 case SHADER_OPCODE_RSQ:
929 case SHADER_OPCODE_SQRT:
930 case SHADER_OPCODE_EXP2:
931 case SHADER_OPCODE_LOG2:
932 case SHADER_OPCODE_SIN:
933 case SHADER_OPCODE_COS:
934 return 1 * dispatch_width / 8;
935 case SHADER_OPCODE_POW:
936 case SHADER_OPCODE_INT_QUOTIENT:
937 case SHADER_OPCODE_INT_REMAINDER:
938 return 2 * dispatch_width / 8;
939 case SHADER_OPCODE_TEX:
940 case FS_OPCODE_TXB:
941 case SHADER_OPCODE_TXD:
942 case SHADER_OPCODE_TXF:
943 case SHADER_OPCODE_TXF_CMS:
944 case SHADER_OPCODE_TXF_MCS:
945 case SHADER_OPCODE_TG4:
946 case SHADER_OPCODE_TG4_OFFSET:
947 case SHADER_OPCODE_TXL:
948 case SHADER_OPCODE_TXS:
949 case SHADER_OPCODE_LOD:
950 case SHADER_OPCODE_SAMPLEINFO:
951 return 1;
952 case FS_OPCODE_FB_WRITE:
953 return 2;
954 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
955 case SHADER_OPCODE_GEN4_SCRATCH_READ:
956 return 1;
957 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
958 return inst->mlen;
959 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
960 return inst->mlen;
961 default:
962 unreachable("not reached");
963 }
964 }
965
966 fs_reg
967 fs_visitor::vgrf(const glsl_type *const type)
968 {
969 int reg_width = dispatch_width / 8;
970 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
971 brw_type_for_base_type(type));
972 }
973
974 fs_reg::fs_reg(enum brw_reg_file file, int nr)
975 {
976 init();
977 this->file = file;
978 this->nr = nr;
979 this->type = BRW_REGISTER_TYPE_F;
980 this->stride = (file == UNIFORM ? 0 : 1);
981 }
982
983 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
984 {
985 init();
986 this->file = file;
987 this->nr = nr;
988 this->type = type;
989 this->stride = (file == UNIFORM ? 0 : 1);
990 }
991
992 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
993 * This brings in those uniform definitions
994 */
995 void
996 fs_visitor::import_uniforms(fs_visitor *v)
997 {
998 this->push_constant_loc = v->push_constant_loc;
999 this->pull_constant_loc = v->pull_constant_loc;
1000 this->uniforms = v->uniforms;
1001 }
1002
1003 void
1004 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1005 {
1006 assert(stage == MESA_SHADER_FRAGMENT);
1007
1008 /* gl_FragCoord.x */
1009 bld.MOV(wpos, this->pixel_x);
1010 wpos = offset(wpos, bld, 1);
1011
1012 /* gl_FragCoord.y */
1013 bld.MOV(wpos, this->pixel_y);
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.z */
1017 if (devinfo->gen >= 6) {
1018 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1019 } else {
1020 bld.emit(FS_OPCODE_LINTERP, wpos,
1021 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1022 interp_reg(VARYING_SLOT_POS, 2));
1023 }
1024 wpos = offset(wpos, bld, 1);
1025
1026 /* gl_FragCoord.w: Already set up in emit_interpolation */
1027 bld.MOV(wpos, this->wpos_w);
1028 }
1029
1030 enum brw_barycentric_mode
1031 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1032 {
1033 /* Barycentric modes don't make sense for flat inputs. */
1034 assert(mode != INTERP_MODE_FLAT);
1035
1036 unsigned bary;
1037 switch (op) {
1038 case nir_intrinsic_load_barycentric_pixel:
1039 case nir_intrinsic_load_barycentric_at_offset:
1040 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1041 break;
1042 case nir_intrinsic_load_barycentric_centroid:
1043 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1044 break;
1045 case nir_intrinsic_load_barycentric_sample:
1046 case nir_intrinsic_load_barycentric_at_sample:
1047 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1048 break;
1049 default:
1050 unreachable("invalid intrinsic");
1051 }
1052
1053 if (mode == INTERP_MODE_NOPERSPECTIVE)
1054 bary += 3;
1055
1056 return (enum brw_barycentric_mode) bary;
1057 }
1058
1059 /**
1060 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1061 */
1062 static enum brw_barycentric_mode
1063 centroid_to_pixel(enum brw_barycentric_mode bary)
1064 {
1065 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1066 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1067 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1068 }
1069
1070 fs_reg *
1071 fs_visitor::emit_frontfacing_interpolation()
1072 {
1073 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1074
1075 if (devinfo->gen >= 6) {
1076 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1077 * a boolean result from this (~0/true or 0/false).
1078 *
1079 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1080 * this task in only one instruction:
1081 * - a negation source modifier will flip the bit; and
1082 * - a W -> D type conversion will sign extend the bit into the high
1083 * word of the destination.
1084 *
1085 * An ASR 15 fills the low word of the destination.
1086 */
1087 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1088 g0.negate = true;
1089
1090 bld.ASR(*reg, g0, brw_imm_d(15));
1091 } else {
1092 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1093 * a boolean result from this (1/true or 0/false).
1094 *
1095 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1096 * the negation source modifier to flip it. Unfortunately the SHR
1097 * instruction only operates on UD (or D with an abs source modifier)
1098 * sources without negation.
1099 *
1100 * Instead, use ASR (which will give ~0/true or 0/false).
1101 */
1102 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1103 g1_6.negate = true;
1104
1105 bld.ASR(*reg, g1_6, brw_imm_d(31));
1106 }
1107
1108 return reg;
1109 }
1110
1111 void
1112 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1113 {
1114 assert(stage == MESA_SHADER_FRAGMENT);
1115 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1116 assert(dst.type == BRW_REGISTER_TYPE_F);
1117
1118 if (wm_prog_data->persample_dispatch) {
1119 /* Convert int_sample_pos to floating point */
1120 bld.MOV(dst, int_sample_pos);
1121 /* Scale to the range [0, 1] */
1122 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1123 }
1124 else {
1125 /* From ARB_sample_shading specification:
1126 * "When rendering to a non-multisample buffer, or if multisample
1127 * rasterization is disabled, gl_SamplePosition will always be
1128 * (0.5, 0.5).
1129 */
1130 bld.MOV(dst, brw_imm_f(0.5f));
1131 }
1132 }
1133
1134 fs_reg *
1135 fs_visitor::emit_samplepos_setup()
1136 {
1137 assert(devinfo->gen >= 6);
1138
1139 const fs_builder abld = bld.annotate("compute sample position");
1140 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1141 fs_reg pos = *reg;
1142 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1143 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1144
1145 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1146 * mode will be enabled.
1147 *
1148 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1149 * R31.1:0 Position Offset X/Y for Slot[3:0]
1150 * R31.3:2 Position Offset X/Y for Slot[7:4]
1151 * .....
1152 *
1153 * The X, Y sample positions come in as bytes in thread payload. So, read
1154 * the positions using vstride=16, width=8, hstride=2.
1155 */
1156 struct brw_reg sample_pos_reg =
1157 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1158 BRW_REGISTER_TYPE_B), 16, 8, 2);
1159
1160 if (dispatch_width == 8) {
1161 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1162 } else {
1163 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1164 abld.half(1).MOV(half(int_sample_x, 1),
1165 fs_reg(suboffset(sample_pos_reg, 16)));
1166 }
1167 /* Compute gl_SamplePosition.x */
1168 compute_sample_position(pos, int_sample_x);
1169 pos = offset(pos, abld, 1);
1170 if (dispatch_width == 8) {
1171 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1172 } else {
1173 abld.half(0).MOV(half(int_sample_y, 0),
1174 fs_reg(suboffset(sample_pos_reg, 1)));
1175 abld.half(1).MOV(half(int_sample_y, 1),
1176 fs_reg(suboffset(sample_pos_reg, 17)));
1177 }
1178 /* Compute gl_SamplePosition.y */
1179 compute_sample_position(pos, int_sample_y);
1180 return reg;
1181 }
1182
1183 fs_reg *
1184 fs_visitor::emit_sampleid_setup()
1185 {
1186 assert(stage == MESA_SHADER_FRAGMENT);
1187 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1188 assert(devinfo->gen >= 6);
1189
1190 const fs_builder abld = bld.annotate("compute sample id");
1191 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1192
1193 if (!key->multisample_fbo) {
1194 /* As per GL_ARB_sample_shading specification:
1195 * "When rendering to a non-multisample buffer, or if multisample
1196 * rasterization is disabled, gl_SampleID will always be zero."
1197 */
1198 abld.MOV(*reg, brw_imm_d(0));
1199 } else if (devinfo->gen >= 8) {
1200 /* Sample ID comes in as 4-bit numbers in g1.0:
1201 *
1202 * 15:12 Slot 3 SampleID (only used in SIMD16)
1203 * 11:8 Slot 2 SampleID (only used in SIMD16)
1204 * 7:4 Slot 1 SampleID
1205 * 3:0 Slot 0 SampleID
1206 *
1207 * Each slot corresponds to four channels, so we want to replicate each
1208 * half-byte value to 4 channels in a row:
1209 *
1210 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1211 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1212 *
1213 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1214 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1215 *
1216 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1217 * channels to read the first byte (7:0), and the second group of 8
1218 * channels to read the second byte (15:8). Then, we shift right by
1219 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1220 * values into place. Finally, we AND with 0xf to keep the low nibble.
1221 *
1222 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1223 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1224 *
1225 * TODO: These payload bits exist on Gen7 too, but they appear to always
1226 * be zero, so this code fails to work. We should find out why.
1227 */
1228 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1229
1230 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1231 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1232 brw_imm_v(0x44440000));
1233 abld.AND(*reg, tmp, brw_imm_w(0xf));
1234 } else {
1235 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1236 BRW_REGISTER_TYPE_D), 0);
1237 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1238
1239 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1240 * 8x multisampling, subspan 0 will represent sample N (where N
1241 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1242 * 7. We can find the value of N by looking at R0.0 bits 7:6
1243 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1244 * (since samples are always delivered in pairs). That is, we
1245 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1246 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1247 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1248 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1249 * populating a temporary variable with the sequence (0, 1, 2, 3),
1250 * and then reading from it using vstride=1, width=4, hstride=0.
1251 * These computations hold good for 4x multisampling as well.
1252 *
1253 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1254 * the first four slots are sample 0 of subspan 0; the next four
1255 * are sample 1 of subspan 0; the third group is sample 0 of
1256 * subspan 1, and finally sample 1 of subspan 1.
1257 */
1258
1259 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1260 * accomodate 16x MSAA.
1261 */
1262 abld.exec_all().group(1, 0)
1263 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1264 brw_imm_ud(0xc0));
1265 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1266
1267 /* This works for both SIMD8 and SIMD16 */
1268 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1269
1270 /* This special instruction takes care of setting vstride=1,
1271 * width=4, hstride=0 of t2 during an ADD instruction.
1272 */
1273 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1274 }
1275
1276 return reg;
1277 }
1278
1279 fs_reg *
1280 fs_visitor::emit_samplemaskin_setup()
1281 {
1282 assert(stage == MESA_SHADER_FRAGMENT);
1283 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1284 assert(devinfo->gen >= 6);
1285
1286 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1287
1288 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1289 BRW_REGISTER_TYPE_D));
1290
1291 if (wm_prog_data->persample_dispatch) {
1292 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1293 * and a mask representing which sample is being processed by the
1294 * current shader invocation.
1295 *
1296 * From the OES_sample_variables specification:
1297 * "When per-sample shading is active due to the use of a fragment input
1298 * qualified by "sample" or due to the use of the gl_SampleID or
1299 * gl_SamplePosition variables, only the bit for the current sample is
1300 * set in gl_SampleMaskIn."
1301 */
1302 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1303
1304 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1305 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1306
1307 fs_reg one = vgrf(glsl_type::int_type);
1308 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1309 abld.MOV(one, brw_imm_d(1));
1310 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1311 abld.AND(*reg, enabled_mask, coverage_mask);
1312 } else {
1313 /* In per-pixel mode, the coverage mask is sufficient. */
1314 *reg = coverage_mask;
1315 }
1316 return reg;
1317 }
1318
1319 fs_reg
1320 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1321 {
1322 if (!src.abs && !src.negate)
1323 return src;
1324
1325 fs_reg temp = bld.vgrf(src.type);
1326 bld.MOV(temp, src);
1327
1328 return temp;
1329 }
1330
1331 void
1332 fs_visitor::emit_discard_jump()
1333 {
1334 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1335
1336 /* For performance, after a discard, jump to the end of the
1337 * shader if all relevant channels have been discarded.
1338 */
1339 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1340 discard_jump->flag_subreg = 1;
1341
1342 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1343 discard_jump->predicate_inverse = true;
1344 }
1345
1346 void
1347 fs_visitor::emit_gs_thread_end()
1348 {
1349 assert(stage == MESA_SHADER_GEOMETRY);
1350
1351 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1352
1353 if (gs_compile->control_data_header_size_bits > 0) {
1354 emit_gs_control_data_bits(this->final_gs_vertex_count);
1355 }
1356
1357 const fs_builder abld = bld.annotate("thread end");
1358 fs_inst *inst;
1359
1360 if (gs_prog_data->static_vertex_count != -1) {
1361 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1362 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1363 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1364 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1365 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1366 prev->eot = true;
1367
1368 /* Delete now dead instructions. */
1369 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1370 if (dead == prev)
1371 break;
1372 dead->remove();
1373 }
1374 return;
1375 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1376 break;
1377 }
1378 }
1379 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1380 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1381 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1382 inst->mlen = 1;
1383 } else {
1384 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1385 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1386 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1387 sources[1] = this->final_gs_vertex_count;
1388 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1389 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1390 inst->mlen = 2;
1391 }
1392 inst->eot = true;
1393 inst->offset = 0;
1394 }
1395
1396 void
1397 fs_visitor::assign_curb_setup()
1398 {
1399 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1400
1401 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1402 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1403 for (unsigned int i = 0; i < inst->sources; i++) {
1404 if (inst->src[i].file == UNIFORM) {
1405 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1406 int constant_nr;
1407 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1408 constant_nr = push_constant_loc[uniform_nr];
1409 } else {
1410 /* Section 5.11 of the OpenGL 4.1 spec says:
1411 * "Out-of-bounds reads return undefined values, which include
1412 * values from other variables of the active program or zero."
1413 * Just return the first push constant.
1414 */
1415 constant_nr = 0;
1416 }
1417
1418 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1419 constant_nr / 8,
1420 constant_nr % 8);
1421 brw_reg.abs = inst->src[i].abs;
1422 brw_reg.negate = inst->src[i].negate;
1423
1424 assert(inst->src[i].stride == 0);
1425 inst->src[i] = byte_offset(
1426 retype(brw_reg, inst->src[i].type),
1427 inst->src[i].offset % 4);
1428 }
1429 }
1430 }
1431
1432 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1433 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1434 }
1435
1436 void
1437 fs_visitor::calculate_urb_setup()
1438 {
1439 assert(stage == MESA_SHADER_FRAGMENT);
1440 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1441 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1442
1443 memset(prog_data->urb_setup, -1,
1444 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1445
1446 int urb_next = 0;
1447 /* Figure out where each of the incoming setup attributes lands. */
1448 if (devinfo->gen >= 6) {
1449 if (_mesa_bitcount_64(nir->info->inputs_read &
1450 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1451 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1452 * first 16 varying inputs, so we can put them wherever we want.
1453 * Just put them in order.
1454 *
1455 * This is useful because it means that (a) inputs not used by the
1456 * fragment shader won't take up valuable register space, and (b) we
1457 * won't have to recompile the fragment shader if it gets paired with
1458 * a different vertex (or geometry) shader.
1459 */
1460 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1461 if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1462 BITFIELD64_BIT(i)) {
1463 prog_data->urb_setup[i] = urb_next++;
1464 }
1465 }
1466 } else {
1467 bool include_vue_header =
1468 nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1469
1470 /* We have enough input varyings that the SF/SBE pipeline stage can't
1471 * arbitrarily rearrange them to suit our whim; we have to put them
1472 * in an order that matches the output of the previous pipeline stage
1473 * (geometry or vertex shader).
1474 */
1475 struct brw_vue_map prev_stage_vue_map;
1476 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1477 key->input_slots_valid,
1478 nir->info->separate_shader);
1479 int first_slot =
1480 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1481
1482 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1483 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1484 slot++) {
1485 int varying = prev_stage_vue_map.slot_to_varying[slot];
1486 if (varying != BRW_VARYING_SLOT_PAD &&
1487 (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1488 BITFIELD64_BIT(varying))) {
1489 prog_data->urb_setup[varying] = slot - first_slot;
1490 }
1491 }
1492 urb_next = prev_stage_vue_map.num_slots - first_slot;
1493 }
1494 } else {
1495 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1496 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1497 /* Point size is packed into the header, not as a general attribute */
1498 if (i == VARYING_SLOT_PSIZ)
1499 continue;
1500
1501 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1502 /* The back color slot is skipped when the front color is
1503 * also written to. In addition, some slots can be
1504 * written in the vertex shader and not read in the
1505 * fragment shader. So the register number must always be
1506 * incremented, mapped or not.
1507 */
1508 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1509 prog_data->urb_setup[i] = urb_next;
1510 urb_next++;
1511 }
1512 }
1513
1514 /*
1515 * It's a FS only attribute, and we did interpolation for this attribute
1516 * in SF thread. So, count it here, too.
1517 *
1518 * See compile_sf_prog() for more info.
1519 */
1520 if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1521 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1522 }
1523
1524 prog_data->num_varying_inputs = urb_next;
1525 }
1526
1527 void
1528 fs_visitor::assign_urb_setup()
1529 {
1530 assert(stage == MESA_SHADER_FRAGMENT);
1531 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1532
1533 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1534
1535 /* Offset all the urb_setup[] index by the actual position of the
1536 * setup regs, now that the location of the constants has been chosen.
1537 */
1538 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1539 if (inst->opcode == FS_OPCODE_LINTERP) {
1540 assert(inst->src[1].file == FIXED_GRF);
1541 inst->src[1].nr += urb_start;
1542 }
1543
1544 if (inst->opcode == FS_OPCODE_CINTERP) {
1545 assert(inst->src[0].file == FIXED_GRF);
1546 inst->src[0].nr += urb_start;
1547 }
1548 }
1549
1550 /* Each attribute is 4 setup channels, each of which is half a reg. */
1551 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1552 }
1553
1554 void
1555 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1556 {
1557 for (int i = 0; i < inst->sources; i++) {
1558 if (inst->src[i].file == ATTR) {
1559 int grf = payload.num_regs +
1560 prog_data->curb_read_length +
1561 inst->src[i].nr +
1562 inst->src[i].offset / REG_SIZE;
1563
1564 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1565 *
1566 * VertStride must be used to cross GRF register boundaries. This
1567 * rule implies that elements within a 'Width' cannot cross GRF
1568 * boundaries.
1569 *
1570 * So, for registers that are large enough, we have to split the exec
1571 * size in two and trust the compression state to sort it out.
1572 */
1573 unsigned total_size = inst->exec_size *
1574 inst->src[i].stride *
1575 type_sz(inst->src[i].type);
1576
1577 assert(total_size <= 2 * REG_SIZE);
1578 const unsigned exec_size =
1579 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1580
1581 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1582 struct brw_reg reg =
1583 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1584 inst->src[i].offset % REG_SIZE),
1585 exec_size * inst->src[i].stride,
1586 width, inst->src[i].stride);
1587 reg.abs = inst->src[i].abs;
1588 reg.negate = inst->src[i].negate;
1589
1590 inst->src[i] = reg;
1591 }
1592 }
1593 }
1594
1595 void
1596 fs_visitor::assign_vs_urb_setup()
1597 {
1598 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1599
1600 assert(stage == MESA_SHADER_VERTEX);
1601
1602 /* Each attribute is 4 regs. */
1603 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1604
1605 assert(vs_prog_data->base.urb_read_length <= 15);
1606
1607 /* Rewrite all ATTR file references to the hw grf that they land in. */
1608 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1609 convert_attr_sources_to_hw_regs(inst);
1610 }
1611 }
1612
1613 void
1614 fs_visitor::assign_tcs_single_patch_urb_setup()
1615 {
1616 assert(stage == MESA_SHADER_TESS_CTRL);
1617
1618 /* Rewrite all ATTR file references to HW_REGs. */
1619 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1620 convert_attr_sources_to_hw_regs(inst);
1621 }
1622 }
1623
1624 void
1625 fs_visitor::assign_tes_urb_setup()
1626 {
1627 assert(stage == MESA_SHADER_TESS_EVAL);
1628
1629 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1630
1631 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1632
1633 /* Rewrite all ATTR file references to HW_REGs. */
1634 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1635 convert_attr_sources_to_hw_regs(inst);
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_gs_urb_setup()
1641 {
1642 assert(stage == MESA_SHADER_GEOMETRY);
1643
1644 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1645
1646 first_non_payload_grf +=
1647 8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
1648
1649 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1650 /* Rewrite all ATTR file references to GRFs. */
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655
1656 /**
1657 * Split large virtual GRFs into separate components if we can.
1658 *
1659 * This is mostly duplicated with what brw_fs_vector_splitting does,
1660 * but that's really conservative because it's afraid of doing
1661 * splitting that doesn't result in real progress after the rest of
1662 * the optimization phases, which would cause infinite looping in
1663 * optimization. We can do it once here, safely. This also has the
1664 * opportunity to split interpolated values, or maybe even uniforms,
1665 * which we don't have at the IR level.
1666 *
1667 * We want to split, because virtual GRFs are what we register
1668 * allocate and spill (due to contiguousness requirements for some
1669 * instructions), and they're what we naturally generate in the
1670 * codegen process, but most virtual GRFs don't actually need to be
1671 * contiguous sets of GRFs. If we split, we'll end up with reduced
1672 * live intervals and better dead code elimination and coalescing.
1673 */
1674 void
1675 fs_visitor::split_virtual_grfs()
1676 {
1677 /* Compact the register file so we eliminate dead vgrfs. This
1678 * only defines split points for live registers, so if we have
1679 * too large dead registers they will hit assertions later.
1680 */
1681 compact_virtual_grfs();
1682
1683 int num_vars = this->alloc.count;
1684
1685 /* Count the total number of registers */
1686 int reg_count = 0;
1687 int vgrf_to_reg[num_vars];
1688 for (int i = 0; i < num_vars; i++) {
1689 vgrf_to_reg[i] = reg_count;
1690 reg_count += alloc.sizes[i];
1691 }
1692
1693 /* An array of "split points". For each register slot, this indicates
1694 * if this slot can be separated from the previous slot. Every time an
1695 * instruction uses multiple elements of a register (as a source or
1696 * destination), we mark the used slots as inseparable. Then we go
1697 * through and split the registers into the smallest pieces we can.
1698 */
1699 bool split_points[reg_count];
1700 memset(split_points, 0, sizeof(split_points));
1701
1702 /* Mark all used registers as fully splittable */
1703 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1704 if (inst->dst.file == VGRF) {
1705 int reg = vgrf_to_reg[inst->dst.nr];
1706 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1707 split_points[reg + j] = true;
1708 }
1709
1710 for (int i = 0; i < inst->sources; i++) {
1711 if (inst->src[i].file == VGRF) {
1712 int reg = vgrf_to_reg[inst->src[i].nr];
1713 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1714 split_points[reg + j] = true;
1715 }
1716 }
1717 }
1718
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1722 for (unsigned j = 1; j < regs_written(inst); j++)
1723 split_points[reg + j] = false;
1724 }
1725 for (int i = 0; i < inst->sources; i++) {
1726 if (inst->src[i].file == VGRF) {
1727 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1728 for (unsigned j = 1; j < regs_read(inst, i); j++)
1729 split_points[reg + j] = false;
1730 }
1731 }
1732 }
1733
1734 int new_virtual_grf[reg_count];
1735 int new_reg_offset[reg_count];
1736
1737 int reg = 0;
1738 for (int i = 0; i < num_vars; i++) {
1739 /* The first one should always be 0 as a quick sanity check. */
1740 assert(split_points[reg] == false);
1741
1742 /* j = 0 case */
1743 new_reg_offset[reg] = 0;
1744 reg++;
1745 int offset = 1;
1746
1747 /* j > 0 case */
1748 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1749 /* If this is a split point, reset the offset to 0 and allocate a
1750 * new virtual GRF for the previous offset many registers
1751 */
1752 if (split_points[reg]) {
1753 assert(offset <= MAX_VGRF_SIZE);
1754 int grf = alloc.allocate(offset);
1755 for (int k = reg - offset; k < reg; k++)
1756 new_virtual_grf[k] = grf;
1757 offset = 0;
1758 }
1759 new_reg_offset[reg] = offset;
1760 offset++;
1761 reg++;
1762 }
1763
1764 /* The last one gets the original register number */
1765 assert(offset <= MAX_VGRF_SIZE);
1766 alloc.sizes[i] = offset;
1767 for (int k = reg - offset; k < reg; k++)
1768 new_virtual_grf[k] = i;
1769 }
1770 assert(reg == reg_count);
1771
1772 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1773 if (inst->dst.file == VGRF) {
1774 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1775 inst->dst.nr = new_virtual_grf[reg];
1776 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1777 inst->dst.offset % REG_SIZE;
1778 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1779 }
1780 for (int i = 0; i < inst->sources; i++) {
1781 if (inst->src[i].file == VGRF) {
1782 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1783 inst->src[i].nr = new_virtual_grf[reg];
1784 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1785 inst->src[i].offset % REG_SIZE;
1786 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1787 }
1788 }
1789 }
1790 invalidate_live_intervals();
1791 }
1792
1793 /**
1794 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1795 *
1796 * During code generation, we create tons of temporary variables, many of
1797 * which get immediately killed and are never used again. Yet, in later
1798 * optimization and analysis passes, such as compute_live_intervals, we need
1799 * to loop over all the virtual GRFs. Compacting them can save a lot of
1800 * overhead.
1801 */
1802 bool
1803 fs_visitor::compact_virtual_grfs()
1804 {
1805 bool progress = false;
1806 int remap_table[this->alloc.count];
1807 memset(remap_table, -1, sizeof(remap_table));
1808
1809 /* Mark which virtual GRFs are used. */
1810 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1811 if (inst->dst.file == VGRF)
1812 remap_table[inst->dst.nr] = 0;
1813
1814 for (int i = 0; i < inst->sources; i++) {
1815 if (inst->src[i].file == VGRF)
1816 remap_table[inst->src[i].nr] = 0;
1817 }
1818 }
1819
1820 /* Compact the GRF arrays. */
1821 int new_index = 0;
1822 for (unsigned i = 0; i < this->alloc.count; i++) {
1823 if (remap_table[i] == -1) {
1824 /* We just found an unused register. This means that we are
1825 * actually going to compact something.
1826 */
1827 progress = true;
1828 } else {
1829 remap_table[i] = new_index;
1830 alloc.sizes[new_index] = alloc.sizes[i];
1831 invalidate_live_intervals();
1832 ++new_index;
1833 }
1834 }
1835
1836 this->alloc.count = new_index;
1837
1838 /* Patch all the instructions to use the newly renumbered registers */
1839 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1840 if (inst->dst.file == VGRF)
1841 inst->dst.nr = remap_table[inst->dst.nr];
1842
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == VGRF)
1845 inst->src[i].nr = remap_table[inst->src[i].nr];
1846 }
1847 }
1848
1849 /* Patch all the references to delta_xy, since they're used in register
1850 * allocation. If they're unused, switch them to BAD_FILE so we don't
1851 * think some random VGRF is delta_xy.
1852 */
1853 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1854 if (delta_xy[i].file == VGRF) {
1855 if (remap_table[delta_xy[i].nr] != -1) {
1856 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1857 } else {
1858 delta_xy[i].file = BAD_FILE;
1859 }
1860 }
1861 }
1862
1863 return progress;
1864 }
1865
1866 static void
1867 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1868 int *push_constant_loc, int *pull_constant_loc,
1869 unsigned *num_push_constants,
1870 unsigned *num_pull_constants,
1871 const unsigned max_push_components,
1872 const unsigned max_chunk_size,
1873 struct brw_stage_prog_data *stage_prog_data)
1874 {
1875 /* This is the first live uniform in the chunk */
1876 if (*chunk_start < 0)
1877 *chunk_start = uniform;
1878
1879 /* If this element does not need to be contiguous with the next, we
1880 * split at this point and everything between chunk_start and u forms a
1881 * single chunk.
1882 */
1883 if (!contiguous) {
1884 unsigned chunk_size = uniform - *chunk_start + 1;
1885
1886 /* Decide whether we should push or pull this parameter. In the
1887 * Vulkan driver, push constants are explicitly exposed via the API
1888 * so we push everything. In GL, we only push small arrays.
1889 */
1890 if (stage_prog_data->pull_param == NULL ||
1891 (*num_push_constants + chunk_size <= max_push_components &&
1892 chunk_size <= max_chunk_size)) {
1893 assert(*num_push_constants + chunk_size <= max_push_components);
1894 for (unsigned j = *chunk_start; j <= uniform; j++)
1895 push_constant_loc[j] = (*num_push_constants)++;
1896 } else {
1897 for (unsigned j = *chunk_start; j <= uniform; j++)
1898 pull_constant_loc[j] = (*num_pull_constants)++;
1899 }
1900
1901 *chunk_start = -1;
1902 }
1903 }
1904
1905 /**
1906 * Assign UNIFORM file registers to either push constants or pull constants.
1907 *
1908 * We allow a fragment shader to have more than the specified minimum
1909 * maximum number of fragment shader uniform components (64). If
1910 * there are too many of these, they'd fill up all of register space.
1911 * So, this will push some of them out to the pull constant buffer and
1912 * update the program to load them.
1913 */
1914 void
1915 fs_visitor::assign_constant_locations()
1916 {
1917 /* Only the first compile gets to decide on locations. */
1918 if (dispatch_width != min_dispatch_width)
1919 return;
1920
1921 bool is_live[uniforms];
1922 memset(is_live, 0, sizeof(is_live));
1923 bool is_live_64bit[uniforms];
1924 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1925
1926 /* For each uniform slot, a value of true indicates that the given slot and
1927 * the next slot must remain contiguous. This is used to keep us from
1928 * splitting arrays apart.
1929 */
1930 bool contiguous[uniforms];
1931 memset(contiguous, 0, sizeof(contiguous));
1932
1933 int thread_local_id_index =
1934 (stage == MESA_SHADER_COMPUTE) ?
1935 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1936
1937 /* First, we walk through the instructions and do two things:
1938 *
1939 * 1) Figure out which uniforms are live.
1940 *
1941 * 2) Mark any indirectly used ranges of registers as contiguous.
1942 *
1943 * Note that we don't move constant-indexed accesses to arrays. No
1944 * testing has been done of the performance impact of this choice.
1945 */
1946 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1947 for (int i = 0 ; i < inst->sources; i++) {
1948 if (inst->src[i].file != UNIFORM)
1949 continue;
1950
1951 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1952
1953 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1954 assert(inst->src[2].ud % 4 == 0);
1955 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1956 assert(last < uniforms);
1957
1958 for (unsigned j = constant_nr; j < last; j++) {
1959 is_live[j] = true;
1960 contiguous[j] = true;
1961 if (type_sz(inst->src[i].type) == 8) {
1962 is_live_64bit[j] = true;
1963 }
1964 }
1965 is_live[last] = true;
1966 } else {
1967 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1968 int regs_read = inst->components_read(i) *
1969 type_sz(inst->src[i].type) / 4;
1970 for (int j = 0; j < regs_read; j++) {
1971 is_live[constant_nr + j] = true;
1972 if (type_sz(inst->src[i].type) == 8) {
1973 is_live_64bit[constant_nr + j] = true;
1974 }
1975 }
1976 }
1977 }
1978 }
1979 }
1980
1981 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1982 thread_local_id_index = -1;
1983
1984 /* Only allow 16 registers (128 uniform components) as push constants.
1985 *
1986 * Just demote the end of the list. We could probably do better
1987 * here, demoting things that are rarely used in the program first.
1988 *
1989 * If changing this value, note the limitation about total_regs in
1990 * brw_curbe.c.
1991 */
1992 unsigned int max_push_components = 16 * 8;
1993 if (thread_local_id_index >= 0)
1994 max_push_components--; /* Save a slot for the thread ID */
1995
1996 /* We push small arrays, but no bigger than 16 floats. This is big enough
1997 * for a vec4 but hopefully not large enough to push out other stuff. We
1998 * should probably use a better heuristic at some point.
1999 */
2000 const unsigned int max_chunk_size = 16;
2001
2002 unsigned int num_push_constants = 0;
2003 unsigned int num_pull_constants = 0;
2004
2005 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2006 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2007
2008 /* Default to -1 meaning no location */
2009 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2010 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2011
2012 int chunk_start = -1;
2013
2014 /* First push 64-bit uniforms to ensure they are properly aligned */
2015 for (unsigned u = 0; u < uniforms; u++) {
2016 if (!is_live[u] || !is_live_64bit[u])
2017 continue;
2018
2019 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2020 push_constant_loc, pull_constant_loc,
2021 &num_push_constants, &num_pull_constants,
2022 max_push_components, max_chunk_size,
2023 stage_prog_data);
2024
2025 }
2026
2027 /* Then push the rest of uniforms */
2028 for (unsigned u = 0; u < uniforms; u++) {
2029 if (!is_live[u] || is_live_64bit[u])
2030 continue;
2031
2032 /* Skip thread_local_id_index to put it in the last push register. */
2033 if (thread_local_id_index == (int)u)
2034 continue;
2035
2036 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2037 push_constant_loc, pull_constant_loc,
2038 &num_push_constants, &num_pull_constants,
2039 max_push_components, max_chunk_size,
2040 stage_prog_data);
2041 }
2042
2043 /* Add the CS local thread ID uniform at the end of the push constants */
2044 if (thread_local_id_index >= 0)
2045 push_constant_loc[thread_local_id_index] = num_push_constants++;
2046
2047 /* As the uniforms are going to be reordered, take the data from a temporary
2048 * copy of the original param[].
2049 */
2050 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2051 stage_prog_data->nr_params);
2052 memcpy(param, stage_prog_data->param,
2053 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2054 stage_prog_data->nr_params = num_push_constants;
2055 stage_prog_data->nr_pull_params = num_pull_constants;
2056
2057 /* Up until now, the param[] array has been indexed by reg + offset
2058 * of UNIFORM registers. Move pull constants into pull_param[] and
2059 * condense param[] to only contain the uniforms we chose to push.
2060 *
2061 * NOTE: Because we are condensing the params[] array, we know that
2062 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2063 * having to make a copy.
2064 */
2065 int new_thread_local_id_index = -1;
2066 for (unsigned int i = 0; i < uniforms; i++) {
2067 const gl_constant_value *value = param[i];
2068
2069 if (pull_constant_loc[i] != -1) {
2070 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2071 } else if (push_constant_loc[i] != -1) {
2072 stage_prog_data->param[push_constant_loc[i]] = value;
2073 if (thread_local_id_index == (int)i)
2074 new_thread_local_id_index = push_constant_loc[i];
2075 }
2076 }
2077 ralloc_free(param);
2078
2079 if (stage == MESA_SHADER_COMPUTE)
2080 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2081 new_thread_local_id_index;
2082 }
2083
2084 /**
2085 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2086 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2087 */
2088 void
2089 fs_visitor::lower_constant_loads()
2090 {
2091 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2092
2093 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2094 /* Set up the annotation tracking for new generated instructions. */
2095 const fs_builder ibld(this, block, inst);
2096
2097 for (int i = 0; i < inst->sources; i++) {
2098 if (inst->src[i].file != UNIFORM)
2099 continue;
2100
2101 /* We'll handle this case later */
2102 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2103 continue;
2104
2105 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2106 if (location >= uniforms)
2107 continue; /* Out of bounds access */
2108
2109 int pull_index = pull_constant_loc[location];
2110
2111 if (pull_index == -1)
2112 continue;
2113
2114 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2115 fs_reg dst;
2116
2117 if (type_sz(inst->src[i].type) <= 4)
2118 dst = vgrf(glsl_type::float_type);
2119 else
2120 dst = vgrf(glsl_type::double_type);
2121
2122 assert(inst->src[i].stride == 0);
2123
2124 const fs_builder ubld = ibld.exec_all().group(8, 0);
2125 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2126 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2127 dst, brw_imm_ud(index), offset);
2128
2129 /* Rewrite the instruction to use the temporary VGRF. */
2130 inst->src[i].file = VGRF;
2131 inst->src[i].nr = dst.nr;
2132 inst->src[i].offset = (pull_index & 3) * 4 + inst->src[i].offset % 4;
2133
2134 brw_mark_surface_used(prog_data, index);
2135 }
2136
2137 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2138 inst->src[0].file == UNIFORM) {
2139
2140 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2141 if (location >= uniforms)
2142 continue; /* Out of bounds access */
2143
2144 int pull_index = pull_constant_loc[location];
2145
2146 if (pull_index == -1)
2147 continue;
2148
2149 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2150 brw_imm_ud(index),
2151 inst->src[1],
2152 pull_index * 4);
2153 inst->remove(block);
2154
2155 brw_mark_surface_used(prog_data, index);
2156 }
2157 }
2158 invalidate_live_intervals();
2159 }
2160
2161 bool
2162 fs_visitor::opt_algebraic()
2163 {
2164 bool progress = false;
2165
2166 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2167 switch (inst->opcode) {
2168 case BRW_OPCODE_MOV:
2169 if (inst->src[0].file != IMM)
2170 break;
2171
2172 if (inst->saturate) {
2173 if (inst->dst.type != inst->src[0].type)
2174 assert(!"unimplemented: saturate mixed types");
2175
2176 if (brw_saturate_immediate(inst->dst.type,
2177 &inst->src[0].as_brw_reg())) {
2178 inst->saturate = false;
2179 progress = true;
2180 }
2181 }
2182 break;
2183
2184 case BRW_OPCODE_MUL:
2185 if (inst->src[1].file != IMM)
2186 continue;
2187
2188 /* a * 1.0 = a */
2189 if (inst->src[1].is_one()) {
2190 inst->opcode = BRW_OPCODE_MOV;
2191 inst->src[1] = reg_undef;
2192 progress = true;
2193 break;
2194 }
2195
2196 /* a * -1.0 = -a */
2197 if (inst->src[1].is_negative_one()) {
2198 inst->opcode = BRW_OPCODE_MOV;
2199 inst->src[0].negate = !inst->src[0].negate;
2200 inst->src[1] = reg_undef;
2201 progress = true;
2202 break;
2203 }
2204
2205 /* a * 0.0 = 0.0 */
2206 if (inst->src[1].is_zero()) {
2207 inst->opcode = BRW_OPCODE_MOV;
2208 inst->src[0] = inst->src[1];
2209 inst->src[1] = reg_undef;
2210 progress = true;
2211 break;
2212 }
2213
2214 if (inst->src[0].file == IMM) {
2215 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2216 inst->opcode = BRW_OPCODE_MOV;
2217 inst->src[0].f *= inst->src[1].f;
2218 inst->src[1] = reg_undef;
2219 progress = true;
2220 break;
2221 }
2222 break;
2223 case BRW_OPCODE_ADD:
2224 if (inst->src[1].file != IMM)
2225 continue;
2226
2227 /* a + 0.0 = a */
2228 if (inst->src[1].is_zero()) {
2229 inst->opcode = BRW_OPCODE_MOV;
2230 inst->src[1] = reg_undef;
2231 progress = true;
2232 break;
2233 }
2234
2235 if (inst->src[0].file == IMM) {
2236 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2237 inst->opcode = BRW_OPCODE_MOV;
2238 inst->src[0].f += inst->src[1].f;
2239 inst->src[1] = reg_undef;
2240 progress = true;
2241 break;
2242 }
2243 break;
2244 case BRW_OPCODE_OR:
2245 if (inst->src[0].equals(inst->src[1])) {
2246 inst->opcode = BRW_OPCODE_MOV;
2247 inst->src[1] = reg_undef;
2248 progress = true;
2249 break;
2250 }
2251 break;
2252 case BRW_OPCODE_LRP:
2253 if (inst->src[1].equals(inst->src[2])) {
2254 inst->opcode = BRW_OPCODE_MOV;
2255 inst->src[0] = inst->src[1];
2256 inst->src[1] = reg_undef;
2257 inst->src[2] = reg_undef;
2258 progress = true;
2259 break;
2260 }
2261 break;
2262 case BRW_OPCODE_CMP:
2263 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2264 inst->src[0].abs &&
2265 inst->src[0].negate &&
2266 inst->src[1].is_zero()) {
2267 inst->src[0].abs = false;
2268 inst->src[0].negate = false;
2269 inst->conditional_mod = BRW_CONDITIONAL_Z;
2270 progress = true;
2271 break;
2272 }
2273 break;
2274 case BRW_OPCODE_SEL:
2275 if (inst->src[0].equals(inst->src[1])) {
2276 inst->opcode = BRW_OPCODE_MOV;
2277 inst->src[1] = reg_undef;
2278 inst->predicate = BRW_PREDICATE_NONE;
2279 inst->predicate_inverse = false;
2280 progress = true;
2281 } else if (inst->saturate && inst->src[1].file == IMM) {
2282 switch (inst->conditional_mod) {
2283 case BRW_CONDITIONAL_LE:
2284 case BRW_CONDITIONAL_L:
2285 switch (inst->src[1].type) {
2286 case BRW_REGISTER_TYPE_F:
2287 if (inst->src[1].f >= 1.0f) {
2288 inst->opcode = BRW_OPCODE_MOV;
2289 inst->src[1] = reg_undef;
2290 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2291 progress = true;
2292 }
2293 break;
2294 default:
2295 break;
2296 }
2297 break;
2298 case BRW_CONDITIONAL_GE:
2299 case BRW_CONDITIONAL_G:
2300 switch (inst->src[1].type) {
2301 case BRW_REGISTER_TYPE_F:
2302 if (inst->src[1].f <= 0.0f) {
2303 inst->opcode = BRW_OPCODE_MOV;
2304 inst->src[1] = reg_undef;
2305 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2306 progress = true;
2307 }
2308 break;
2309 default:
2310 break;
2311 }
2312 default:
2313 break;
2314 }
2315 }
2316 break;
2317 case BRW_OPCODE_MAD:
2318 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2319 inst->opcode = BRW_OPCODE_MOV;
2320 inst->src[1] = reg_undef;
2321 inst->src[2] = reg_undef;
2322 progress = true;
2323 } else if (inst->src[0].is_zero()) {
2324 inst->opcode = BRW_OPCODE_MUL;
2325 inst->src[0] = inst->src[2];
2326 inst->src[2] = reg_undef;
2327 progress = true;
2328 } else if (inst->src[1].is_one()) {
2329 inst->opcode = BRW_OPCODE_ADD;
2330 inst->src[1] = inst->src[2];
2331 inst->src[2] = reg_undef;
2332 progress = true;
2333 } else if (inst->src[2].is_one()) {
2334 inst->opcode = BRW_OPCODE_ADD;
2335 inst->src[2] = reg_undef;
2336 progress = true;
2337 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2338 inst->opcode = BRW_OPCODE_ADD;
2339 inst->src[1].f *= inst->src[2].f;
2340 inst->src[2] = reg_undef;
2341 progress = true;
2342 }
2343 break;
2344 case SHADER_OPCODE_BROADCAST:
2345 if (is_uniform(inst->src[0])) {
2346 inst->opcode = BRW_OPCODE_MOV;
2347 inst->sources = 1;
2348 inst->force_writemask_all = true;
2349 progress = true;
2350 } else if (inst->src[1].file == IMM) {
2351 inst->opcode = BRW_OPCODE_MOV;
2352 inst->src[0] = component(inst->src[0],
2353 inst->src[1].ud);
2354 inst->sources = 1;
2355 inst->force_writemask_all = true;
2356 progress = true;
2357 }
2358 break;
2359
2360 default:
2361 break;
2362 }
2363
2364 /* Swap if src[0] is immediate. */
2365 if (progress && inst->is_commutative()) {
2366 if (inst->src[0].file == IMM) {
2367 fs_reg tmp = inst->src[1];
2368 inst->src[1] = inst->src[0];
2369 inst->src[0] = tmp;
2370 }
2371 }
2372 }
2373 return progress;
2374 }
2375
2376 /**
2377 * Optimize sample messages that have constant zero values for the trailing
2378 * texture coordinates. We can just reduce the message length for these
2379 * instructions instead of reserving a register for it. Trailing parameters
2380 * that aren't sent default to zero anyway. This will cause the dead code
2381 * eliminator to remove the MOV instruction that would otherwise be emitted to
2382 * set up the zero value.
2383 */
2384 bool
2385 fs_visitor::opt_zero_samples()
2386 {
2387 /* Gen4 infers the texturing opcode based on the message length so we can't
2388 * change it.
2389 */
2390 if (devinfo->gen < 5)
2391 return false;
2392
2393 bool progress = false;
2394
2395 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2396 if (!inst->is_tex())
2397 continue;
2398
2399 fs_inst *load_payload = (fs_inst *) inst->prev;
2400
2401 if (load_payload->is_head_sentinel() ||
2402 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2403 continue;
2404
2405 /* We don't want to remove the message header or the first parameter.
2406 * Removing the first parameter is not allowed, see the Haswell PRM
2407 * volume 7, page 149:
2408 *
2409 * "Parameter 0 is required except for the sampleinfo message, which
2410 * has no parameter 0"
2411 */
2412 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2413 load_payload->src[(inst->mlen - inst->header_size) /
2414 (inst->exec_size / 8) +
2415 inst->header_size - 1].is_zero()) {
2416 inst->mlen -= inst->exec_size / 8;
2417 progress = true;
2418 }
2419 }
2420
2421 if (progress)
2422 invalidate_live_intervals();
2423
2424 return progress;
2425 }
2426
2427 /**
2428 * Optimize sample messages which are followed by the final RT write.
2429 *
2430 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2431 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2432 * final texturing results copied to the framebuffer write payload and modify
2433 * them to write to the framebuffer directly.
2434 */
2435 bool
2436 fs_visitor::opt_sampler_eot()
2437 {
2438 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2439
2440 if (stage != MESA_SHADER_FRAGMENT)
2441 return false;
2442
2443 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2444 return false;
2445
2446 /* FINISHME: It should be possible to implement this optimization when there
2447 * are multiple drawbuffers.
2448 */
2449 if (key->nr_color_regions != 1)
2450 return false;
2451
2452 /* Requires emitting a bunch of saturating MOV instructions during logical
2453 * send lowering to clamp the color payload, which the sampler unit isn't
2454 * going to do for us.
2455 */
2456 if (key->clamp_fragment_color)
2457 return false;
2458
2459 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2460 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2461 fs_inst *fb_write = (fs_inst *)block->end();
2462 assert(fb_write->eot);
2463 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2464
2465 /* There wasn't one; nothing to do. */
2466 if (unlikely(fb_write->prev->is_head_sentinel()))
2467 return false;
2468
2469 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2470
2471 /* 3D Sampler » Messages » Message Format
2472 *
2473 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2474 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2475 */
2476 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2477 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2478 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2479 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2480 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2481 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2482 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2483 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2484 return false;
2485
2486 /* XXX - This shouldn't be necessary. */
2487 if (tex_inst->prev->is_head_sentinel())
2488 return false;
2489
2490 /* Check that the FB write sources are fully initialized by the single
2491 * texturing instruction.
2492 */
2493 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2494 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2495 if (!fb_write->src[i].equals(tex_inst->dst) ||
2496 fb_write->size_read(i) != tex_inst->size_written)
2497 return false;
2498 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2499 if (fb_write->src[i].file != BAD_FILE)
2500 return false;
2501 }
2502 }
2503
2504 assert(!tex_inst->eot); /* We can't get here twice */
2505 assert((tex_inst->offset & (0xff << 24)) == 0);
2506
2507 const fs_builder ibld(this, block, tex_inst);
2508
2509 tex_inst->offset |= fb_write->target << 24;
2510 tex_inst->eot = true;
2511 tex_inst->dst = ibld.null_reg_ud();
2512 tex_inst->size_written = 0;
2513 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2514
2515 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2516 * flag and submit a header together with the sampler message as required
2517 * by the hardware.
2518 */
2519 invalidate_live_intervals();
2520 return true;
2521 }
2522
2523 bool
2524 fs_visitor::opt_register_renaming()
2525 {
2526 bool progress = false;
2527 int depth = 0;
2528
2529 int remap[alloc.count];
2530 memset(remap, -1, sizeof(int) * alloc.count);
2531
2532 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2533 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2534 depth++;
2535 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2536 inst->opcode == BRW_OPCODE_WHILE) {
2537 depth--;
2538 }
2539
2540 /* Rewrite instruction sources. */
2541 for (int i = 0; i < inst->sources; i++) {
2542 if (inst->src[i].file == VGRF &&
2543 remap[inst->src[i].nr] != -1 &&
2544 remap[inst->src[i].nr] != inst->src[i].nr) {
2545 inst->src[i].nr = remap[inst->src[i].nr];
2546 progress = true;
2547 }
2548 }
2549
2550 const int dst = inst->dst.nr;
2551
2552 if (depth == 0 &&
2553 inst->dst.file == VGRF &&
2554 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2555 !inst->is_partial_write()) {
2556 if (remap[dst] == -1) {
2557 remap[dst] = dst;
2558 } else {
2559 remap[dst] = alloc.allocate(regs_written(inst));
2560 inst->dst.nr = remap[dst];
2561 progress = true;
2562 }
2563 } else if (inst->dst.file == VGRF &&
2564 remap[dst] != -1 &&
2565 remap[dst] != dst) {
2566 inst->dst.nr = remap[dst];
2567 progress = true;
2568 }
2569 }
2570
2571 if (progress) {
2572 invalidate_live_intervals();
2573
2574 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2575 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2576 delta_xy[i].nr = remap[delta_xy[i].nr];
2577 }
2578 }
2579 }
2580
2581 return progress;
2582 }
2583
2584 /**
2585 * Remove redundant or useless discard jumps.
2586 *
2587 * For example, we can eliminate jumps in the following sequence:
2588 *
2589 * discard-jump (redundant with the next jump)
2590 * discard-jump (useless; jumps to the next instruction)
2591 * placeholder-halt
2592 */
2593 bool
2594 fs_visitor::opt_redundant_discard_jumps()
2595 {
2596 bool progress = false;
2597
2598 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2599
2600 fs_inst *placeholder_halt = NULL;
2601 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2602 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2603 placeholder_halt = inst;
2604 break;
2605 }
2606 }
2607
2608 if (!placeholder_halt)
2609 return false;
2610
2611 /* Delete any HALTs immediately before the placeholder halt. */
2612 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2613 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2614 prev = (fs_inst *) placeholder_halt->prev) {
2615 prev->remove(last_bblock);
2616 progress = true;
2617 }
2618
2619 if (progress)
2620 invalidate_live_intervals();
2621
2622 return progress;
2623 }
2624
2625 /**
2626 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2627 * from \p r.offset which overlaps the region starting at \p s.offset and
2628 * spanning \p ds bytes.
2629 */
2630 static inline unsigned
2631 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2632 {
2633 const int rel_offset = reg_offset(s) - reg_offset(r);
2634 const int shift = rel_offset / REG_SIZE;
2635 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2636 assert(reg_space(r) == reg_space(s) &&
2637 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2638 return ((1 << n) - 1) << shift;
2639 }
2640
2641 bool
2642 fs_visitor::compute_to_mrf()
2643 {
2644 bool progress = false;
2645 int next_ip = 0;
2646
2647 /* No MRFs on Gen >= 7. */
2648 if (devinfo->gen >= 7)
2649 return false;
2650
2651 calculate_live_intervals();
2652
2653 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2654 int ip = next_ip;
2655 next_ip++;
2656
2657 if (inst->opcode != BRW_OPCODE_MOV ||
2658 inst->is_partial_write() ||
2659 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2660 inst->dst.type != inst->src[0].type ||
2661 inst->src[0].abs || inst->src[0].negate ||
2662 !inst->src[0].is_contiguous() ||
2663 inst->src[0].offset % REG_SIZE != 0)
2664 continue;
2665
2666 /* Can't compute-to-MRF this GRF if someone else was going to
2667 * read it later.
2668 */
2669 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2670 continue;
2671
2672 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2673 * things that computed the value of all GRFs of the source region. The
2674 * regs_left bitset keeps track of the registers we haven't yet found a
2675 * generating instruction for.
2676 */
2677 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2678
2679 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2680 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2681 inst->src[0], inst->size_read(0))) {
2682 /* Found the last thing to write our reg we want to turn
2683 * into a compute-to-MRF.
2684 */
2685
2686 /* If this one instruction didn't populate all the
2687 * channels, bail. We might be able to rewrite everything
2688 * that writes that reg, but it would require smarter
2689 * tracking.
2690 */
2691 if (scan_inst->is_partial_write())
2692 break;
2693
2694 /* Handling things not fully contained in the source of the copy
2695 * would need us to understand coalescing out more than one MOV at
2696 * a time.
2697 */
2698 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2699 inst->src[0], inst->size_read(0)))
2700 break;
2701
2702 /* SEND instructions can't have MRF as a destination. */
2703 if (scan_inst->mlen)
2704 break;
2705
2706 if (devinfo->gen == 6) {
2707 /* gen6 math instructions must have the destination be
2708 * GRF, so no compute-to-MRF for them.
2709 */
2710 if (scan_inst->is_math()) {
2711 break;
2712 }
2713 }
2714
2715 /* Clear the bits for any registers this instruction overwrites. */
2716 regs_left &= ~mask_relative_to(
2717 inst->src[0], scan_inst->dst, scan_inst->size_written);
2718 if (!regs_left)
2719 break;
2720 }
2721
2722 /* We don't handle control flow here. Most computation of
2723 * values that end up in MRFs are shortly before the MRF
2724 * write anyway.
2725 */
2726 if (block->start() == scan_inst)
2727 break;
2728
2729 /* You can't read from an MRF, so if someone else reads our
2730 * MRF's source GRF that we wanted to rewrite, that stops us.
2731 */
2732 bool interfered = false;
2733 for (int i = 0; i < scan_inst->sources; i++) {
2734 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2735 inst->src[0], inst->size_read(0))) {
2736 interfered = true;
2737 }
2738 }
2739 if (interfered)
2740 break;
2741
2742 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2743 inst->dst, inst->size_written)) {
2744 /* If somebody else writes our MRF here, we can't
2745 * compute-to-MRF before that.
2746 */
2747 break;
2748 }
2749
2750 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2751 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2752 inst->dst, inst->size_written)) {
2753 /* Found a SEND instruction, which means that there are
2754 * live values in MRFs from base_mrf to base_mrf +
2755 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2756 * above it.
2757 */
2758 break;
2759 }
2760 }
2761
2762 if (regs_left)
2763 continue;
2764
2765 /* Found all generating instructions of our MRF's source value, so it
2766 * should be safe to rewrite them to point to the MRF directly.
2767 */
2768 regs_left = (1 << regs_read(inst, 0)) - 1;
2769
2770 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2771 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2772 inst->src[0], inst->size_read(0))) {
2773 /* Clear the bits for any registers this instruction overwrites. */
2774 regs_left &= ~mask_relative_to(
2775 inst->src[0], scan_inst->dst, scan_inst->size_written);
2776
2777 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2778 reg_offset(inst->src[0]);
2779
2780 if (inst->dst.nr & BRW_MRF_COMPR4) {
2781 /* Apply the same address transformation done by the hardware
2782 * for COMPR4 MRF writes.
2783 */
2784 assert(rel_offset < 2 * REG_SIZE);
2785 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2786
2787 /* Clear the COMPR4 bit if the generating instruction is not
2788 * compressed.
2789 */
2790 if (scan_inst->size_written < 2 * REG_SIZE)
2791 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2792
2793 } else {
2794 /* Calculate the MRF number the result of this instruction is
2795 * ultimately written to.
2796 */
2797 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2798 }
2799
2800 scan_inst->dst.file = MRF;
2801 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2802 scan_inst->saturate |= inst->saturate;
2803 if (!regs_left)
2804 break;
2805 }
2806 }
2807
2808 assert(!regs_left);
2809 inst->remove(block);
2810 progress = true;
2811 }
2812
2813 if (progress)
2814 invalidate_live_intervals();
2815
2816 return progress;
2817 }
2818
2819 /**
2820 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2821 * flow. We could probably do better here with some form of divergence
2822 * analysis.
2823 */
2824 bool
2825 fs_visitor::eliminate_find_live_channel()
2826 {
2827 bool progress = false;
2828 unsigned depth = 0;
2829
2830 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2831 /* The optimization below assumes that channel zero is live on thread
2832 * dispatch, which may not be the case if the fixed function dispatches
2833 * threads sparsely.
2834 */
2835 return false;
2836 }
2837
2838 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2839 switch (inst->opcode) {
2840 case BRW_OPCODE_IF:
2841 case BRW_OPCODE_DO:
2842 depth++;
2843 break;
2844
2845 case BRW_OPCODE_ENDIF:
2846 case BRW_OPCODE_WHILE:
2847 depth--;
2848 break;
2849
2850 case FS_OPCODE_DISCARD_JUMP:
2851 /* This can potentially make control flow non-uniform until the end
2852 * of the program.
2853 */
2854 return progress;
2855
2856 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2857 if (depth == 0) {
2858 inst->opcode = BRW_OPCODE_MOV;
2859 inst->src[0] = brw_imm_ud(0u);
2860 inst->sources = 1;
2861 inst->force_writemask_all = true;
2862 progress = true;
2863 }
2864 break;
2865
2866 default:
2867 break;
2868 }
2869 }
2870
2871 return progress;
2872 }
2873
2874 /**
2875 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2876 * instructions to FS_OPCODE_REP_FB_WRITE.
2877 */
2878 void
2879 fs_visitor::emit_repclear_shader()
2880 {
2881 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2882 int base_mrf = 0;
2883 int color_mrf = base_mrf + 2;
2884 fs_inst *mov;
2885
2886 if (uniforms > 0) {
2887 mov = bld.exec_all().group(4, 0)
2888 .MOV(brw_message_reg(color_mrf),
2889 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2890 } else {
2891 struct brw_reg reg =
2892 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2893 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2894 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2895
2896 mov = bld.exec_all().group(4, 0)
2897 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2898 }
2899
2900 fs_inst *write;
2901 if (key->nr_color_regions == 1) {
2902 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2903 write->saturate = key->clamp_fragment_color;
2904 write->base_mrf = color_mrf;
2905 write->target = 0;
2906 write->header_size = 0;
2907 write->mlen = 1;
2908 } else {
2909 assume(key->nr_color_regions > 0);
2910 for (int i = 0; i < key->nr_color_regions; ++i) {
2911 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2912 write->saturate = key->clamp_fragment_color;
2913 write->base_mrf = base_mrf;
2914 write->target = i;
2915 write->header_size = 2;
2916 write->mlen = 3;
2917 }
2918 }
2919 write->eot = true;
2920
2921 calculate_cfg();
2922
2923 assign_constant_locations();
2924 assign_curb_setup();
2925
2926 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2927 if (uniforms > 0) {
2928 assert(mov->src[0].file == FIXED_GRF);
2929 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2930 }
2931 }
2932
2933 /**
2934 * Walks through basic blocks, looking for repeated MRF writes and
2935 * removing the later ones.
2936 */
2937 bool
2938 fs_visitor::remove_duplicate_mrf_writes()
2939 {
2940 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2941 bool progress = false;
2942
2943 /* Need to update the MRF tracking for compressed instructions. */
2944 if (dispatch_width >= 16)
2945 return false;
2946
2947 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2948
2949 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2950 if (inst->is_control_flow()) {
2951 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2952 }
2953
2954 if (inst->opcode == BRW_OPCODE_MOV &&
2955 inst->dst.file == MRF) {
2956 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2957 if (prev_inst && inst->equals(prev_inst)) {
2958 inst->remove(block);
2959 progress = true;
2960 continue;
2961 }
2962 }
2963
2964 /* Clear out the last-write records for MRFs that were overwritten. */
2965 if (inst->dst.file == MRF) {
2966 last_mrf_move[inst->dst.nr] = NULL;
2967 }
2968
2969 if (inst->mlen > 0 && inst->base_mrf != -1) {
2970 /* Found a SEND instruction, which will include two or fewer
2971 * implied MRF writes. We could do better here.
2972 */
2973 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2974 last_mrf_move[inst->base_mrf + i] = NULL;
2975 }
2976 }
2977
2978 /* Clear out any MRF move records whose sources got overwritten. */
2979 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2980 if (last_mrf_move[i] &&
2981 regions_overlap(inst->dst, inst->size_written,
2982 last_mrf_move[i]->src[0],
2983 last_mrf_move[i]->size_read(0))) {
2984 last_mrf_move[i] = NULL;
2985 }
2986 }
2987
2988 if (inst->opcode == BRW_OPCODE_MOV &&
2989 inst->dst.file == MRF &&
2990 inst->src[0].file != ARF &&
2991 !inst->is_partial_write()) {
2992 last_mrf_move[inst->dst.nr] = inst;
2993 }
2994 }
2995
2996 if (progress)
2997 invalidate_live_intervals();
2998
2999 return progress;
3000 }
3001
3002 static void
3003 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3004 {
3005 /* Clear the flag for registers that actually got read (as expected). */
3006 for (int i = 0; i < inst->sources; i++) {
3007 int grf;
3008 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3009 grf = inst->src[i].nr;
3010 } else {
3011 continue;
3012 }
3013
3014 if (grf >= first_grf &&
3015 grf < first_grf + grf_len) {
3016 deps[grf - first_grf] = false;
3017 if (inst->exec_size == 16)
3018 deps[grf - first_grf + 1] = false;
3019 }
3020 }
3021 }
3022
3023 /**
3024 * Implements this workaround for the original 965:
3025 *
3026 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3027 * check for post destination dependencies on this instruction, software
3028 * must ensure that there is no destination hazard for the case of ‘write
3029 * followed by a posted write’ shown in the following example.
3030 *
3031 * 1. mov r3 0
3032 * 2. send r3.xy <rest of send instruction>
3033 * 3. mov r2 r3
3034 *
3035 * Due to no post-destination dependency check on the ‘send’, the above
3036 * code sequence could have two instructions (1 and 2) in flight at the
3037 * same time that both consider ‘r3’ as the target of their final writes.
3038 */
3039 void
3040 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3041 fs_inst *inst)
3042 {
3043 int write_len = regs_written(inst);
3044 int first_write_grf = inst->dst.nr;
3045 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3046 assert(write_len < (int)sizeof(needs_dep) - 1);
3047
3048 memset(needs_dep, false, sizeof(needs_dep));
3049 memset(needs_dep, true, write_len);
3050
3051 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3052
3053 /* Walk backwards looking for writes to registers we're writing which
3054 * aren't read since being written. If we hit the start of the program,
3055 * we assume that there are no outstanding dependencies on entry to the
3056 * program.
3057 */
3058 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3059 /* If we hit control flow, assume that there *are* outstanding
3060 * dependencies, and force their cleanup before our instruction.
3061 */
3062 if (block->start() == scan_inst && block->num != 0) {
3063 for (int i = 0; i < write_len; i++) {
3064 if (needs_dep[i])
3065 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3066 first_write_grf + i);
3067 }
3068 return;
3069 }
3070
3071 /* We insert our reads as late as possible on the assumption that any
3072 * instruction but a MOV that might have left us an outstanding
3073 * dependency has more latency than a MOV.
3074 */
3075 if (scan_inst->dst.file == VGRF) {
3076 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3077 int reg = scan_inst->dst.nr + i;
3078
3079 if (reg >= first_write_grf &&
3080 reg < first_write_grf + write_len &&
3081 needs_dep[reg - first_write_grf]) {
3082 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3083 needs_dep[reg - first_write_grf] = false;
3084 if (scan_inst->exec_size == 16)
3085 needs_dep[reg - first_write_grf + 1] = false;
3086 }
3087 }
3088 }
3089
3090 /* Clear the flag for registers that actually got read (as expected). */
3091 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3092
3093 /* Continue the loop only if we haven't resolved all the dependencies */
3094 int i;
3095 for (i = 0; i < write_len; i++) {
3096 if (needs_dep[i])
3097 break;
3098 }
3099 if (i == write_len)
3100 return;
3101 }
3102 }
3103
3104 /**
3105 * Implements this workaround for the original 965:
3106 *
3107 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3108 * used as a destination register until after it has been sourced by an
3109 * instruction with a different destination register.
3110 */
3111 void
3112 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3113 {
3114 int write_len = regs_written(inst);
3115 int first_write_grf = inst->dst.nr;
3116 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3117 assert(write_len < (int)sizeof(needs_dep) - 1);
3118
3119 memset(needs_dep, false, sizeof(needs_dep));
3120 memset(needs_dep, true, write_len);
3121 /* Walk forwards looking for writes to registers we're writing which aren't
3122 * read before being written.
3123 */
3124 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3125 /* If we hit control flow, force resolve all remaining dependencies. */
3126 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3127 for (int i = 0; i < write_len; i++) {
3128 if (needs_dep[i])
3129 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3130 first_write_grf + i);
3131 }
3132 return;
3133 }
3134
3135 /* Clear the flag for registers that actually got read (as expected). */
3136 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3137
3138 /* We insert our reads as late as possible since they're reading the
3139 * result of a SEND, which has massive latency.
3140 */
3141 if (scan_inst->dst.file == VGRF &&
3142 scan_inst->dst.nr >= first_write_grf &&
3143 scan_inst->dst.nr < first_write_grf + write_len &&
3144 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3145 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3146 scan_inst->dst.nr);
3147 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3148 }
3149
3150 /* Continue the loop only if we haven't resolved all the dependencies */
3151 int i;
3152 for (i = 0; i < write_len; i++) {
3153 if (needs_dep[i])
3154 break;
3155 }
3156 if (i == write_len)
3157 return;
3158 }
3159 }
3160
3161 void
3162 fs_visitor::insert_gen4_send_dependency_workarounds()
3163 {
3164 if (devinfo->gen != 4 || devinfo->is_g4x)
3165 return;
3166
3167 bool progress = false;
3168
3169 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3170 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3171 insert_gen4_pre_send_dependency_workarounds(block, inst);
3172 insert_gen4_post_send_dependency_workarounds(block, inst);
3173 progress = true;
3174 }
3175 }
3176
3177 if (progress)
3178 invalidate_live_intervals();
3179 }
3180
3181 /**
3182 * Turns the generic expression-style uniform pull constant load instruction
3183 * into a hardware-specific series of instructions for loading a pull
3184 * constant.
3185 *
3186 * The expression style allows the CSE pass before this to optimize out
3187 * repeated loads from the same offset, and gives the pre-register-allocation
3188 * scheduling full flexibility, while the conversion to native instructions
3189 * allows the post-register-allocation scheduler the best information
3190 * possible.
3191 *
3192 * Note that execution masking for setting up pull constant loads is special:
3193 * the channels that need to be written are unrelated to the current execution
3194 * mask, since a later instruction will use one of the result channels as a
3195 * source operand for all 8 or 16 of its channels.
3196 */
3197 void
3198 fs_visitor::lower_uniform_pull_constant_loads()
3199 {
3200 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3201 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3202 continue;
3203
3204 if (devinfo->gen >= 7) {
3205 /* The offset arg is a vec4-aligned immediate byte offset. */
3206 fs_reg const_offset_reg = inst->src[1];
3207 assert(const_offset_reg.file == IMM &&
3208 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3209 assert(const_offset_reg.ud % 16 == 0);
3210
3211 fs_reg payload, offset;
3212 if (devinfo->gen >= 9) {
3213 /* We have to use a message header on Skylake to get SIMD4x2
3214 * mode. Reserve space for the register.
3215 */
3216 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3217 offset.offset += REG_SIZE;
3218 inst->mlen = 2;
3219 } else {
3220 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3221 inst->mlen = 1;
3222 }
3223
3224 /* This is actually going to be a MOV, but since only the first dword
3225 * is accessed, we have a special opcode to do just that one. Note
3226 * that this needs to be an operation that will be considered a def
3227 * by live variable analysis, or register allocation will explode.
3228 */
3229 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3230 8, offset, const_offset_reg);
3231 setup->force_writemask_all = true;
3232
3233 setup->ir = inst->ir;
3234 setup->annotation = inst->annotation;
3235 inst->insert_before(block, setup);
3236
3237 /* Similarly, this will only populate the first 4 channels of the
3238 * result register (since we only use smear values from 0-3), but we
3239 * don't tell the optimizer.
3240 */
3241 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3242 inst->src[1] = payload;
3243
3244 invalidate_live_intervals();
3245 } else {
3246 /* Before register allocation, we didn't tell the scheduler about the
3247 * MRF we use. We know it's safe to use this MRF because nothing
3248 * else does except for register spill/unspill, which generates and
3249 * uses its MRF within a single IR instruction.
3250 */
3251 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3252 inst->mlen = 1;
3253 }
3254 }
3255 }
3256
3257 bool
3258 fs_visitor::lower_load_payload()
3259 {
3260 bool progress = false;
3261
3262 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3263 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3264 continue;
3265
3266 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3267 assert(inst->saturate == false);
3268 fs_reg dst = inst->dst;
3269
3270 /* Get rid of COMPR4. We'll add it back in if we need it */
3271 if (dst.file == MRF)
3272 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3273
3274 const fs_builder ibld(this, block, inst);
3275 const fs_builder hbld = ibld.exec_all().group(8, 0);
3276
3277 for (uint8_t i = 0; i < inst->header_size; i++) {
3278 if (inst->src[i].file != BAD_FILE) {
3279 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3280 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3281 hbld.MOV(mov_dst, mov_src);
3282 }
3283 dst = offset(dst, hbld, 1);
3284 }
3285
3286 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3287 inst->exec_size > 8) {
3288 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3289 * a straightforward copy. Instead, the result of the
3290 * LOAD_PAYLOAD is treated as interleaved and the first four
3291 * non-header sources are unpacked as:
3292 *
3293 * m + 0: r0
3294 * m + 1: g0
3295 * m + 2: b0
3296 * m + 3: a0
3297 * m + 4: r1
3298 * m + 5: g1
3299 * m + 6: b1
3300 * m + 7: a1
3301 *
3302 * This is used for gen <= 5 fb writes.
3303 */
3304 assert(inst->exec_size == 16);
3305 assert(inst->header_size + 4 <= inst->sources);
3306 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3307 if (inst->src[i].file != BAD_FILE) {
3308 if (devinfo->has_compr4) {
3309 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3310 compr4_dst.nr |= BRW_MRF_COMPR4;
3311 ibld.MOV(compr4_dst, inst->src[i]);
3312 } else {
3313 /* Platform doesn't have COMPR4. We have to fake it */
3314 fs_reg mov_dst = retype(dst, inst->src[i].type);
3315 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3316 mov_dst.nr += 4;
3317 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3318 }
3319 }
3320
3321 dst.nr++;
3322 }
3323
3324 /* The loop above only ever incremented us through the first set
3325 * of 4 registers. However, thanks to the magic of COMPR4, we
3326 * actually wrote to the first 8 registers, so we need to take
3327 * that into account now.
3328 */
3329 dst.nr += 4;
3330
3331 /* The COMPR4 code took care of the first 4 sources. We'll let
3332 * the regular path handle any remaining sources. Yes, we are
3333 * modifying the instruction but we're about to delete it so
3334 * this really doesn't hurt anything.
3335 */
3336 inst->header_size += 4;
3337 }
3338
3339 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3340 if (inst->src[i].file != BAD_FILE)
3341 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3342 dst = offset(dst, ibld, 1);
3343 }
3344
3345 inst->remove(block);
3346 progress = true;
3347 }
3348
3349 if (progress)
3350 invalidate_live_intervals();
3351
3352 return progress;
3353 }
3354
3355 bool
3356 fs_visitor::lower_integer_multiplication()
3357 {
3358 bool progress = false;
3359
3360 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3361 const fs_builder ibld(this, block, inst);
3362
3363 if (inst->opcode == BRW_OPCODE_MUL) {
3364 if (inst->dst.is_accumulator() ||
3365 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3366 inst->dst.type != BRW_REGISTER_TYPE_UD))
3367 continue;
3368
3369 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3370 * operation directly, but CHV/BXT cannot.
3371 */
3372 if (devinfo->gen >= 8 &&
3373 !devinfo->is_cherryview && !devinfo->is_broxton)
3374 continue;
3375
3376 if (inst->src[1].file == IMM &&
3377 inst->src[1].ud < (1 << 16)) {
3378 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3379 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3380 * src1 are used.
3381 *
3382 * If multiplying by an immediate value that fits in 16-bits, do a
3383 * single MUL instruction with that value in the proper location.
3384 */
3385 if (devinfo->gen < 7) {
3386 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3387 inst->dst.type);
3388 ibld.MOV(imm, inst->src[1]);
3389 ibld.MUL(inst->dst, imm, inst->src[0]);
3390 } else {
3391 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3392 ibld.MUL(inst->dst, inst->src[0],
3393 ud ? brw_imm_uw(inst->src[1].ud)
3394 : brw_imm_w(inst->src[1].d));
3395 }
3396 } else {
3397 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3398 * do 32-bit integer multiplication in one instruction, but instead
3399 * must do a sequence (which actually calculates a 64-bit result):
3400 *
3401 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3402 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3403 * mov(8) g2<1>D acc0<8,8,1>D
3404 *
3405 * But on Gen > 6, the ability to use second accumulator register
3406 * (acc1) for non-float data types was removed, preventing a simple
3407 * implementation in SIMD16. A 16-channel result can be calculated by
3408 * executing the three instructions twice in SIMD8, once with quarter
3409 * control of 1Q for the first eight channels and again with 2Q for
3410 * the second eight channels.
3411 *
3412 * Which accumulator register is implicitly accessed (by AccWrEnable
3413 * for instance) is determined by the quarter control. Unfortunately
3414 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3415 * implicit accumulator access by an instruction with 2Q will access
3416 * acc1 regardless of whether the data type is usable in acc1.
3417 *
3418 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3419 * integer data types.
3420 *
3421 * Since we only want the low 32-bits of the result, we can do two
3422 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3423 * adjust the high result and add them (like the mach is doing):
3424 *
3425 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3426 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3427 * shl(8) g9<1>D g8<8,8,1>D 16D
3428 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3429 *
3430 * We avoid the shl instruction by realizing that we only want to add
3431 * the low 16-bits of the "high" result to the high 16-bits of the
3432 * "low" result and using proper regioning on the add:
3433 *
3434 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3435 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3436 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3437 *
3438 * Since it does not use the (single) accumulator register, we can
3439 * schedule multi-component multiplications much better.
3440 */
3441
3442 fs_reg orig_dst = inst->dst;
3443 if (orig_dst.is_null() || orig_dst.file == MRF) {
3444 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3445 inst->dst.type);
3446 }
3447 fs_reg low = inst->dst;
3448 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3449 inst->dst.type);
3450
3451 if (devinfo->gen >= 7) {
3452 if (inst->src[1].file == IMM) {
3453 ibld.MUL(low, inst->src[0],
3454 brw_imm_uw(inst->src[1].ud & 0xffff));
3455 ibld.MUL(high, inst->src[0],
3456 brw_imm_uw(inst->src[1].ud >> 16));
3457 } else {
3458 ibld.MUL(low, inst->src[0],
3459 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3460 ibld.MUL(high, inst->src[0],
3461 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3462 }
3463 } else {
3464 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3465 inst->src[1]);
3466 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3467 inst->src[1]);
3468 }
3469
3470 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3471 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3472 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3473
3474 if (inst->conditional_mod || orig_dst.file == MRF) {
3475 set_condmod(inst->conditional_mod,
3476 ibld.MOV(orig_dst, inst->dst));
3477 }
3478 }
3479
3480 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3481 /* Should have been lowered to 8-wide. */
3482 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3483 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3484 inst->dst.type);
3485 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3486 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3487
3488 if (devinfo->gen >= 8) {
3489 /* Until Gen8, integer multiplies read 32-bits from one source,
3490 * and 16-bits from the other, and relying on the MACH instruction
3491 * to generate the high bits of the result.
3492 *
3493 * On Gen8, the multiply instruction does a full 32x32-bit
3494 * multiply, but in order to do a 64-bit multiply we can simulate
3495 * the previous behavior and then use a MACH instruction.
3496 *
3497 * FINISHME: Don't use source modifiers on src1.
3498 */
3499 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3500 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3501 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3502 mul->src[1].stride *= 2;
3503
3504 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3505 inst->group > 0) {
3506 /* Among other things the quarter control bits influence which
3507 * accumulator register is used by the hardware for instructions
3508 * that access the accumulator implicitly (e.g. MACH). A
3509 * second-half instruction would normally map to acc1, which
3510 * doesn't exist on Gen7 and up (the hardware does emulate it for
3511 * floating-point instructions *only* by taking advantage of the
3512 * extra precision of acc0 not normally used for floating point
3513 * arithmetic).
3514 *
3515 * HSW and up are careful enough not to try to access an
3516 * accumulator register that doesn't exist, but on earlier Gen7
3517 * hardware we need to make sure that the quarter control bits are
3518 * zero to avoid non-deterministic behaviour and emit an extra MOV
3519 * to get the result masked correctly according to the current
3520 * channel enables.
3521 */
3522 mach->group = 0;
3523 mach->force_writemask_all = true;
3524 mach->dst = ibld.vgrf(inst->dst.type);
3525 ibld.MOV(inst->dst, mach->dst);
3526 }
3527 } else {
3528 continue;
3529 }
3530
3531 inst->remove(block);
3532 progress = true;
3533 }
3534
3535 if (progress)
3536 invalidate_live_intervals();
3537
3538 return progress;
3539 }
3540
3541 bool
3542 fs_visitor::lower_minmax()
3543 {
3544 assert(devinfo->gen < 6);
3545
3546 bool progress = false;
3547
3548 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3549 const fs_builder ibld(this, block, inst);
3550
3551 if (inst->opcode == BRW_OPCODE_SEL &&
3552 inst->predicate == BRW_PREDICATE_NONE) {
3553 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3554 * the original SEL.L/GE instruction
3555 */
3556 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3557 inst->conditional_mod);
3558 inst->predicate = BRW_PREDICATE_NORMAL;
3559 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3560
3561 progress = true;
3562 }
3563 }
3564
3565 if (progress)
3566 invalidate_live_intervals();
3567
3568 return progress;
3569 }
3570
3571 static void
3572 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3573 fs_reg *dst, fs_reg color, unsigned components)
3574 {
3575 if (key->clamp_fragment_color) {
3576 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3577 assert(color.type == BRW_REGISTER_TYPE_F);
3578
3579 for (unsigned i = 0; i < components; i++)
3580 set_saturate(true,
3581 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3582
3583 color = tmp;
3584 }
3585
3586 for (unsigned i = 0; i < components; i++)
3587 dst[i] = offset(color, bld, i);
3588 }
3589
3590 static void
3591 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3592 const struct brw_wm_prog_data *prog_data,
3593 const brw_wm_prog_key *key,
3594 const fs_visitor::thread_payload &payload)
3595 {
3596 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3597 const gen_device_info *devinfo = bld.shader->devinfo;
3598 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3599 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3600 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3601 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3602 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3603 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3604 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3605 const unsigned components =
3606 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3607
3608 /* We can potentially have a message length of up to 15, so we have to set
3609 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3610 */
3611 fs_reg sources[15];
3612 int header_size = 2, payload_header_size;
3613 unsigned length = 0;
3614
3615 /* From the Sandy Bridge PRM, volume 4, page 198:
3616 *
3617 * "Dispatched Pixel Enables. One bit per pixel indicating
3618 * which pixels were originally enabled when the thread was
3619 * dispatched. This field is only required for the end-of-
3620 * thread message and on all dual-source messages."
3621 */
3622 if (devinfo->gen >= 6 &&
3623 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3624 color1.file == BAD_FILE &&
3625 key->nr_color_regions == 1) {
3626 header_size = 0;
3627 }
3628
3629 if (header_size != 0) {
3630 assert(header_size == 2);
3631 /* Allocate 2 registers for a header */
3632 length += 2;
3633 }
3634
3635 if (payload.aa_dest_stencil_reg) {
3636 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3637 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3638 .MOV(sources[length],
3639 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3640 length++;
3641 }
3642
3643 if (sample_mask.file != BAD_FILE) {
3644 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3645 BRW_REGISTER_TYPE_UD);
3646
3647 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3648 * relevant. Since it's unsigned single words one vgrf is always
3649 * 16-wide, but only the lower or higher 8 channels will be used by the
3650 * hardware when doing a SIMD8 write depending on whether we have
3651 * selected the subspans for the first or second half respectively.
3652 */
3653 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3654 sample_mask.type = BRW_REGISTER_TYPE_UW;
3655 sample_mask.stride *= 2;
3656
3657 bld.exec_all().annotate("FB write oMask")
3658 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3659 inst->group),
3660 sample_mask);
3661 length++;
3662 }
3663
3664 payload_header_size = length;
3665
3666 if (src0_alpha.file != BAD_FILE) {
3667 /* FIXME: This is being passed at the wrong location in the payload and
3668 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3669 * It's supposed to be immediately before oMask but there seems to be no
3670 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3671 * requires header sources to form a contiguous segment at the beginning
3672 * of the message and src0_alpha has per-channel semantics.
3673 */
3674 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3675 length++;
3676 } else if (key->replicate_alpha && inst->target != 0) {
3677 /* Handle the case when fragment shader doesn't write to draw buffer
3678 * zero. No need to call setup_color_payload() for src0_alpha because
3679 * alpha value will be undefined.
3680 */
3681 length++;
3682 }
3683
3684 setup_color_payload(bld, key, &sources[length], color0, components);
3685 length += 4;
3686
3687 if (color1.file != BAD_FILE) {
3688 setup_color_payload(bld, key, &sources[length], color1, components);
3689 length += 4;
3690 }
3691
3692 if (src_depth.file != BAD_FILE) {
3693 sources[length] = src_depth;
3694 length++;
3695 }
3696
3697 if (dst_depth.file != BAD_FILE) {
3698 sources[length] = dst_depth;
3699 length++;
3700 }
3701
3702 if (src_stencil.file != BAD_FILE) {
3703 assert(devinfo->gen >= 9);
3704 assert(bld.dispatch_width() != 16);
3705
3706 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3707 * available on gen9+. As such it's impossible to have both enabled at the
3708 * same time and therefore length cannot overrun the array.
3709 */
3710 assert(length < 15);
3711
3712 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3713 bld.exec_all().annotate("FB write OS")
3714 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3715 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3716 length++;
3717 }
3718
3719 fs_inst *load;
3720 if (devinfo->gen >= 7) {
3721 /* Send from the GRF */
3722 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3723 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3724 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3725 load->dst = payload;
3726
3727 inst->src[0] = payload;
3728 inst->resize_sources(1);
3729 } else {
3730 /* Send from the MRF */
3731 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3732 sources, length, payload_header_size);
3733
3734 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3735 * will do this for us if we just give it a COMPR4 destination.
3736 */
3737 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3738 load->dst.nr |= BRW_MRF_COMPR4;
3739
3740 inst->resize_sources(0);
3741 inst->base_mrf = 1;
3742 }
3743
3744 inst->opcode = FS_OPCODE_FB_WRITE;
3745 inst->mlen = regs_written(load);
3746 inst->header_size = header_size;
3747 }
3748
3749 static void
3750 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3751 {
3752 const fs_builder &ubld = bld.exec_all();
3753 const unsigned length = 2;
3754 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3755
3756 ubld.group(16, 0)
3757 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3758
3759 inst->resize_sources(1);
3760 inst->src[0] = header;
3761 inst->opcode = FS_OPCODE_FB_READ;
3762 inst->mlen = length;
3763 inst->header_size = length;
3764 }
3765
3766 static void
3767 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3768 const fs_reg &coordinate,
3769 const fs_reg &shadow_c,
3770 const fs_reg &lod, const fs_reg &lod2,
3771 const fs_reg &surface,
3772 const fs_reg &sampler,
3773 unsigned coord_components,
3774 unsigned grad_components)
3775 {
3776 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3777 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3778 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3779 fs_reg msg_end = msg_begin;
3780
3781 /* g0 header. */
3782 msg_end = offset(msg_end, bld.group(8, 0), 1);
3783
3784 for (unsigned i = 0; i < coord_components; i++)
3785 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3786 offset(coordinate, bld, i));
3787
3788 msg_end = offset(msg_end, bld, coord_components);
3789
3790 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3791 * require all three components to be present and zero if they are unused.
3792 */
3793 if (coord_components > 0 &&
3794 (has_lod || shadow_c.file != BAD_FILE ||
3795 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3796 for (unsigned i = coord_components; i < 3; i++)
3797 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3798
3799 msg_end = offset(msg_end, bld, 3 - coord_components);
3800 }
3801
3802 if (op == SHADER_OPCODE_TXD) {
3803 /* TXD unsupported in SIMD16 mode. */
3804 assert(bld.dispatch_width() == 8);
3805
3806 /* the slots for u and v are always present, but r is optional */
3807 if (coord_components < 2)
3808 msg_end = offset(msg_end, bld, 2 - coord_components);
3809
3810 /* P = u, v, r
3811 * dPdx = dudx, dvdx, drdx
3812 * dPdy = dudy, dvdy, drdy
3813 *
3814 * 1-arg: Does not exist.
3815 *
3816 * 2-arg: dudx dvdx dudy dvdy
3817 * dPdx.x dPdx.y dPdy.x dPdy.y
3818 * m4 m5 m6 m7
3819 *
3820 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3821 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3822 * m5 m6 m7 m8 m9 m10
3823 */
3824 for (unsigned i = 0; i < grad_components; i++)
3825 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3826
3827 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3828
3829 for (unsigned i = 0; i < grad_components; i++)
3830 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3831
3832 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3833 }
3834
3835 if (has_lod) {
3836 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3837 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3838 */
3839 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3840 bld.dispatch_width() == 16);
3841
3842 const brw_reg_type type =
3843 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3844 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3845 bld.MOV(retype(msg_end, type), lod);
3846 msg_end = offset(msg_end, bld, 1);
3847 }
3848
3849 if (shadow_c.file != BAD_FILE) {
3850 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3851 /* There's no plain shadow compare message, so we use shadow
3852 * compare with a bias of 0.0.
3853 */
3854 bld.MOV(msg_end, brw_imm_f(0.0f));
3855 msg_end = offset(msg_end, bld, 1);
3856 }
3857
3858 bld.MOV(msg_end, shadow_c);
3859 msg_end = offset(msg_end, bld, 1);
3860 }
3861
3862 inst->opcode = op;
3863 inst->src[0] = reg_undef;
3864 inst->src[1] = surface;
3865 inst->src[2] = sampler;
3866 inst->resize_sources(3);
3867 inst->base_mrf = msg_begin.nr;
3868 inst->mlen = msg_end.nr - msg_begin.nr;
3869 inst->header_size = 1;
3870 }
3871
3872 static void
3873 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3874 const fs_reg &coordinate,
3875 const fs_reg &shadow_c,
3876 const fs_reg &lod, const fs_reg &lod2,
3877 const fs_reg &sample_index,
3878 const fs_reg &surface,
3879 const fs_reg &sampler,
3880 const fs_reg &offset_value,
3881 unsigned coord_components,
3882 unsigned grad_components)
3883 {
3884 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3885 fs_reg msg_coords = message;
3886 unsigned header_size = 0;
3887
3888 if (offset_value.file != BAD_FILE) {
3889 /* The offsets set up by the visitor are in the m1 header, so we can't
3890 * go headerless.
3891 */
3892 header_size = 1;
3893 message.nr--;
3894 }
3895
3896 for (unsigned i = 0; i < coord_components; i++)
3897 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3898 offset(coordinate, bld, i));
3899
3900 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3901 fs_reg msg_lod = offset(msg_coords, bld, 4);
3902
3903 if (shadow_c.file != BAD_FILE) {
3904 fs_reg msg_shadow = msg_lod;
3905 bld.MOV(msg_shadow, shadow_c);
3906 msg_lod = offset(msg_shadow, bld, 1);
3907 msg_end = msg_lod;
3908 }
3909
3910 switch (op) {
3911 case SHADER_OPCODE_TXL:
3912 case FS_OPCODE_TXB:
3913 bld.MOV(msg_lod, lod);
3914 msg_end = offset(msg_lod, bld, 1);
3915 break;
3916 case SHADER_OPCODE_TXD:
3917 /**
3918 * P = u, v, r
3919 * dPdx = dudx, dvdx, drdx
3920 * dPdy = dudy, dvdy, drdy
3921 *
3922 * Load up these values:
3923 * - dudx dudy dvdx dvdy drdx drdy
3924 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3925 */
3926 msg_end = msg_lod;
3927 for (unsigned i = 0; i < grad_components; i++) {
3928 bld.MOV(msg_end, offset(lod, bld, i));
3929 msg_end = offset(msg_end, bld, 1);
3930
3931 bld.MOV(msg_end, offset(lod2, bld, i));
3932 msg_end = offset(msg_end, bld, 1);
3933 }
3934 break;
3935 case SHADER_OPCODE_TXS:
3936 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3937 bld.MOV(msg_lod, lod);
3938 msg_end = offset(msg_lod, bld, 1);
3939 break;
3940 case SHADER_OPCODE_TXF:
3941 msg_lod = offset(msg_coords, bld, 3);
3942 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3943 msg_end = offset(msg_lod, bld, 1);
3944 break;
3945 case SHADER_OPCODE_TXF_CMS:
3946 msg_lod = offset(msg_coords, bld, 3);
3947 /* lod */
3948 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3949 /* sample index */
3950 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3951 msg_end = offset(msg_lod, bld, 2);
3952 break;
3953 default:
3954 break;
3955 }
3956
3957 inst->opcode = op;
3958 inst->src[0] = reg_undef;
3959 inst->src[1] = surface;
3960 inst->src[2] = sampler;
3961 inst->resize_sources(3);
3962 inst->base_mrf = message.nr;
3963 inst->mlen = msg_end.nr - message.nr;
3964 inst->header_size = header_size;
3965
3966 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3967 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3968 }
3969
3970 static bool
3971 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3972 {
3973 if (devinfo->gen < 8 && !devinfo->is_haswell)
3974 return false;
3975
3976 return sampler.file != IMM || sampler.ud >= 16;
3977 }
3978
3979 static void
3980 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3981 const fs_reg &coordinate,
3982 const fs_reg &shadow_c,
3983 fs_reg lod, const fs_reg &lod2,
3984 const fs_reg &sample_index,
3985 const fs_reg &mcs,
3986 const fs_reg &surface,
3987 const fs_reg &sampler,
3988 const fs_reg &offset_value,
3989 unsigned coord_components,
3990 unsigned grad_components)
3991 {
3992 const gen_device_info *devinfo = bld.shader->devinfo;
3993 unsigned reg_width = bld.dispatch_width() / 8;
3994 unsigned header_size = 0, length = 0;
3995 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3996 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3997 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3998
3999 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4000 offset_value.file != BAD_FILE || inst->eot ||
4001 op == SHADER_OPCODE_SAMPLEINFO ||
4002 is_high_sampler(devinfo, sampler)) {
4003 /* For general texture offsets (no txf workaround), we need a header to
4004 * put them in. Note that we're only reserving space for it in the
4005 * message payload as it will be initialized implicitly by the
4006 * generator.
4007 *
4008 * TG4 needs to place its channel select in the header, for interaction
4009 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4010 * larger sampler numbers we need to offset the Sampler State Pointer in
4011 * the header.
4012 */
4013 header_size = 1;
4014 sources[0] = fs_reg();
4015 length++;
4016
4017 /* If we're requesting fewer than four channels worth of response,
4018 * and we have an explicit header, we need to set up the sampler
4019 * writemask. It's reversed from normal: 1 means "don't write".
4020 */
4021 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4022 assert(regs_written(inst) % reg_width == 0);
4023 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4024 inst->offset |= mask << 12;
4025 }
4026 }
4027
4028 if (shadow_c.file != BAD_FILE) {
4029 bld.MOV(sources[length], shadow_c);
4030 length++;
4031 }
4032
4033 bool coordinate_done = false;
4034
4035 /* Set up the LOD info */
4036 switch (op) {
4037 case FS_OPCODE_TXB:
4038 case SHADER_OPCODE_TXL:
4039 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4040 op = SHADER_OPCODE_TXL_LZ;
4041 break;
4042 }
4043 bld.MOV(sources[length], lod);
4044 length++;
4045 break;
4046 case SHADER_OPCODE_TXD:
4047 /* TXD should have been lowered in SIMD16 mode. */
4048 assert(bld.dispatch_width() == 8);
4049
4050 /* Load dPdx and the coordinate together:
4051 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4052 */
4053 for (unsigned i = 0; i < coord_components; i++) {
4054 bld.MOV(sources[length++], offset(coordinate, bld, i));
4055
4056 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4057 * only derivatives for (u, v, r).
4058 */
4059 if (i < grad_components) {
4060 bld.MOV(sources[length++], offset(lod, bld, i));
4061 bld.MOV(sources[length++], offset(lod2, bld, i));
4062 }
4063 }
4064
4065 coordinate_done = true;
4066 break;
4067 case SHADER_OPCODE_TXS:
4068 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4069 length++;
4070 break;
4071 case SHADER_OPCODE_TXF:
4072 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4073 * On Gen9 they are u, v, lod, r
4074 */
4075 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4076
4077 if (devinfo->gen >= 9) {
4078 if (coord_components >= 2) {
4079 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4080 offset(coordinate, bld, 1));
4081 } else {
4082 sources[length] = brw_imm_d(0);
4083 }
4084 length++;
4085 }
4086
4087 if (devinfo->gen >= 9 && lod.is_zero()) {
4088 op = SHADER_OPCODE_TXF_LZ;
4089 } else {
4090 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4091 length++;
4092 }
4093
4094 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4095 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4096 offset(coordinate, bld, i));
4097
4098 coordinate_done = true;
4099 break;
4100
4101 case SHADER_OPCODE_TXF_CMS:
4102 case SHADER_OPCODE_TXF_CMS_W:
4103 case SHADER_OPCODE_TXF_UMS:
4104 case SHADER_OPCODE_TXF_MCS:
4105 if (op == SHADER_OPCODE_TXF_UMS ||
4106 op == SHADER_OPCODE_TXF_CMS ||
4107 op == SHADER_OPCODE_TXF_CMS_W) {
4108 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4109 length++;
4110 }
4111
4112 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4113 /* Data from the multisample control surface. */
4114 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4115 length++;
4116
4117 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4118 * the MCS data.
4119 */
4120 if (op == SHADER_OPCODE_TXF_CMS_W) {
4121 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4122 mcs.file == IMM ?
4123 mcs :
4124 offset(mcs, bld, 1));
4125 length++;
4126 }
4127 }
4128
4129 /* There is no offsetting for this message; just copy in the integer
4130 * texture coordinates.
4131 */
4132 for (unsigned i = 0; i < coord_components; i++)
4133 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4134 offset(coordinate, bld, i));
4135
4136 coordinate_done = true;
4137 break;
4138 case SHADER_OPCODE_TG4_OFFSET:
4139 /* More crazy intermixing */
4140 for (unsigned i = 0; i < 2; i++) /* u, v */
4141 bld.MOV(sources[length++], offset(coordinate, bld, i));
4142
4143 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4144 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4145 offset(offset_value, bld, i));
4146
4147 if (coord_components == 3) /* r if present */
4148 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4149
4150 coordinate_done = true;
4151 break;
4152 default:
4153 break;
4154 }
4155
4156 /* Set up the coordinate (except for cases where it was done above) */
4157 if (!coordinate_done) {
4158 for (unsigned i = 0; i < coord_components; i++)
4159 bld.MOV(sources[length++], offset(coordinate, bld, i));
4160 }
4161
4162 int mlen;
4163 if (reg_width == 2)
4164 mlen = length * reg_width - header_size;
4165 else
4166 mlen = length * reg_width;
4167
4168 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4169 BRW_REGISTER_TYPE_F);
4170 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4171
4172 /* Generate the SEND. */
4173 inst->opcode = op;
4174 inst->src[0] = src_payload;
4175 inst->src[1] = surface;
4176 inst->src[2] = sampler;
4177 inst->resize_sources(3);
4178 inst->mlen = mlen;
4179 inst->header_size = header_size;
4180
4181 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4182 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4183 }
4184
4185 static void
4186 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4187 {
4188 const gen_device_info *devinfo = bld.shader->devinfo;
4189 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4190 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4191 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4192 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4193 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4194 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4195 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4196 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4197 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4198 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4199 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4200 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4201 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4202
4203 if (devinfo->gen >= 7) {
4204 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4205 shadow_c, lod, lod2, sample_index,
4206 mcs, surface, sampler, offset_value,
4207 coord_components, grad_components);
4208 } else if (devinfo->gen >= 5) {
4209 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4210 shadow_c, lod, lod2, sample_index,
4211 surface, sampler, offset_value,
4212 coord_components, grad_components);
4213 } else {
4214 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4215 shadow_c, lod, lod2,
4216 surface, sampler,
4217 coord_components, grad_components);
4218 }
4219 }
4220
4221 /**
4222 * Initialize the header present in some typed and untyped surface
4223 * messages.
4224 */
4225 static fs_reg
4226 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4227 {
4228 fs_builder ubld = bld.exec_all().group(8, 0);
4229 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4230 ubld.MOV(dst, brw_imm_d(0));
4231 ubld.MOV(component(dst, 7), sample_mask);
4232 return dst;
4233 }
4234
4235 static void
4236 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4237 const fs_reg &sample_mask)
4238 {
4239 /* Get the logical send arguments. */
4240 const fs_reg &addr = inst->src[0];
4241 const fs_reg &src = inst->src[1];
4242 const fs_reg &surface = inst->src[2];
4243 const UNUSED fs_reg &dims = inst->src[3];
4244 const fs_reg &arg = inst->src[4];
4245
4246 /* Calculate the total number of components of the payload. */
4247 const unsigned addr_sz = inst->components_read(0);
4248 const unsigned src_sz = inst->components_read(1);
4249 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4250 const unsigned sz = header_sz + addr_sz + src_sz;
4251
4252 /* Allocate space for the payload. */
4253 fs_reg *const components = new fs_reg[sz];
4254 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4255 unsigned n = 0;
4256
4257 /* Construct the payload. */
4258 if (header_sz)
4259 components[n++] = emit_surface_header(bld, sample_mask);
4260
4261 for (unsigned i = 0; i < addr_sz; i++)
4262 components[n++] = offset(addr, bld, i);
4263
4264 for (unsigned i = 0; i < src_sz; i++)
4265 components[n++] = offset(src, bld, i);
4266
4267 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4268
4269 /* Update the original instruction. */
4270 inst->opcode = op;
4271 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4272 inst->header_size = header_sz;
4273
4274 inst->src[0] = payload;
4275 inst->src[1] = surface;
4276 inst->src[2] = arg;
4277 inst->resize_sources(3);
4278
4279 delete[] components;
4280 }
4281
4282 static void
4283 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4284 {
4285 const gen_device_info *devinfo = bld.shader->devinfo;
4286
4287 if (devinfo->gen >= 7) {
4288 /* We are switching the instruction from an ALU-like instruction to a
4289 * send-from-grf instruction. Since sends can't handle strides or
4290 * source modifiers, we have to make a copy of the offset source.
4291 */
4292 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4293 bld.MOV(tmp, inst->src[1]);
4294 inst->src[1] = tmp;
4295
4296 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4297
4298 } else {
4299 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4300 BRW_REGISTER_TYPE_UD);
4301
4302 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4303
4304 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4305 inst->resize_sources(1);
4306 inst->base_mrf = payload.nr;
4307 inst->header_size = 1;
4308 inst->mlen = 1 + inst->exec_size / 8;
4309 }
4310 }
4311
4312 static void
4313 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4314 {
4315 assert(bld.shader->devinfo->gen < 6);
4316
4317 inst->base_mrf = 2;
4318 inst->mlen = inst->sources * inst->exec_size / 8;
4319
4320 if (inst->sources > 1) {
4321 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4322 * "Message Payload":
4323 *
4324 * "Operand0[7]. For the INT DIV functions, this operand is the
4325 * denominator."
4326 * ...
4327 * "Operand1[7]. For the INT DIV functions, this operand is the
4328 * numerator."
4329 */
4330 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4331 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4332 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4333
4334 inst->resize_sources(1);
4335 inst->src[0] = src0;
4336
4337 assert(inst->exec_size == 8);
4338 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4339 }
4340 }
4341
4342 bool
4343 fs_visitor::lower_logical_sends()
4344 {
4345 bool progress = false;
4346
4347 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4348 const fs_builder ibld(this, block, inst);
4349
4350 switch (inst->opcode) {
4351 case FS_OPCODE_FB_WRITE_LOGICAL:
4352 assert(stage == MESA_SHADER_FRAGMENT);
4353 lower_fb_write_logical_send(ibld, inst,
4354 brw_wm_prog_data(prog_data),
4355 (const brw_wm_prog_key *)key,
4356 payload);
4357 break;
4358
4359 case FS_OPCODE_FB_READ_LOGICAL:
4360 lower_fb_read_logical_send(ibld, inst);
4361 break;
4362
4363 case SHADER_OPCODE_TEX_LOGICAL:
4364 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4365 break;
4366
4367 case SHADER_OPCODE_TXD_LOGICAL:
4368 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4369 break;
4370
4371 case SHADER_OPCODE_TXF_LOGICAL:
4372 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4373 break;
4374
4375 case SHADER_OPCODE_TXL_LOGICAL:
4376 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4377 break;
4378
4379 case SHADER_OPCODE_TXS_LOGICAL:
4380 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4381 break;
4382
4383 case FS_OPCODE_TXB_LOGICAL:
4384 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4385 break;
4386
4387 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4388 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4389 break;
4390
4391 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4392 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4393 break;
4394
4395 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4396 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4397 break;
4398
4399 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4400 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4401 break;
4402
4403 case SHADER_OPCODE_LOD_LOGICAL:
4404 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4405 break;
4406
4407 case SHADER_OPCODE_TG4_LOGICAL:
4408 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4409 break;
4410
4411 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4412 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4413 break;
4414
4415 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4416 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4417 break;
4418
4419 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4420 lower_surface_logical_send(ibld, inst,
4421 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4422 fs_reg());
4423 break;
4424
4425 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4426 lower_surface_logical_send(ibld, inst,
4427 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4428 ibld.sample_mask_reg());
4429 break;
4430
4431 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4432 lower_surface_logical_send(ibld, inst,
4433 SHADER_OPCODE_UNTYPED_ATOMIC,
4434 ibld.sample_mask_reg());
4435 break;
4436
4437 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4438 lower_surface_logical_send(ibld, inst,
4439 SHADER_OPCODE_TYPED_SURFACE_READ,
4440 brw_imm_d(0xffff));
4441 break;
4442
4443 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4444 lower_surface_logical_send(ibld, inst,
4445 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4446 ibld.sample_mask_reg());
4447 break;
4448
4449 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4450 lower_surface_logical_send(ibld, inst,
4451 SHADER_OPCODE_TYPED_ATOMIC,
4452 ibld.sample_mask_reg());
4453 break;
4454
4455 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4456 lower_varying_pull_constant_logical_send(ibld, inst);
4457 break;
4458
4459 case SHADER_OPCODE_RCP:
4460 case SHADER_OPCODE_RSQ:
4461 case SHADER_OPCODE_SQRT:
4462 case SHADER_OPCODE_EXP2:
4463 case SHADER_OPCODE_LOG2:
4464 case SHADER_OPCODE_SIN:
4465 case SHADER_OPCODE_COS:
4466 case SHADER_OPCODE_POW:
4467 case SHADER_OPCODE_INT_QUOTIENT:
4468 case SHADER_OPCODE_INT_REMAINDER:
4469 /* The math opcodes are overloaded for the send-like and
4470 * expression-like instructions which seems kind of icky. Gen6+ has
4471 * a native (but rather quirky) MATH instruction so we don't need to
4472 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4473 * logical instructions (which we can easily recognize because they
4474 * have mlen = 0) into send-like virtual instructions.
4475 */
4476 if (devinfo->gen < 6 && inst->mlen == 0) {
4477 lower_math_logical_send(ibld, inst);
4478 break;
4479
4480 } else {
4481 continue;
4482 }
4483
4484 default:
4485 continue;
4486 }
4487
4488 progress = true;
4489 }
4490
4491 if (progress)
4492 invalidate_live_intervals();
4493
4494 return progress;
4495 }
4496
4497 /**
4498 * Get the closest allowed SIMD width for instruction \p inst accounting for
4499 * some common regioning and execution control restrictions that apply to FPU
4500 * instructions. These restrictions don't necessarily have any relevance to
4501 * instructions not executed by the FPU pipeline like extended math, control
4502 * flow or send message instructions.
4503 *
4504 * For virtual opcodes it's really up to the instruction -- In some cases
4505 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4506 * instructions) it may simplify virtual instruction lowering if we can
4507 * enforce FPU-like regioning restrictions already on the virtual instruction,
4508 * in other cases (e.g. virtual send-like instructions) this may be
4509 * excessively restrictive.
4510 */
4511 static unsigned
4512 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4513 const fs_inst *inst)
4514 {
4515 /* Maximum execution size representable in the instruction controls. */
4516 unsigned max_width = MIN2(32, inst->exec_size);
4517
4518 /* According to the PRMs:
4519 * "A. In Direct Addressing mode, a source cannot span more than 2
4520 * adjacent GRF registers.
4521 * B. A destination cannot span more than 2 adjacent GRF registers."
4522 *
4523 * Look for the source or destination with the largest register region
4524 * which is the one that is going to limit the overall execution size of
4525 * the instruction due to this rule.
4526 */
4527 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4528
4529 for (unsigned i = 0; i < inst->sources; i++)
4530 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4531
4532 /* Calculate the maximum execution size of the instruction based on the
4533 * factor by which it goes over the hardware limit of 2 GRFs.
4534 */
4535 if (reg_count > 2)
4536 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4537
4538 /* According to the IVB PRMs:
4539 * "When destination spans two registers, the source MUST span two
4540 * registers. The exception to the above rule:
4541 *
4542 * - When source is scalar, the source registers are not incremented.
4543 * - When source is packed integer Word and destination is packed
4544 * integer DWord, the source register is not incremented but the
4545 * source sub register is incremented."
4546 *
4547 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4548 * restrictions. The code below intentionally doesn't check whether the
4549 * destination type is integer because empirically the hardware doesn't
4550 * seem to care what the actual type is as long as it's dword-aligned.
4551 */
4552 if (devinfo->gen < 8) {
4553 for (unsigned i = 0; i < inst->sources; i++) {
4554 if (inst->size_written > REG_SIZE &&
4555 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4556 !is_uniform(inst->src[i]) &&
4557 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4558 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4559 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4560 max_width = MIN2(max_width, inst->exec_size / reg_count);
4561 }
4562 }
4563 }
4564
4565 /* From the IVB PRMs:
4566 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4567 * are applied for both halves of the SIMD32 instruction. If different
4568 * execution mask channels are required, split the instruction into two
4569 * SIMD16 instructions."
4570 *
4571 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4572 * 32-wide control flow support in hardware and will behave similarly.
4573 */
4574 if (devinfo->gen < 8 && !inst->force_writemask_all)
4575 max_width = MIN2(max_width, 16);
4576
4577 /* From the IVB PRMs (applies to HSW too):
4578 * "Instructions with condition modifiers must not use SIMD32."
4579 *
4580 * From the BDW PRMs (applies to later hardware too):
4581 * "Ternary instruction with condition modifiers must not use SIMD32."
4582 */
4583 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4584 max_width = MIN2(max_width, 16);
4585
4586 /* From the IVB PRMs (applies to other devices that don't have the
4587 * gen_device_info::supports_simd16_3src flag set):
4588 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4589 * SIMD8 is not allowed for DF operations."
4590 */
4591 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4592 max_width = MIN2(max_width, inst->exec_size / reg_count);
4593
4594 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4595 * the 8-bit quarter of the execution mask signals specified in the
4596 * instruction control fields) for the second compressed half of any
4597 * single-precision instruction (for double-precision instructions
4598 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4599 * the EU will apply the wrong execution controls for the second
4600 * sequential GRF write if the number of channels per GRF is not exactly
4601 * eight in single-precision mode (or four in double-float mode).
4602 *
4603 * In this situation we calculate the maximum size of the split
4604 * instructions so they only ever write to a single register.
4605 */
4606 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4607 !inst->force_writemask_all) {
4608 const unsigned channels_per_grf = inst->exec_size /
4609 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4610 unsigned exec_type_size = 0;
4611 for (int i = 0; i < inst->sources; i++) {
4612 if (inst->src[i].file != BAD_FILE)
4613 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4614 }
4615 assert(exec_type_size);
4616
4617 /* The hardware shifts exactly 8 channels per compressed half of the
4618 * instruction in single-precision mode and exactly 4 in double-precision.
4619 */
4620 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4621 max_width = MIN2(max_width, channels_per_grf);
4622 }
4623
4624 /* Only power-of-two execution sizes are representable in the instruction
4625 * control fields.
4626 */
4627 return 1 << _mesa_logbase2(max_width);
4628 }
4629
4630 /**
4631 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4632 * various payload size restrictions that apply to sampler message
4633 * instructions.
4634 *
4635 * This is only intended to provide a maximum theoretical bound for the
4636 * execution size of the message based on the number of argument components
4637 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4638 * variant of the message can be used, though some messages may have
4639 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4640 * the message length to determine the exact SIMD width and argument count,
4641 * which makes a number of sampler message combinations impossible to
4642 * represent).
4643 */
4644 static unsigned
4645 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4646 const fs_inst *inst)
4647 {
4648 /* Calculate the number of coordinate components that have to be present
4649 * assuming that additional arguments follow the texel coordinates in the
4650 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4651 * need to pad to four or three components depending on the message,
4652 * pre-ILK we need to pad to at most three components.
4653 */
4654 const unsigned req_coord_components =
4655 (devinfo->gen >= 7 ||
4656 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4657 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4658 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4659 3;
4660
4661 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4662 * variant of the TXL or TXF message.
4663 */
4664 const bool implicit_lod = devinfo->gen >= 9 &&
4665 (inst->opcode == SHADER_OPCODE_TXL ||
4666 inst->opcode == SHADER_OPCODE_TXF) &&
4667 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4668
4669 /* Calculate the total number of argument components that need to be passed
4670 * to the sampler unit.
4671 */
4672 const unsigned num_payload_components =
4673 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4674 req_coord_components) +
4675 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4676 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4677 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4678 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4679 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4680 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4681 inst->components_read(TEX_LOGICAL_SRC_MCS);
4682
4683 /* SIMD16 messages with more than five arguments exceed the maximum message
4684 * size supported by the sampler, regardless of whether a header is
4685 * provided or not.
4686 */
4687 return MIN2(inst->exec_size,
4688 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4689 }
4690
4691 /**
4692 * Get the closest native SIMD width supported by the hardware for instruction
4693 * \p inst. The instruction will be left untouched by
4694 * fs_visitor::lower_simd_width() if the returned value is equal to the
4695 * original execution size.
4696 */
4697 static unsigned
4698 get_lowered_simd_width(const struct gen_device_info *devinfo,
4699 const fs_inst *inst)
4700 {
4701 switch (inst->opcode) {
4702 case BRW_OPCODE_MOV:
4703 case BRW_OPCODE_SEL:
4704 case BRW_OPCODE_NOT:
4705 case BRW_OPCODE_AND:
4706 case BRW_OPCODE_OR:
4707 case BRW_OPCODE_XOR:
4708 case BRW_OPCODE_SHR:
4709 case BRW_OPCODE_SHL:
4710 case BRW_OPCODE_ASR:
4711 case BRW_OPCODE_CMPN:
4712 case BRW_OPCODE_CSEL:
4713 case BRW_OPCODE_F32TO16:
4714 case BRW_OPCODE_F16TO32:
4715 case BRW_OPCODE_BFREV:
4716 case BRW_OPCODE_BFE:
4717 case BRW_OPCODE_ADD:
4718 case BRW_OPCODE_MUL:
4719 case BRW_OPCODE_AVG:
4720 case BRW_OPCODE_FRC:
4721 case BRW_OPCODE_RNDU:
4722 case BRW_OPCODE_RNDD:
4723 case BRW_OPCODE_RNDE:
4724 case BRW_OPCODE_RNDZ:
4725 case BRW_OPCODE_LZD:
4726 case BRW_OPCODE_FBH:
4727 case BRW_OPCODE_FBL:
4728 case BRW_OPCODE_CBIT:
4729 case BRW_OPCODE_SAD2:
4730 case BRW_OPCODE_MAD:
4731 case BRW_OPCODE_LRP:
4732 case FS_OPCODE_PACK:
4733 return get_fpu_lowered_simd_width(devinfo, inst);
4734
4735 case BRW_OPCODE_CMP: {
4736 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4737 * when the destination is a GRF the dependency-clear bit on the flag
4738 * register is cleared early.
4739 *
4740 * Suggested workarounds are to disable coissuing CMP instructions
4741 * or to split CMP(16) instructions into two CMP(8) instructions.
4742 *
4743 * We choose to split into CMP(8) instructions since disabling
4744 * coissuing would affect CMP instructions not otherwise affected by
4745 * the errata.
4746 */
4747 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4748 !inst->dst.is_null() ? 8 : ~0);
4749 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4750 }
4751 case BRW_OPCODE_BFI1:
4752 case BRW_OPCODE_BFI2:
4753 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4754 * should
4755 * "Force BFI instructions to be executed always in SIMD8."
4756 */
4757 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4758 get_fpu_lowered_simd_width(devinfo, inst));
4759
4760 case BRW_OPCODE_IF:
4761 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4762 return inst->exec_size;
4763
4764 case SHADER_OPCODE_RCP:
4765 case SHADER_OPCODE_RSQ:
4766 case SHADER_OPCODE_SQRT:
4767 case SHADER_OPCODE_EXP2:
4768 case SHADER_OPCODE_LOG2:
4769 case SHADER_OPCODE_SIN:
4770 case SHADER_OPCODE_COS:
4771 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4772 * Gen6.
4773 */
4774 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4775 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4776 MIN2(8, inst->exec_size));
4777
4778 case SHADER_OPCODE_POW:
4779 /* SIMD16 is only allowed on Gen7+. */
4780 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4781 MIN2(8, inst->exec_size));
4782
4783 case SHADER_OPCODE_INT_QUOTIENT:
4784 case SHADER_OPCODE_INT_REMAINDER:
4785 /* Integer division is limited to SIMD8 on all generations. */
4786 return MIN2(8, inst->exec_size);
4787
4788 case FS_OPCODE_LINTERP:
4789 case FS_OPCODE_GET_BUFFER_SIZE:
4790 case FS_OPCODE_DDX_COARSE:
4791 case FS_OPCODE_DDX_FINE:
4792 case FS_OPCODE_DDY_COARSE:
4793 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4794 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4795 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4796 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4797 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4798 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4799 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4800 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4801 return MIN2(16, inst->exec_size);
4802
4803 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4804 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4805 * message used to implement varying pull constant loads, so expand it
4806 * to SIMD16. An alternative with longer message payload length but
4807 * shorter return payload would be to use the SIMD8 sampler message that
4808 * takes (header, u, v, r) as parameters instead of (header, u).
4809 */
4810 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4811
4812 case FS_OPCODE_DDY_FINE:
4813 /* The implementation of this virtual opcode may require emitting
4814 * compressed Align16 instructions, which are severely limited on some
4815 * generations.
4816 *
4817 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4818 * Region Restrictions):
4819 *
4820 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4821 * and SIMD8 is not allowed for DF operations."
4822 *
4823 * In this context, "DW operations" means "operations acting on 32-bit
4824 * values", so it includes operations on floats.
4825 *
4826 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4827 * (Instruction Compression -> Rules and Restrictions):
4828 *
4829 * "A compressed instruction must be in Align1 access mode. Align16
4830 * mode instructions cannot be compressed."
4831 *
4832 * Similar text exists in the g45 PRM.
4833 *
4834 * Empirically, compressed align16 instructions using odd register
4835 * numbers don't appear to work on Sandybridge either.
4836 */
4837 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4838 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4839 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4840
4841 case SHADER_OPCODE_MULH:
4842 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4843 * is 8-wide on Gen7+.
4844 */
4845 return (devinfo->gen >= 7 ? 8 :
4846 get_fpu_lowered_simd_width(devinfo, inst));
4847
4848 case FS_OPCODE_FB_WRITE_LOGICAL:
4849 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4850 * here.
4851 */
4852 assert(devinfo->gen != 6 ||
4853 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4854 inst->exec_size == 8);
4855 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4856 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4857 8 : MIN2(16, inst->exec_size));
4858
4859 case FS_OPCODE_FB_READ_LOGICAL:
4860 return MIN2(16, inst->exec_size);
4861
4862 case SHADER_OPCODE_TEX_LOGICAL:
4863 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4864 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4865 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4866 case SHADER_OPCODE_LOD_LOGICAL:
4867 case SHADER_OPCODE_TG4_LOGICAL:
4868 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4869 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4870 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4871 return get_sampler_lowered_simd_width(devinfo, inst);
4872
4873 case SHADER_OPCODE_TXD_LOGICAL:
4874 /* TXD is unsupported in SIMD16 mode. */
4875 return 8;
4876
4877 case SHADER_OPCODE_TXL_LOGICAL:
4878 case FS_OPCODE_TXB_LOGICAL:
4879 /* Only one execution size is representable pre-ILK depending on whether
4880 * the shadow reference argument is present.
4881 */
4882 if (devinfo->gen == 4)
4883 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4884 else
4885 return get_sampler_lowered_simd_width(devinfo, inst);
4886
4887 case SHADER_OPCODE_TXF_LOGICAL:
4888 case SHADER_OPCODE_TXS_LOGICAL:
4889 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4890 * messages. Use SIMD16 instead.
4891 */
4892 if (devinfo->gen == 4)
4893 return 16;
4894 else
4895 return get_sampler_lowered_simd_width(devinfo, inst);
4896
4897 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4898 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4899 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4900 return 8;
4901
4902 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4903 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4904 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4905 return MIN2(16, inst->exec_size);
4906
4907 case SHADER_OPCODE_URB_READ_SIMD8:
4908 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4909 case SHADER_OPCODE_URB_WRITE_SIMD8:
4910 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4911 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4912 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4913 return MIN2(8, inst->exec_size);
4914
4915 case SHADER_OPCODE_MOV_INDIRECT:
4916 /* Prior to Broadwell, we only have 8 address subregisters */
4917 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4918 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4919 inst->exec_size);
4920
4921 case SHADER_OPCODE_LOAD_PAYLOAD: {
4922 const unsigned reg_count =
4923 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4924
4925 if (reg_count > 2) {
4926 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4927 * can be easily lowered (which excludes headers and heterogeneous
4928 * types).
4929 */
4930 assert(!inst->header_size);
4931 for (unsigned i = 0; i < inst->sources; i++)
4932 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4933 inst->src[i].file == BAD_FILE);
4934
4935 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4936 } else {
4937 return inst->exec_size;
4938 }
4939 }
4940 default:
4941 return inst->exec_size;
4942 }
4943 }
4944
4945 /**
4946 * Return true if splitting out the group of channels of instruction \p inst
4947 * given by lbld.group() requires allocating a temporary for the i-th source
4948 * of the lowered instruction.
4949 */
4950 static inline bool
4951 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4952 {
4953 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4954 (inst->components_read(i) == 1 &&
4955 lbld.dispatch_width() <= inst->exec_size));
4956 }
4957
4958 /**
4959 * Extract the data that would be consumed by the channel group given by
4960 * lbld.group() from the i-th source region of instruction \p inst and return
4961 * it as result in packed form. If any copy instructions are required they
4962 * will be emitted before the given \p inst in \p block.
4963 */
4964 static fs_reg
4965 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4966 unsigned i)
4967 {
4968 /* Specified channel group from the source region. */
4969 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4970
4971 if (needs_src_copy(lbld, inst, i)) {
4972 /* Builder of the right width to perform the copy avoiding uninitialized
4973 * data if the lowered execution size is greater than the original
4974 * execution size of the instruction.
4975 */
4976 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4977 inst->exec_size), 0);
4978 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4979
4980 for (unsigned k = 0; k < inst->components_read(i); ++k)
4981 cbld.at(block, inst)
4982 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4983
4984 return tmp;
4985
4986 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4987 /* The source is invariant for all dispatch_width-wide groups of the
4988 * original region.
4989 */
4990 return inst->src[i];
4991
4992 } else {
4993 /* We can just point the lowered instruction at the right channel group
4994 * from the original region.
4995 */
4996 return src;
4997 }
4998 }
4999
5000 /**
5001 * Return true if splitting out the group of channels of instruction \p inst
5002 * given by lbld.group() requires allocating a temporary for the destination
5003 * of the lowered instruction and copying the data back to the original
5004 * destination region.
5005 */
5006 static inline bool
5007 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5008 {
5009 /* If the instruction writes more than one component we'll have to shuffle
5010 * the results of multiple lowered instructions in order to make sure that
5011 * they end up arranged correctly in the original destination region.
5012 */
5013 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5014 return true;
5015
5016 /* If the lowered execution size is larger than the original the result of
5017 * the instruction won't fit in the original destination, so we'll have to
5018 * allocate a temporary in any case.
5019 */
5020 if (lbld.dispatch_width() > inst->exec_size)
5021 return true;
5022
5023 for (unsigned i = 0; i < inst->sources; i++) {
5024 /* If we already made a copy of the source for other reasons there won't
5025 * be any overlap with the destination.
5026 */
5027 if (needs_src_copy(lbld, inst, i))
5028 continue;
5029
5030 /* In order to keep the logic simple we emit a copy whenever the
5031 * destination region doesn't exactly match an overlapping source, which
5032 * may point at the source and destination not being aligned group by
5033 * group which could cause one of the lowered instructions to overwrite
5034 * the data read from the same source by other lowered instructions.
5035 */
5036 if (regions_overlap(inst->dst, inst->size_written,
5037 inst->src[i], inst->size_read(i)) &&
5038 !inst->dst.equals(inst->src[i]))
5039 return true;
5040 }
5041
5042 return false;
5043 }
5044
5045 /**
5046 * Insert data from a packed temporary into the channel group given by
5047 * lbld.group() of the destination region of instruction \p inst and return
5048 * the temporary as result. If any copy instructions are required they will
5049 * be emitted around the given \p inst in \p block.
5050 */
5051 static fs_reg
5052 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5053 {
5054 /* Builder of the right width to perform the copy avoiding uninitialized
5055 * data if the lowered execution size is greater than the original
5056 * execution size of the instruction.
5057 */
5058 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5059 inst->exec_size), 0);
5060
5061 /* Specified channel group from the destination region. */
5062 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5063 const unsigned dst_size = inst->size_written /
5064 inst->dst.component_size(inst->exec_size);
5065
5066 if (needs_dst_copy(lbld, inst)) {
5067 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5068
5069 if (inst->predicate) {
5070 /* Handle predication by copying the original contents of
5071 * the destination into the temporary before emitting the
5072 * lowered instruction.
5073 */
5074 for (unsigned k = 0; k < dst_size; ++k)
5075 cbld.at(block, inst)
5076 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5077 }
5078
5079 for (unsigned k = 0; k < dst_size; ++k)
5080 cbld.at(block, inst->next)
5081 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5082
5083 return tmp;
5084
5085 } else {
5086 /* No need to allocate a temporary for the lowered instruction, just
5087 * take the right group of channels from the original region.
5088 */
5089 return dst;
5090 }
5091 }
5092
5093 bool
5094 fs_visitor::lower_simd_width()
5095 {
5096 bool progress = false;
5097
5098 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5099 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5100
5101 if (lower_width != inst->exec_size) {
5102 /* Builder matching the original instruction. We may also need to
5103 * emit an instruction of width larger than the original, set the
5104 * execution size of the builder to the highest of both for now so
5105 * we're sure that both cases can be handled.
5106 */
5107 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5108 const fs_builder ibld = bld.at(block, inst)
5109 .exec_all(inst->force_writemask_all)
5110 .group(max_width, inst->group / max_width);
5111
5112 /* Split the copies in chunks of the execution width of either the
5113 * original or the lowered instruction, whichever is lower.
5114 */
5115 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5116 const unsigned dst_size = inst->size_written /
5117 inst->dst.component_size(inst->exec_size);
5118
5119 assert(!inst->writes_accumulator && !inst->mlen);
5120
5121 for (unsigned i = 0; i < n; i++) {
5122 /* Emit a copy of the original instruction with the lowered width.
5123 * If the EOT flag was set throw it away except for the last
5124 * instruction to avoid killing the thread prematurely.
5125 */
5126 fs_inst split_inst = *inst;
5127 split_inst.exec_size = lower_width;
5128 split_inst.eot = inst->eot && i == n - 1;
5129
5130 /* Select the correct channel enables for the i-th group, then
5131 * transform the sources and destination and emit the lowered
5132 * instruction.
5133 */
5134 const fs_builder lbld = ibld.group(lower_width, i);
5135
5136 for (unsigned j = 0; j < inst->sources; j++)
5137 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5138
5139 split_inst.dst = emit_zip(lbld, block, inst);
5140 split_inst.size_written =
5141 split_inst.dst.component_size(lower_width) * dst_size;
5142
5143 lbld.emit(split_inst);
5144 }
5145
5146 inst->remove(block);
5147 progress = true;
5148 }
5149 }
5150
5151 if (progress)
5152 invalidate_live_intervals();
5153
5154 return progress;
5155 }
5156
5157 void
5158 fs_visitor::dump_instructions()
5159 {
5160 dump_instructions(NULL);
5161 }
5162
5163 void
5164 fs_visitor::dump_instructions(const char *name)
5165 {
5166 FILE *file = stderr;
5167 if (name && geteuid() != 0) {
5168 file = fopen(name, "w");
5169 if (!file)
5170 file = stderr;
5171 }
5172
5173 if (cfg) {
5174 calculate_register_pressure();
5175 int ip = 0, max_pressure = 0;
5176 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5177 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5178 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5179 dump_instruction(inst, file);
5180 ip++;
5181 }
5182 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5183 } else {
5184 int ip = 0;
5185 foreach_in_list(backend_instruction, inst, &instructions) {
5186 fprintf(file, "%4d: ", ip++);
5187 dump_instruction(inst, file);
5188 }
5189 }
5190
5191 if (file != stderr) {
5192 fclose(file);
5193 }
5194 }
5195
5196 void
5197 fs_visitor::dump_instruction(backend_instruction *be_inst)
5198 {
5199 dump_instruction(be_inst, stderr);
5200 }
5201
5202 void
5203 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5204 {
5205 fs_inst *inst = (fs_inst *)be_inst;
5206
5207 if (inst->predicate) {
5208 fprintf(file, "(%cf0.%d) ",
5209 inst->predicate_inverse ? '-' : '+',
5210 inst->flag_subreg);
5211 }
5212
5213 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5214 if (inst->saturate)
5215 fprintf(file, ".sat");
5216 if (inst->conditional_mod) {
5217 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5218 if (!inst->predicate &&
5219 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5220 inst->opcode != BRW_OPCODE_IF &&
5221 inst->opcode != BRW_OPCODE_WHILE))) {
5222 fprintf(file, ".f0.%d", inst->flag_subreg);
5223 }
5224 }
5225 fprintf(file, "(%d) ", inst->exec_size);
5226
5227 if (inst->mlen) {
5228 fprintf(file, "(mlen: %d) ", inst->mlen);
5229 }
5230
5231 if (inst->eot) {
5232 fprintf(file, "(EOT) ");
5233 }
5234
5235 switch (inst->dst.file) {
5236 case VGRF:
5237 fprintf(file, "vgrf%d", inst->dst.nr);
5238 break;
5239 case FIXED_GRF:
5240 fprintf(file, "g%d", inst->dst.nr);
5241 break;
5242 case MRF:
5243 fprintf(file, "m%d", inst->dst.nr);
5244 break;
5245 case BAD_FILE:
5246 fprintf(file, "(null)");
5247 break;
5248 case UNIFORM:
5249 fprintf(file, "***u%d***", inst->dst.nr);
5250 break;
5251 case ATTR:
5252 fprintf(file, "***attr%d***", inst->dst.nr);
5253 break;
5254 case ARF:
5255 switch (inst->dst.nr) {
5256 case BRW_ARF_NULL:
5257 fprintf(file, "null");
5258 break;
5259 case BRW_ARF_ADDRESS:
5260 fprintf(file, "a0.%d", inst->dst.subnr);
5261 break;
5262 case BRW_ARF_ACCUMULATOR:
5263 fprintf(file, "acc%d", inst->dst.subnr);
5264 break;
5265 case BRW_ARF_FLAG:
5266 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5267 break;
5268 default:
5269 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5270 break;
5271 }
5272 break;
5273 case IMM:
5274 unreachable("not reached");
5275 }
5276
5277 if (inst->dst.offset ||
5278 (inst->dst.file == VGRF &&
5279 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5280 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5281 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5282 inst->dst.offset % reg_size);
5283 }
5284
5285 if (inst->dst.stride != 1)
5286 fprintf(file, "<%u>", inst->dst.stride);
5287 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5288
5289 for (int i = 0; i < inst->sources; i++) {
5290 if (inst->src[i].negate)
5291 fprintf(file, "-");
5292 if (inst->src[i].abs)
5293 fprintf(file, "|");
5294 switch (inst->src[i].file) {
5295 case VGRF:
5296 fprintf(file, "vgrf%d", inst->src[i].nr);
5297 break;
5298 case FIXED_GRF:
5299 fprintf(file, "g%d", inst->src[i].nr);
5300 break;
5301 case MRF:
5302 fprintf(file, "***m%d***", inst->src[i].nr);
5303 break;
5304 case ATTR:
5305 fprintf(file, "attr%d", inst->src[i].nr);
5306 break;
5307 case UNIFORM:
5308 fprintf(file, "u%d", inst->src[i].nr);
5309 break;
5310 case BAD_FILE:
5311 fprintf(file, "(null)");
5312 break;
5313 case IMM:
5314 switch (inst->src[i].type) {
5315 case BRW_REGISTER_TYPE_F:
5316 fprintf(file, "%-gf", inst->src[i].f);
5317 break;
5318 case BRW_REGISTER_TYPE_DF:
5319 fprintf(file, "%fdf", inst->src[i].df);
5320 break;
5321 case BRW_REGISTER_TYPE_W:
5322 case BRW_REGISTER_TYPE_D:
5323 fprintf(file, "%dd", inst->src[i].d);
5324 break;
5325 case BRW_REGISTER_TYPE_UW:
5326 case BRW_REGISTER_TYPE_UD:
5327 fprintf(file, "%uu", inst->src[i].ud);
5328 break;
5329 case BRW_REGISTER_TYPE_VF:
5330 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5331 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5332 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5333 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5334 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5335 break;
5336 default:
5337 fprintf(file, "???");
5338 break;
5339 }
5340 break;
5341 case ARF:
5342 switch (inst->src[i].nr) {
5343 case BRW_ARF_NULL:
5344 fprintf(file, "null");
5345 break;
5346 case BRW_ARF_ADDRESS:
5347 fprintf(file, "a0.%d", inst->src[i].subnr);
5348 break;
5349 case BRW_ARF_ACCUMULATOR:
5350 fprintf(file, "acc%d", inst->src[i].subnr);
5351 break;
5352 case BRW_ARF_FLAG:
5353 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5354 break;
5355 default:
5356 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5357 break;
5358 }
5359 break;
5360 }
5361
5362 if (inst->src[i].offset ||
5363 (inst->src[i].file == VGRF &&
5364 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5365 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5366 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5367 inst->src[i].offset % reg_size);
5368 }
5369
5370 if (inst->src[i].abs)
5371 fprintf(file, "|");
5372
5373 if (inst->src[i].file != IMM) {
5374 unsigned stride;
5375 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5376 unsigned hstride = inst->src[i].hstride;
5377 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5378 } else {
5379 stride = inst->src[i].stride;
5380 }
5381 if (stride != 1)
5382 fprintf(file, "<%u>", stride);
5383
5384 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5385 }
5386
5387 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5388 fprintf(file, ", ");
5389 }
5390
5391 fprintf(file, " ");
5392
5393 if (inst->force_writemask_all)
5394 fprintf(file, "NoMask ");
5395
5396 if (inst->exec_size != dispatch_width)
5397 fprintf(file, "group%d ", inst->group);
5398
5399 fprintf(file, "\n");
5400 }
5401
5402 /**
5403 * Possibly returns an instruction that set up @param reg.
5404 *
5405 * Sometimes we want to take the result of some expression/variable
5406 * dereference tree and rewrite the instruction generating the result
5407 * of the tree. When processing the tree, we know that the
5408 * instructions generated are all writing temporaries that are dead
5409 * outside of this tree. So, if we have some instructions that write
5410 * a temporary, we're free to point that temp write somewhere else.
5411 *
5412 * Note that this doesn't guarantee that the instruction generated
5413 * only reg -- it might be the size=4 destination of a texture instruction.
5414 */
5415 fs_inst *
5416 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5417 fs_inst *end,
5418 const fs_reg &reg)
5419 {
5420 if (end == start ||
5421 end->is_partial_write() ||
5422 !reg.equals(end->dst)) {
5423 return NULL;
5424 } else {
5425 return end;
5426 }
5427 }
5428
5429 void
5430 fs_visitor::setup_fs_payload_gen6()
5431 {
5432 assert(stage == MESA_SHADER_FRAGMENT);
5433 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5434
5435 assert(devinfo->gen >= 6);
5436
5437 /* R0-1: masks, pixel X/Y coordinates. */
5438 payload.num_regs = 2;
5439 /* R2: only for 32-pixel dispatch.*/
5440
5441 /* R3-26: barycentric interpolation coordinates. These appear in the
5442 * same order that they appear in the brw_barycentric_mode
5443 * enum. Each set of coordinates occupies 2 registers if dispatch width
5444 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5445 * appear if they were enabled using the "Barycentric Interpolation
5446 * Mode" bits in WM_STATE.
5447 */
5448 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5449 if (prog_data->barycentric_interp_modes & (1 << i)) {
5450 payload.barycentric_coord_reg[i] = payload.num_regs;
5451 payload.num_regs += 2;
5452 if (dispatch_width == 16) {
5453 payload.num_regs += 2;
5454 }
5455 }
5456 }
5457
5458 /* R27: interpolated depth if uses source depth */
5459 prog_data->uses_src_depth =
5460 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5461 if (prog_data->uses_src_depth) {
5462 payload.source_depth_reg = payload.num_regs;
5463 payload.num_regs++;
5464 if (dispatch_width == 16) {
5465 /* R28: interpolated depth if not SIMD8. */
5466 payload.num_regs++;
5467 }
5468 }
5469
5470 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5471 prog_data->uses_src_w =
5472 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5473 if (prog_data->uses_src_w) {
5474 payload.source_w_reg = payload.num_regs;
5475 payload.num_regs++;
5476 if (dispatch_width == 16) {
5477 /* R30: interpolated W if not SIMD8. */
5478 payload.num_regs++;
5479 }
5480 }
5481
5482 /* R31: MSAA position offsets. */
5483 if (prog_data->persample_dispatch &&
5484 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5485 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5486 *
5487 * "MSDISPMODE_PERSAMPLE is required in order to select
5488 * POSOFFSET_SAMPLE"
5489 *
5490 * So we can only really get sample positions if we are doing real
5491 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5492 * persample dispatch, we hard-code it to 0.5.
5493 */
5494 prog_data->uses_pos_offset = true;
5495 payload.sample_pos_reg = payload.num_regs;
5496 payload.num_regs++;
5497 }
5498
5499 /* R32: MSAA input coverage mask */
5500 prog_data->uses_sample_mask =
5501 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5502 if (prog_data->uses_sample_mask) {
5503 assert(devinfo->gen >= 7);
5504 payload.sample_mask_in_reg = payload.num_regs;
5505 payload.num_regs++;
5506 if (dispatch_width == 16) {
5507 /* R33: input coverage mask if not SIMD8. */
5508 payload.num_regs++;
5509 }
5510 }
5511
5512 /* R34-: bary for 32-pixel. */
5513 /* R58-59: interp W for 32-pixel. */
5514
5515 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5516 source_depth_to_render_target = true;
5517 }
5518 }
5519
5520 void
5521 fs_visitor::setup_vs_payload()
5522 {
5523 /* R0: thread header, R1: urb handles */
5524 payload.num_regs = 2;
5525 }
5526
5527 void
5528 fs_visitor::setup_gs_payload()
5529 {
5530 assert(stage == MESA_SHADER_GEOMETRY);
5531
5532 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5533 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5534
5535 /* R0: thread header, R1: output URB handles */
5536 payload.num_regs = 2;
5537
5538 if (gs_prog_data->include_primitive_id) {
5539 /* R2: Primitive ID 0..7 */
5540 payload.num_regs++;
5541 }
5542
5543 /* Use a maximum of 24 registers for push-model inputs. */
5544 const unsigned max_push_components = 24;
5545
5546 /* If pushing our inputs would take too many registers, reduce the URB read
5547 * length (which is in HWords, or 8 registers), and resort to pulling.
5548 *
5549 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5550 * have to multiply by VerticesIn to obtain the total storage requirement.
5551 */
5552 if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
5553 max_push_components || gs_prog_data->invocations > 1) {
5554 gs_prog_data->base.include_vue_handles = true;
5555
5556 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5557 payload.num_regs += nir->info->gs.vertices_in;
5558
5559 vue_prog_data->urb_read_length =
5560 ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
5561 }
5562 }
5563
5564 void
5565 fs_visitor::setup_cs_payload()
5566 {
5567 assert(devinfo->gen >= 7);
5568 payload.num_regs = 1;
5569 }
5570
5571 void
5572 fs_visitor::calculate_register_pressure()
5573 {
5574 invalidate_live_intervals();
5575 calculate_live_intervals();
5576
5577 unsigned num_instructions = 0;
5578 foreach_block(block, cfg)
5579 num_instructions += block->instructions.length();
5580
5581 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5582
5583 for (unsigned reg = 0; reg < alloc.count; reg++) {
5584 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5585 regs_live_at_ip[ip] += alloc.sizes[reg];
5586 }
5587 }
5588
5589 /**
5590 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5591 *
5592 * The needs_unlit_centroid_workaround ends up producing one of these per
5593 * channel of centroid input, so it's good to clean them up.
5594 *
5595 * An assumption here is that nothing ever modifies the dispatched pixels
5596 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5597 * dictates that anyway.
5598 */
5599 bool
5600 fs_visitor::opt_drop_redundant_mov_to_flags()
5601 {
5602 bool flag_mov_found[2] = {false};
5603 bool progress = false;
5604
5605 /* Instructions removed by this pass can only be added if this were true */
5606 if (!devinfo->needs_unlit_centroid_workaround)
5607 return false;
5608
5609 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5610 if (inst->is_control_flow()) {
5611 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5612 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5613 if (!flag_mov_found[inst->flag_subreg]) {
5614 flag_mov_found[inst->flag_subreg] = true;
5615 } else {
5616 inst->remove(block);
5617 progress = true;
5618 }
5619 } else if (inst->flags_written()) {
5620 flag_mov_found[inst->flag_subreg] = false;
5621 }
5622 }
5623
5624 return progress;
5625 }
5626
5627 void
5628 fs_visitor::optimize()
5629 {
5630 /* Start by validating the shader we currently have. */
5631 validate();
5632
5633 /* bld is the common builder object pointing at the end of the program we
5634 * used to translate it into i965 IR. For the optimization and lowering
5635 * passes coming next, any code added after the end of the program without
5636 * having explicitly called fs_builder::at() clearly points at a mistake.
5637 * Ideally optimization passes wouldn't be part of the visitor so they
5638 * wouldn't have access to bld at all, but they do, so just in case some
5639 * pass forgets to ask for a location explicitly set it to NULL here to
5640 * make it trip. The dispatch width is initialized to a bogus value to
5641 * make sure that optimizations set the execution controls explicitly to
5642 * match the code they are manipulating instead of relying on the defaults.
5643 */
5644 bld = fs_builder(this, 64);
5645
5646 assign_constant_locations();
5647 lower_constant_loads();
5648
5649 validate();
5650
5651 split_virtual_grfs();
5652 validate();
5653
5654 #define OPT(pass, args...) ({ \
5655 pass_num++; \
5656 bool this_progress = pass(args); \
5657 \
5658 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5659 char filename[64]; \
5660 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5661 stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
5662 \
5663 backend_shader::dump_instructions(filename); \
5664 } \
5665 \
5666 validate(); \
5667 \
5668 progress = progress || this_progress; \
5669 this_progress; \
5670 })
5671
5672 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5673 char filename[64];
5674 snprintf(filename, 64, "%s%d-%s-00-00-start",
5675 stage_abbrev, dispatch_width, nir->info->name);
5676
5677 backend_shader::dump_instructions(filename);
5678 }
5679
5680 bool progress = false;
5681 int iteration = 0;
5682 int pass_num = 0;
5683
5684 OPT(opt_drop_redundant_mov_to_flags);
5685
5686 do {
5687 progress = false;
5688 pass_num = 0;
5689 iteration++;
5690
5691 OPT(remove_duplicate_mrf_writes);
5692
5693 OPT(opt_algebraic);
5694 OPT(opt_cse);
5695 OPT(opt_copy_propagate);
5696 OPT(opt_predicated_break, this);
5697 OPT(opt_cmod_propagation);
5698 OPT(dead_code_eliminate);
5699 OPT(opt_peephole_sel);
5700 OPT(dead_control_flow_eliminate, this);
5701 OPT(opt_register_renaming);
5702 OPT(opt_saturate_propagation);
5703 OPT(register_coalesce);
5704 OPT(compute_to_mrf);
5705 OPT(eliminate_find_live_channel);
5706
5707 OPT(compact_virtual_grfs);
5708 } while (progress);
5709
5710 progress = false;
5711 pass_num = 0;
5712
5713 if (OPT(lower_pack)) {
5714 OPT(register_coalesce);
5715 OPT(dead_code_eliminate);
5716 }
5717
5718 if (OPT(lower_d2x)) {
5719 OPT(opt_copy_propagate);
5720 OPT(dead_code_eliminate);
5721 }
5722
5723 OPT(lower_simd_width);
5724
5725 /* After SIMD lowering just in case we had to unroll the EOT send. */
5726 OPT(opt_sampler_eot);
5727
5728 OPT(lower_logical_sends);
5729
5730 if (progress) {
5731 OPT(opt_copy_propagate);
5732 /* Only run after logical send lowering because it's easier to implement
5733 * in terms of physical sends.
5734 */
5735 if (OPT(opt_zero_samples))
5736 OPT(opt_copy_propagate);
5737 /* Run after logical send lowering to give it a chance to CSE the
5738 * LOAD_PAYLOAD instructions created to construct the payloads of
5739 * e.g. texturing messages in cases where it wasn't possible to CSE the
5740 * whole logical instruction.
5741 */
5742 OPT(opt_cse);
5743 OPT(register_coalesce);
5744 OPT(compute_to_mrf);
5745 OPT(dead_code_eliminate);
5746 OPT(remove_duplicate_mrf_writes);
5747 OPT(opt_peephole_sel);
5748 }
5749
5750 OPT(opt_redundant_discard_jumps);
5751
5752 if (OPT(lower_load_payload)) {
5753 split_virtual_grfs();
5754 OPT(register_coalesce);
5755 OPT(compute_to_mrf);
5756 OPT(dead_code_eliminate);
5757 }
5758
5759 OPT(opt_combine_constants);
5760 OPT(lower_integer_multiplication);
5761
5762 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5763 OPT(opt_cmod_propagation);
5764 OPT(opt_cse);
5765 OPT(opt_copy_propagate);
5766 OPT(dead_code_eliminate);
5767 }
5768
5769 lower_uniform_pull_constant_loads();
5770
5771 validate();
5772 }
5773
5774 /**
5775 * Three source instruction must have a GRF/MRF destination register.
5776 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5777 */
5778 void
5779 fs_visitor::fixup_3src_null_dest()
5780 {
5781 bool progress = false;
5782
5783 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5784 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5785 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5786 inst->dst.type);
5787 progress = true;
5788 }
5789 }
5790
5791 if (progress)
5792 invalidate_live_intervals();
5793 }
5794
5795 void
5796 fs_visitor::allocate_registers(bool allow_spilling)
5797 {
5798 bool allocated_without_spills;
5799
5800 static const enum instruction_scheduler_mode pre_modes[] = {
5801 SCHEDULE_PRE,
5802 SCHEDULE_PRE_NON_LIFO,
5803 SCHEDULE_PRE_LIFO,
5804 };
5805
5806 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5807
5808 /* Try each scheduling heuristic to see if it can successfully register
5809 * allocate without spilling. They should be ordered by decreasing
5810 * performance but increasing likelihood of allocating.
5811 */
5812 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5813 schedule_instructions(pre_modes[i]);
5814
5815 if (0) {
5816 assign_regs_trivial();
5817 allocated_without_spills = true;
5818 } else {
5819 allocated_without_spills = assign_regs(false, spill_all);
5820 }
5821 if (allocated_without_spills)
5822 break;
5823 }
5824
5825 if (!allocated_without_spills) {
5826 if (!allow_spilling)
5827 fail("Failure to register allocate and spilling is not allowed.");
5828
5829 /* We assume that any spilling is worse than just dropping back to
5830 * SIMD8. There's probably actually some intermediate point where
5831 * SIMD16 with a couple of spills is still better.
5832 */
5833 if (dispatch_width > min_dispatch_width) {
5834 fail("Failure to register allocate. Reduce number of "
5835 "live scalar values to avoid this.");
5836 } else {
5837 compiler->shader_perf_log(log_data,
5838 "%s shader triggered register spilling. "
5839 "Try reducing the number of live scalar "
5840 "values to improve performance.\n",
5841 stage_name);
5842 }
5843
5844 /* Since we're out of heuristics, just go spill registers until we
5845 * get an allocation.
5846 */
5847 while (!assign_regs(true, spill_all)) {
5848 if (failed)
5849 break;
5850 }
5851 }
5852
5853 /* This must come after all optimization and register allocation, since
5854 * it inserts dead code that happens to have side effects, and it does
5855 * so based on the actual physical registers in use.
5856 */
5857 insert_gen4_send_dependency_workarounds();
5858
5859 if (failed)
5860 return;
5861
5862 schedule_instructions(SCHEDULE_POST);
5863
5864 if (last_scratch > 0) {
5865 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5866
5867 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5868
5869 if (stage == MESA_SHADER_COMPUTE) {
5870 if (devinfo->is_haswell) {
5871 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5872 * field documentation, Haswell supports a minimum of 2kB of
5873 * scratch space for compute shaders, unlike every other stage
5874 * and platform.
5875 */
5876 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5877 } else if (devinfo->gen <= 7) {
5878 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5879 * field documentation, platforms prior to Haswell measure scratch
5880 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5881 */
5882 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5883 max_scratch_size = 12 * 1024;
5884 }
5885 }
5886
5887 /* We currently only support up to 2MB of scratch space. If we
5888 * need to support more eventually, the documentation suggests
5889 * that we could allocate a larger buffer, and partition it out
5890 * ourselves. We'd just have to undo the hardware's address
5891 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5892 * and then add FFTID * (Larger Per Thread Scratch Space).
5893 *
5894 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5895 * Thread Group Tracking > Local Memory/Scratch Space.
5896 */
5897 assert(prog_data->total_scratch < max_scratch_size);
5898 }
5899 }
5900
5901 bool
5902 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5903 {
5904 assert(stage == MESA_SHADER_VERTEX);
5905
5906 setup_vs_payload();
5907
5908 if (shader_time_index >= 0)
5909 emit_shader_time_begin();
5910
5911 emit_nir_code();
5912
5913 if (failed)
5914 return false;
5915
5916 compute_clip_distance(clip_planes);
5917
5918 emit_urb_writes();
5919
5920 if (shader_time_index >= 0)
5921 emit_shader_time_end();
5922
5923 calculate_cfg();
5924
5925 optimize();
5926
5927 assign_curb_setup();
5928 assign_vs_urb_setup();
5929
5930 fixup_3src_null_dest();
5931 allocate_registers(true);
5932
5933 return !failed;
5934 }
5935
5936 bool
5937 fs_visitor::run_tcs_single_patch()
5938 {
5939 assert(stage == MESA_SHADER_TESS_CTRL);
5940
5941 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5942
5943 /* r1-r4 contain the ICP handles. */
5944 payload.num_regs = 5;
5945
5946 if (shader_time_index >= 0)
5947 emit_shader_time_begin();
5948
5949 /* Initialize gl_InvocationID */
5950 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5951 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5952 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5953 bld.MOV(channels_ud, channels_uw);
5954
5955 if (tcs_prog_data->instances == 1) {
5956 invocation_id = channels_ud;
5957 } else {
5958 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5959
5960 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5961 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5962 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5963 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5964 brw_imm_ud(INTEL_MASK(23, 17)));
5965 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5966
5967 bld.ADD(invocation_id, instance_times_8, channels_ud);
5968 }
5969
5970 /* Fix the disptach mask */
5971 if (nir->info->tcs.vertices_out % 8) {
5972 bld.CMP(bld.null_reg_ud(), invocation_id,
5973 brw_imm_ud(nir->info->tcs.vertices_out), BRW_CONDITIONAL_L);
5974 bld.IF(BRW_PREDICATE_NORMAL);
5975 }
5976
5977 emit_nir_code();
5978
5979 if (nir->info->tcs.vertices_out % 8) {
5980 bld.emit(BRW_OPCODE_ENDIF);
5981 }
5982
5983 /* Emit EOT write; set TR DS Cache bit */
5984 fs_reg srcs[3] = {
5985 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5986 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5987 fs_reg(brw_imm_ud(0)),
5988 };
5989 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5990 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5991
5992 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5993 bld.null_reg_ud(), payload);
5994 inst->mlen = 3;
5995 inst->eot = true;
5996
5997 if (shader_time_index >= 0)
5998 emit_shader_time_end();
5999
6000 if (failed)
6001 return false;
6002
6003 calculate_cfg();
6004
6005 optimize();
6006
6007 assign_curb_setup();
6008 assign_tcs_single_patch_urb_setup();
6009
6010 fixup_3src_null_dest();
6011 allocate_registers(true);
6012
6013 return !failed;
6014 }
6015
6016 bool
6017 fs_visitor::run_tes()
6018 {
6019 assert(stage == MESA_SHADER_TESS_EVAL);
6020
6021 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6022 payload.num_regs = 5;
6023
6024 if (shader_time_index >= 0)
6025 emit_shader_time_begin();
6026
6027 emit_nir_code();
6028
6029 if (failed)
6030 return false;
6031
6032 emit_urb_writes();
6033
6034 if (shader_time_index >= 0)
6035 emit_shader_time_end();
6036
6037 calculate_cfg();
6038
6039 optimize();
6040
6041 assign_curb_setup();
6042 assign_tes_urb_setup();
6043
6044 fixup_3src_null_dest();
6045 allocate_registers(true);
6046
6047 return !failed;
6048 }
6049
6050 bool
6051 fs_visitor::run_gs()
6052 {
6053 assert(stage == MESA_SHADER_GEOMETRY);
6054
6055 setup_gs_payload();
6056
6057 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6058
6059 if (gs_compile->control_data_header_size_bits > 0) {
6060 /* Create a VGRF to store accumulated control data bits. */
6061 this->control_data_bits = vgrf(glsl_type::uint_type);
6062
6063 /* If we're outputting more than 32 control data bits, then EmitVertex()
6064 * will set control_data_bits to 0 after emitting the first vertex.
6065 * Otherwise, we need to initialize it to 0 here.
6066 */
6067 if (gs_compile->control_data_header_size_bits <= 32) {
6068 const fs_builder abld = bld.annotate("initialize control data bits");
6069 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6070 }
6071 }
6072
6073 if (shader_time_index >= 0)
6074 emit_shader_time_begin();
6075
6076 emit_nir_code();
6077
6078 emit_gs_thread_end();
6079
6080 if (shader_time_index >= 0)
6081 emit_shader_time_end();
6082
6083 if (failed)
6084 return false;
6085
6086 calculate_cfg();
6087
6088 optimize();
6089
6090 assign_curb_setup();
6091 assign_gs_urb_setup();
6092
6093 fixup_3src_null_dest();
6094 allocate_registers(true);
6095
6096 return !failed;
6097 }
6098
6099 bool
6100 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6101 {
6102 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6103 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6104
6105 assert(stage == MESA_SHADER_FRAGMENT);
6106
6107 if (devinfo->gen >= 6)
6108 setup_fs_payload_gen6();
6109 else
6110 setup_fs_payload_gen4();
6111
6112 if (0) {
6113 emit_dummy_fs();
6114 } else if (do_rep_send) {
6115 assert(dispatch_width == 16);
6116 emit_repclear_shader();
6117 } else {
6118 if (shader_time_index >= 0)
6119 emit_shader_time_begin();
6120
6121 calculate_urb_setup();
6122 if (nir->info->inputs_read > 0 ||
6123 (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6124 if (devinfo->gen < 6)
6125 emit_interpolation_setup_gen4();
6126 else
6127 emit_interpolation_setup_gen6();
6128 }
6129
6130 /* We handle discards by keeping track of the still-live pixels in f0.1.
6131 * Initialize it with the dispatched pixels.
6132 */
6133 if (wm_prog_data->uses_kill) {
6134 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6135 discard_init->flag_subreg = 1;
6136 }
6137
6138 /* Generate FS IR for main(). (the visitor only descends into
6139 * functions called "main").
6140 */
6141 emit_nir_code();
6142
6143 if (failed)
6144 return false;
6145
6146 if (wm_prog_data->uses_kill)
6147 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6148
6149 if (wm_key->alpha_test_func)
6150 emit_alpha_test();
6151
6152 emit_fb_writes();
6153
6154 if (shader_time_index >= 0)
6155 emit_shader_time_end();
6156
6157 calculate_cfg();
6158
6159 optimize();
6160
6161 assign_curb_setup();
6162 assign_urb_setup();
6163
6164 fixup_3src_null_dest();
6165 allocate_registers(allow_spilling);
6166
6167 if (failed)
6168 return false;
6169 }
6170
6171 return !failed;
6172 }
6173
6174 bool
6175 fs_visitor::run_cs()
6176 {
6177 assert(stage == MESA_SHADER_COMPUTE);
6178
6179 setup_cs_payload();
6180
6181 if (shader_time_index >= 0)
6182 emit_shader_time_begin();
6183
6184 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6185 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6186 const fs_builder abld = bld.exec_all().group(1, 0);
6187 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6188 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6189 }
6190
6191 emit_nir_code();
6192
6193 if (failed)
6194 return false;
6195
6196 emit_cs_terminate();
6197
6198 if (shader_time_index >= 0)
6199 emit_shader_time_end();
6200
6201 calculate_cfg();
6202
6203 optimize();
6204
6205 assign_curb_setup();
6206
6207 fixup_3src_null_dest();
6208 allocate_registers(true);
6209
6210 if (failed)
6211 return false;
6212
6213 return !failed;
6214 }
6215
6216 /**
6217 * Return a bitfield where bit n is set if barycentric interpolation mode n
6218 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6219 *
6220 * We examine the load_barycentric intrinsics rather than looking at input
6221 * variables so that we catch interpolateAtCentroid() messages too, which
6222 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6223 */
6224 static unsigned
6225 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6226 const nir_shader *shader)
6227 {
6228 unsigned barycentric_interp_modes = 0;
6229
6230 nir_foreach_function(f, shader) {
6231 if (!f->impl)
6232 continue;
6233
6234 nir_foreach_block(block, f->impl) {
6235 nir_foreach_instr(instr, block) {
6236 if (instr->type != nir_instr_type_intrinsic)
6237 continue;
6238
6239 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6240 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6241 continue;
6242
6243 /* Ignore WPOS; it doesn't require interpolation. */
6244 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6245 continue;
6246
6247 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6248 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6249 nir_intrinsic_interp_mode(intrin);
6250 nir_intrinsic_op bary_op = intrin->intrinsic;
6251 enum brw_barycentric_mode bary =
6252 brw_barycentric_mode(interp, bary_op);
6253
6254 barycentric_interp_modes |= 1 << bary;
6255
6256 if (devinfo->needs_unlit_centroid_workaround &&
6257 bary_op == nir_intrinsic_load_barycentric_centroid)
6258 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6259 }
6260 }
6261 }
6262
6263 return barycentric_interp_modes;
6264 }
6265
6266 static void
6267 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6268 const nir_shader *shader)
6269 {
6270 prog_data->flat_inputs = 0;
6271
6272 nir_foreach_variable(var, &shader->inputs) {
6273 int input_index = prog_data->urb_setup[var->data.location];
6274
6275 if (input_index < 0)
6276 continue;
6277
6278 /* flat shading */
6279 if (var->data.interpolation == INTERP_MODE_FLAT)
6280 prog_data->flat_inputs |= (1 << input_index);
6281 }
6282 }
6283
6284 static uint8_t
6285 computed_depth_mode(const nir_shader *shader)
6286 {
6287 if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6288 switch (shader->info->fs.depth_layout) {
6289 case FRAG_DEPTH_LAYOUT_NONE:
6290 case FRAG_DEPTH_LAYOUT_ANY:
6291 return BRW_PSCDEPTH_ON;
6292 case FRAG_DEPTH_LAYOUT_GREATER:
6293 return BRW_PSCDEPTH_ON_GE;
6294 case FRAG_DEPTH_LAYOUT_LESS:
6295 return BRW_PSCDEPTH_ON_LE;
6296 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6297 return BRW_PSCDEPTH_OFF;
6298 }
6299 }
6300 return BRW_PSCDEPTH_OFF;
6301 }
6302
6303 /**
6304 * Move load_interpolated_input with simple (payload-based) barycentric modes
6305 * to the top of the program so we don't emit multiple PLNs for the same input.
6306 *
6307 * This works around CSE not being able to handle non-dominating cases
6308 * such as:
6309 *
6310 * if (...) {
6311 * interpolate input
6312 * } else {
6313 * interpolate the same exact input
6314 * }
6315 *
6316 * This should be replaced by global value numbering someday.
6317 */
6318 void
6319 move_interpolation_to_top(nir_shader *nir)
6320 {
6321 nir_foreach_function(f, nir) {
6322 if (!f->impl)
6323 continue;
6324
6325 nir_block *top = nir_start_block(f->impl);
6326 exec_node *cursor_node = NULL;
6327
6328 nir_foreach_block(block, f->impl) {
6329 if (block == top)
6330 continue;
6331
6332 nir_foreach_instr_safe(instr, block) {
6333 if (instr->type != nir_instr_type_intrinsic)
6334 continue;
6335
6336 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6337 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6338 continue;
6339 nir_intrinsic_instr *bary_intrinsic =
6340 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6341 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6342
6343 /* Leave interpolateAtSample/Offset() where they are. */
6344 if (op == nir_intrinsic_load_barycentric_at_sample ||
6345 op == nir_intrinsic_load_barycentric_at_offset)
6346 continue;
6347
6348 nir_instr *move[3] = {
6349 &bary_intrinsic->instr,
6350 intrin->src[1].ssa->parent_instr,
6351 instr
6352 };
6353
6354 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6355 if (move[i]->block != top) {
6356 move[i]->block = top;
6357 exec_node_remove(&move[i]->node);
6358 if (cursor_node) {
6359 exec_node_insert_after(cursor_node, &move[i]->node);
6360 } else {
6361 exec_list_push_head(&top->instr_list, &move[i]->node);
6362 }
6363 cursor_node = &move[i]->node;
6364 }
6365 }
6366 }
6367 }
6368 nir_metadata_preserve(f->impl, (nir_metadata)
6369 ((unsigned) nir_metadata_block_index |
6370 (unsigned) nir_metadata_dominance));
6371 }
6372 }
6373
6374 /**
6375 * Demote per-sample barycentric intrinsics to centroid.
6376 *
6377 * Useful when rendering to a non-multisampled buffer.
6378 */
6379 static void
6380 demote_sample_qualifiers(nir_shader *nir)
6381 {
6382 nir_foreach_function(f, nir) {
6383 if (!f->impl)
6384 continue;
6385
6386 nir_builder b;
6387 nir_builder_init(&b, f->impl);
6388
6389 nir_foreach_block(block, f->impl) {
6390 nir_foreach_instr_safe(instr, block) {
6391 if (instr->type != nir_instr_type_intrinsic)
6392 continue;
6393
6394 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6395 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6396 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6397 continue;
6398
6399 b.cursor = nir_before_instr(instr);
6400 nir_ssa_def *centroid =
6401 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6402 nir_intrinsic_interp_mode(intrin));
6403 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6404 nir_src_for_ssa(centroid));
6405 nir_instr_remove(instr);
6406 }
6407 }
6408
6409 nir_metadata_preserve(f->impl, (nir_metadata)
6410 ((unsigned) nir_metadata_block_index |
6411 (unsigned) nir_metadata_dominance));
6412 }
6413 }
6414
6415 const unsigned *
6416 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6417 void *mem_ctx,
6418 const struct brw_wm_prog_key *key,
6419 struct brw_wm_prog_data *prog_data,
6420 const nir_shader *src_shader,
6421 struct gl_program *prog,
6422 int shader_time_index8, int shader_time_index16,
6423 bool allow_spilling,
6424 bool use_rep_send, struct brw_vue_map *vue_map,
6425 unsigned *final_assembly_size,
6426 char **error_str)
6427 {
6428 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6429 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6430 true);
6431 brw_nir_lower_fs_inputs(shader, vue_map, prog, compiler->devinfo, key);
6432 brw_nir_lower_fs_outputs(shader);
6433 if (!key->multisample_fbo)
6434 NIR_PASS_V(shader, demote_sample_qualifiers);
6435 NIR_PASS_V(shader, move_interpolation_to_top);
6436 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6437
6438 /* key->alpha_test_func means simulating alpha testing via discards,
6439 * so the shader definitely kills pixels.
6440 */
6441 prog_data->uses_kill = shader->info->fs.uses_discard ||
6442 key->alpha_test_func;
6443 prog_data->uses_omask = key->multisample_fbo &&
6444 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6445 prog_data->computed_depth_mode = computed_depth_mode(shader);
6446 prog_data->computed_stencil =
6447 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6448
6449 prog_data->persample_dispatch =
6450 key->multisample_fbo &&
6451 (key->persample_interp ||
6452 (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6453 SYSTEM_BIT_SAMPLE_POS)) ||
6454 shader->info->fs.uses_sample_qualifier ||
6455 shader->info->outputs_read);
6456
6457 prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
6458
6459 prog_data->barycentric_interp_modes =
6460 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6461
6462 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6463 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6464 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6465
6466 fs_visitor v8(compiler, log_data, mem_ctx, key,
6467 &prog_data->base, prog, shader, 8,
6468 shader_time_index8);
6469 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6470 if (error_str)
6471 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6472
6473 return NULL;
6474 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6475 simd8_cfg = v8.cfg;
6476 simd8_grf_start = v8.payload.num_regs;
6477 simd8_grf_used = v8.grf_used;
6478 }
6479
6480 if (v8.max_dispatch_width >= 16 &&
6481 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6482 /* Try a SIMD16 compile */
6483 fs_visitor v16(compiler, log_data, mem_ctx, key,
6484 &prog_data->base, prog, shader, 16,
6485 shader_time_index16);
6486 v16.import_uniforms(&v8);
6487 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6488 compiler->shader_perf_log(log_data,
6489 "SIMD16 shader failed to compile: %s",
6490 v16.fail_msg);
6491 } else {
6492 simd16_cfg = v16.cfg;
6493 simd16_grf_start = v16.payload.num_regs;
6494 simd16_grf_used = v16.grf_used;
6495 }
6496 }
6497
6498 /* When the caller requests a repclear shader, they want SIMD16-only */
6499 if (use_rep_send)
6500 simd8_cfg = NULL;
6501
6502 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6503 * at the top to select the shader. We've never implemented that.
6504 * Instead, we just give them exactly one shader and we pick the widest one
6505 * available.
6506 */
6507 if (compiler->devinfo->gen < 5 && simd16_cfg)
6508 simd8_cfg = NULL;
6509
6510 if (prog_data->persample_dispatch) {
6511 /* Starting with SandyBridge (where we first get MSAA), the different
6512 * pixel dispatch combinations are grouped into classifications A
6513 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6514 * generations, the only configurations supporting persample dispatch
6515 * are are this in which only one dispatch width is enabled.
6516 *
6517 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6518 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6519 */
6520 if (compiler->devinfo->gen == 6 &&
6521 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6522 simd16_cfg = NULL;
6523 } else if (simd16_cfg) {
6524 simd8_cfg = NULL;
6525 }
6526 }
6527
6528 /* We have to compute the flat inputs after the visitor is finished running
6529 * because it relies on prog_data->urb_setup which is computed in
6530 * fs_visitor::calculate_urb_setup().
6531 */
6532 brw_compute_flat_inputs(prog_data, shader);
6533
6534 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6535 v8.promoted_constants, v8.runtime_check_aads_emit,
6536 MESA_SHADER_FRAGMENT);
6537
6538 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6539 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6540 shader->info->label ?
6541 shader->info->label : "unnamed",
6542 shader->info->name));
6543 }
6544
6545 if (simd8_cfg) {
6546 prog_data->dispatch_8 = true;
6547 g.generate_code(simd8_cfg, 8);
6548 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6549 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6550
6551 if (simd16_cfg) {
6552 prog_data->dispatch_16 = true;
6553 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6554 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6555 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6556 }
6557 } else if (simd16_cfg) {
6558 prog_data->dispatch_16 = true;
6559 g.generate_code(simd16_cfg, 16);
6560 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6561 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6562 }
6563
6564 return g.get_assembly(final_assembly_size);
6565 }
6566
6567 fs_reg *
6568 fs_visitor::emit_cs_work_group_id_setup()
6569 {
6570 assert(stage == MESA_SHADER_COMPUTE);
6571
6572 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6573
6574 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6575 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6576 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6577
6578 bld.MOV(*reg, r0_1);
6579 bld.MOV(offset(*reg, bld, 1), r0_6);
6580 bld.MOV(offset(*reg, bld, 2), r0_7);
6581
6582 return reg;
6583 }
6584
6585 static void
6586 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6587 {
6588 block->dwords = dwords;
6589 block->regs = DIV_ROUND_UP(dwords, 8);
6590 block->size = block->regs * 32;
6591 }
6592
6593 static void
6594 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6595 struct brw_cs_prog_data *cs_prog_data)
6596 {
6597 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6598 bool fill_thread_id =
6599 cs_prog_data->thread_local_id_index >= 0 &&
6600 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6601 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6602
6603 /* The thread ID should be stored in the last param dword */
6604 assert(prog_data->nr_params > 0 || !fill_thread_id);
6605 assert(!fill_thread_id ||
6606 cs_prog_data->thread_local_id_index ==
6607 (int)prog_data->nr_params - 1);
6608
6609 unsigned cross_thread_dwords, per_thread_dwords;
6610 if (!cross_thread_supported) {
6611 cross_thread_dwords = 0u;
6612 per_thread_dwords = prog_data->nr_params;
6613 } else if (fill_thread_id) {
6614 /* Fill all but the last register with cross-thread payload */
6615 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6616 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6617 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6618 } else {
6619 /* Fill all data using cross-thread payload */
6620 cross_thread_dwords = prog_data->nr_params;
6621 per_thread_dwords = 0u;
6622 }
6623
6624 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6625 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6626
6627 unsigned total_dwords =
6628 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6629 cs_prog_data->push.cross_thread.size) / 4;
6630 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6631
6632 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6633 cs_prog_data->push.per_thread.size == 0);
6634 assert(cs_prog_data->push.cross_thread.dwords +
6635 cs_prog_data->push.per_thread.dwords ==
6636 prog_data->nr_params);
6637 }
6638
6639 static void
6640 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6641 {
6642 cs_prog_data->simd_size = size;
6643 unsigned group_size = cs_prog_data->local_size[0] *
6644 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6645 cs_prog_data->threads = (group_size + size - 1) / size;
6646 }
6647
6648 const unsigned *
6649 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6650 void *mem_ctx,
6651 const struct brw_cs_prog_key *key,
6652 struct brw_cs_prog_data *prog_data,
6653 const nir_shader *src_shader,
6654 int shader_time_index,
6655 unsigned *final_assembly_size,
6656 char **error_str)
6657 {
6658 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6659 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6660 true);
6661 brw_nir_lower_cs_shared(shader);
6662 prog_data->base.total_shared += shader->num_shared;
6663
6664 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6665 * the thread_local_id_index.
6666 */
6667 assert(prog_data->thread_local_id_index >= 0);
6668 shader->num_uniforms =
6669 MAX2(shader->num_uniforms,
6670 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6671
6672 brw_nir_lower_intrinsics(shader, &prog_data->base);
6673 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6674
6675 prog_data->local_size[0] = shader->info->cs.local_size[0];
6676 prog_data->local_size[1] = shader->info->cs.local_size[1];
6677 prog_data->local_size[2] = shader->info->cs.local_size[2];
6678 unsigned local_workgroup_size =
6679 shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
6680 shader->info->cs.local_size[2];
6681
6682 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6683 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6684
6685 cfg_t *cfg = NULL;
6686 const char *fail_msg = NULL;
6687
6688 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6689 */
6690 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6691 NULL, /* Never used in core profile */
6692 shader, 8, shader_time_index);
6693 if (simd_required <= 8) {
6694 if (!v8.run_cs()) {
6695 fail_msg = v8.fail_msg;
6696 } else {
6697 cfg = v8.cfg;
6698 cs_set_simd_size(prog_data, 8);
6699 cs_fill_push_const_info(compiler->devinfo, prog_data);
6700 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6701 }
6702 }
6703
6704 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6705 NULL, /* Never used in core profile */
6706 shader, 16, shader_time_index);
6707 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6708 !fail_msg && v8.max_dispatch_width >= 16 &&
6709 simd_required <= 16) {
6710 /* Try a SIMD16 compile */
6711 if (simd_required <= 8)
6712 v16.import_uniforms(&v8);
6713 if (!v16.run_cs()) {
6714 compiler->shader_perf_log(log_data,
6715 "SIMD16 shader failed to compile: %s",
6716 v16.fail_msg);
6717 if (!cfg) {
6718 fail_msg =
6719 "Couldn't generate SIMD16 program and not "
6720 "enough threads for SIMD8";
6721 }
6722 } else {
6723 cfg = v16.cfg;
6724 cs_set_simd_size(prog_data, 16);
6725 cs_fill_push_const_info(compiler->devinfo, prog_data);
6726 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6727 }
6728 }
6729
6730 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6731 NULL, /* Never used in core profile */
6732 shader, 32, shader_time_index);
6733 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6734 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6735 /* Try a SIMD32 compile */
6736 if (simd_required <= 8)
6737 v32.import_uniforms(&v8);
6738 else if (simd_required <= 16)
6739 v32.import_uniforms(&v16);
6740
6741 if (!v32.run_cs()) {
6742 compiler->shader_perf_log(log_data,
6743 "SIMD32 shader failed to compile: %s",
6744 v16.fail_msg);
6745 if (!cfg) {
6746 fail_msg =
6747 "Couldn't generate SIMD32 program and not "
6748 "enough threads for SIMD16";
6749 }
6750 } else {
6751 cfg = v32.cfg;
6752 cs_set_simd_size(prog_data, 32);
6753 cs_fill_push_const_info(compiler->devinfo, prog_data);
6754 }
6755 }
6756
6757 if (unlikely(cfg == NULL)) {
6758 assert(fail_msg);
6759 if (error_str)
6760 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6761
6762 return NULL;
6763 }
6764
6765 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6766 v8.promoted_constants, v8.runtime_check_aads_emit,
6767 MESA_SHADER_COMPUTE);
6768 if (INTEL_DEBUG & DEBUG_CS) {
6769 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6770 shader->info->label ? shader->info->label :
6771 "unnamed",
6772 shader->info->name);
6773 g.enable_debug(name);
6774 }
6775
6776 g.generate_code(cfg, prog_data->simd_size);
6777
6778 return g.get_assembly(final_assembly_size);
6779 }
6780
6781 /**
6782 * Test the dispatch mask packing assumptions of
6783 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6784 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6785 * executed with an unexpected dispatch mask.
6786 */
6787 static UNUSED void
6788 brw_fs_test_dispatch_packing(const fs_builder &bld)
6789 {
6790 const gl_shader_stage stage = bld.shader->stage;
6791
6792 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6793 bld.shader->stage_prog_data)) {
6794 const fs_builder ubld = bld.exec_all().group(1, 0);
6795 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6796 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6797 brw_dmask_reg());
6798
6799 ubld.ADD(tmp, mask, brw_imm_ud(1));
6800 ubld.AND(tmp, mask, tmp);
6801
6802 /* This will loop forever if the dispatch mask doesn't have the expected
6803 * form '2^n-1', in which case tmp will be non-zero.
6804 */
6805 bld.emit(BRW_OPCODE_DO);
6806 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6807 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6808 }
6809 }