3f307f4ef70cb38b70b44ac6d4c80a1f5a4cf3f7
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->stride = 1;
437 if (this->file == IMM &&
438 (this->type != BRW_REGISTER_TYPE_V &&
439 this->type != BRW_REGISTER_TYPE_UV &&
440 this->type != BRW_REGISTER_TYPE_VF)) {
441 this->stride = 0;
442 }
443 }
444
445 bool
446 fs_reg::equals(const fs_reg &r) const
447 {
448 return (this->backend_reg::equals(r) &&
449 subreg_offset == r.subreg_offset &&
450 stride == r.stride);
451 }
452
453 fs_reg &
454 fs_reg::set_smear(unsigned subreg)
455 {
456 assert(file != ARF && file != FIXED_GRF && file != IMM);
457 subreg_offset = subreg * type_sz(type);
458 stride = 0;
459 return *this;
460 }
461
462 bool
463 fs_reg::is_contiguous() const
464 {
465 return stride == 1;
466 }
467
468 unsigned
469 fs_reg::component_size(unsigned width) const
470 {
471 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
472 hstride == 0 ? 0 :
473 1 << (hstride - 1));
474 return MAX2(width * stride, 1) * type_sz(type);
475 }
476
477 extern "C" int
478 type_size_scalar(const struct glsl_type *type)
479 {
480 unsigned int size, i;
481
482 switch (type->base_type) {
483 case GLSL_TYPE_UINT:
484 case GLSL_TYPE_INT:
485 case GLSL_TYPE_FLOAT:
486 case GLSL_TYPE_BOOL:
487 return type->components();
488 case GLSL_TYPE_ARRAY:
489 return type_size_scalar(type->fields.array) * type->length;
490 case GLSL_TYPE_STRUCT:
491 size = 0;
492 for (i = 0; i < type->length; i++) {
493 size += type_size_scalar(type->fields.structure[i].type);
494 }
495 return size;
496 case GLSL_TYPE_SAMPLER:
497 /* Samplers take up no register space, since they're baked in at
498 * link time.
499 */
500 return 0;
501 case GLSL_TYPE_ATOMIC_UINT:
502 return 0;
503 case GLSL_TYPE_SUBROUTINE:
504 return 1;
505 case GLSL_TYPE_IMAGE:
506 return BRW_IMAGE_PARAM_SIZE;
507 case GLSL_TYPE_VOID:
508 case GLSL_TYPE_ERROR:
509 case GLSL_TYPE_INTERFACE:
510 case GLSL_TYPE_DOUBLE:
511 case GLSL_TYPE_FUNCTION:
512 unreachable("not reached");
513 }
514
515 return 0;
516 }
517
518 /**
519 * Returns the number of scalar components needed to store type, assuming
520 * that vectors are padded out to vec4.
521 *
522 * This has the packing rules of type_size_vec4(), but counts components
523 * similar to type_size_scalar().
524 */
525 extern "C" int
526 type_size_vec4_times_4(const struct glsl_type *type)
527 {
528 return 4 * type_size_vec4(type);
529 }
530
531 /**
532 * Create a MOV to read the timestamp register.
533 *
534 * The caller is responsible for emitting the MOV. The return value is
535 * the destination of the MOV, with extra parameters set.
536 */
537 fs_reg
538 fs_visitor::get_timestamp(const fs_builder &bld)
539 {
540 assert(devinfo->gen >= 7);
541
542 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
543 BRW_ARF_TIMESTAMP,
544 0),
545 BRW_REGISTER_TYPE_UD));
546
547 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
548
549 /* We want to read the 3 fields we care about even if it's not enabled in
550 * the dispatch.
551 */
552 bld.group(4, 0).exec_all().MOV(dst, ts);
553
554 return dst;
555 }
556
557 void
558 fs_visitor::emit_shader_time_begin()
559 {
560 shader_start_time = get_timestamp(bld.annotate("shader time start"));
561
562 /* We want only the low 32 bits of the timestamp. Since it's running
563 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
564 * which is plenty of time for our purposes. It is identical across the
565 * EUs, but since it's tracking GPU core speed it will increment at a
566 * varying rate as render P-states change.
567 */
568 shader_start_time.set_smear(0);
569 }
570
571 void
572 fs_visitor::emit_shader_time_end()
573 {
574 /* Insert our code just before the final SEND with EOT. */
575 exec_node *end = this->instructions.get_tail();
576 assert(end && ((fs_inst *) end)->eot);
577 const fs_builder ibld = bld.annotate("shader time end")
578 .exec_all().at(NULL, end);
579
580 fs_reg shader_end_time = get_timestamp(ibld);
581
582 /* We only use the low 32 bits of the timestamp - see
583 * emit_shader_time_begin()).
584 *
585 * We could also check if render P-states have changed (or anything
586 * else that might disrupt timing) by setting smear to 2 and checking if
587 * that field is != 0.
588 */
589 shader_end_time.set_smear(0);
590
591 /* Check that there weren't any timestamp reset events (assuming these
592 * were the only two timestamp reads that happened).
593 */
594 fs_reg reset = shader_end_time;
595 reset.set_smear(2);
596 set_condmod(BRW_CONDITIONAL_Z,
597 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
598 ibld.IF(BRW_PREDICATE_NORMAL);
599
600 fs_reg start = shader_start_time;
601 start.negate = true;
602 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
603 diff.set_smear(0);
604
605 const fs_builder cbld = ibld.group(1, 0);
606 cbld.group(1, 0).ADD(diff, start, shader_end_time);
607
608 /* If there were no instructions between the two timestamp gets, the diff
609 * is 2 cycles. Remove that overhead, so I can forget about that when
610 * trying to determine the time taken for single instructions.
611 */
612 cbld.ADD(diff, diff, brw_imm_ud(-2u));
613 SHADER_TIME_ADD(cbld, 0, diff);
614 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
615 ibld.emit(BRW_OPCODE_ELSE);
616 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
617 ibld.emit(BRW_OPCODE_ENDIF);
618 }
619
620 void
621 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
622 int shader_time_subindex,
623 fs_reg value)
624 {
625 int index = shader_time_index * 3 + shader_time_subindex;
626 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
627
628 fs_reg payload;
629 if (dispatch_width == 8)
630 payload = vgrf(glsl_type::uvec2_type);
631 else
632 payload = vgrf(glsl_type::uint_type);
633
634 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
635 }
636
637 void
638 fs_visitor::vfail(const char *format, va_list va)
639 {
640 char *msg;
641
642 if (failed)
643 return;
644
645 failed = true;
646
647 msg = ralloc_vasprintf(mem_ctx, format, va);
648 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
649
650 this->fail_msg = msg;
651
652 if (debug_enabled) {
653 fprintf(stderr, "%s", msg);
654 }
655 }
656
657 void
658 fs_visitor::fail(const char *format, ...)
659 {
660 va_list va;
661
662 va_start(va, format);
663 vfail(format, va);
664 va_end(va);
665 }
666
667 /**
668 * Mark this program as impossible to compile in SIMD16 mode.
669 *
670 * During the SIMD8 compile (which happens first), we can detect and flag
671 * things that are unsupported in SIMD16 mode, so the compiler can skip
672 * the SIMD16 compile altogether.
673 *
674 * During a SIMD16 compile (if one happens anyway), this just calls fail().
675 */
676 void
677 fs_visitor::no16(const char *msg)
678 {
679 if (dispatch_width == 16) {
680 fail("%s", msg);
681 } else {
682 simd16_unsupported = true;
683
684 compiler->shader_perf_log(log_data,
685 "SIMD16 shader failed to compile: %s", msg);
686 }
687 }
688
689 /**
690 * Returns true if the instruction has a flag that means it won't
691 * update an entire destination register.
692 *
693 * For example, dead code elimination and live variable analysis want to know
694 * when a write to a variable screens off any preceding values that were in
695 * it.
696 */
697 bool
698 fs_inst::is_partial_write() const
699 {
700 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
701 (this->exec_size * type_sz(this->dst.type)) < 32 ||
702 !this->dst.is_contiguous());
703 }
704
705 unsigned
706 fs_inst::components_read(unsigned i) const
707 {
708 switch (opcode) {
709 case FS_OPCODE_LINTERP:
710 if (i == 0)
711 return 2;
712 else
713 return 1;
714
715 case FS_OPCODE_PIXEL_X:
716 case FS_OPCODE_PIXEL_Y:
717 assert(i == 0);
718 return 2;
719
720 case FS_OPCODE_FB_WRITE_LOGICAL:
721 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
722 /* First/second FB write color. */
723 if (i < 2)
724 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
725 else
726 return 1;
727
728 case SHADER_OPCODE_TEX_LOGICAL:
729 case SHADER_OPCODE_TXD_LOGICAL:
730 case SHADER_OPCODE_TXF_LOGICAL:
731 case SHADER_OPCODE_TXL_LOGICAL:
732 case SHADER_OPCODE_TXS_LOGICAL:
733 case FS_OPCODE_TXB_LOGICAL:
734 case SHADER_OPCODE_TXF_CMS_LOGICAL:
735 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
736 case SHADER_OPCODE_TXF_UMS_LOGICAL:
737 case SHADER_OPCODE_TXF_MCS_LOGICAL:
738 case SHADER_OPCODE_LOD_LOGICAL:
739 case SHADER_OPCODE_TG4_LOGICAL:
740 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
741 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
742 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
743 /* Texture coordinates. */
744 if (i == TEX_LOGICAL_SRC_COORDINATE)
745 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
746 /* Texture derivatives. */
747 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
748 opcode == SHADER_OPCODE_TXD_LOGICAL)
749 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
750 /* Texture offset. */
751 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
752 return 2;
753 /* MCS */
754 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
755 return 2;
756 else
757 return 1;
758
759 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
760 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
761 assert(src[3].file == IMM);
762 /* Surface coordinates. */
763 if (i == 0)
764 return src[3].ud;
765 /* Surface operation source (ignored for reads). */
766 else if (i == 1)
767 return 0;
768 else
769 return 1;
770
771 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
772 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
773 assert(src[3].file == IMM &&
774 src[4].file == IMM);
775 /* Surface coordinates. */
776 if (i == 0)
777 return src[3].ud;
778 /* Surface operation source. */
779 else if (i == 1)
780 return src[4].ud;
781 else
782 return 1;
783
784 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
785 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
786 assert(src[3].file == IMM &&
787 src[4].file == IMM);
788 const unsigned op = src[4].ud;
789 /* Surface coordinates. */
790 if (i == 0)
791 return src[3].ud;
792 /* Surface operation source. */
793 else if (i == 1 && op == BRW_AOP_CMPWR)
794 return 2;
795 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
796 op == BRW_AOP_PREDEC))
797 return 0;
798 else
799 return 1;
800 }
801
802 default:
803 return 1;
804 }
805 }
806
807 int
808 fs_inst::regs_read(int arg) const
809 {
810 switch (opcode) {
811 case FS_OPCODE_FB_WRITE:
812 case SHADER_OPCODE_URB_WRITE_SIMD8:
813 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
814 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
815 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
816 case SHADER_OPCODE_URB_READ_SIMD8:
817 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
818 case SHADER_OPCODE_UNTYPED_ATOMIC:
819 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
820 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
821 case SHADER_OPCODE_TYPED_ATOMIC:
822 case SHADER_OPCODE_TYPED_SURFACE_READ:
823 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
824 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
825 if (arg == 0)
826 return mlen;
827 break;
828
829 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
830 /* The payload is actually stored in src1 */
831 if (arg == 1)
832 return mlen;
833 break;
834
835 case FS_OPCODE_LINTERP:
836 if (arg == 1)
837 return 1;
838 break;
839
840 case SHADER_OPCODE_LOAD_PAYLOAD:
841 if (arg < this->header_size)
842 return 1;
843 break;
844
845 case CS_OPCODE_CS_TERMINATE:
846 case SHADER_OPCODE_BARRIER:
847 return 1;
848
849 case SHADER_OPCODE_MOV_INDIRECT:
850 if (arg == 0) {
851 assert(src[2].file == IMM);
852 unsigned region_length = src[2].ud;
853
854 if (src[0].file == UNIFORM) {
855 assert(region_length % 4 == 0);
856 return region_length / 4;
857 } else if (src[0].file == FIXED_GRF) {
858 /* If the start of the region is not register aligned, then
859 * there's some portion of the register that's technically
860 * unread at the beginning.
861 *
862 * However, the register allocator works in terms of whole
863 * registers, and does not use subnr. It assumes that the
864 * read starts at the beginning of the register, and extends
865 * regs_read() whole registers beyond that.
866 *
867 * To compensate, we extend the region length to include this
868 * unread portion at the beginning.
869 */
870 if (src[0].subnr)
871 region_length += src[0].subnr;
872
873 return DIV_ROUND_UP(region_length, REG_SIZE);
874 } else {
875 assert(!"Invalid register file");
876 }
877 }
878 break;
879
880 default:
881 if (is_tex() && arg == 0 && src[0].file == VGRF)
882 return mlen;
883 break;
884 }
885
886 switch (src[arg].file) {
887 case BAD_FILE:
888 return 0;
889 case UNIFORM:
890 case IMM:
891 return 1;
892 case ARF:
893 case FIXED_GRF:
894 case VGRF:
895 case ATTR:
896 return DIV_ROUND_UP(components_read(arg) *
897 src[arg].component_size(exec_size),
898 REG_SIZE);
899 case MRF:
900 unreachable("MRF registers are not allowed as sources");
901 }
902 return 0;
903 }
904
905 bool
906 fs_inst::reads_flag() const
907 {
908 return predicate;
909 }
910
911 bool
912 fs_inst::writes_flag() const
913 {
914 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
915 opcode != BRW_OPCODE_IF &&
916 opcode != BRW_OPCODE_WHILE)) ||
917 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
918 }
919
920 /**
921 * Returns how many MRFs an FS opcode will write over.
922 *
923 * Note that this is not the 0 or 1 implied writes in an actual gen
924 * instruction -- the FS opcodes often generate MOVs in addition.
925 */
926 int
927 fs_visitor::implied_mrf_writes(fs_inst *inst)
928 {
929 if (inst->mlen == 0)
930 return 0;
931
932 if (inst->base_mrf == -1)
933 return 0;
934
935 switch (inst->opcode) {
936 case SHADER_OPCODE_RCP:
937 case SHADER_OPCODE_RSQ:
938 case SHADER_OPCODE_SQRT:
939 case SHADER_OPCODE_EXP2:
940 case SHADER_OPCODE_LOG2:
941 case SHADER_OPCODE_SIN:
942 case SHADER_OPCODE_COS:
943 return 1 * dispatch_width / 8;
944 case SHADER_OPCODE_POW:
945 case SHADER_OPCODE_INT_QUOTIENT:
946 case SHADER_OPCODE_INT_REMAINDER:
947 return 2 * dispatch_width / 8;
948 case SHADER_OPCODE_TEX:
949 case FS_OPCODE_TXB:
950 case SHADER_OPCODE_TXD:
951 case SHADER_OPCODE_TXF:
952 case SHADER_OPCODE_TXF_CMS:
953 case SHADER_OPCODE_TXF_CMS_W:
954 case SHADER_OPCODE_TXF_MCS:
955 case SHADER_OPCODE_TG4:
956 case SHADER_OPCODE_TG4_OFFSET:
957 case SHADER_OPCODE_TXL:
958 case SHADER_OPCODE_TXS:
959 case SHADER_OPCODE_LOD:
960 case SHADER_OPCODE_SAMPLEINFO:
961 return 1;
962 case FS_OPCODE_FB_WRITE:
963 return 2;
964 case FS_OPCODE_GET_BUFFER_SIZE:
965 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
966 case SHADER_OPCODE_GEN4_SCRATCH_READ:
967 return 1;
968 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
969 return inst->mlen;
970 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
971 return inst->mlen;
972 case SHADER_OPCODE_UNTYPED_ATOMIC:
973 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
974 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
975 case SHADER_OPCODE_TYPED_ATOMIC:
976 case SHADER_OPCODE_TYPED_SURFACE_READ:
977 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
978 case SHADER_OPCODE_URB_WRITE_SIMD8:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
980 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
981 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
982 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
983 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
984 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
985 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
986 return 0;
987 default:
988 unreachable("not reached");
989 }
990 }
991
992 fs_reg
993 fs_visitor::vgrf(const glsl_type *const type)
994 {
995 int reg_width = dispatch_width / 8;
996 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
997 brw_type_for_base_type(type));
998 }
999
1000 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1001 {
1002 init();
1003 this->file = file;
1004 this->nr = nr;
1005 this->type = BRW_REGISTER_TYPE_F;
1006 this->stride = (file == UNIFORM ? 0 : 1);
1007 }
1008
1009 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1010 {
1011 init();
1012 this->file = file;
1013 this->nr = nr;
1014 this->type = type;
1015 this->stride = (file == UNIFORM ? 0 : 1);
1016 }
1017
1018 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1019 * This brings in those uniform definitions
1020 */
1021 void
1022 fs_visitor::import_uniforms(fs_visitor *v)
1023 {
1024 this->push_constant_loc = v->push_constant_loc;
1025 this->pull_constant_loc = v->pull_constant_loc;
1026 this->uniforms = v->uniforms;
1027 }
1028
1029 fs_reg *
1030 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1031 bool origin_upper_left)
1032 {
1033 assert(stage == MESA_SHADER_FRAGMENT);
1034 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1035 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1036 fs_reg wpos = *reg;
1037 bool flip = !origin_upper_left ^ key->render_to_fbo;
1038
1039 /* gl_FragCoord.x */
1040 if (pixel_center_integer) {
1041 bld.MOV(wpos, this->pixel_x);
1042 } else {
1043 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1044 }
1045 wpos = offset(wpos, bld, 1);
1046
1047 /* gl_FragCoord.y */
1048 if (!flip && pixel_center_integer) {
1049 bld.MOV(wpos, this->pixel_y);
1050 } else {
1051 fs_reg pixel_y = this->pixel_y;
1052 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1053
1054 if (flip) {
1055 pixel_y.negate = true;
1056 offset += key->drawable_height - 1.0f;
1057 }
1058
1059 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1060 }
1061 wpos = offset(wpos, bld, 1);
1062
1063 /* gl_FragCoord.z */
1064 if (devinfo->gen >= 6) {
1065 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1066 } else {
1067 bld.emit(FS_OPCODE_LINTERP, wpos,
1068 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1069 interp_reg(VARYING_SLOT_POS, 2));
1070 }
1071 wpos = offset(wpos, bld, 1);
1072
1073 /* gl_FragCoord.w: Already set up in emit_interpolation */
1074 bld.MOV(wpos, this->wpos_w);
1075
1076 return reg;
1077 }
1078
1079 fs_inst *
1080 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1081 glsl_interp_qualifier interpolation_mode,
1082 bool is_centroid, bool is_sample)
1083 {
1084 brw_wm_barycentric_interp_mode barycoord_mode;
1085 if (devinfo->gen >= 6) {
1086 if (is_centroid) {
1087 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1088 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1089 else
1090 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1091 } else if (is_sample) {
1092 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1093 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1094 else
1095 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1096 } else {
1097 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1098 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1099 else
1100 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1101 }
1102 } else {
1103 /* On Ironlake and below, there is only one interpolation mode.
1104 * Centroid interpolation doesn't mean anything on this hardware --
1105 * there is no multisampling.
1106 */
1107 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1108 }
1109 return bld.emit(FS_OPCODE_LINTERP, attr,
1110 this->delta_xy[barycoord_mode], interp);
1111 }
1112
1113 void
1114 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1115 const glsl_type *type,
1116 glsl_interp_qualifier interpolation_mode,
1117 int *location, bool mod_centroid,
1118 bool mod_sample)
1119 {
1120 assert(stage == MESA_SHADER_FRAGMENT);
1121 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1122 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1123
1124 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1125 bool is_gl_Color =
1126 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1127 if (key->flat_shade && is_gl_Color) {
1128 interpolation_mode = INTERP_QUALIFIER_FLAT;
1129 } else {
1130 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1131 }
1132 }
1133
1134 if (type->is_array() || type->is_matrix()) {
1135 const glsl_type *elem_type = glsl_get_array_element(type);
1136 const unsigned length = glsl_get_length(type);
1137
1138 for (unsigned i = 0; i < length; i++) {
1139 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1140 location, mod_centroid, mod_sample);
1141 }
1142 } else if (type->is_record()) {
1143 for (unsigned i = 0; i < type->length; i++) {
1144 const glsl_type *field_type = type->fields.structure[i].type;
1145 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1146 location, mod_centroid, mod_sample);
1147 }
1148 } else {
1149 assert(type->is_scalar() || type->is_vector());
1150
1151 if (prog_data->urb_setup[*location] == -1) {
1152 /* If there's no incoming setup data for this slot, don't
1153 * emit interpolation for it.
1154 */
1155 *attr = offset(*attr, bld, type->vector_elements);
1156 (*location)++;
1157 return;
1158 }
1159
1160 attr->type = brw_type_for_base_type(type->get_scalar_type());
1161
1162 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1163 /* Constant interpolation (flat shading) case. The SF has
1164 * handed us defined values in only the constant offset
1165 * field of the setup reg.
1166 */
1167 for (unsigned int i = 0; i < type->vector_elements; i++) {
1168 struct brw_reg interp = interp_reg(*location, i);
1169 interp = suboffset(interp, 3);
1170 interp.type = attr->type;
1171 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1172 *attr = offset(*attr, bld, 1);
1173 }
1174 } else {
1175 /* Smooth/noperspective interpolation case. */
1176 for (unsigned int i = 0; i < type->vector_elements; i++) {
1177 struct brw_reg interp = interp_reg(*location, i);
1178 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1179 /* Get the pixel/sample mask into f0 so that we know
1180 * which pixels are lit. Then, for each channel that is
1181 * unlit, replace the centroid data with non-centroid
1182 * data.
1183 */
1184 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1185
1186 fs_inst *inst;
1187 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1188 false, false);
1189 inst->predicate = BRW_PREDICATE_NORMAL;
1190 inst->predicate_inverse = true;
1191 if (devinfo->has_pln)
1192 inst->no_dd_clear = true;
1193
1194 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1195 mod_centroid && !key->persample_shading,
1196 mod_sample || key->persample_shading);
1197 inst->predicate = BRW_PREDICATE_NORMAL;
1198 inst->predicate_inverse = false;
1199 if (devinfo->has_pln)
1200 inst->no_dd_check = true;
1201
1202 } else {
1203 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1204 mod_centroid && !key->persample_shading,
1205 mod_sample || key->persample_shading);
1206 }
1207 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1208 bld.MUL(*attr, *attr, this->pixel_w);
1209 }
1210 *attr = offset(*attr, bld, 1);
1211 }
1212 }
1213 (*location)++;
1214 }
1215 }
1216
1217 fs_reg *
1218 fs_visitor::emit_frontfacing_interpolation()
1219 {
1220 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1221
1222 if (devinfo->gen >= 6) {
1223 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1224 * a boolean result from this (~0/true or 0/false).
1225 *
1226 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1227 * this task in only one instruction:
1228 * - a negation source modifier will flip the bit; and
1229 * - a W -> D type conversion will sign extend the bit into the high
1230 * word of the destination.
1231 *
1232 * An ASR 15 fills the low word of the destination.
1233 */
1234 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1235 g0.negate = true;
1236
1237 bld.ASR(*reg, g0, brw_imm_d(15));
1238 } else {
1239 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1240 * a boolean result from this (1/true or 0/false).
1241 *
1242 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1243 * the negation source modifier to flip it. Unfortunately the SHR
1244 * instruction only operates on UD (or D with an abs source modifier)
1245 * sources without negation.
1246 *
1247 * Instead, use ASR (which will give ~0/true or 0/false).
1248 */
1249 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1250 g1_6.negate = true;
1251
1252 bld.ASR(*reg, g1_6, brw_imm_d(31));
1253 }
1254
1255 return reg;
1256 }
1257
1258 void
1259 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1260 {
1261 assert(stage == MESA_SHADER_FRAGMENT);
1262 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1263 assert(dst.type == BRW_REGISTER_TYPE_F);
1264
1265 if (key->compute_pos_offset) {
1266 /* Convert int_sample_pos to floating point */
1267 bld.MOV(dst, int_sample_pos);
1268 /* Scale to the range [0, 1] */
1269 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1270 }
1271 else {
1272 /* From ARB_sample_shading specification:
1273 * "When rendering to a non-multisample buffer, or if multisample
1274 * rasterization is disabled, gl_SamplePosition will always be
1275 * (0.5, 0.5).
1276 */
1277 bld.MOV(dst, brw_imm_f(0.5f));
1278 }
1279 }
1280
1281 fs_reg *
1282 fs_visitor::emit_samplepos_setup()
1283 {
1284 assert(devinfo->gen >= 6);
1285
1286 const fs_builder abld = bld.annotate("compute sample position");
1287 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1288 fs_reg pos = *reg;
1289 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1290 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1291
1292 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1293 * mode will be enabled.
1294 *
1295 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1296 * R31.1:0 Position Offset X/Y for Slot[3:0]
1297 * R31.3:2 Position Offset X/Y for Slot[7:4]
1298 * .....
1299 *
1300 * The X, Y sample positions come in as bytes in thread payload. So, read
1301 * the positions using vstride=16, width=8, hstride=2.
1302 */
1303 struct brw_reg sample_pos_reg =
1304 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1305 BRW_REGISTER_TYPE_B), 16, 8, 2);
1306
1307 if (dispatch_width == 8) {
1308 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1309 } else {
1310 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1311 abld.half(1).MOV(half(int_sample_x, 1),
1312 fs_reg(suboffset(sample_pos_reg, 16)));
1313 }
1314 /* Compute gl_SamplePosition.x */
1315 compute_sample_position(pos, int_sample_x);
1316 pos = offset(pos, abld, 1);
1317 if (dispatch_width == 8) {
1318 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1319 } else {
1320 abld.half(0).MOV(half(int_sample_y, 0),
1321 fs_reg(suboffset(sample_pos_reg, 1)));
1322 abld.half(1).MOV(half(int_sample_y, 1),
1323 fs_reg(suboffset(sample_pos_reg, 17)));
1324 }
1325 /* Compute gl_SamplePosition.y */
1326 compute_sample_position(pos, int_sample_y);
1327 return reg;
1328 }
1329
1330 fs_reg *
1331 fs_visitor::emit_sampleid_setup()
1332 {
1333 assert(stage == MESA_SHADER_FRAGMENT);
1334 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1335 assert(devinfo->gen >= 6);
1336
1337 const fs_builder abld = bld.annotate("compute sample id");
1338 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1339
1340 if (key->compute_sample_id) {
1341 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1342 t1.set_smear(0);
1343 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1344
1345 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1346 * 8x multisampling, subspan 0 will represent sample N (where N
1347 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1348 * 7. We can find the value of N by looking at R0.0 bits 7:6
1349 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1350 * (since samples are always delivered in pairs). That is, we
1351 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1352 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1353 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1354 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1355 * populating a temporary variable with the sequence (0, 1, 2, 3),
1356 * and then reading from it using vstride=1, width=4, hstride=0.
1357 * These computations hold good for 4x multisampling as well.
1358 *
1359 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1360 * the first four slots are sample 0 of subspan 0; the next four
1361 * are sample 1 of subspan 0; the third group is sample 0 of
1362 * subspan 1, and finally sample 1 of subspan 1.
1363 */
1364
1365 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1366 * accomodate 16x MSAA.
1367 */
1368 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1369
1370 abld.exec_all().group(1, 0)
1371 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1372 brw_imm_ud(sspi_mask));
1373 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1374
1375 /* This works for both SIMD8 and SIMD16 */
1376 abld.exec_all().group(4, 0)
1377 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1378
1379 /* This special instruction takes care of setting vstride=1,
1380 * width=4, hstride=0 of t2 during an ADD instruction.
1381 */
1382 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1383 } else {
1384 /* As per GL_ARB_sample_shading specification:
1385 * "When rendering to a non-multisample buffer, or if multisample
1386 * rasterization is disabled, gl_SampleID will always be zero."
1387 */
1388 abld.MOV(*reg, brw_imm_d(0));
1389 }
1390
1391 return reg;
1392 }
1393
1394 fs_reg
1395 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1396 {
1397 if (!src.abs && !src.negate)
1398 return src;
1399
1400 fs_reg temp = bld.vgrf(src.type);
1401 bld.MOV(temp, src);
1402
1403 return temp;
1404 }
1405
1406 void
1407 fs_visitor::emit_discard_jump()
1408 {
1409 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1410
1411 /* For performance, after a discard, jump to the end of the
1412 * shader if all relevant channels have been discarded.
1413 */
1414 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1415 discard_jump->flag_subreg = 1;
1416
1417 discard_jump->predicate = (dispatch_width == 8)
1418 ? BRW_PREDICATE_ALIGN1_ANY8H
1419 : BRW_PREDICATE_ALIGN1_ANY16H;
1420 discard_jump->predicate_inverse = true;
1421 }
1422
1423 void
1424 fs_visitor::emit_gs_thread_end()
1425 {
1426 assert(stage == MESA_SHADER_GEOMETRY);
1427
1428 struct brw_gs_prog_data *gs_prog_data =
1429 (struct brw_gs_prog_data *) prog_data;
1430
1431 if (gs_compile->control_data_header_size_bits > 0) {
1432 emit_gs_control_data_bits(this->final_gs_vertex_count);
1433 }
1434
1435 const fs_builder abld = bld.annotate("thread end");
1436 fs_inst *inst;
1437
1438 if (gs_prog_data->static_vertex_count != -1) {
1439 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1440 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1441 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1442 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1443 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1444 prev->eot = true;
1445
1446 /* Delete now dead instructions. */
1447 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1448 if (dead == prev)
1449 break;
1450 dead->remove();
1451 }
1452 return;
1453 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1454 break;
1455 }
1456 }
1457 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1458 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1459 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1460 inst->mlen = 1;
1461 } else {
1462 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1463 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1464 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1465 sources[1] = this->final_gs_vertex_count;
1466 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1467 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1468 inst->mlen = 2;
1469 }
1470 inst->eot = true;
1471 inst->offset = 0;
1472 }
1473
1474 void
1475 fs_visitor::assign_curb_setup()
1476 {
1477 if (dispatch_width == 8) {
1478 prog_data->dispatch_grf_start_reg = payload.num_regs;
1479 } else {
1480 if (stage == MESA_SHADER_FRAGMENT) {
1481 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1482 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1483 } else if (stage == MESA_SHADER_COMPUTE) {
1484 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1485 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1486 } else {
1487 unreachable("Unsupported shader type!");
1488 }
1489 }
1490
1491 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1492
1493 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1494 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1495 for (unsigned int i = 0; i < inst->sources; i++) {
1496 if (inst->src[i].file == UNIFORM) {
1497 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1498 int constant_nr;
1499 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1500 constant_nr = push_constant_loc[uniform_nr];
1501 } else {
1502 /* Section 5.11 of the OpenGL 4.1 spec says:
1503 * "Out-of-bounds reads return undefined values, which include
1504 * values from other variables of the active program or zero."
1505 * Just return the first push constant.
1506 */
1507 constant_nr = 0;
1508 }
1509
1510 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1511 constant_nr / 8,
1512 constant_nr % 8);
1513 brw_reg.abs = inst->src[i].abs;
1514 brw_reg.negate = inst->src[i].negate;
1515
1516 assert(inst->src[i].stride == 0);
1517 inst->src[i] = byte_offset(
1518 retype(brw_reg, inst->src[i].type),
1519 inst->src[i].subreg_offset);
1520 }
1521 }
1522 }
1523
1524 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1525 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1526 }
1527
1528 void
1529 fs_visitor::calculate_urb_setup()
1530 {
1531 assert(stage == MESA_SHADER_FRAGMENT);
1532 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1533 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1534
1535 memset(prog_data->urb_setup, -1,
1536 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1537
1538 int urb_next = 0;
1539 /* Figure out where each of the incoming setup attributes lands. */
1540 if (devinfo->gen >= 6) {
1541 if (_mesa_bitcount_64(nir->info.inputs_read &
1542 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1543 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1544 * first 16 varying inputs, so we can put them wherever we want.
1545 * Just put them in order.
1546 *
1547 * This is useful because it means that (a) inputs not used by the
1548 * fragment shader won't take up valuable register space, and (b) we
1549 * won't have to recompile the fragment shader if it gets paired with
1550 * a different vertex (or geometry) shader.
1551 */
1552 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1553 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1554 BITFIELD64_BIT(i)) {
1555 prog_data->urb_setup[i] = urb_next++;
1556 }
1557 }
1558 } else {
1559 bool include_vue_header =
1560 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1561
1562 /* We have enough input varyings that the SF/SBE pipeline stage can't
1563 * arbitrarily rearrange them to suit our whim; we have to put them
1564 * in an order that matches the output of the previous pipeline stage
1565 * (geometry or vertex shader).
1566 */
1567 struct brw_vue_map prev_stage_vue_map;
1568 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1569 key->input_slots_valid,
1570 nir->info.separate_shader);
1571 int first_slot =
1572 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1573
1574 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1575 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1576 slot++) {
1577 int varying = prev_stage_vue_map.slot_to_varying[slot];
1578 if (varying != BRW_VARYING_SLOT_PAD &&
1579 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1580 BITFIELD64_BIT(varying))) {
1581 prog_data->urb_setup[varying] = slot - first_slot;
1582 }
1583 }
1584 urb_next = prev_stage_vue_map.num_slots - first_slot;
1585 }
1586 } else {
1587 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1588 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1589 /* Point size is packed into the header, not as a general attribute */
1590 if (i == VARYING_SLOT_PSIZ)
1591 continue;
1592
1593 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1594 /* The back color slot is skipped when the front color is
1595 * also written to. In addition, some slots can be
1596 * written in the vertex shader and not read in the
1597 * fragment shader. So the register number must always be
1598 * incremented, mapped or not.
1599 */
1600 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1601 prog_data->urb_setup[i] = urb_next;
1602 urb_next++;
1603 }
1604 }
1605
1606 /*
1607 * It's a FS only attribute, and we did interpolation for this attribute
1608 * in SF thread. So, count it here, too.
1609 *
1610 * See compile_sf_prog() for more info.
1611 */
1612 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1613 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1614 }
1615
1616 prog_data->num_varying_inputs = urb_next;
1617 }
1618
1619 void
1620 fs_visitor::assign_urb_setup()
1621 {
1622 assert(stage == MESA_SHADER_FRAGMENT);
1623 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1624
1625 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1626
1627 /* Offset all the urb_setup[] index by the actual position of the
1628 * setup regs, now that the location of the constants has been chosen.
1629 */
1630 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1631 if (inst->opcode == FS_OPCODE_LINTERP) {
1632 assert(inst->src[1].file == FIXED_GRF);
1633 inst->src[1].nr += urb_start;
1634 }
1635
1636 if (inst->opcode == FS_OPCODE_CINTERP) {
1637 assert(inst->src[0].file == FIXED_GRF);
1638 inst->src[0].nr += urb_start;
1639 }
1640 }
1641
1642 /* Each attribute is 4 setup channels, each of which is half a reg. */
1643 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1644 }
1645
1646 void
1647 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1648 {
1649 for (int i = 0; i < inst->sources; i++) {
1650 if (inst->src[i].file == ATTR) {
1651 int grf = payload.num_regs +
1652 prog_data->curb_read_length +
1653 inst->src[i].nr +
1654 inst->src[i].reg_offset;
1655
1656 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1657 struct brw_reg reg =
1658 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1659 inst->src[i].subreg_offset),
1660 inst->exec_size * inst->src[i].stride,
1661 width, inst->src[i].stride);
1662 reg.abs = inst->src[i].abs;
1663 reg.negate = inst->src[i].negate;
1664
1665 inst->src[i] = reg;
1666 }
1667 }
1668 }
1669
1670 void
1671 fs_visitor::assign_vs_urb_setup()
1672 {
1673 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1674
1675 assert(stage == MESA_SHADER_VERTEX);
1676
1677 /* Each attribute is 4 regs. */
1678 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1679
1680 assert(vs_prog_data->base.urb_read_length <= 15);
1681
1682 /* Rewrite all ATTR file references to the hw grf that they land in. */
1683 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1684 convert_attr_sources_to_hw_regs(inst);
1685 }
1686 }
1687
1688 void
1689 fs_visitor::assign_tes_urb_setup()
1690 {
1691 assert(stage == MESA_SHADER_TESS_EVAL);
1692
1693 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1694
1695 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1696
1697 /* Rewrite all ATTR file references to HW_REGs. */
1698 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1699 convert_attr_sources_to_hw_regs(inst);
1700 }
1701 }
1702
1703 void
1704 fs_visitor::assign_gs_urb_setup()
1705 {
1706 assert(stage == MESA_SHADER_GEOMETRY);
1707
1708 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1709
1710 first_non_payload_grf +=
1711 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1712
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 /* Rewrite all ATTR file references to GRFs. */
1715 convert_attr_sources_to_hw_regs(inst);
1716 }
1717 }
1718
1719
1720 /**
1721 * Split large virtual GRFs into separate components if we can.
1722 *
1723 * This is mostly duplicated with what brw_fs_vector_splitting does,
1724 * but that's really conservative because it's afraid of doing
1725 * splitting that doesn't result in real progress after the rest of
1726 * the optimization phases, which would cause infinite looping in
1727 * optimization. We can do it once here, safely. This also has the
1728 * opportunity to split interpolated values, or maybe even uniforms,
1729 * which we don't have at the IR level.
1730 *
1731 * We want to split, because virtual GRFs are what we register
1732 * allocate and spill (due to contiguousness requirements for some
1733 * instructions), and they're what we naturally generate in the
1734 * codegen process, but most virtual GRFs don't actually need to be
1735 * contiguous sets of GRFs. If we split, we'll end up with reduced
1736 * live intervals and better dead code elimination and coalescing.
1737 */
1738 void
1739 fs_visitor::split_virtual_grfs()
1740 {
1741 int num_vars = this->alloc.count;
1742
1743 /* Count the total number of registers */
1744 int reg_count = 0;
1745 int vgrf_to_reg[num_vars];
1746 for (int i = 0; i < num_vars; i++) {
1747 vgrf_to_reg[i] = reg_count;
1748 reg_count += alloc.sizes[i];
1749 }
1750
1751 /* An array of "split points". For each register slot, this indicates
1752 * if this slot can be separated from the previous slot. Every time an
1753 * instruction uses multiple elements of a register (as a source or
1754 * destination), we mark the used slots as inseparable. Then we go
1755 * through and split the registers into the smallest pieces we can.
1756 */
1757 bool split_points[reg_count];
1758 memset(split_points, 0, sizeof(split_points));
1759
1760 /* Mark all used registers as fully splittable */
1761 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1762 if (inst->dst.file == VGRF) {
1763 int reg = vgrf_to_reg[inst->dst.nr];
1764 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1765 split_points[reg + j] = true;
1766 }
1767
1768 for (int i = 0; i < inst->sources; i++) {
1769 if (inst->src[i].file == VGRF) {
1770 int reg = vgrf_to_reg[inst->src[i].nr];
1771 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1772 split_points[reg + j] = true;
1773 }
1774 }
1775 }
1776
1777 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1778 if (inst->dst.file == VGRF) {
1779 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1780 for (int j = 1; j < inst->regs_written; j++)
1781 split_points[reg + j] = false;
1782 }
1783 for (int i = 0; i < inst->sources; i++) {
1784 if (inst->src[i].file == VGRF) {
1785 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1786 for (int j = 1; j < inst->regs_read(i); j++)
1787 split_points[reg + j] = false;
1788 }
1789 }
1790 }
1791
1792 int new_virtual_grf[reg_count];
1793 int new_reg_offset[reg_count];
1794
1795 int reg = 0;
1796 for (int i = 0; i < num_vars; i++) {
1797 /* The first one should always be 0 as a quick sanity check. */
1798 assert(split_points[reg] == false);
1799
1800 /* j = 0 case */
1801 new_reg_offset[reg] = 0;
1802 reg++;
1803 int offset = 1;
1804
1805 /* j > 0 case */
1806 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1807 /* If this is a split point, reset the offset to 0 and allocate a
1808 * new virtual GRF for the previous offset many registers
1809 */
1810 if (split_points[reg]) {
1811 assert(offset <= MAX_VGRF_SIZE);
1812 int grf = alloc.allocate(offset);
1813 for (int k = reg - offset; k < reg; k++)
1814 new_virtual_grf[k] = grf;
1815 offset = 0;
1816 }
1817 new_reg_offset[reg] = offset;
1818 offset++;
1819 reg++;
1820 }
1821
1822 /* The last one gets the original register number */
1823 assert(offset <= MAX_VGRF_SIZE);
1824 alloc.sizes[i] = offset;
1825 for (int k = reg - offset; k < reg; k++)
1826 new_virtual_grf[k] = i;
1827 }
1828 assert(reg == reg_count);
1829
1830 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1831 if (inst->dst.file == VGRF) {
1832 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1833 inst->dst.nr = new_virtual_grf[reg];
1834 inst->dst.reg_offset = new_reg_offset[reg];
1835 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1836 }
1837 for (int i = 0; i < inst->sources; i++) {
1838 if (inst->src[i].file == VGRF) {
1839 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1840 inst->src[i].nr = new_virtual_grf[reg];
1841 inst->src[i].reg_offset = new_reg_offset[reg];
1842 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1843 }
1844 }
1845 }
1846 invalidate_live_intervals();
1847 }
1848
1849 /**
1850 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1851 *
1852 * During code generation, we create tons of temporary variables, many of
1853 * which get immediately killed and are never used again. Yet, in later
1854 * optimization and analysis passes, such as compute_live_intervals, we need
1855 * to loop over all the virtual GRFs. Compacting them can save a lot of
1856 * overhead.
1857 */
1858 bool
1859 fs_visitor::compact_virtual_grfs()
1860 {
1861 bool progress = false;
1862 int remap_table[this->alloc.count];
1863 memset(remap_table, -1, sizeof(remap_table));
1864
1865 /* Mark which virtual GRFs are used. */
1866 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1867 if (inst->dst.file == VGRF)
1868 remap_table[inst->dst.nr] = 0;
1869
1870 for (int i = 0; i < inst->sources; i++) {
1871 if (inst->src[i].file == VGRF)
1872 remap_table[inst->src[i].nr] = 0;
1873 }
1874 }
1875
1876 /* Compact the GRF arrays. */
1877 int new_index = 0;
1878 for (unsigned i = 0; i < this->alloc.count; i++) {
1879 if (remap_table[i] == -1) {
1880 /* We just found an unused register. This means that we are
1881 * actually going to compact something.
1882 */
1883 progress = true;
1884 } else {
1885 remap_table[i] = new_index;
1886 alloc.sizes[new_index] = alloc.sizes[i];
1887 invalidate_live_intervals();
1888 ++new_index;
1889 }
1890 }
1891
1892 this->alloc.count = new_index;
1893
1894 /* Patch all the instructions to use the newly renumbered registers */
1895 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1896 if (inst->dst.file == VGRF)
1897 inst->dst.nr = remap_table[inst->dst.nr];
1898
1899 for (int i = 0; i < inst->sources; i++) {
1900 if (inst->src[i].file == VGRF)
1901 inst->src[i].nr = remap_table[inst->src[i].nr];
1902 }
1903 }
1904
1905 /* Patch all the references to delta_xy, since they're used in register
1906 * allocation. If they're unused, switch them to BAD_FILE so we don't
1907 * think some random VGRF is delta_xy.
1908 */
1909 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1910 if (delta_xy[i].file == VGRF) {
1911 if (remap_table[delta_xy[i].nr] != -1) {
1912 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1913 } else {
1914 delta_xy[i].file = BAD_FILE;
1915 }
1916 }
1917 }
1918
1919 return progress;
1920 }
1921
1922 /**
1923 * Assign UNIFORM file registers to either push constants or pull constants.
1924 *
1925 * We allow a fragment shader to have more than the specified minimum
1926 * maximum number of fragment shader uniform components (64). If
1927 * there are too many of these, they'd fill up all of register space.
1928 * So, this will push some of them out to the pull constant buffer and
1929 * update the program to load them.
1930 */
1931 void
1932 fs_visitor::assign_constant_locations()
1933 {
1934 /* Only the first compile gets to decide on locations. */
1935 if (dispatch_width != min_dispatch_width)
1936 return;
1937
1938 bool is_live[uniforms];
1939 memset(is_live, 0, sizeof(is_live));
1940
1941 /* For each uniform slot, a value of true indicates that the given slot and
1942 * the next slot must remain contiguous. This is used to keep us from
1943 * splitting arrays apart.
1944 */
1945 bool contiguous[uniforms];
1946 memset(contiguous, 0, sizeof(contiguous));
1947
1948 /* First, we walk through the instructions and do two things:
1949 *
1950 * 1) Figure out which uniforms are live.
1951 *
1952 * 2) Mark any indirectly used ranges of registers as contiguous.
1953 *
1954 * Note that we don't move constant-indexed accesses to arrays. No
1955 * testing has been done of the performance impact of this choice.
1956 */
1957 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1958 for (int i = 0 ; i < inst->sources; i++) {
1959 if (inst->src[i].file != UNIFORM)
1960 continue;
1961
1962 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1963
1964 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1965 assert(inst->src[2].ud % 4 == 0);
1966 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1967 assert(last < uniforms);
1968
1969 for (unsigned j = constant_nr; j < last; j++) {
1970 is_live[j] = true;
1971 contiguous[j] = true;
1972 }
1973 is_live[last] = true;
1974 } else {
1975 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1976 is_live[constant_nr] = true;
1977 }
1978 }
1979 }
1980
1981 /* Only allow 16 registers (128 uniform components) as push constants.
1982 *
1983 * Just demote the end of the list. We could probably do better
1984 * here, demoting things that are rarely used in the program first.
1985 *
1986 * If changing this value, note the limitation about total_regs in
1987 * brw_curbe.c.
1988 */
1989 const unsigned int max_push_components = 16 * 8;
1990
1991 /* For vulkan we don't limit the max_chunk_size. We set it to 32 float =
1992 * 128 bytes, which is the maximum vulkan push constant size.
1993 */
1994 const unsigned int max_chunk_size = 32;
1995
1996 unsigned int num_push_constants = 0;
1997 unsigned int num_pull_constants = 0;
1998
1999 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2000 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2001
2002 int chunk_start = -1;
2003 for (unsigned u = 0; u < uniforms; u++) {
2004 push_constant_loc[u] = -1;
2005 pull_constant_loc[u] = -1;
2006
2007 if (!is_live[u])
2008 continue;
2009
2010 /* This is the first live uniform in the chunk */
2011 if (chunk_start < 0)
2012 chunk_start = u;
2013
2014 /* If this element does not need to be contiguous with the next, we
2015 * split at this point and everthing between chunk_start and u forms a
2016 * single chunk.
2017 */
2018 if (!contiguous[u]) {
2019 unsigned chunk_size = u - chunk_start + 1;
2020
2021 if (num_push_constants + chunk_size <= max_push_components &&
2022 chunk_size <= max_chunk_size) {
2023 for (unsigned j = chunk_start; j <= u; j++)
2024 push_constant_loc[j] = num_push_constants++;
2025 } else {
2026 for (unsigned j = chunk_start; j <= u; j++)
2027 pull_constant_loc[j] = num_pull_constants++;
2028 }
2029
2030 chunk_start = -1;
2031 }
2032 }
2033
2034 stage_prog_data->nr_params = num_push_constants;
2035 stage_prog_data->nr_pull_params = num_pull_constants;
2036
2037 /* Up until now, the param[] array has been indexed by reg + reg_offset
2038 * of UNIFORM registers. Move pull constants into pull_param[] and
2039 * condense param[] to only contain the uniforms we chose to push.
2040 *
2041 * NOTE: Because we are condensing the params[] array, we know that
2042 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2043 * having to make a copy.
2044 */
2045 for (unsigned int i = 0; i < uniforms; i++) {
2046 const gl_constant_value *value = stage_prog_data->param[i];
2047
2048 if (pull_constant_loc[i] != -1) {
2049 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2050 } else if (push_constant_loc[i] != -1) {
2051 stage_prog_data->param[push_constant_loc[i]] = value;
2052 }
2053 }
2054 }
2055
2056 /**
2057 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2058 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2059 */
2060 void
2061 fs_visitor::lower_constant_loads()
2062 {
2063 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2064
2065 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2066 /* Set up the annotation tracking for new generated instructions. */
2067 const fs_builder ibld(this, block, inst);
2068
2069 for (int i = 0; i < inst->sources; i++) {
2070 if (inst->src[i].file != UNIFORM)
2071 continue;
2072
2073 /* We'll handle this case later */
2074 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2075 continue;
2076
2077 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2078 if (location >= uniforms)
2079 continue; /* Out of bounds access */
2080
2081 int pull_index = pull_constant_loc[location];
2082
2083 if (pull_index == -1)
2084 continue;
2085
2086 assert(inst->src[i].stride == 0);
2087
2088 fs_reg dst = vgrf(glsl_type::float_type);
2089 const fs_builder ubld = ibld.exec_all().group(8, 0);
2090 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2091 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2092 dst, brw_imm_ud(index), offset);
2093
2094 /* Rewrite the instruction to use the temporary VGRF. */
2095 inst->src[i].file = VGRF;
2096 inst->src[i].nr = dst.nr;
2097 inst->src[i].reg_offset = 0;
2098 inst->src[i].set_smear(pull_index & 3);
2099
2100 brw_mark_surface_used(prog_data, index);
2101 }
2102
2103 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2104 inst->src[0].file == UNIFORM) {
2105
2106 unsigned location = inst->src[0].nr + inst->src[0].reg_offset;
2107 if (location >= uniforms)
2108 continue; /* Out of bounds access */
2109
2110 int pull_index = pull_constant_loc[location];
2111
2112 if (pull_index == -1)
2113 continue;
2114
2115 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2116 brw_imm_ud(index),
2117 inst->src[1],
2118 pull_index * 4);
2119 inst->remove(block);
2120
2121 brw_mark_surface_used(prog_data, index);
2122 }
2123 }
2124 invalidate_live_intervals();
2125 }
2126
2127 bool
2128 fs_visitor::opt_algebraic()
2129 {
2130 bool progress = false;
2131
2132 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2133 switch (inst->opcode) {
2134 case BRW_OPCODE_MOV:
2135 if (inst->src[0].file != IMM)
2136 break;
2137
2138 if (inst->saturate) {
2139 if (inst->dst.type != inst->src[0].type)
2140 assert(!"unimplemented: saturate mixed types");
2141
2142 if (brw_saturate_immediate(inst->dst.type,
2143 &inst->src[0].as_brw_reg())) {
2144 inst->saturate = false;
2145 progress = true;
2146 }
2147 }
2148 break;
2149
2150 case BRW_OPCODE_MUL:
2151 if (inst->src[1].file != IMM)
2152 continue;
2153
2154 /* a * 1.0 = a */
2155 if (inst->src[1].is_one()) {
2156 inst->opcode = BRW_OPCODE_MOV;
2157 inst->src[1] = reg_undef;
2158 progress = true;
2159 break;
2160 }
2161
2162 /* a * -1.0 = -a */
2163 if (inst->src[1].is_negative_one()) {
2164 inst->opcode = BRW_OPCODE_MOV;
2165 inst->src[0].negate = !inst->src[0].negate;
2166 inst->src[1] = reg_undef;
2167 progress = true;
2168 break;
2169 }
2170
2171 /* a * 0.0 = 0.0 */
2172 if (inst->src[1].is_zero()) {
2173 inst->opcode = BRW_OPCODE_MOV;
2174 inst->src[0] = inst->src[1];
2175 inst->src[1] = reg_undef;
2176 progress = true;
2177 break;
2178 }
2179
2180 if (inst->src[0].file == IMM) {
2181 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2182 inst->opcode = BRW_OPCODE_MOV;
2183 inst->src[0].f *= inst->src[1].f;
2184 inst->src[1] = reg_undef;
2185 progress = true;
2186 break;
2187 }
2188 break;
2189 case BRW_OPCODE_ADD:
2190 if (inst->src[1].file != IMM)
2191 continue;
2192
2193 /* a + 0.0 = a */
2194 if (inst->src[1].is_zero()) {
2195 inst->opcode = BRW_OPCODE_MOV;
2196 inst->src[1] = reg_undef;
2197 progress = true;
2198 break;
2199 }
2200
2201 if (inst->src[0].file == IMM) {
2202 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2203 inst->opcode = BRW_OPCODE_MOV;
2204 inst->src[0].f += inst->src[1].f;
2205 inst->src[1] = reg_undef;
2206 progress = true;
2207 break;
2208 }
2209 break;
2210 case BRW_OPCODE_OR:
2211 if (inst->src[0].equals(inst->src[1])) {
2212 inst->opcode = BRW_OPCODE_MOV;
2213 inst->src[1] = reg_undef;
2214 progress = true;
2215 break;
2216 }
2217 break;
2218 case BRW_OPCODE_LRP:
2219 if (inst->src[1].equals(inst->src[2])) {
2220 inst->opcode = BRW_OPCODE_MOV;
2221 inst->src[0] = inst->src[1];
2222 inst->src[1] = reg_undef;
2223 inst->src[2] = reg_undef;
2224 progress = true;
2225 break;
2226 }
2227 break;
2228 case BRW_OPCODE_CMP:
2229 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2230 inst->src[0].abs &&
2231 inst->src[0].negate &&
2232 inst->src[1].is_zero()) {
2233 inst->src[0].abs = false;
2234 inst->src[0].negate = false;
2235 inst->conditional_mod = BRW_CONDITIONAL_Z;
2236 progress = true;
2237 break;
2238 }
2239 break;
2240 case BRW_OPCODE_SEL:
2241 if (inst->src[0].equals(inst->src[1])) {
2242 inst->opcode = BRW_OPCODE_MOV;
2243 inst->src[1] = reg_undef;
2244 inst->predicate = BRW_PREDICATE_NONE;
2245 inst->predicate_inverse = false;
2246 progress = true;
2247 } else if (inst->saturate && inst->src[1].file == IMM) {
2248 switch (inst->conditional_mod) {
2249 case BRW_CONDITIONAL_LE:
2250 case BRW_CONDITIONAL_L:
2251 switch (inst->src[1].type) {
2252 case BRW_REGISTER_TYPE_F:
2253 if (inst->src[1].f >= 1.0f) {
2254 inst->opcode = BRW_OPCODE_MOV;
2255 inst->src[1] = reg_undef;
2256 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2257 progress = true;
2258 }
2259 break;
2260 default:
2261 break;
2262 }
2263 break;
2264 case BRW_CONDITIONAL_GE:
2265 case BRW_CONDITIONAL_G:
2266 switch (inst->src[1].type) {
2267 case BRW_REGISTER_TYPE_F:
2268 if (inst->src[1].f <= 0.0f) {
2269 inst->opcode = BRW_OPCODE_MOV;
2270 inst->src[1] = reg_undef;
2271 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2272 progress = true;
2273 }
2274 break;
2275 default:
2276 break;
2277 }
2278 default:
2279 break;
2280 }
2281 }
2282 break;
2283 case BRW_OPCODE_MAD:
2284 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2285 inst->opcode = BRW_OPCODE_MOV;
2286 inst->src[1] = reg_undef;
2287 inst->src[2] = reg_undef;
2288 progress = true;
2289 } else if (inst->src[0].is_zero()) {
2290 inst->opcode = BRW_OPCODE_MUL;
2291 inst->src[0] = inst->src[2];
2292 inst->src[2] = reg_undef;
2293 progress = true;
2294 } else if (inst->src[1].is_one()) {
2295 inst->opcode = BRW_OPCODE_ADD;
2296 inst->src[1] = inst->src[2];
2297 inst->src[2] = reg_undef;
2298 progress = true;
2299 } else if (inst->src[2].is_one()) {
2300 inst->opcode = BRW_OPCODE_ADD;
2301 inst->src[2] = reg_undef;
2302 progress = true;
2303 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2304 inst->opcode = BRW_OPCODE_ADD;
2305 inst->src[1].f *= inst->src[2].f;
2306 inst->src[2] = reg_undef;
2307 progress = true;
2308 }
2309 break;
2310 case SHADER_OPCODE_BROADCAST:
2311 if (is_uniform(inst->src[0])) {
2312 inst->opcode = BRW_OPCODE_MOV;
2313 inst->sources = 1;
2314 inst->force_writemask_all = true;
2315 progress = true;
2316 } else if (inst->src[1].file == IMM) {
2317 inst->opcode = BRW_OPCODE_MOV;
2318 inst->src[0] = component(inst->src[0],
2319 inst->src[1].ud);
2320 inst->sources = 1;
2321 inst->force_writemask_all = true;
2322 progress = true;
2323 }
2324 break;
2325
2326 default:
2327 break;
2328 }
2329
2330 /* Swap if src[0] is immediate. */
2331 if (progress && inst->is_commutative()) {
2332 if (inst->src[0].file == IMM) {
2333 fs_reg tmp = inst->src[1];
2334 inst->src[1] = inst->src[0];
2335 inst->src[0] = tmp;
2336 }
2337 }
2338 }
2339 return progress;
2340 }
2341
2342 /**
2343 * Optimize sample messages that have constant zero values for the trailing
2344 * texture coordinates. We can just reduce the message length for these
2345 * instructions instead of reserving a register for it. Trailing parameters
2346 * that aren't sent default to zero anyway. This will cause the dead code
2347 * eliminator to remove the MOV instruction that would otherwise be emitted to
2348 * set up the zero value.
2349 */
2350 bool
2351 fs_visitor::opt_zero_samples()
2352 {
2353 /* Gen4 infers the texturing opcode based on the message length so we can't
2354 * change it.
2355 */
2356 if (devinfo->gen < 5)
2357 return false;
2358
2359 bool progress = false;
2360
2361 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2362 if (!inst->is_tex())
2363 continue;
2364
2365 fs_inst *load_payload = (fs_inst *) inst->prev;
2366
2367 if (load_payload->is_head_sentinel() ||
2368 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2369 continue;
2370
2371 /* We don't want to remove the message header or the first parameter.
2372 * Removing the first parameter is not allowed, see the Haswell PRM
2373 * volume 7, page 149:
2374 *
2375 * "Parameter 0 is required except for the sampleinfo message, which
2376 * has no parameter 0"
2377 */
2378 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2379 load_payload->src[(inst->mlen - inst->header_size) /
2380 (inst->exec_size / 8) +
2381 inst->header_size - 1].is_zero()) {
2382 inst->mlen -= inst->exec_size / 8;
2383 progress = true;
2384 }
2385 }
2386
2387 if (progress)
2388 invalidate_live_intervals();
2389
2390 return progress;
2391 }
2392
2393 /**
2394 * Optimize sample messages which are followed by the final RT write.
2395 *
2396 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2397 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2398 * final texturing results copied to the framebuffer write payload and modify
2399 * them to write to the framebuffer directly.
2400 */
2401 bool
2402 fs_visitor::opt_sampler_eot()
2403 {
2404 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2405
2406 if (stage != MESA_SHADER_FRAGMENT)
2407 return false;
2408
2409 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2410 return false;
2411
2412 /* FINISHME: It should be possible to implement this optimization when there
2413 * are multiple drawbuffers.
2414 */
2415 if (key->nr_color_regions != 1)
2416 return false;
2417
2418 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2419 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2420 fs_inst *fb_write = (fs_inst *)block->end();
2421 assert(fb_write->eot);
2422 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2423
2424 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2425
2426 /* There wasn't one; nothing to do. */
2427 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2428 return false;
2429
2430 /* 3D Sampler » Messages » Message Format
2431 *
2432 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2433 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2434 */
2435 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2436 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2437 tex_inst->opcode == SHADER_OPCODE_LOD ||
2438 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2439 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2440 return false;
2441
2442 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2443 * It's very likely to be the previous instruction.
2444 */
2445 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2446 if (load_payload->is_head_sentinel() ||
2447 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2448 return false;
2449
2450 assert(!tex_inst->eot); /* We can't get here twice */
2451 assert((tex_inst->offset & (0xff << 24)) == 0);
2452
2453 const fs_builder ibld(this, block, tex_inst);
2454
2455 tex_inst->offset |= fb_write->target << 24;
2456 tex_inst->eot = true;
2457 tex_inst->dst = ibld.null_reg_ud();
2458 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2459
2460 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2461 * to create a new LOAD_PAYLOAD command with the same sources and a space
2462 * saved for the header. Using a new destination register not only makes sure
2463 * we have enough space, but it will make sure the dead code eliminator kills
2464 * the instruction that this will replace.
2465 */
2466 if (tex_inst->header_size != 0) {
2467 invalidate_live_intervals();
2468 return true;
2469 }
2470
2471 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2472 load_payload->sources + 1);
2473 fs_reg *new_sources =
2474 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2475
2476 new_sources[0] = fs_reg();
2477 for (int i = 0; i < load_payload->sources; i++)
2478 new_sources[i+1] = load_payload->src[i];
2479
2480 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2481 * requires a lot of information about the sources to appropriately figure
2482 * out the number of registers needed to be used. Given this stage in our
2483 * optimization, we may not have the appropriate GRFs required by
2484 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2485 * manually emit the instruction.
2486 */
2487 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2488 load_payload->exec_size,
2489 send_header,
2490 new_sources,
2491 load_payload->sources + 1);
2492
2493 new_load_payload->regs_written = load_payload->regs_written + 1;
2494 new_load_payload->header_size = 1;
2495 tex_inst->mlen++;
2496 tex_inst->header_size = 1;
2497 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2498 tex_inst->src[0] = send_header;
2499
2500 invalidate_live_intervals();
2501 return true;
2502 }
2503
2504 bool
2505 fs_visitor::opt_register_renaming()
2506 {
2507 bool progress = false;
2508 int depth = 0;
2509
2510 int remap[alloc.count];
2511 memset(remap, -1, sizeof(int) * alloc.count);
2512
2513 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2514 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2515 depth++;
2516 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2517 inst->opcode == BRW_OPCODE_WHILE) {
2518 depth--;
2519 }
2520
2521 /* Rewrite instruction sources. */
2522 for (int i = 0; i < inst->sources; i++) {
2523 if (inst->src[i].file == VGRF &&
2524 remap[inst->src[i].nr] != -1 &&
2525 remap[inst->src[i].nr] != inst->src[i].nr) {
2526 inst->src[i].nr = remap[inst->src[i].nr];
2527 progress = true;
2528 }
2529 }
2530
2531 const int dst = inst->dst.nr;
2532
2533 if (depth == 0 &&
2534 inst->dst.file == VGRF &&
2535 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2536 !inst->is_partial_write()) {
2537 if (remap[dst] == -1) {
2538 remap[dst] = dst;
2539 } else {
2540 remap[dst] = alloc.allocate(inst->exec_size / 8);
2541 inst->dst.nr = remap[dst];
2542 progress = true;
2543 }
2544 } else if (inst->dst.file == VGRF &&
2545 remap[dst] != -1 &&
2546 remap[dst] != dst) {
2547 inst->dst.nr = remap[dst];
2548 progress = true;
2549 }
2550 }
2551
2552 if (progress) {
2553 invalidate_live_intervals();
2554
2555 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2556 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2557 delta_xy[i].nr = remap[delta_xy[i].nr];
2558 }
2559 }
2560 }
2561
2562 return progress;
2563 }
2564
2565 /**
2566 * Remove redundant or useless discard jumps.
2567 *
2568 * For example, we can eliminate jumps in the following sequence:
2569 *
2570 * discard-jump (redundant with the next jump)
2571 * discard-jump (useless; jumps to the next instruction)
2572 * placeholder-halt
2573 */
2574 bool
2575 fs_visitor::opt_redundant_discard_jumps()
2576 {
2577 bool progress = false;
2578
2579 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2580
2581 fs_inst *placeholder_halt = NULL;
2582 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2583 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2584 placeholder_halt = inst;
2585 break;
2586 }
2587 }
2588
2589 if (!placeholder_halt)
2590 return false;
2591
2592 /* Delete any HALTs immediately before the placeholder halt. */
2593 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2594 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2595 prev = (fs_inst *) placeholder_halt->prev) {
2596 prev->remove(last_bblock);
2597 progress = true;
2598 }
2599
2600 if (progress)
2601 invalidate_live_intervals();
2602
2603 return progress;
2604 }
2605
2606 bool
2607 fs_visitor::compute_to_mrf()
2608 {
2609 bool progress = false;
2610 int next_ip = 0;
2611
2612 /* No MRFs on Gen >= 7. */
2613 if (devinfo->gen >= 7)
2614 return false;
2615
2616 calculate_live_intervals();
2617
2618 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2619 int ip = next_ip;
2620 next_ip++;
2621
2622 if (inst->opcode != BRW_OPCODE_MOV ||
2623 inst->is_partial_write() ||
2624 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2625 inst->dst.type != inst->src[0].type ||
2626 inst->src[0].abs || inst->src[0].negate ||
2627 !inst->src[0].is_contiguous() ||
2628 inst->src[0].subreg_offset)
2629 continue;
2630
2631 /* Work out which hardware MRF registers are written by this
2632 * instruction.
2633 */
2634 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2635 int mrf_high;
2636 if (inst->dst.nr & BRW_MRF_COMPR4) {
2637 mrf_high = mrf_low + 4;
2638 } else if (inst->exec_size == 16) {
2639 mrf_high = mrf_low + 1;
2640 } else {
2641 mrf_high = mrf_low;
2642 }
2643
2644 /* Can't compute-to-MRF this GRF if someone else was going to
2645 * read it later.
2646 */
2647 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2648 continue;
2649
2650 /* Found a move of a GRF to a MRF. Let's see if we can go
2651 * rewrite the thing that made this GRF to write into the MRF.
2652 */
2653 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2654 if (scan_inst->dst.file == VGRF &&
2655 scan_inst->dst.nr == inst->src[0].nr) {
2656 /* Found the last thing to write our reg we want to turn
2657 * into a compute-to-MRF.
2658 */
2659
2660 /* If this one instruction didn't populate all the
2661 * channels, bail. We might be able to rewrite everything
2662 * that writes that reg, but it would require smarter
2663 * tracking to delay the rewriting until complete success.
2664 */
2665 if (scan_inst->is_partial_write())
2666 break;
2667
2668 /* Things returning more than one register would need us to
2669 * understand coalescing out more than one MOV at a time.
2670 */
2671 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2672 break;
2673
2674 /* SEND instructions can't have MRF as a destination. */
2675 if (scan_inst->mlen)
2676 break;
2677
2678 if (devinfo->gen == 6) {
2679 /* gen6 math instructions must have the destination be
2680 * GRF, so no compute-to-MRF for them.
2681 */
2682 if (scan_inst->is_math()) {
2683 break;
2684 }
2685 }
2686
2687 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2688 /* Found the creator of our MRF's source value. */
2689 scan_inst->dst.file = MRF;
2690 scan_inst->dst.nr = inst->dst.nr;
2691 scan_inst->saturate |= inst->saturate;
2692 inst->remove(block);
2693 progress = true;
2694 }
2695 break;
2696 }
2697
2698 /* We don't handle control flow here. Most computation of
2699 * values that end up in MRFs are shortly before the MRF
2700 * write anyway.
2701 */
2702 if (block->start() == scan_inst)
2703 break;
2704
2705 /* You can't read from an MRF, so if someone else reads our
2706 * MRF's source GRF that we wanted to rewrite, that stops us.
2707 */
2708 bool interfered = false;
2709 for (int i = 0; i < scan_inst->sources; i++) {
2710 if (scan_inst->src[i].file == VGRF &&
2711 scan_inst->src[i].nr == inst->src[0].nr &&
2712 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2713 interfered = true;
2714 }
2715 }
2716 if (interfered)
2717 break;
2718
2719 if (scan_inst->dst.file == MRF) {
2720 /* If somebody else writes our MRF here, we can't
2721 * compute-to-MRF before that.
2722 */
2723 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2724 int scan_mrf_high;
2725
2726 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2727 scan_mrf_high = scan_mrf_low + 4;
2728 } else if (scan_inst->exec_size == 16) {
2729 scan_mrf_high = scan_mrf_low + 1;
2730 } else {
2731 scan_mrf_high = scan_mrf_low;
2732 }
2733
2734 if (mrf_low == scan_mrf_low ||
2735 mrf_low == scan_mrf_high ||
2736 mrf_high == scan_mrf_low ||
2737 mrf_high == scan_mrf_high) {
2738 break;
2739 }
2740 }
2741
2742 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2743 /* Found a SEND instruction, which means that there are
2744 * live values in MRFs from base_mrf to base_mrf +
2745 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2746 * above it.
2747 */
2748 if (mrf_low >= scan_inst->base_mrf &&
2749 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2750 break;
2751 }
2752 if (mrf_high >= scan_inst->base_mrf &&
2753 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2754 break;
2755 }
2756 }
2757 }
2758 }
2759
2760 if (progress)
2761 invalidate_live_intervals();
2762
2763 return progress;
2764 }
2765
2766 /**
2767 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2768 * flow. We could probably do better here with some form of divergence
2769 * analysis.
2770 */
2771 bool
2772 fs_visitor::eliminate_find_live_channel()
2773 {
2774 bool progress = false;
2775 unsigned depth = 0;
2776
2777 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2778 switch (inst->opcode) {
2779 case BRW_OPCODE_IF:
2780 case BRW_OPCODE_DO:
2781 depth++;
2782 break;
2783
2784 case BRW_OPCODE_ENDIF:
2785 case BRW_OPCODE_WHILE:
2786 depth--;
2787 break;
2788
2789 case FS_OPCODE_DISCARD_JUMP:
2790 /* This can potentially make control flow non-uniform until the end
2791 * of the program.
2792 */
2793 return progress;
2794
2795 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2796 if (depth == 0) {
2797 inst->opcode = BRW_OPCODE_MOV;
2798 inst->src[0] = brw_imm_ud(0u);
2799 inst->sources = 1;
2800 inst->force_writemask_all = true;
2801 progress = true;
2802 }
2803 break;
2804
2805 default:
2806 break;
2807 }
2808 }
2809
2810 return progress;
2811 }
2812
2813 /**
2814 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2815 * instructions to FS_OPCODE_REP_FB_WRITE.
2816 */
2817 void
2818 fs_visitor::emit_repclear_shader()
2819 {
2820 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2821 int base_mrf = 1;
2822 int color_mrf = base_mrf + 2;
2823 fs_inst *mov;
2824
2825 if (uniforms > 0) {
2826 mov = bld.exec_all().group(4, 0)
2827 .MOV(brw_message_reg(color_mrf),
2828 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2829 } else {
2830 struct brw_reg reg =
2831 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2832 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2833 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2834
2835 mov = bld.exec_all().group(4, 0)
2836 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2837 }
2838
2839 fs_inst *write;
2840 if (key->nr_color_regions == 1) {
2841 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2842 write->saturate = key->clamp_fragment_color;
2843 write->base_mrf = color_mrf;
2844 write->target = 0;
2845 write->header_size = 0;
2846 write->mlen = 1;
2847 } else {
2848 assume(key->nr_color_regions > 0);
2849 for (int i = 0; i < key->nr_color_regions; ++i) {
2850 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2851 write->saturate = key->clamp_fragment_color;
2852 write->base_mrf = base_mrf;
2853 write->target = i;
2854 write->header_size = 2;
2855 write->mlen = 3;
2856 }
2857 }
2858 write->eot = true;
2859
2860 calculate_cfg();
2861
2862 assign_constant_locations();
2863 assign_curb_setup();
2864
2865 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2866 if (uniforms > 0) {
2867 assert(mov->src[0].file == FIXED_GRF);
2868 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2869 }
2870 }
2871
2872 /**
2873 * Walks through basic blocks, looking for repeated MRF writes and
2874 * removing the later ones.
2875 */
2876 bool
2877 fs_visitor::remove_duplicate_mrf_writes()
2878 {
2879 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2880 bool progress = false;
2881
2882 /* Need to update the MRF tracking for compressed instructions. */
2883 if (dispatch_width == 16)
2884 return false;
2885
2886 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2887
2888 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2889 if (inst->is_control_flow()) {
2890 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2891 }
2892
2893 if (inst->opcode == BRW_OPCODE_MOV &&
2894 inst->dst.file == MRF) {
2895 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2896 if (prev_inst && inst->equals(prev_inst)) {
2897 inst->remove(block);
2898 progress = true;
2899 continue;
2900 }
2901 }
2902
2903 /* Clear out the last-write records for MRFs that were overwritten. */
2904 if (inst->dst.file == MRF) {
2905 last_mrf_move[inst->dst.nr] = NULL;
2906 }
2907
2908 if (inst->mlen > 0 && inst->base_mrf != -1) {
2909 /* Found a SEND instruction, which will include two or fewer
2910 * implied MRF writes. We could do better here.
2911 */
2912 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2913 last_mrf_move[inst->base_mrf + i] = NULL;
2914 }
2915 }
2916
2917 /* Clear out any MRF move records whose sources got overwritten. */
2918 if (inst->dst.file == VGRF) {
2919 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2920 if (last_mrf_move[i] &&
2921 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2922 last_mrf_move[i] = NULL;
2923 }
2924 }
2925 }
2926
2927 if (inst->opcode == BRW_OPCODE_MOV &&
2928 inst->dst.file == MRF &&
2929 inst->src[0].file == VGRF &&
2930 !inst->is_partial_write()) {
2931 last_mrf_move[inst->dst.nr] = inst;
2932 }
2933 }
2934
2935 if (progress)
2936 invalidate_live_intervals();
2937
2938 return progress;
2939 }
2940
2941 static void
2942 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2943 {
2944 /* Clear the flag for registers that actually got read (as expected). */
2945 for (int i = 0; i < inst->sources; i++) {
2946 int grf;
2947 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2948 grf = inst->src[i].nr;
2949 } else {
2950 continue;
2951 }
2952
2953 if (grf >= first_grf &&
2954 grf < first_grf + grf_len) {
2955 deps[grf - first_grf] = false;
2956 if (inst->exec_size == 16)
2957 deps[grf - first_grf + 1] = false;
2958 }
2959 }
2960 }
2961
2962 /**
2963 * Implements this workaround for the original 965:
2964 *
2965 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2966 * check for post destination dependencies on this instruction, software
2967 * must ensure that there is no destination hazard for the case of ‘write
2968 * followed by a posted write’ shown in the following example.
2969 *
2970 * 1. mov r3 0
2971 * 2. send r3.xy <rest of send instruction>
2972 * 3. mov r2 r3
2973 *
2974 * Due to no post-destination dependency check on the ‘send’, the above
2975 * code sequence could have two instructions (1 and 2) in flight at the
2976 * same time that both consider ‘r3’ as the target of their final writes.
2977 */
2978 void
2979 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2980 fs_inst *inst)
2981 {
2982 int write_len = inst->regs_written;
2983 int first_write_grf = inst->dst.nr;
2984 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2985 assert(write_len < (int)sizeof(needs_dep) - 1);
2986
2987 memset(needs_dep, false, sizeof(needs_dep));
2988 memset(needs_dep, true, write_len);
2989
2990 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2991
2992 /* Walk backwards looking for writes to registers we're writing which
2993 * aren't read since being written. If we hit the start of the program,
2994 * we assume that there are no outstanding dependencies on entry to the
2995 * program.
2996 */
2997 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2998 /* If we hit control flow, assume that there *are* outstanding
2999 * dependencies, and force their cleanup before our instruction.
3000 */
3001 if (block->start() == scan_inst) {
3002 for (int i = 0; i < write_len; i++) {
3003 if (needs_dep[i])
3004 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3005 first_write_grf + i);
3006 }
3007 return;
3008 }
3009
3010 /* We insert our reads as late as possible on the assumption that any
3011 * instruction but a MOV that might have left us an outstanding
3012 * dependency has more latency than a MOV.
3013 */
3014 if (scan_inst->dst.file == VGRF) {
3015 for (int i = 0; i < scan_inst->regs_written; i++) {
3016 int reg = scan_inst->dst.nr + i;
3017
3018 if (reg >= first_write_grf &&
3019 reg < first_write_grf + write_len &&
3020 needs_dep[reg - first_write_grf]) {
3021 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3022 needs_dep[reg - first_write_grf] = false;
3023 if (scan_inst->exec_size == 16)
3024 needs_dep[reg - first_write_grf + 1] = false;
3025 }
3026 }
3027 }
3028
3029 /* Clear the flag for registers that actually got read (as expected). */
3030 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3031
3032 /* Continue the loop only if we haven't resolved all the dependencies */
3033 int i;
3034 for (i = 0; i < write_len; i++) {
3035 if (needs_dep[i])
3036 break;
3037 }
3038 if (i == write_len)
3039 return;
3040 }
3041 }
3042
3043 /**
3044 * Implements this workaround for the original 965:
3045 *
3046 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3047 * used as a destination register until after it has been sourced by an
3048 * instruction with a different destination register.
3049 */
3050 void
3051 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3052 {
3053 int write_len = inst->regs_written;
3054 int first_write_grf = inst->dst.nr;
3055 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3056 assert(write_len < (int)sizeof(needs_dep) - 1);
3057
3058 memset(needs_dep, false, sizeof(needs_dep));
3059 memset(needs_dep, true, write_len);
3060 /* Walk forwards looking for writes to registers we're writing which aren't
3061 * read before being written.
3062 */
3063 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3064 /* If we hit control flow, force resolve all remaining dependencies. */
3065 if (block->end() == scan_inst) {
3066 for (int i = 0; i < write_len; i++) {
3067 if (needs_dep[i])
3068 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3069 first_write_grf + i);
3070 }
3071 return;
3072 }
3073
3074 /* Clear the flag for registers that actually got read (as expected). */
3075 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3076
3077 /* We insert our reads as late as possible since they're reading the
3078 * result of a SEND, which has massive latency.
3079 */
3080 if (scan_inst->dst.file == VGRF &&
3081 scan_inst->dst.nr >= first_write_grf &&
3082 scan_inst->dst.nr < first_write_grf + write_len &&
3083 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3084 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3085 scan_inst->dst.nr);
3086 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3087 }
3088
3089 /* Continue the loop only if we haven't resolved all the dependencies */
3090 int i;
3091 for (i = 0; i < write_len; i++) {
3092 if (needs_dep[i])
3093 break;
3094 }
3095 if (i == write_len)
3096 return;
3097 }
3098 }
3099
3100 void
3101 fs_visitor::insert_gen4_send_dependency_workarounds()
3102 {
3103 if (devinfo->gen != 4 || devinfo->is_g4x)
3104 return;
3105
3106 bool progress = false;
3107
3108 /* Note that we're done with register allocation, so GRF fs_regs always
3109 * have a .reg_offset of 0.
3110 */
3111
3112 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3113 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3114 insert_gen4_pre_send_dependency_workarounds(block, inst);
3115 insert_gen4_post_send_dependency_workarounds(block, inst);
3116 progress = true;
3117 }
3118 }
3119
3120 if (progress)
3121 invalidate_live_intervals();
3122 }
3123
3124 /**
3125 * Turns the generic expression-style uniform pull constant load instruction
3126 * into a hardware-specific series of instructions for loading a pull
3127 * constant.
3128 *
3129 * The expression style allows the CSE pass before this to optimize out
3130 * repeated loads from the same offset, and gives the pre-register-allocation
3131 * scheduling full flexibility, while the conversion to native instructions
3132 * allows the post-register-allocation scheduler the best information
3133 * possible.
3134 *
3135 * Note that execution masking for setting up pull constant loads is special:
3136 * the channels that need to be written are unrelated to the current execution
3137 * mask, since a later instruction will use one of the result channels as a
3138 * source operand for all 8 or 16 of its channels.
3139 */
3140 void
3141 fs_visitor::lower_uniform_pull_constant_loads()
3142 {
3143 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3144 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3145 continue;
3146
3147 if (devinfo->gen >= 7) {
3148 /* The offset arg is a vec4-aligned immediate byte offset. */
3149 fs_reg const_offset_reg = inst->src[1];
3150 assert(const_offset_reg.file == IMM &&
3151 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3152 assert(const_offset_reg.ud % 16 == 0);
3153
3154 fs_reg payload, offset;
3155 if (devinfo->gen >= 9) {
3156 /* We have to use a message header on Skylake to get SIMD4x2
3157 * mode. Reserve space for the register.
3158 */
3159 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3160 offset.reg_offset++;
3161 inst->mlen = 2;
3162 } else {
3163 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3164 inst->mlen = 1;
3165 }
3166
3167 /* This is actually going to be a MOV, but since only the first dword
3168 * is accessed, we have a special opcode to do just that one. Note
3169 * that this needs to be an operation that will be considered a def
3170 * by live variable analysis, or register allocation will explode.
3171 */
3172 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3173 8, offset, const_offset_reg);
3174 setup->force_writemask_all = true;
3175
3176 setup->ir = inst->ir;
3177 setup->annotation = inst->annotation;
3178 inst->insert_before(block, setup);
3179
3180 /* Similarly, this will only populate the first 4 channels of the
3181 * result register (since we only use smear values from 0-3), but we
3182 * don't tell the optimizer.
3183 */
3184 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3185 inst->src[1] = payload;
3186 inst->base_mrf = -1;
3187
3188 invalidate_live_intervals();
3189 } else {
3190 /* Before register allocation, we didn't tell the scheduler about the
3191 * MRF we use. We know it's safe to use this MRF because nothing
3192 * else does except for register spill/unspill, which generates and
3193 * uses its MRF within a single IR instruction.
3194 */
3195 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3196 inst->mlen = 1;
3197 }
3198 }
3199 }
3200
3201 bool
3202 fs_visitor::lower_load_payload()
3203 {
3204 bool progress = false;
3205
3206 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3207 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3208 continue;
3209
3210 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3211 assert(inst->saturate == false);
3212 fs_reg dst = inst->dst;
3213
3214 /* Get rid of COMPR4. We'll add it back in if we need it */
3215 if (dst.file == MRF)
3216 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3217
3218 const fs_builder ibld(this, block, inst);
3219 const fs_builder hbld = ibld.exec_all().group(8, 0);
3220
3221 for (uint8_t i = 0; i < inst->header_size; i++) {
3222 if (inst->src[i].file != BAD_FILE) {
3223 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3224 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3225 hbld.MOV(mov_dst, mov_src);
3226 }
3227 dst = offset(dst, hbld, 1);
3228 }
3229
3230 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3231 inst->exec_size > 8) {
3232 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3233 * a straightforward copy. Instead, the result of the
3234 * LOAD_PAYLOAD is treated as interleaved and the first four
3235 * non-header sources are unpacked as:
3236 *
3237 * m + 0: r0
3238 * m + 1: g0
3239 * m + 2: b0
3240 * m + 3: a0
3241 * m + 4: r1
3242 * m + 5: g1
3243 * m + 6: b1
3244 * m + 7: a1
3245 *
3246 * This is used for gen <= 5 fb writes.
3247 */
3248 assert(inst->exec_size == 16);
3249 assert(inst->header_size + 4 <= inst->sources);
3250 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3251 if (inst->src[i].file != BAD_FILE) {
3252 if (devinfo->has_compr4) {
3253 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3254 compr4_dst.nr |= BRW_MRF_COMPR4;
3255 ibld.MOV(compr4_dst, inst->src[i]);
3256 } else {
3257 /* Platform doesn't have COMPR4. We have to fake it */
3258 fs_reg mov_dst = retype(dst, inst->src[i].type);
3259 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3260 mov_dst.nr += 4;
3261 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3262 }
3263 }
3264
3265 dst.nr++;
3266 }
3267
3268 /* The loop above only ever incremented us through the first set
3269 * of 4 registers. However, thanks to the magic of COMPR4, we
3270 * actually wrote to the first 8 registers, so we need to take
3271 * that into account now.
3272 */
3273 dst.nr += 4;
3274
3275 /* The COMPR4 code took care of the first 4 sources. We'll let
3276 * the regular path handle any remaining sources. Yes, we are
3277 * modifying the instruction but we're about to delete it so
3278 * this really doesn't hurt anything.
3279 */
3280 inst->header_size += 4;
3281 }
3282
3283 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3284 if (inst->src[i].file != BAD_FILE)
3285 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3286 dst = offset(dst, ibld, 1);
3287 }
3288
3289 inst->remove(block);
3290 progress = true;
3291 }
3292
3293 if (progress)
3294 invalidate_live_intervals();
3295
3296 return progress;
3297 }
3298
3299 bool
3300 fs_visitor::lower_integer_multiplication()
3301 {
3302 bool progress = false;
3303
3304 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3305 const fs_builder ibld(this, block, inst);
3306
3307 if (inst->opcode == BRW_OPCODE_MUL) {
3308 if (inst->dst.is_accumulator() ||
3309 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3310 inst->dst.type != BRW_REGISTER_TYPE_UD))
3311 continue;
3312
3313 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3314 * operation directly, but CHV/BXT cannot.
3315 */
3316 if (devinfo->gen >= 8 &&
3317 !devinfo->is_cherryview && !devinfo->is_broxton)
3318 continue;
3319
3320 if (inst->src[1].file == IMM &&
3321 inst->src[1].ud < (1 << 16)) {
3322 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3323 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3324 * src1 are used.
3325 *
3326 * If multiplying by an immediate value that fits in 16-bits, do a
3327 * single MUL instruction with that value in the proper location.
3328 */
3329 if (devinfo->gen < 7) {
3330 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3331 inst->dst.type);
3332 ibld.MOV(imm, inst->src[1]);
3333 ibld.MUL(inst->dst, imm, inst->src[0]);
3334 } else {
3335 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3336 }
3337 } else {
3338 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3339 * do 32-bit integer multiplication in one instruction, but instead
3340 * must do a sequence (which actually calculates a 64-bit result):
3341 *
3342 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3343 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3344 * mov(8) g2<1>D acc0<8,8,1>D
3345 *
3346 * But on Gen > 6, the ability to use second accumulator register
3347 * (acc1) for non-float data types was removed, preventing a simple
3348 * implementation in SIMD16. A 16-channel result can be calculated by
3349 * executing the three instructions twice in SIMD8, once with quarter
3350 * control of 1Q for the first eight channels and again with 2Q for
3351 * the second eight channels.
3352 *
3353 * Which accumulator register is implicitly accessed (by AccWrEnable
3354 * for instance) is determined by the quarter control. Unfortunately
3355 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3356 * implicit accumulator access by an instruction with 2Q will access
3357 * acc1 regardless of whether the data type is usable in acc1.
3358 *
3359 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3360 * integer data types.
3361 *
3362 * Since we only want the low 32-bits of the result, we can do two
3363 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3364 * adjust the high result and add them (like the mach is doing):
3365 *
3366 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3367 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3368 * shl(8) g9<1>D g8<8,8,1>D 16D
3369 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3370 *
3371 * We avoid the shl instruction by realizing that we only want to add
3372 * the low 16-bits of the "high" result to the high 16-bits of the
3373 * "low" result and using proper regioning on the add:
3374 *
3375 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3376 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3377 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3378 *
3379 * Since it does not use the (single) accumulator register, we can
3380 * schedule multi-component multiplications much better.
3381 */
3382
3383 fs_reg orig_dst = inst->dst;
3384 if (orig_dst.is_null() || orig_dst.file == MRF) {
3385 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3386 inst->dst.type);
3387 }
3388 fs_reg low = inst->dst;
3389 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3390 inst->dst.type);
3391
3392 if (devinfo->gen >= 7) {
3393 fs_reg src1_0_w = inst->src[1];
3394 fs_reg src1_1_w = inst->src[1];
3395
3396 if (inst->src[1].file == IMM) {
3397 src1_0_w.ud &= 0xffff;
3398 src1_1_w.ud >>= 16;
3399 } else {
3400 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3401 if (src1_0_w.stride != 0) {
3402 assert(src1_0_w.stride == 1);
3403 src1_0_w.stride = 2;
3404 }
3405
3406 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3407 if (src1_1_w.stride != 0) {
3408 assert(src1_1_w.stride == 1);
3409 src1_1_w.stride = 2;
3410 }
3411 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3412 }
3413 ibld.MUL(low, inst->src[0], src1_0_w);
3414 ibld.MUL(high, inst->src[0], src1_1_w);
3415 } else {
3416 fs_reg src0_0_w = inst->src[0];
3417 fs_reg src0_1_w = inst->src[0];
3418
3419 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3420 if (src0_0_w.stride != 0) {
3421 assert(src0_0_w.stride == 1);
3422 src0_0_w.stride = 2;
3423 }
3424
3425 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3426 if (src0_1_w.stride != 0) {
3427 assert(src0_1_w.stride == 1);
3428 src0_1_w.stride = 2;
3429 }
3430 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3431
3432 ibld.MUL(low, src0_0_w, inst->src[1]);
3433 ibld.MUL(high, src0_1_w, inst->src[1]);
3434 }
3435
3436 fs_reg dst = inst->dst;
3437 dst.type = BRW_REGISTER_TYPE_UW;
3438 dst.subreg_offset = 2;
3439 dst.stride = 2;
3440
3441 high.type = BRW_REGISTER_TYPE_UW;
3442 high.stride = 2;
3443
3444 low.type = BRW_REGISTER_TYPE_UW;
3445 low.subreg_offset = 2;
3446 low.stride = 2;
3447
3448 ibld.ADD(dst, low, high);
3449
3450 if (inst->conditional_mod || orig_dst.file == MRF) {
3451 set_condmod(inst->conditional_mod,
3452 ibld.MOV(orig_dst, inst->dst));
3453 }
3454 }
3455
3456 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3457 /* Should have been lowered to 8-wide. */
3458 assert(inst->exec_size <= 8);
3459 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3460 inst->dst.type);
3461 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3462 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3463
3464 if (devinfo->gen >= 8) {
3465 /* Until Gen8, integer multiplies read 32-bits from one source,
3466 * and 16-bits from the other, and relying on the MACH instruction
3467 * to generate the high bits of the result.
3468 *
3469 * On Gen8, the multiply instruction does a full 32x32-bit
3470 * multiply, but in order to do a 64-bit multiply we can simulate
3471 * the previous behavior and then use a MACH instruction.
3472 *
3473 * FINISHME: Don't use source modifiers on src1.
3474 */
3475 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3476 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3477 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3478 mul->src[1].stride *= 2;
3479
3480 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3481 inst->force_sechalf) {
3482 /* Among other things the quarter control bits influence which
3483 * accumulator register is used by the hardware for instructions
3484 * that access the accumulator implicitly (e.g. MACH). A
3485 * second-half instruction would normally map to acc1, which
3486 * doesn't exist on Gen7 and up (the hardware does emulate it for
3487 * floating-point instructions *only* by taking advantage of the
3488 * extra precision of acc0 not normally used for floating point
3489 * arithmetic).
3490 *
3491 * HSW and up are careful enough not to try to access an
3492 * accumulator register that doesn't exist, but on earlier Gen7
3493 * hardware we need to make sure that the quarter control bits are
3494 * zero to avoid non-deterministic behaviour and emit an extra MOV
3495 * to get the result masked correctly according to the current
3496 * channel enables.
3497 */
3498 mach->force_sechalf = false;
3499 mach->force_writemask_all = true;
3500 mach->dst = ibld.vgrf(inst->dst.type);
3501 ibld.MOV(inst->dst, mach->dst);
3502 }
3503 } else {
3504 continue;
3505 }
3506
3507 inst->remove(block);
3508 progress = true;
3509 }
3510
3511 if (progress)
3512 invalidate_live_intervals();
3513
3514 return progress;
3515 }
3516
3517 bool
3518 fs_visitor::lower_minmax()
3519 {
3520 assert(devinfo->gen < 6);
3521
3522 bool progress = false;
3523
3524 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3525 const fs_builder ibld(this, block, inst);
3526
3527 if (inst->opcode == BRW_OPCODE_SEL &&
3528 inst->predicate == BRW_PREDICATE_NONE) {
3529 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3530 * the original SEL.L/GE instruction
3531 */
3532 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3533 inst->conditional_mod);
3534 inst->predicate = BRW_PREDICATE_NORMAL;
3535 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3536
3537 progress = true;
3538 }
3539 }
3540
3541 if (progress)
3542 invalidate_live_intervals();
3543
3544 return progress;
3545 }
3546
3547 static void
3548 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3549 fs_reg *dst, fs_reg color, unsigned components)
3550 {
3551 if (key->clamp_fragment_color) {
3552 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3553 assert(color.type == BRW_REGISTER_TYPE_F);
3554
3555 for (unsigned i = 0; i < components; i++)
3556 set_saturate(true,
3557 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3558
3559 color = tmp;
3560 }
3561
3562 for (unsigned i = 0; i < components; i++)
3563 dst[i] = offset(color, bld, i);
3564 }
3565
3566 static void
3567 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3568 const brw_wm_prog_data *prog_data,
3569 const brw_wm_prog_key *key,
3570 const fs_visitor::thread_payload &payload)
3571 {
3572 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3573 const brw_device_info *devinfo = bld.shader->devinfo;
3574 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3575 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3576 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3577 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3578 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3579 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3580 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3581 const unsigned components =
3582 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3583
3584 /* We can potentially have a message length of up to 15, so we have to set
3585 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3586 */
3587 fs_reg sources[15];
3588 int header_size = 2, payload_header_size;
3589 unsigned length = 0;
3590
3591 /* From the Sandy Bridge PRM, volume 4, page 198:
3592 *
3593 * "Dispatched Pixel Enables. One bit per pixel indicating
3594 * which pixels were originally enabled when the thread was
3595 * dispatched. This field is only required for the end-of-
3596 * thread message and on all dual-source messages."
3597 */
3598 if (devinfo->gen >= 6 &&
3599 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3600 color1.file == BAD_FILE &&
3601 key->nr_color_regions == 1) {
3602 header_size = 0;
3603 }
3604
3605 if (header_size != 0) {
3606 assert(header_size == 2);
3607 /* Allocate 2 registers for a header */
3608 length += 2;
3609 }
3610
3611 if (payload.aa_dest_stencil_reg) {
3612 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3613 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3614 .MOV(sources[length],
3615 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3616 length++;
3617 }
3618
3619 if (prog_data->uses_omask) {
3620 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3621 BRW_REGISTER_TYPE_UD);
3622
3623 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3624 * relevant. Since it's unsigned single words one vgrf is always
3625 * 16-wide, but only the lower or higher 8 channels will be used by the
3626 * hardware when doing a SIMD8 write depending on whether we have
3627 * selected the subspans for the first or second half respectively.
3628 */
3629 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3630 sample_mask.type = BRW_REGISTER_TYPE_UW;
3631 sample_mask.stride *= 2;
3632
3633 bld.exec_all().annotate("FB write oMask")
3634 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3635 inst->force_sechalf),
3636 sample_mask);
3637 length++;
3638 }
3639
3640 payload_header_size = length;
3641
3642 if (src0_alpha.file != BAD_FILE) {
3643 /* FIXME: This is being passed at the wrong location in the payload and
3644 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3645 * It's supposed to be immediately before oMask but there seems to be no
3646 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3647 * requires header sources to form a contiguous segment at the beginning
3648 * of the message and src0_alpha has per-channel semantics.
3649 */
3650 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3651 length++;
3652 }
3653
3654 setup_color_payload(bld, key, &sources[length], color0, components);
3655 length += 4;
3656
3657 if (color1.file != BAD_FILE) {
3658 setup_color_payload(bld, key, &sources[length], color1, components);
3659 length += 4;
3660 }
3661
3662 if (src_depth.file != BAD_FILE) {
3663 sources[length] = src_depth;
3664 length++;
3665 }
3666
3667 if (dst_depth.file != BAD_FILE) {
3668 sources[length] = dst_depth;
3669 length++;
3670 }
3671
3672 if (src_stencil.file != BAD_FILE) {
3673 assert(devinfo->gen >= 9);
3674 assert(bld.dispatch_width() != 16);
3675
3676 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3677 * available on gen9+. As such it's impossible to have both enabled at the
3678 * same time and therefore length cannot overrun the array.
3679 */
3680 assert(length < 15);
3681
3682 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3683 bld.exec_all().annotate("FB write OS")
3684 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3685 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3686 length++;
3687 }
3688
3689 fs_inst *load;
3690 if (devinfo->gen >= 7) {
3691 /* Send from the GRF */
3692 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3693 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3694 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3695 load->dst = payload;
3696
3697 inst->src[0] = payload;
3698 inst->resize_sources(1);
3699 inst->base_mrf = -1;
3700 } else {
3701 /* Send from the MRF */
3702 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3703 sources, length, payload_header_size);
3704
3705 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3706 * will do this for us if we just give it a COMPR4 destination.
3707 */
3708 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3709 load->dst.nr |= BRW_MRF_COMPR4;
3710
3711 inst->resize_sources(0);
3712 inst->base_mrf = 1;
3713 }
3714
3715 inst->opcode = FS_OPCODE_FB_WRITE;
3716 inst->mlen = load->regs_written;
3717 inst->header_size = header_size;
3718 }
3719
3720 static void
3721 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3722 const fs_reg &coordinate,
3723 const fs_reg &shadow_c,
3724 const fs_reg &lod, const fs_reg &lod2,
3725 const fs_reg &surface,
3726 const fs_reg &sampler,
3727 unsigned coord_components,
3728 unsigned grad_components)
3729 {
3730 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3731 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3732 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3733 fs_reg msg_end = msg_begin;
3734
3735 /* g0 header. */
3736 msg_end = offset(msg_end, bld.group(8, 0), 1);
3737
3738 for (unsigned i = 0; i < coord_components; i++)
3739 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3740 offset(coordinate, bld, i));
3741
3742 msg_end = offset(msg_end, bld, coord_components);
3743
3744 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3745 * require all three components to be present and zero if they are unused.
3746 */
3747 if (coord_components > 0 &&
3748 (has_lod || shadow_c.file != BAD_FILE ||
3749 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3750 for (unsigned i = coord_components; i < 3; i++)
3751 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3752
3753 msg_end = offset(msg_end, bld, 3 - coord_components);
3754 }
3755
3756 if (op == SHADER_OPCODE_TXD) {
3757 /* TXD unsupported in SIMD16 mode. */
3758 assert(bld.dispatch_width() == 8);
3759
3760 /* the slots for u and v are always present, but r is optional */
3761 if (coord_components < 2)
3762 msg_end = offset(msg_end, bld, 2 - coord_components);
3763
3764 /* P = u, v, r
3765 * dPdx = dudx, dvdx, drdx
3766 * dPdy = dudy, dvdy, drdy
3767 *
3768 * 1-arg: Does not exist.
3769 *
3770 * 2-arg: dudx dvdx dudy dvdy
3771 * dPdx.x dPdx.y dPdy.x dPdy.y
3772 * m4 m5 m6 m7
3773 *
3774 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3775 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3776 * m5 m6 m7 m8 m9 m10
3777 */
3778 for (unsigned i = 0; i < grad_components; i++)
3779 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3780
3781 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3782
3783 for (unsigned i = 0; i < grad_components; i++)
3784 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3785
3786 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3787 }
3788
3789 if (has_lod) {
3790 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3791 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3792 */
3793 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3794 bld.dispatch_width() == 16);
3795
3796 const brw_reg_type type =
3797 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3798 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3799 bld.MOV(retype(msg_end, type), lod);
3800 msg_end = offset(msg_end, bld, 1);
3801 }
3802
3803 if (shadow_c.file != BAD_FILE) {
3804 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3805 /* There's no plain shadow compare message, so we use shadow
3806 * compare with a bias of 0.0.
3807 */
3808 bld.MOV(msg_end, brw_imm_f(0.0f));
3809 msg_end = offset(msg_end, bld, 1);
3810 }
3811
3812 bld.MOV(msg_end, shadow_c);
3813 msg_end = offset(msg_end, bld, 1);
3814 }
3815
3816 inst->opcode = op;
3817 inst->src[0] = reg_undef;
3818 inst->src[1] = surface;
3819 inst->src[2] = sampler;
3820 inst->resize_sources(3);
3821 inst->base_mrf = msg_begin.nr;
3822 inst->mlen = msg_end.nr - msg_begin.nr;
3823 inst->header_size = 1;
3824 }
3825
3826 static void
3827 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3828 fs_reg coordinate,
3829 const fs_reg &shadow_c,
3830 fs_reg lod, fs_reg lod2,
3831 const fs_reg &sample_index,
3832 const fs_reg &surface,
3833 const fs_reg &sampler,
3834 const fs_reg &offset_value,
3835 unsigned coord_components,
3836 unsigned grad_components)
3837 {
3838 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3839 fs_reg msg_coords = message;
3840 unsigned header_size = 0;
3841
3842 if (offset_value.file != BAD_FILE) {
3843 /* The offsets set up by the visitor are in the m1 header, so we can't
3844 * go headerless.
3845 */
3846 header_size = 1;
3847 message.nr--;
3848 }
3849
3850 for (unsigned i = 0; i < coord_components; i++) {
3851 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3852 coordinate = offset(coordinate, bld, 1);
3853 }
3854 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3855 fs_reg msg_lod = offset(msg_coords, bld, 4);
3856
3857 if (shadow_c.file != BAD_FILE) {
3858 fs_reg msg_shadow = msg_lod;
3859 bld.MOV(msg_shadow, shadow_c);
3860 msg_lod = offset(msg_shadow, bld, 1);
3861 msg_end = msg_lod;
3862 }
3863
3864 switch (op) {
3865 case SHADER_OPCODE_TXL:
3866 case FS_OPCODE_TXB:
3867 bld.MOV(msg_lod, lod);
3868 msg_end = offset(msg_lod, bld, 1);
3869 break;
3870 case SHADER_OPCODE_TXD:
3871 /**
3872 * P = u, v, r
3873 * dPdx = dudx, dvdx, drdx
3874 * dPdy = dudy, dvdy, drdy
3875 *
3876 * Load up these values:
3877 * - dudx dudy dvdx dvdy drdx drdy
3878 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3879 */
3880 msg_end = msg_lod;
3881 for (unsigned i = 0; i < grad_components; i++) {
3882 bld.MOV(msg_end, lod);
3883 lod = offset(lod, bld, 1);
3884 msg_end = offset(msg_end, bld, 1);
3885
3886 bld.MOV(msg_end, lod2);
3887 lod2 = offset(lod2, bld, 1);
3888 msg_end = offset(msg_end, bld, 1);
3889 }
3890 break;
3891 case SHADER_OPCODE_TXS:
3892 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3893 bld.MOV(msg_lod, lod);
3894 msg_end = offset(msg_lod, bld, 1);
3895 break;
3896 case SHADER_OPCODE_TXF:
3897 msg_lod = offset(msg_coords, bld, 3);
3898 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3899 msg_end = offset(msg_lod, bld, 1);
3900 break;
3901 case SHADER_OPCODE_TXF_CMS:
3902 msg_lod = offset(msg_coords, bld, 3);
3903 /* lod */
3904 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3905 /* sample index */
3906 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3907 msg_end = offset(msg_lod, bld, 2);
3908 break;
3909 default:
3910 break;
3911 }
3912
3913 inst->opcode = op;
3914 inst->src[0] = reg_undef;
3915 inst->src[1] = surface;
3916 inst->src[2] = sampler;
3917 inst->resize_sources(3);
3918 inst->base_mrf = message.nr;
3919 inst->mlen = msg_end.nr - message.nr;
3920 inst->header_size = header_size;
3921
3922 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3923 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3924 }
3925
3926 static bool
3927 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3928 {
3929 if (devinfo->gen < 8 && !devinfo->is_haswell)
3930 return false;
3931
3932 return sampler.file != IMM || sampler.ud >= 16;
3933 }
3934
3935 static void
3936 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3937 fs_reg coordinate,
3938 const fs_reg &shadow_c,
3939 fs_reg lod, fs_reg lod2,
3940 const fs_reg &sample_index,
3941 const fs_reg &mcs,
3942 const fs_reg &surface,
3943 const fs_reg &sampler,
3944 fs_reg offset_value,
3945 unsigned coord_components,
3946 unsigned grad_components)
3947 {
3948 const brw_device_info *devinfo = bld.shader->devinfo;
3949 int reg_width = bld.dispatch_width() / 8;
3950 unsigned header_size = 0, length = 0;
3951 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3952 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3953 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3954
3955 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3956 offset_value.file != BAD_FILE ||
3957 is_high_sampler(devinfo, sampler)) {
3958 /* For general texture offsets (no txf workaround), we need a header to
3959 * put them in. Note that we're only reserving space for it in the
3960 * message payload as it will be initialized implicitly by the
3961 * generator.
3962 *
3963 * TG4 needs to place its channel select in the header, for interaction
3964 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3965 * larger sampler numbers we need to offset the Sampler State Pointer in
3966 * the header.
3967 */
3968 header_size = 1;
3969 sources[0] = fs_reg();
3970 length++;
3971 }
3972
3973 if (shadow_c.file != BAD_FILE) {
3974 bld.MOV(sources[length], shadow_c);
3975 length++;
3976 }
3977
3978 bool coordinate_done = false;
3979
3980 /* The sampler can only meaningfully compute LOD for fragment shader
3981 * messages. For all other stages, we change the opcode to TXL and
3982 * hardcode the LOD to 0.
3983 */
3984 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3985 op == SHADER_OPCODE_TEX) {
3986 op = SHADER_OPCODE_TXL;
3987 lod = brw_imm_f(0.0f);
3988 }
3989
3990 /* Set up the LOD info */
3991 switch (op) {
3992 case FS_OPCODE_TXB:
3993 case SHADER_OPCODE_TXL:
3994 bld.MOV(sources[length], lod);
3995 length++;
3996 break;
3997 case SHADER_OPCODE_TXD:
3998 /* TXD should have been lowered in SIMD16 mode. */
3999 assert(bld.dispatch_width() == 8);
4000
4001 /* Load dPdx and the coordinate together:
4002 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4003 */
4004 for (unsigned i = 0; i < coord_components; i++) {
4005 bld.MOV(sources[length], coordinate);
4006 coordinate = offset(coordinate, bld, 1);
4007 length++;
4008
4009 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4010 * only derivatives for (u, v, r).
4011 */
4012 if (i < grad_components) {
4013 bld.MOV(sources[length], lod);
4014 lod = offset(lod, bld, 1);
4015 length++;
4016
4017 bld.MOV(sources[length], lod2);
4018 lod2 = offset(lod2, bld, 1);
4019 length++;
4020 }
4021 }
4022
4023 coordinate_done = true;
4024 break;
4025 case SHADER_OPCODE_TXS:
4026 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4027 length++;
4028 break;
4029 case SHADER_OPCODE_TXF:
4030 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4031 * On Gen9 they are u, v, lod, r
4032 */
4033 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4034 coordinate = offset(coordinate, bld, 1);
4035 length++;
4036
4037 if (devinfo->gen >= 9) {
4038 if (coord_components >= 2) {
4039 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4040 coordinate = offset(coordinate, bld, 1);
4041 }
4042 length++;
4043 }
4044
4045 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4046 length++;
4047
4048 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
4049 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4050 coordinate = offset(coordinate, bld, 1);
4051 length++;
4052 }
4053
4054 coordinate_done = true;
4055 break;
4056 case SHADER_OPCODE_TXF_CMS:
4057 case SHADER_OPCODE_TXF_CMS_W:
4058 case SHADER_OPCODE_TXF_UMS:
4059 case SHADER_OPCODE_TXF_MCS:
4060 if (op == SHADER_OPCODE_TXF_UMS ||
4061 op == SHADER_OPCODE_TXF_CMS ||
4062 op == SHADER_OPCODE_TXF_CMS_W) {
4063 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4064 length++;
4065 }
4066
4067 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4068 /* Data from the multisample control surface. */
4069 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4070 length++;
4071
4072 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4073 * the MCS data.
4074 */
4075 if (op == SHADER_OPCODE_TXF_CMS_W) {
4076 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4077 mcs.file == IMM ?
4078 mcs :
4079 offset(mcs, bld, 1));
4080 length++;
4081 }
4082 }
4083
4084 /* There is no offsetting for this message; just copy in the integer
4085 * texture coordinates.
4086 */
4087 for (unsigned i = 0; i < coord_components; i++) {
4088 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4089 coordinate = offset(coordinate, bld, 1);
4090 length++;
4091 }
4092
4093 coordinate_done = true;
4094 break;
4095 case SHADER_OPCODE_TG4_OFFSET:
4096 /* gather4_po_c should have been lowered in SIMD16 mode. */
4097 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4098
4099 /* More crazy intermixing */
4100 for (unsigned i = 0; i < 2; i++) { /* u, v */
4101 bld.MOV(sources[length], coordinate);
4102 coordinate = offset(coordinate, bld, 1);
4103 length++;
4104 }
4105
4106 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4107 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4108 offset_value = offset(offset_value, bld, 1);
4109 length++;
4110 }
4111
4112 if (coord_components == 3) { /* r if present */
4113 bld.MOV(sources[length], coordinate);
4114 coordinate = offset(coordinate, bld, 1);
4115 length++;
4116 }
4117
4118 coordinate_done = true;
4119 break;
4120 default:
4121 break;
4122 }
4123
4124 /* Set up the coordinate (except for cases where it was done above) */
4125 if (!coordinate_done) {
4126 for (unsigned i = 0; i < coord_components; i++) {
4127 bld.MOV(sources[length], coordinate);
4128 coordinate = offset(coordinate, bld, 1);
4129 length++;
4130 }
4131 }
4132
4133 int mlen;
4134 if (reg_width == 2)
4135 mlen = length * reg_width - header_size;
4136 else
4137 mlen = length * reg_width;
4138
4139 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4140 BRW_REGISTER_TYPE_F);
4141 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4142
4143 /* Generate the SEND. */
4144 inst->opcode = op;
4145 inst->src[0] = src_payload;
4146 inst->src[1] = surface;
4147 inst->src[2] = sampler;
4148 inst->resize_sources(3);
4149 inst->base_mrf = -1;
4150 inst->mlen = mlen;
4151 inst->header_size = header_size;
4152
4153 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4154 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4155 }
4156
4157 static void
4158 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4159 {
4160 const brw_device_info *devinfo = bld.shader->devinfo;
4161 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4162 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4163 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4164 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4165 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4166 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4167 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4168 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4169 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4170 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4171 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4172 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4173 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4174
4175 if (devinfo->gen >= 7) {
4176 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4177 shadow_c, lod, lod2, sample_index,
4178 mcs, surface, sampler, offset_value,
4179 coord_components, grad_components);
4180 } else if (devinfo->gen >= 5) {
4181 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4182 shadow_c, lod, lod2, sample_index,
4183 surface, sampler, offset_value,
4184 coord_components, grad_components);
4185 } else {
4186 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4187 shadow_c, lod, lod2,
4188 surface, sampler,
4189 coord_components, grad_components);
4190 }
4191 }
4192
4193 /**
4194 * Initialize the header present in some typed and untyped surface
4195 * messages.
4196 */
4197 static fs_reg
4198 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4199 {
4200 fs_builder ubld = bld.exec_all().group(8, 0);
4201 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4202 ubld.MOV(dst, brw_imm_d(0));
4203 ubld.MOV(component(dst, 7), sample_mask);
4204 return dst;
4205 }
4206
4207 static void
4208 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4209 const fs_reg &sample_mask)
4210 {
4211 /* Get the logical send arguments. */
4212 const fs_reg &addr = inst->src[0];
4213 const fs_reg &src = inst->src[1];
4214 const fs_reg &surface = inst->src[2];
4215 const UNUSED fs_reg &dims = inst->src[3];
4216 const fs_reg &arg = inst->src[4];
4217
4218 /* Calculate the total number of components of the payload. */
4219 const unsigned addr_sz = inst->components_read(0);
4220 const unsigned src_sz = inst->components_read(1);
4221 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4222 const unsigned sz = header_sz + addr_sz + src_sz;
4223
4224 /* Allocate space for the payload. */
4225 fs_reg *const components = new fs_reg[sz];
4226 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4227 unsigned n = 0;
4228
4229 /* Construct the payload. */
4230 if (header_sz)
4231 components[n++] = emit_surface_header(bld, sample_mask);
4232
4233 for (unsigned i = 0; i < addr_sz; i++)
4234 components[n++] = offset(addr, bld, i);
4235
4236 for (unsigned i = 0; i < src_sz; i++)
4237 components[n++] = offset(src, bld, i);
4238
4239 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4240
4241 /* Update the original instruction. */
4242 inst->opcode = op;
4243 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4244 inst->header_size = header_sz;
4245
4246 inst->src[0] = payload;
4247 inst->src[1] = surface;
4248 inst->src[2] = arg;
4249 inst->resize_sources(3);
4250
4251 delete[] components;
4252 }
4253
4254 bool
4255 fs_visitor::lower_logical_sends()
4256 {
4257 bool progress = false;
4258
4259 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4260 const fs_builder ibld(this, block, inst);
4261
4262 switch (inst->opcode) {
4263 case FS_OPCODE_FB_WRITE_LOGICAL:
4264 assert(stage == MESA_SHADER_FRAGMENT);
4265 lower_fb_write_logical_send(ibld, inst,
4266 (const brw_wm_prog_data *)prog_data,
4267 (const brw_wm_prog_key *)key,
4268 payload);
4269 break;
4270
4271 case SHADER_OPCODE_TEX_LOGICAL:
4272 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4273 break;
4274
4275 case SHADER_OPCODE_TXD_LOGICAL:
4276 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4277 break;
4278
4279 case SHADER_OPCODE_TXF_LOGICAL:
4280 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4281 break;
4282
4283 case SHADER_OPCODE_TXL_LOGICAL:
4284 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4285 break;
4286
4287 case SHADER_OPCODE_TXS_LOGICAL:
4288 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4289 break;
4290
4291 case FS_OPCODE_TXB_LOGICAL:
4292 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4293 break;
4294
4295 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4296 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4297 break;
4298
4299 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4300 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4301 break;
4302
4303 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4304 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4305 break;
4306
4307 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4308 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4309 break;
4310
4311 case SHADER_OPCODE_LOD_LOGICAL:
4312 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4313 break;
4314
4315 case SHADER_OPCODE_TG4_LOGICAL:
4316 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4317 break;
4318
4319 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4320 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4321 break;
4322
4323 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4324 lower_surface_logical_send(ibld, inst,
4325 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4326 fs_reg());
4327 break;
4328
4329 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4330 lower_surface_logical_send(ibld, inst,
4331 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4332 ibld.sample_mask_reg());
4333 break;
4334
4335 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4336 lower_surface_logical_send(ibld, inst,
4337 SHADER_OPCODE_UNTYPED_ATOMIC,
4338 ibld.sample_mask_reg());
4339 break;
4340
4341 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4342 lower_surface_logical_send(ibld, inst,
4343 SHADER_OPCODE_TYPED_SURFACE_READ,
4344 brw_imm_d(0xffff));
4345 break;
4346
4347 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4348 lower_surface_logical_send(ibld, inst,
4349 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4350 ibld.sample_mask_reg());
4351 break;
4352
4353 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4354 lower_surface_logical_send(ibld, inst,
4355 SHADER_OPCODE_TYPED_ATOMIC,
4356 ibld.sample_mask_reg());
4357 break;
4358
4359 default:
4360 continue;
4361 }
4362
4363 progress = true;
4364 }
4365
4366 if (progress)
4367 invalidate_live_intervals();
4368
4369 return progress;
4370 }
4371
4372 /**
4373 * Get the closest native SIMD width supported by the hardware for instruction
4374 * \p inst. The instruction will be left untouched by
4375 * fs_visitor::lower_simd_width() if the returned value is equal to the
4376 * original execution size.
4377 */
4378 static unsigned
4379 get_lowered_simd_width(const struct brw_device_info *devinfo,
4380 const fs_inst *inst)
4381 {
4382 switch (inst->opcode) {
4383 case BRW_OPCODE_MOV:
4384 case BRW_OPCODE_SEL:
4385 case BRW_OPCODE_NOT:
4386 case BRW_OPCODE_AND:
4387 case BRW_OPCODE_OR:
4388 case BRW_OPCODE_XOR:
4389 case BRW_OPCODE_SHR:
4390 case BRW_OPCODE_SHL:
4391 case BRW_OPCODE_ASR:
4392 case BRW_OPCODE_CMP:
4393 case BRW_OPCODE_CMPN:
4394 case BRW_OPCODE_CSEL:
4395 case BRW_OPCODE_F32TO16:
4396 case BRW_OPCODE_F16TO32:
4397 case BRW_OPCODE_BFREV:
4398 case BRW_OPCODE_BFE:
4399 case BRW_OPCODE_BFI1:
4400 case BRW_OPCODE_BFI2:
4401 case BRW_OPCODE_ADD:
4402 case BRW_OPCODE_MUL:
4403 case BRW_OPCODE_AVG:
4404 case BRW_OPCODE_FRC:
4405 case BRW_OPCODE_RNDU:
4406 case BRW_OPCODE_RNDD:
4407 case BRW_OPCODE_RNDE:
4408 case BRW_OPCODE_RNDZ:
4409 case BRW_OPCODE_LZD:
4410 case BRW_OPCODE_FBH:
4411 case BRW_OPCODE_FBL:
4412 case BRW_OPCODE_CBIT:
4413 case BRW_OPCODE_SAD2:
4414 case BRW_OPCODE_MAD:
4415 case BRW_OPCODE_LRP:
4416 case SHADER_OPCODE_RCP:
4417 case SHADER_OPCODE_RSQ:
4418 case SHADER_OPCODE_SQRT:
4419 case SHADER_OPCODE_EXP2:
4420 case SHADER_OPCODE_LOG2:
4421 case SHADER_OPCODE_POW:
4422 case SHADER_OPCODE_INT_QUOTIENT:
4423 case SHADER_OPCODE_INT_REMAINDER:
4424 case SHADER_OPCODE_SIN:
4425 case SHADER_OPCODE_COS: {
4426 /* According to the PRMs:
4427 * "A. In Direct Addressing mode, a source cannot span more than 2
4428 * adjacent GRF registers.
4429 * B. A destination cannot span more than 2 adjacent GRF registers."
4430 *
4431 * Look for the source or destination with the largest register region
4432 * which is the one that is going to limit the overal execution size of
4433 * the instruction due to this rule.
4434 */
4435 unsigned reg_count = inst->regs_written;
4436
4437 for (unsigned i = 0; i < inst->sources; i++)
4438 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4439
4440 /* Calculate the maximum execution size of the instruction based on the
4441 * factor by which it goes over the hardware limit of 2 GRFs.
4442 */
4443 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4444 }
4445 case SHADER_OPCODE_MULH:
4446 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4447 * is 8-wide on Gen7+.
4448 */
4449 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4450
4451 case FS_OPCODE_FB_WRITE_LOGICAL:
4452 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4453 * here.
4454 */
4455 assert(devinfo->gen != 6 ||
4456 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4457 inst->exec_size == 8);
4458 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4459 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4460 8 : inst->exec_size);
4461
4462 case SHADER_OPCODE_TXD_LOGICAL:
4463 /* TXD is unsupported in SIMD16 mode. */
4464 return 8;
4465
4466 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4467 /* gather4_po_c is unsupported in SIMD16 mode. */
4468 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4469 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4470 }
4471 case SHADER_OPCODE_TXL_LOGICAL:
4472 case FS_OPCODE_TXB_LOGICAL: {
4473 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4474 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4475 * mode because the message exceeds the maximum length of 11.
4476 */
4477 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4478 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4479 return 16;
4480 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4481 return 8;
4482 else
4483 return inst->exec_size;
4484 }
4485 case SHADER_OPCODE_TXF_LOGICAL:
4486 case SHADER_OPCODE_TXS_LOGICAL:
4487 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4488 * messages. Use SIMD16 instead.
4489 */
4490 if (devinfo->gen == 4)
4491 return 16;
4492 else
4493 return inst->exec_size;
4494
4495 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4496 /* This opcode can take up to 6 arguments which means that in some
4497 * circumstances it can end up with a message that is too long in SIMD16
4498 * mode.
4499 */
4500 const unsigned coord_components =
4501 inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4502 /* First three arguments are the sample index and the two arguments for
4503 * the MCS data.
4504 */
4505 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4506 return 8;
4507 else
4508 return inst->exec_size;
4509 }
4510
4511 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4512 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4513 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4514 return 8;
4515
4516 case SHADER_OPCODE_MOV_INDIRECT:
4517 /* Prior to Broadwell, we only have 8 address subregisters */
4518 return devinfo->gen < 8 ? 8 : inst->exec_size;
4519
4520 default:
4521 return inst->exec_size;
4522 }
4523 }
4524
4525 /**
4526 * The \p rows array of registers represents a \p num_rows by \p num_columns
4527 * matrix in row-major order, write it in column-major order into the register
4528 * passed as destination. \p stride gives the separation between matrix
4529 * elements in the input in fs_builder::dispatch_width() units.
4530 */
4531 static void
4532 emit_transpose(const fs_builder &bld,
4533 const fs_reg &dst, const fs_reg *rows,
4534 unsigned num_rows, unsigned num_columns, unsigned stride)
4535 {
4536 fs_reg *const components = new fs_reg[num_rows * num_columns];
4537
4538 for (unsigned i = 0; i < num_columns; ++i) {
4539 for (unsigned j = 0; j < num_rows; ++j)
4540 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4541 }
4542
4543 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4544
4545 delete[] components;
4546 }
4547
4548 bool
4549 fs_visitor::lower_simd_width()
4550 {
4551 bool progress = false;
4552
4553 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4554 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4555
4556 if (lower_width != inst->exec_size) {
4557 /* Builder matching the original instruction. We may also need to
4558 * emit an instruction of width larger than the original, set the
4559 * execution size of the builder to the highest of both for now so
4560 * we're sure that both cases can be handled.
4561 */
4562 const fs_builder ibld = bld.at(block, inst)
4563 .exec_all(inst->force_writemask_all)
4564 .group(MAX2(inst->exec_size, lower_width),
4565 inst->force_sechalf);
4566
4567 /* Split the copies in chunks of the execution width of either the
4568 * original or the lowered instruction, whichever is lower.
4569 */
4570 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4571 const unsigned n = inst->exec_size / copy_width;
4572 const unsigned dst_size = inst->regs_written * REG_SIZE /
4573 inst->dst.component_size(inst->exec_size);
4574 fs_reg dsts[4];
4575
4576 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4577 !inst->writes_accumulator && !inst->mlen);
4578
4579 for (unsigned i = 0; i < n; i++) {
4580 /* Emit a copy of the original instruction with the lowered width.
4581 * If the EOT flag was set throw it away except for the last
4582 * instruction to avoid killing the thread prematurely.
4583 */
4584 fs_inst split_inst = *inst;
4585 split_inst.exec_size = lower_width;
4586 split_inst.eot = inst->eot && i == n - 1;
4587
4588 /* Select the correct channel enables for the i-th group, then
4589 * transform the sources and destination and emit the lowered
4590 * instruction.
4591 */
4592 const fs_builder lbld = ibld.group(lower_width, i);
4593
4594 for (unsigned j = 0; j < inst->sources; j++) {
4595 if (inst->src[j].file != BAD_FILE &&
4596 !is_uniform(inst->src[j])) {
4597 /* Get the i-th copy_width-wide chunk of the source. */
4598 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4599 const unsigned src_size = inst->components_read(j);
4600
4601 /* Use a trivial transposition to copy one every n
4602 * copy_width-wide components of the register into a
4603 * temporary passed as source to the lowered instruction.
4604 */
4605 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4606 emit_transpose(lbld.group(copy_width, 0),
4607 split_inst.src[j], &src, 1, src_size, n);
4608 }
4609 }
4610
4611 if (inst->regs_written) {
4612 /* Allocate enough space to hold the result of the lowered
4613 * instruction and fix up the number of registers written.
4614 */
4615 split_inst.dst = dsts[i] =
4616 lbld.vgrf(inst->dst.type, dst_size);
4617 split_inst.regs_written =
4618 DIV_ROUND_UP(inst->regs_written * lower_width,
4619 inst->exec_size);
4620 }
4621
4622 lbld.emit(split_inst);
4623 }
4624
4625 if (inst->regs_written) {
4626 /* Distance between useful channels in the temporaries, skipping
4627 * garbage if the lowered instruction is wider than the original.
4628 */
4629 const unsigned m = lower_width / copy_width;
4630
4631 /* Interleave the components of the result from the lowered
4632 * instructions. We need to set exec_all() when copying more than
4633 * one half per component, because LOAD_PAYLOAD (in terms of which
4634 * emit_transpose is implemented) can only use the same channel
4635 * enable signals for all of its non-header sources.
4636 */
4637 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4638 .group(copy_width, 0),
4639 inst->dst, dsts, n, dst_size, m);
4640 }
4641
4642 inst->remove(block);
4643 progress = true;
4644 }
4645 }
4646
4647 if (progress)
4648 invalidate_live_intervals();
4649
4650 return progress;
4651 }
4652
4653 void
4654 fs_visitor::dump_instructions()
4655 {
4656 dump_instructions(NULL);
4657 }
4658
4659 void
4660 fs_visitor::dump_instructions(const char *name)
4661 {
4662 FILE *file = stderr;
4663 if (name && geteuid() != 0) {
4664 file = fopen(name, "w");
4665 if (!file)
4666 file = stderr;
4667 }
4668
4669 if (cfg) {
4670 calculate_register_pressure();
4671 int ip = 0, max_pressure = 0;
4672 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4673 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4674 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4675 dump_instruction(inst, file);
4676 ip++;
4677 }
4678 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4679 } else {
4680 int ip = 0;
4681 foreach_in_list(backend_instruction, inst, &instructions) {
4682 fprintf(file, "%4d: ", ip++);
4683 dump_instruction(inst, file);
4684 }
4685 }
4686
4687 if (file != stderr) {
4688 fclose(file);
4689 }
4690 }
4691
4692 void
4693 fs_visitor::dump_instruction(backend_instruction *be_inst)
4694 {
4695 dump_instruction(be_inst, stderr);
4696 }
4697
4698 void
4699 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4700 {
4701 fs_inst *inst = (fs_inst *)be_inst;
4702
4703 if (inst->predicate) {
4704 fprintf(file, "(%cf0.%d) ",
4705 inst->predicate_inverse ? '-' : '+',
4706 inst->flag_subreg);
4707 }
4708
4709 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4710 if (inst->saturate)
4711 fprintf(file, ".sat");
4712 if (inst->conditional_mod) {
4713 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4714 if (!inst->predicate &&
4715 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4716 inst->opcode != BRW_OPCODE_IF &&
4717 inst->opcode != BRW_OPCODE_WHILE))) {
4718 fprintf(file, ".f0.%d", inst->flag_subreg);
4719 }
4720 }
4721 fprintf(file, "(%d) ", inst->exec_size);
4722
4723 if (inst->mlen) {
4724 fprintf(file, "(mlen: %d) ", inst->mlen);
4725 }
4726
4727 switch (inst->dst.file) {
4728 case VGRF:
4729 fprintf(file, "vgrf%d", inst->dst.nr);
4730 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4731 inst->dst.subreg_offset)
4732 fprintf(file, "+%d.%d",
4733 inst->dst.reg_offset, inst->dst.subreg_offset);
4734 break;
4735 case FIXED_GRF:
4736 fprintf(file, "g%d", inst->dst.nr);
4737 break;
4738 case MRF:
4739 fprintf(file, "m%d", inst->dst.nr);
4740 break;
4741 case BAD_FILE:
4742 fprintf(file, "(null)");
4743 break;
4744 case UNIFORM:
4745 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4746 break;
4747 case ATTR:
4748 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4749 break;
4750 case ARF:
4751 switch (inst->dst.nr) {
4752 case BRW_ARF_NULL:
4753 fprintf(file, "null");
4754 break;
4755 case BRW_ARF_ADDRESS:
4756 fprintf(file, "a0.%d", inst->dst.subnr);
4757 break;
4758 case BRW_ARF_ACCUMULATOR:
4759 fprintf(file, "acc%d", inst->dst.subnr);
4760 break;
4761 case BRW_ARF_FLAG:
4762 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4763 break;
4764 default:
4765 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4766 break;
4767 }
4768 if (inst->dst.subnr)
4769 fprintf(file, "+%d", inst->dst.subnr);
4770 break;
4771 case IMM:
4772 unreachable("not reached");
4773 }
4774 if (inst->dst.stride != 1)
4775 fprintf(file, "<%u>", inst->dst.stride);
4776 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4777
4778 for (int i = 0; i < inst->sources; i++) {
4779 if (inst->src[i].negate)
4780 fprintf(file, "-");
4781 if (inst->src[i].abs)
4782 fprintf(file, "|");
4783 switch (inst->src[i].file) {
4784 case VGRF:
4785 fprintf(file, "vgrf%d", inst->src[i].nr);
4786 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4787 inst->src[i].subreg_offset)
4788 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4789 inst->src[i].subreg_offset);
4790 break;
4791 case FIXED_GRF:
4792 fprintf(file, "g%d", inst->src[i].nr);
4793 break;
4794 case MRF:
4795 fprintf(file, "***m%d***", inst->src[i].nr);
4796 break;
4797 case ATTR:
4798 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4799 break;
4800 case UNIFORM:
4801 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4802 if (inst->src[i].subreg_offset) {
4803 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4804 inst->src[i].subreg_offset);
4805 }
4806 break;
4807 case BAD_FILE:
4808 fprintf(file, "(null)");
4809 break;
4810 case IMM:
4811 switch (inst->src[i].type) {
4812 case BRW_REGISTER_TYPE_F:
4813 fprintf(file, "%-gf", inst->src[i].f);
4814 break;
4815 case BRW_REGISTER_TYPE_W:
4816 case BRW_REGISTER_TYPE_D:
4817 fprintf(file, "%dd", inst->src[i].d);
4818 break;
4819 case BRW_REGISTER_TYPE_UW:
4820 case BRW_REGISTER_TYPE_UD:
4821 fprintf(file, "%uu", inst->src[i].ud);
4822 break;
4823 case BRW_REGISTER_TYPE_VF:
4824 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4825 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4826 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4827 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4828 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4829 break;
4830 default:
4831 fprintf(file, "???");
4832 break;
4833 }
4834 break;
4835 case ARF:
4836 switch (inst->src[i].nr) {
4837 case BRW_ARF_NULL:
4838 fprintf(file, "null");
4839 break;
4840 case BRW_ARF_ADDRESS:
4841 fprintf(file, "a0.%d", inst->src[i].subnr);
4842 break;
4843 case BRW_ARF_ACCUMULATOR:
4844 fprintf(file, "acc%d", inst->src[i].subnr);
4845 break;
4846 case BRW_ARF_FLAG:
4847 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4848 break;
4849 default:
4850 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4851 break;
4852 }
4853 if (inst->src[i].subnr)
4854 fprintf(file, "+%d", inst->src[i].subnr);
4855 break;
4856 }
4857 if (inst->src[i].abs)
4858 fprintf(file, "|");
4859
4860 if (inst->src[i].file != IMM) {
4861 unsigned stride;
4862 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4863 unsigned hstride = inst->src[i].hstride;
4864 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4865 } else {
4866 stride = inst->src[i].stride;
4867 }
4868 if (stride != 1)
4869 fprintf(file, "<%u>", stride);
4870
4871 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4872 }
4873
4874 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4875 fprintf(file, ", ");
4876 }
4877
4878 fprintf(file, " ");
4879
4880 if (inst->force_writemask_all)
4881 fprintf(file, "NoMask ");
4882
4883 if (dispatch_width == 16 && inst->exec_size == 8) {
4884 if (inst->force_sechalf)
4885 fprintf(file, "2ndhalf ");
4886 else
4887 fprintf(file, "1sthalf ");
4888 }
4889
4890 fprintf(file, "\n");
4891 }
4892
4893 /**
4894 * Possibly returns an instruction that set up @param reg.
4895 *
4896 * Sometimes we want to take the result of some expression/variable
4897 * dereference tree and rewrite the instruction generating the result
4898 * of the tree. When processing the tree, we know that the
4899 * instructions generated are all writing temporaries that are dead
4900 * outside of this tree. So, if we have some instructions that write
4901 * a temporary, we're free to point that temp write somewhere else.
4902 *
4903 * Note that this doesn't guarantee that the instruction generated
4904 * only reg -- it might be the size=4 destination of a texture instruction.
4905 */
4906 fs_inst *
4907 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4908 fs_inst *end,
4909 const fs_reg &reg)
4910 {
4911 if (end == start ||
4912 end->is_partial_write() ||
4913 !reg.equals(end->dst)) {
4914 return NULL;
4915 } else {
4916 return end;
4917 }
4918 }
4919
4920 void
4921 fs_visitor::setup_fs_payload_gen6()
4922 {
4923 assert(stage == MESA_SHADER_FRAGMENT);
4924 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4925 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4926
4927 unsigned barycentric_interp_modes =
4928 (stage == MESA_SHADER_FRAGMENT) ?
4929 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4930
4931 assert(devinfo->gen >= 6);
4932
4933 /* R0-1: masks, pixel X/Y coordinates. */
4934 payload.num_regs = 2;
4935 /* R2: only for 32-pixel dispatch.*/
4936
4937 /* R3-26: barycentric interpolation coordinates. These appear in the
4938 * same order that they appear in the brw_wm_barycentric_interp_mode
4939 * enum. Each set of coordinates occupies 2 registers if dispatch width
4940 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4941 * appear if they were enabled using the "Barycentric Interpolation
4942 * Mode" bits in WM_STATE.
4943 */
4944 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4945 if (barycentric_interp_modes & (1 << i)) {
4946 payload.barycentric_coord_reg[i] = payload.num_regs;
4947 payload.num_regs += 2;
4948 if (dispatch_width == 16) {
4949 payload.num_regs += 2;
4950 }
4951 }
4952 }
4953
4954 /* R27: interpolated depth if uses source depth */
4955 prog_data->uses_src_depth =
4956 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4957 if (prog_data->uses_src_depth) {
4958 payload.source_depth_reg = payload.num_regs;
4959 payload.num_regs++;
4960 if (dispatch_width == 16) {
4961 /* R28: interpolated depth if not SIMD8. */
4962 payload.num_regs++;
4963 }
4964 }
4965
4966 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4967 prog_data->uses_src_w =
4968 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4969 if (prog_data->uses_src_w) {
4970 payload.source_w_reg = payload.num_regs;
4971 payload.num_regs++;
4972 if (dispatch_width == 16) {
4973 /* R30: interpolated W if not SIMD8. */
4974 payload.num_regs++;
4975 }
4976 }
4977
4978 prog_data->uses_pos_offset = key->compute_pos_offset;
4979 /* R31: MSAA position offsets. */
4980 if (prog_data->uses_pos_offset) {
4981 payload.sample_pos_reg = payload.num_regs;
4982 payload.num_regs++;
4983 }
4984
4985 /* R32: MSAA input coverage mask */
4986 prog_data->uses_sample_mask =
4987 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
4988 if (prog_data->uses_sample_mask) {
4989 assert(devinfo->gen >= 7);
4990 payload.sample_mask_in_reg = payload.num_regs;
4991 payload.num_regs++;
4992 if (dispatch_width == 16) {
4993 /* R33: input coverage mask if not SIMD8. */
4994 payload.num_regs++;
4995 }
4996 }
4997
4998 /* R34-: bary for 32-pixel. */
4999 /* R58-59: interp W for 32-pixel. */
5000
5001 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5002 source_depth_to_render_target = true;
5003 }
5004 }
5005
5006 void
5007 fs_visitor::setup_vs_payload()
5008 {
5009 /* R0: thread header, R1: urb handles */
5010 payload.num_regs = 2;
5011 }
5012
5013 /**
5014 * We are building the local ID push constant data using the simplest possible
5015 * method. We simply push the local IDs directly as they should appear in the
5016 * registers for the uvec3 gl_LocalInvocationID variable.
5017 *
5018 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
5019 * registers worth of push constant space.
5020 *
5021 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
5022 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
5023 * to coordinated.
5024 *
5025 * FINISHME: There are a few easy optimizations to consider.
5026 *
5027 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
5028 * no need for using push constant space for that dimension.
5029 *
5030 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
5031 * easily use 16-bit words rather than 32-bit dwords in the push constant
5032 * data.
5033 *
5034 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
5035 * conveying the data, and thereby reduce push constant usage.
5036 *
5037 */
5038 void
5039 fs_visitor::setup_gs_payload()
5040 {
5041 assert(stage == MESA_SHADER_GEOMETRY);
5042
5043 struct brw_gs_prog_data *gs_prog_data =
5044 (struct brw_gs_prog_data *) prog_data;
5045 struct brw_vue_prog_data *vue_prog_data =
5046 (struct brw_vue_prog_data *) prog_data;
5047
5048 /* R0: thread header, R1: output URB handles */
5049 payload.num_regs = 2;
5050
5051 if (gs_prog_data->include_primitive_id) {
5052 /* R2: Primitive ID 0..7 */
5053 payload.num_regs++;
5054 }
5055
5056 /* Use a maximum of 32 registers for push-model inputs. */
5057 const unsigned max_push_components = 32;
5058
5059 /* If pushing our inputs would take too many registers, reduce the URB read
5060 * length (which is in HWords, or 8 registers), and resort to pulling.
5061 *
5062 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5063 * have to multiply by VerticesIn to obtain the total storage requirement.
5064 */
5065 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5066 max_push_components) {
5067 gs_prog_data->base.include_vue_handles = true;
5068
5069 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5070 payload.num_regs += nir->info.gs.vertices_in;
5071
5072 vue_prog_data->urb_read_length =
5073 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5074 }
5075 }
5076
5077 void
5078 fs_visitor::setup_cs_payload()
5079 {
5080 assert(devinfo->gen >= 7);
5081 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
5082
5083 payload.num_regs = 1;
5084
5085 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5086 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5087 payload.local_invocation_id_reg = payload.num_regs;
5088 payload.num_regs += prog_data->local_invocation_id_regs;
5089 }
5090 }
5091
5092 void
5093 fs_visitor::calculate_register_pressure()
5094 {
5095 invalidate_live_intervals();
5096 calculate_live_intervals();
5097
5098 unsigned num_instructions = 0;
5099 foreach_block(block, cfg)
5100 num_instructions += block->instructions.length();
5101
5102 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5103
5104 for (unsigned reg = 0; reg < alloc.count; reg++) {
5105 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5106 regs_live_at_ip[ip] += alloc.sizes[reg];
5107 }
5108 }
5109
5110 void
5111 fs_visitor::optimize()
5112 {
5113 /* Start by validating the shader we currently have. */
5114 validate();
5115
5116 /* bld is the common builder object pointing at the end of the program we
5117 * used to translate it into i965 IR. For the optimization and lowering
5118 * passes coming next, any code added after the end of the program without
5119 * having explicitly called fs_builder::at() clearly points at a mistake.
5120 * Ideally optimization passes wouldn't be part of the visitor so they
5121 * wouldn't have access to bld at all, but they do, so just in case some
5122 * pass forgets to ask for a location explicitly set it to NULL here to
5123 * make it trip. The dispatch width is initialized to a bogus value to
5124 * make sure that optimizations set the execution controls explicitly to
5125 * match the code they are manipulating instead of relying on the defaults.
5126 */
5127 bld = fs_builder(this, 64);
5128
5129 assign_constant_locations();
5130 lower_constant_loads();
5131
5132 validate();
5133
5134 split_virtual_grfs();
5135 validate();
5136
5137 #define OPT(pass, args...) ({ \
5138 pass_num++; \
5139 bool this_progress = pass(args); \
5140 \
5141 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5142 char filename[64]; \
5143 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5144 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5145 \
5146 backend_shader::dump_instructions(filename); \
5147 } \
5148 \
5149 validate(); \
5150 \
5151 progress = progress || this_progress; \
5152 this_progress; \
5153 })
5154
5155 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5156 char filename[64];
5157 snprintf(filename, 64, "%s%d-%s-00-00-start",
5158 stage_abbrev, dispatch_width, nir->info.name);
5159
5160 backend_shader::dump_instructions(filename);
5161 }
5162
5163 bool progress = false;
5164 int iteration = 0;
5165 int pass_num = 0;
5166
5167 OPT(lower_simd_width);
5168 OPT(lower_logical_sends);
5169
5170 do {
5171 progress = false;
5172 pass_num = 0;
5173 iteration++;
5174
5175 OPT(remove_duplicate_mrf_writes);
5176
5177 OPT(opt_algebraic);
5178 OPT(opt_cse);
5179 OPT(opt_copy_propagate);
5180 OPT(opt_predicated_break, this);
5181 OPT(opt_cmod_propagation);
5182 OPT(dead_code_eliminate);
5183 OPT(opt_peephole_sel);
5184 OPT(dead_control_flow_eliminate, this);
5185 OPT(opt_register_renaming);
5186 OPT(opt_redundant_discard_jumps);
5187 OPT(opt_saturate_propagation);
5188 OPT(opt_zero_samples);
5189 OPT(register_coalesce);
5190 OPT(compute_to_mrf);
5191 OPT(eliminate_find_live_channel);
5192
5193 OPT(compact_virtual_grfs);
5194 } while (progress);
5195
5196 pass_num = 0;
5197
5198 OPT(opt_sampler_eot);
5199
5200 if (OPT(lower_load_payload)) {
5201 split_virtual_grfs();
5202 OPT(register_coalesce);
5203 OPT(compute_to_mrf);
5204 OPT(dead_code_eliminate);
5205 }
5206
5207 OPT(opt_combine_constants);
5208 OPT(lower_integer_multiplication);
5209
5210 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5211 OPT(opt_cmod_propagation);
5212 OPT(opt_cse);
5213 OPT(opt_copy_propagate);
5214 OPT(dead_code_eliminate);
5215 }
5216
5217 lower_uniform_pull_constant_loads();
5218
5219 validate();
5220 }
5221
5222 /**
5223 * Three source instruction must have a GRF/MRF destination register.
5224 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5225 */
5226 void
5227 fs_visitor::fixup_3src_null_dest()
5228 {
5229 bool progress = false;
5230
5231 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5232 if (inst->is_3src() && inst->dst.is_null()) {
5233 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5234 inst->dst.type);
5235 progress = true;
5236 }
5237 }
5238
5239 if (progress)
5240 invalidate_live_intervals();
5241 }
5242
5243 void
5244 fs_visitor::allocate_registers()
5245 {
5246 bool allocated_without_spills;
5247
5248 static const enum instruction_scheduler_mode pre_modes[] = {
5249 SCHEDULE_PRE,
5250 SCHEDULE_PRE_NON_LIFO,
5251 SCHEDULE_PRE_LIFO,
5252 };
5253
5254 /* Try each scheduling heuristic to see if it can successfully register
5255 * allocate without spilling. They should be ordered by decreasing
5256 * performance but increasing likelihood of allocating.
5257 */
5258 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5259 schedule_instructions(pre_modes[i]);
5260
5261 if (0) {
5262 assign_regs_trivial();
5263 allocated_without_spills = true;
5264 } else {
5265 allocated_without_spills = assign_regs(false);
5266 }
5267 if (allocated_without_spills)
5268 break;
5269 }
5270
5271 if (!allocated_without_spills) {
5272 /* We assume that any spilling is worse than just dropping back to
5273 * SIMD8. There's probably actually some intermediate point where
5274 * SIMD16 with a couple of spills is still better.
5275 */
5276 if (dispatch_width == 16 && min_dispatch_width <= 8) {
5277 fail("Failure to register allocate. Reduce number of "
5278 "live scalar values to avoid this.");
5279 } else {
5280 compiler->shader_perf_log(log_data,
5281 "%s shader triggered register spilling. "
5282 "Try reducing the number of live scalar "
5283 "values to improve performance.\n",
5284 stage_name);
5285 }
5286
5287 /* Since we're out of heuristics, just go spill registers until we
5288 * get an allocation.
5289 */
5290 while (!assign_regs(true)) {
5291 if (failed)
5292 break;
5293 }
5294 }
5295
5296 /* This must come after all optimization and register allocation, since
5297 * it inserts dead code that happens to have side effects, and it does
5298 * so based on the actual physical registers in use.
5299 */
5300 insert_gen4_send_dependency_workarounds();
5301
5302 if (failed)
5303 return;
5304
5305 schedule_instructions(SCHEDULE_POST);
5306
5307 if (last_scratch > 0)
5308 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5309 }
5310
5311 bool
5312 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5313 {
5314 assert(stage == MESA_SHADER_VERTEX);
5315
5316 setup_vs_payload();
5317
5318 if (shader_time_index >= 0)
5319 emit_shader_time_begin();
5320
5321 emit_nir_code();
5322
5323 if (failed)
5324 return false;
5325
5326 compute_clip_distance(clip_planes);
5327
5328 emit_urb_writes();
5329
5330 if (shader_time_index >= 0)
5331 emit_shader_time_end();
5332
5333 calculate_cfg();
5334
5335 optimize();
5336
5337 assign_curb_setup();
5338 assign_vs_urb_setup();
5339
5340 fixup_3src_null_dest();
5341 allocate_registers();
5342
5343 return !failed;
5344 }
5345
5346 bool
5347 fs_visitor::run_tes()
5348 {
5349 assert(stage == MESA_SHADER_TESS_EVAL);
5350
5351 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5352 payload.num_regs = 5;
5353
5354 if (shader_time_index >= 0)
5355 emit_shader_time_begin();
5356
5357 emit_nir_code();
5358
5359 if (failed)
5360 return false;
5361
5362 emit_urb_writes();
5363
5364 if (shader_time_index >= 0)
5365 emit_shader_time_end();
5366
5367 calculate_cfg();
5368
5369 optimize();
5370
5371 assign_curb_setup();
5372 assign_tes_urb_setup();
5373
5374 fixup_3src_null_dest();
5375 allocate_registers();
5376
5377 return !failed;
5378 }
5379
5380 bool
5381 fs_visitor::run_gs()
5382 {
5383 assert(stage == MESA_SHADER_GEOMETRY);
5384
5385 setup_gs_payload();
5386
5387 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5388
5389 if (gs_compile->control_data_header_size_bits > 0) {
5390 /* Create a VGRF to store accumulated control data bits. */
5391 this->control_data_bits = vgrf(glsl_type::uint_type);
5392
5393 /* If we're outputting more than 32 control data bits, then EmitVertex()
5394 * will set control_data_bits to 0 after emitting the first vertex.
5395 * Otherwise, we need to initialize it to 0 here.
5396 */
5397 if (gs_compile->control_data_header_size_bits <= 32) {
5398 const fs_builder abld = bld.annotate("initialize control data bits");
5399 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5400 }
5401 }
5402
5403 if (shader_time_index >= 0)
5404 emit_shader_time_begin();
5405
5406 emit_nir_code();
5407
5408 emit_gs_thread_end();
5409
5410 if (shader_time_index >= 0)
5411 emit_shader_time_end();
5412
5413 if (failed)
5414 return false;
5415
5416 calculate_cfg();
5417
5418 optimize();
5419
5420 assign_curb_setup();
5421 assign_gs_urb_setup();
5422
5423 fixup_3src_null_dest();
5424 allocate_registers();
5425
5426 return !failed;
5427 }
5428
5429 bool
5430 fs_visitor::run_fs(bool do_rep_send)
5431 {
5432 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5433 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5434
5435 assert(stage == MESA_SHADER_FRAGMENT);
5436
5437 if (devinfo->gen >= 6)
5438 setup_fs_payload_gen6();
5439 else
5440 setup_fs_payload_gen4();
5441
5442 if (0) {
5443 emit_dummy_fs();
5444 } else if (do_rep_send) {
5445 assert(dispatch_width == 16);
5446 emit_repclear_shader();
5447 } else {
5448 if (shader_time_index >= 0)
5449 emit_shader_time_begin();
5450
5451 calculate_urb_setup();
5452 if (nir->info.inputs_read > 0) {
5453 if (devinfo->gen < 6)
5454 emit_interpolation_setup_gen4();
5455 else
5456 emit_interpolation_setup_gen6();
5457 }
5458
5459 /* We handle discards by keeping track of the still-live pixels in f0.1.
5460 * Initialize it with the dispatched pixels.
5461 */
5462 if (wm_prog_data->uses_kill) {
5463 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5464 discard_init->flag_subreg = 1;
5465 }
5466
5467 /* Generate FS IR for main(). (the visitor only descends into
5468 * functions called "main").
5469 */
5470 emit_nir_code();
5471
5472 if (failed)
5473 return false;
5474
5475 if (wm_prog_data->uses_kill)
5476 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5477
5478 if (wm_key->alpha_test_func)
5479 emit_alpha_test();
5480
5481 emit_fb_writes();
5482
5483 if (shader_time_index >= 0)
5484 emit_shader_time_end();
5485
5486 calculate_cfg();
5487
5488 optimize();
5489
5490 assign_curb_setup();
5491 assign_urb_setup();
5492
5493 fixup_3src_null_dest();
5494 allocate_registers();
5495
5496 if (failed)
5497 return false;
5498 }
5499
5500 if (dispatch_width == 8)
5501 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5502 else
5503 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5504
5505 return !failed;
5506 }
5507
5508 bool
5509 fs_visitor::run_cs()
5510 {
5511 assert(stage == MESA_SHADER_COMPUTE);
5512
5513 setup_cs_payload();
5514
5515 if (shader_time_index >= 0)
5516 emit_shader_time_begin();
5517
5518 if (devinfo->is_haswell && prog_data->total_shared > 0) {
5519 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
5520 const fs_builder abld = bld.exec_all().group(1, 0);
5521 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
5522 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
5523 }
5524
5525 emit_nir_code();
5526
5527 if (failed)
5528 return false;
5529
5530 emit_cs_terminate();
5531
5532 if (shader_time_index >= 0)
5533 emit_shader_time_end();
5534
5535 calculate_cfg();
5536
5537 optimize();
5538
5539 assign_curb_setup();
5540
5541 fixup_3src_null_dest();
5542 allocate_registers();
5543
5544 if (failed)
5545 return false;
5546
5547 return !failed;
5548 }
5549
5550 /**
5551 * Return a bitfield where bit n is set if barycentric interpolation mode n
5552 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5553 */
5554 static unsigned
5555 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5556 bool shade_model_flat,
5557 bool persample_shading,
5558 const nir_shader *shader)
5559 {
5560 unsigned barycentric_interp_modes = 0;
5561
5562 nir_foreach_variable(var, &shader->inputs) {
5563 enum glsl_interp_qualifier interp_qualifier =
5564 (enum glsl_interp_qualifier)var->data.interpolation;
5565 bool is_centroid = var->data.centroid && !persample_shading;
5566 bool is_sample = var->data.sample || persample_shading;
5567 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5568 (var->data.location == VARYING_SLOT_COL1);
5569
5570 /* Ignore WPOS and FACE, because they don't require interpolation. */
5571 if (var->data.location == VARYING_SLOT_POS ||
5572 var->data.location == VARYING_SLOT_FACE)
5573 continue;
5574
5575 /* Determine the set (or sets) of barycentric coordinates needed to
5576 * interpolate this variable. Note that when
5577 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5578 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5579 * for lit pixels, so we need both sets of barycentric coordinates.
5580 */
5581 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5582 if (is_centroid) {
5583 barycentric_interp_modes |=
5584 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5585 } else if (is_sample) {
5586 barycentric_interp_modes |=
5587 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5588 }
5589 if ((!is_centroid && !is_sample) ||
5590 devinfo->needs_unlit_centroid_workaround) {
5591 barycentric_interp_modes |=
5592 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5593 }
5594 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5595 (!(shade_model_flat && is_gl_Color) &&
5596 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5597 if (is_centroid) {
5598 barycentric_interp_modes |=
5599 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5600 } else if (is_sample) {
5601 barycentric_interp_modes |=
5602 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5603 }
5604 if ((!is_centroid && !is_sample) ||
5605 devinfo->needs_unlit_centroid_workaround) {
5606 barycentric_interp_modes |=
5607 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5608 }
5609 }
5610 }
5611
5612 return barycentric_interp_modes;
5613 }
5614
5615 static void
5616 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
5617 bool shade_model_flat, const nir_shader *shader)
5618 {
5619 prog_data->flat_inputs = 0;
5620
5621 nir_foreach_variable(var, &shader->inputs) {
5622 enum glsl_interp_qualifier interp_qualifier =
5623 (enum glsl_interp_qualifier)var->data.interpolation;
5624 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5625 (var->data.location == VARYING_SLOT_COL1);
5626
5627 int input_index = prog_data->urb_setup[var->data.location];
5628
5629 if (input_index < 0)
5630 continue;
5631
5632 /* flat shading */
5633 if (interp_qualifier == INTERP_QUALIFIER_FLAT ||
5634 (shade_model_flat && is_gl_Color &&
5635 interp_qualifier == INTERP_QUALIFIER_NONE))
5636 prog_data->flat_inputs |= (1 << input_index);
5637 }
5638 }
5639
5640 static uint8_t
5641 computed_depth_mode(const nir_shader *shader)
5642 {
5643 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5644 switch (shader->info.fs.depth_layout) {
5645 case FRAG_DEPTH_LAYOUT_NONE:
5646 case FRAG_DEPTH_LAYOUT_ANY:
5647 return BRW_PSCDEPTH_ON;
5648 case FRAG_DEPTH_LAYOUT_GREATER:
5649 return BRW_PSCDEPTH_ON_GE;
5650 case FRAG_DEPTH_LAYOUT_LESS:
5651 return BRW_PSCDEPTH_ON_LE;
5652 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5653 return BRW_PSCDEPTH_OFF;
5654 }
5655 }
5656 return BRW_PSCDEPTH_OFF;
5657 }
5658
5659 const unsigned *
5660 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5661 void *mem_ctx,
5662 const struct brw_wm_prog_key *key,
5663 struct brw_wm_prog_data *prog_data,
5664 const nir_shader *src_shader,
5665 struct gl_program *prog,
5666 int shader_time_index8, int shader_time_index16,
5667 bool use_rep_send,
5668 unsigned *final_assembly_size,
5669 char **error_str)
5670 {
5671 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5672 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5673 true);
5674 brw_nir_lower_fs_inputs(shader);
5675 brw_nir_lower_fs_outputs(shader);
5676 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5677
5678 /* key->alpha_test_func means simulating alpha testing via discards,
5679 * so the shader definitely kills pixels.
5680 */
5681 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5682 prog_data->uses_omask =
5683 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5684 prog_data->computed_depth_mode = computed_depth_mode(shader);
5685 prog_data->computed_stencil =
5686 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5687
5688 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5689
5690 prog_data->barycentric_interp_modes =
5691 brw_compute_barycentric_interp_modes(compiler->devinfo,
5692 key->flat_shade,
5693 key->persample_shading,
5694 shader);
5695
5696 fs_visitor v(compiler, log_data, mem_ctx, key,
5697 &prog_data->base, prog, shader, 8,
5698 shader_time_index8);
5699 if (!v.run_fs(false /* do_rep_send */)) {
5700 if (error_str)
5701 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5702
5703 return NULL;
5704 }
5705
5706 cfg_t *simd16_cfg = NULL;
5707 fs_visitor v2(compiler, log_data, mem_ctx, key,
5708 &prog_data->base, prog, shader, 16,
5709 shader_time_index16);
5710 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5711 if (!v.simd16_unsupported) {
5712 /* Try a SIMD16 compile */
5713 v2.import_uniforms(&v);
5714 if (!v2.run_fs(use_rep_send)) {
5715 compiler->shader_perf_log(log_data,
5716 "SIMD16 shader failed to compile: %s",
5717 v2.fail_msg);
5718 } else {
5719 simd16_cfg = v2.cfg;
5720 }
5721 }
5722 }
5723
5724 /* We have to compute the flat inputs after the visitor is finished running
5725 * because it relies on prog_data->urb_setup which is computed in
5726 * fs_visitor::calculate_urb_setup().
5727 */
5728 brw_compute_flat_inputs(prog_data, key->flat_shade, shader);
5729
5730 cfg_t *simd8_cfg;
5731 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5732 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5733 simd8_cfg = NULL;
5734 prog_data->no_8 = true;
5735 } else {
5736 simd8_cfg = v.cfg;
5737 prog_data->no_8 = false;
5738 }
5739
5740 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5741 v.promoted_constants, v.runtime_check_aads_emit,
5742 MESA_SHADER_FRAGMENT);
5743
5744 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5745 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5746 shader->info.label ? shader->info.label :
5747 "unnamed",
5748 shader->info.name));
5749 }
5750
5751 if (simd8_cfg)
5752 g.generate_code(simd8_cfg, 8);
5753 if (simd16_cfg)
5754 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5755
5756 return g.get_assembly(final_assembly_size);
5757 }
5758
5759 fs_reg *
5760 fs_visitor::emit_cs_local_invocation_id_setup()
5761 {
5762 assert(stage == MESA_SHADER_COMPUTE);
5763
5764 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5765
5766 struct brw_reg src =
5767 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5768 src = retype(src, BRW_REGISTER_TYPE_UD);
5769 bld.MOV(*reg, src);
5770 src.nr += dispatch_width / 8;
5771 bld.MOV(offset(*reg, bld, 1), src);
5772 src.nr += dispatch_width / 8;
5773 bld.MOV(offset(*reg, bld, 2), src);
5774
5775 return reg;
5776 }
5777
5778 fs_reg *
5779 fs_visitor::emit_cs_work_group_id_setup()
5780 {
5781 assert(stage == MESA_SHADER_COMPUTE);
5782
5783 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5784
5785 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5786 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5787 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5788
5789 bld.MOV(*reg, r0_1);
5790 bld.MOV(offset(*reg, bld, 1), r0_6);
5791 bld.MOV(offset(*reg, bld, 2), r0_7);
5792
5793 return reg;
5794 }
5795
5796 const unsigned *
5797 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5798 void *mem_ctx,
5799 const struct brw_cs_prog_key *key,
5800 struct brw_cs_prog_data *prog_data,
5801 const nir_shader *src_shader,
5802 int shader_time_index,
5803 unsigned *final_assembly_size,
5804 char **error_str)
5805 {
5806 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5807 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5808 true);
5809 brw_nir_lower_cs_shared(shader);
5810 prog_data->base.total_shared += shader->num_shared;
5811 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5812
5813 prog_data->local_size[0] = shader->info.cs.local_size[0];
5814 prog_data->local_size[1] = shader->info.cs.local_size[1];
5815 prog_data->local_size[2] = shader->info.cs.local_size[2];
5816 unsigned local_workgroup_size =
5817 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5818 shader->info.cs.local_size[2];
5819
5820 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5821 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
5822
5823 cfg_t *cfg = NULL;
5824 const char *fail_msg = NULL;
5825
5826 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5827 */
5828 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5829 NULL, /* Never used in core profile */
5830 shader, 8, shader_time_index);
5831 if (simd_required <= 8) {
5832 if (!v8.run_cs()) {
5833 fail_msg = v8.fail_msg;
5834 } else {
5835 cfg = v8.cfg;
5836 prog_data->simd_size = 8;
5837 }
5838 }
5839
5840 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5841 NULL, /* Never used in core profile */
5842 shader, 16, shader_time_index);
5843 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5844 !fail_msg && !v8.simd16_unsupported &&
5845 local_workgroup_size <= 16 * max_cs_threads) {
5846 /* Try a SIMD16 compile */
5847 if (simd_required <= 8)
5848 v16.import_uniforms(&v8);
5849 if (!v16.run_cs()) {
5850 compiler->shader_perf_log(log_data,
5851 "SIMD16 shader failed to compile: %s",
5852 v16.fail_msg);
5853 if (!cfg) {
5854 fail_msg =
5855 "Couldn't generate SIMD16 program and not "
5856 "enough threads for SIMD8";
5857 }
5858 } else {
5859 cfg = v16.cfg;
5860 prog_data->simd_size = 16;
5861 }
5862 }
5863
5864 if (unlikely(cfg == NULL)) {
5865 assert(fail_msg);
5866 if (error_str)
5867 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5868
5869 return NULL;
5870 }
5871
5872 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5873 v8.promoted_constants, v8.runtime_check_aads_emit,
5874 MESA_SHADER_COMPUTE);
5875 if (INTEL_DEBUG & DEBUG_CS) {
5876 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5877 shader->info.label ? shader->info.label :
5878 "unnamed",
5879 shader->info.name);
5880 g.enable_debug(name);
5881 }
5882
5883 g.generate_code(cfg, prog_data->simd_size);
5884
5885 return g.get_assembly(final_assembly_size);
5886 }
5887
5888 void
5889 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5890 void *buffer, uint32_t threads, uint32_t stride)
5891 {
5892 if (prog_data->local_invocation_id_regs == 0)
5893 return;
5894
5895 /* 'stride' should be an integer number of registers, that is, a multiple
5896 * of 32 bytes.
5897 */
5898 assert(stride % 32 == 0);
5899
5900 unsigned x = 0, y = 0, z = 0;
5901 for (unsigned t = 0; t < threads; t++) {
5902 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5903
5904 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5905 param[0 * prog_data->simd_size + i] = x;
5906 param[1 * prog_data->simd_size + i] = y;
5907 param[2 * prog_data->simd_size + i] = z;
5908
5909 x++;
5910 if (x == prog_data->local_size[0]) {
5911 x = 0;
5912 y++;
5913 if (y == prog_data->local_size[1]) {
5914 y = 0;
5915 z++;
5916 if (z == prog_data->local_size[2])
5917 z = 0;
5918 }
5919 }
5920 }
5921 }
5922 }