4c38b18483c9024a64b477018a6d779db27db68a
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable
176 * offset and a portion done using reg_offset, which means that if you
177 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
178 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
179 * CSE can later notice that those loads are all the same and eliminate
180 * the redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * bld.dispatch_width() / 8 * REG_SIZE;
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 fs_reg &
439 fs_reg::set_smear(unsigned subreg)
440 {
441 assert(file != ARF && file != FIXED_GRF && file != IMM);
442 offset = ROUND_DOWN_TO(offset, REG_SIZE) + subreg * type_sz(type);
443 stride = 0;
444 return *this;
445 }
446
447 bool
448 fs_reg::is_contiguous() const
449 {
450 return stride == 1;
451 }
452
453 unsigned
454 fs_reg::component_size(unsigned width) const
455 {
456 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
457 hstride == 0 ? 0 :
458 1 << (hstride - 1));
459 return MAX2(width * stride, 1) * type_sz(type);
460 }
461
462 extern "C" int
463 type_size_scalar(const struct glsl_type *type)
464 {
465 unsigned int size, i;
466
467 switch (type->base_type) {
468 case GLSL_TYPE_UINT:
469 case GLSL_TYPE_INT:
470 case GLSL_TYPE_FLOAT:
471 case GLSL_TYPE_BOOL:
472 return type->components();
473 case GLSL_TYPE_DOUBLE:
474 return type->components() * 2;
475 case GLSL_TYPE_ARRAY:
476 return type_size_scalar(type->fields.array) * type->length;
477 case GLSL_TYPE_STRUCT:
478 size = 0;
479 for (i = 0; i < type->length; i++) {
480 size += type_size_scalar(type->fields.structure[i].type);
481 }
482 return size;
483 case GLSL_TYPE_SAMPLER:
484 /* Samplers take up no register space, since they're baked in at
485 * link time.
486 */
487 return 0;
488 case GLSL_TYPE_ATOMIC_UINT:
489 return 0;
490 case GLSL_TYPE_SUBROUTINE:
491 return 1;
492 case GLSL_TYPE_IMAGE:
493 return BRW_IMAGE_PARAM_SIZE;
494 case GLSL_TYPE_VOID:
495 case GLSL_TYPE_ERROR:
496 case GLSL_TYPE_INTERFACE:
497 case GLSL_TYPE_FUNCTION:
498 unreachable("not reached");
499 }
500
501 return 0;
502 }
503
504 /**
505 * Returns the number of scalar components needed to store type, assuming
506 * that vectors are padded out to vec4.
507 *
508 * This has the packing rules of type_size_vec4(), but counts components
509 * similar to type_size_scalar().
510 */
511 extern "C" int
512 type_size_vec4_times_4(const struct glsl_type *type)
513 {
514 return 4 * type_size_vec4(type);
515 }
516
517 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
518 * except for double-precision types, which are loaded as one dvec4.
519 */
520 extern "C" int
521 type_size_vs_input(const struct glsl_type *type)
522 {
523 if (type->is_double()) {
524 return type_size_dvec4(type);
525 } else {
526 return type_size_vec4(type);
527 }
528 }
529
530 /**
531 * Create a MOV to read the timestamp register.
532 *
533 * The caller is responsible for emitting the MOV. The return value is
534 * the destination of the MOV, with extra parameters set.
535 */
536 fs_reg
537 fs_visitor::get_timestamp(const fs_builder &bld)
538 {
539 assert(devinfo->gen >= 7);
540
541 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
542 BRW_ARF_TIMESTAMP,
543 0),
544 BRW_REGISTER_TYPE_UD));
545
546 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
547
548 /* We want to read the 3 fields we care about even if it's not enabled in
549 * the dispatch.
550 */
551 bld.group(4, 0).exec_all().MOV(dst, ts);
552
553 return dst;
554 }
555
556 void
557 fs_visitor::emit_shader_time_begin()
558 {
559 shader_start_time = get_timestamp(bld.annotate("shader time start"));
560
561 /* We want only the low 32 bits of the timestamp. Since it's running
562 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
563 * which is plenty of time for our purposes. It is identical across the
564 * EUs, but since it's tracking GPU core speed it will increment at a
565 * varying rate as render P-states change.
566 */
567 shader_start_time.set_smear(0);
568 }
569
570 void
571 fs_visitor::emit_shader_time_end()
572 {
573 /* Insert our code just before the final SEND with EOT. */
574 exec_node *end = this->instructions.get_tail();
575 assert(end && ((fs_inst *) end)->eot);
576 const fs_builder ibld = bld.annotate("shader time end")
577 .exec_all().at(NULL, end);
578
579 fs_reg shader_end_time = get_timestamp(ibld);
580
581 /* We only use the low 32 bits of the timestamp - see
582 * emit_shader_time_begin()).
583 *
584 * We could also check if render P-states have changed (or anything
585 * else that might disrupt timing) by setting smear to 2 and checking if
586 * that field is != 0.
587 */
588 shader_end_time.set_smear(0);
589
590 /* Check that there weren't any timestamp reset events (assuming these
591 * were the only two timestamp reads that happened).
592 */
593 fs_reg reset = shader_end_time;
594 reset.set_smear(2);
595 set_condmod(BRW_CONDITIONAL_Z,
596 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
597 ibld.IF(BRW_PREDICATE_NORMAL);
598
599 fs_reg start = shader_start_time;
600 start.negate = true;
601 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
602 diff.set_smear(0);
603
604 const fs_builder cbld = ibld.group(1, 0);
605 cbld.group(1, 0).ADD(diff, start, shader_end_time);
606
607 /* If there were no instructions between the two timestamp gets, the diff
608 * is 2 cycles. Remove that overhead, so I can forget about that when
609 * trying to determine the time taken for single instructions.
610 */
611 cbld.ADD(diff, diff, brw_imm_ud(-2u));
612 SHADER_TIME_ADD(cbld, 0, diff);
613 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
614 ibld.emit(BRW_OPCODE_ELSE);
615 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
616 ibld.emit(BRW_OPCODE_ENDIF);
617 }
618
619 void
620 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
621 int shader_time_subindex,
622 fs_reg value)
623 {
624 int index = shader_time_index * 3 + shader_time_subindex;
625 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
626
627 fs_reg payload;
628 if (dispatch_width == 8)
629 payload = vgrf(glsl_type::uvec2_type);
630 else
631 payload = vgrf(glsl_type::uint_type);
632
633 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
634 }
635
636 void
637 fs_visitor::vfail(const char *format, va_list va)
638 {
639 char *msg;
640
641 if (failed)
642 return;
643
644 failed = true;
645
646 msg = ralloc_vasprintf(mem_ctx, format, va);
647 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
648
649 this->fail_msg = msg;
650
651 if (debug_enabled) {
652 fprintf(stderr, "%s", msg);
653 }
654 }
655
656 void
657 fs_visitor::fail(const char *format, ...)
658 {
659 va_list va;
660
661 va_start(va, format);
662 vfail(format, va);
663 va_end(va);
664 }
665
666 /**
667 * Mark this program as impossible to compile with dispatch width greater
668 * than n.
669 *
670 * During the SIMD8 compile (which happens first), we can detect and flag
671 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
672 * SIMD16+ compile altogether.
673 *
674 * During a compile of dispatch width greater than n (if one happens anyway),
675 * this just calls fail().
676 */
677 void
678 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
679 {
680 if (dispatch_width > n) {
681 fail("%s", msg);
682 } else {
683 max_dispatch_width = n;
684 compiler->shader_perf_log(log_data,
685 "Shader dispatch width limited to SIMD%d: %s",
686 n, msg);
687 }
688 }
689
690 /**
691 * Returns true if the instruction has a flag that means it won't
692 * update an entire destination register.
693 *
694 * For example, dead code elimination and live variable analysis want to know
695 * when a write to a variable screens off any preceding values that were in
696 * it.
697 */
698 bool
699 fs_inst::is_partial_write() const
700 {
701 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
702 (this->exec_size * type_sz(this->dst.type)) < 32 ||
703 !this->dst.is_contiguous() ||
704 this->dst.offset % REG_SIZE != 0);
705 }
706
707 unsigned
708 fs_inst::components_read(unsigned i) const
709 {
710 /* Return zero if the source is not present. */
711 if (src[i].file == BAD_FILE)
712 return 0;
713
714 switch (opcode) {
715 case FS_OPCODE_LINTERP:
716 if (i == 0)
717 return 2;
718 else
719 return 1;
720
721 case FS_OPCODE_PIXEL_X:
722 case FS_OPCODE_PIXEL_Y:
723 assert(i == 0);
724 return 2;
725
726 case FS_OPCODE_FB_WRITE_LOGICAL:
727 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
728 /* First/second FB write color. */
729 if (i < 2)
730 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
731 else
732 return 1;
733
734 case SHADER_OPCODE_TEX_LOGICAL:
735 case SHADER_OPCODE_TXD_LOGICAL:
736 case SHADER_OPCODE_TXF_LOGICAL:
737 case SHADER_OPCODE_TXL_LOGICAL:
738 case SHADER_OPCODE_TXS_LOGICAL:
739 case FS_OPCODE_TXB_LOGICAL:
740 case SHADER_OPCODE_TXF_CMS_LOGICAL:
741 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
742 case SHADER_OPCODE_TXF_UMS_LOGICAL:
743 case SHADER_OPCODE_TXF_MCS_LOGICAL:
744 case SHADER_OPCODE_LOD_LOGICAL:
745 case SHADER_OPCODE_TG4_LOGICAL:
746 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
747 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
748 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
749 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
750 /* Texture coordinates. */
751 if (i == TEX_LOGICAL_SRC_COORDINATE)
752 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
753 /* Texture derivatives. */
754 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
755 opcode == SHADER_OPCODE_TXD_LOGICAL)
756 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
757 /* Texture offset. */
758 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
759 return 2;
760 /* MCS */
761 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
762 return 2;
763 else
764 return 1;
765
766 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
767 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
768 assert(src[3].file == IMM);
769 /* Surface coordinates. */
770 if (i == 0)
771 return src[3].ud;
772 /* Surface operation source (ignored for reads). */
773 else if (i == 1)
774 return 0;
775 else
776 return 1;
777
778 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
779 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
780 assert(src[3].file == IMM &&
781 src[4].file == IMM);
782 /* Surface coordinates. */
783 if (i == 0)
784 return src[3].ud;
785 /* Surface operation source. */
786 else if (i == 1)
787 return src[4].ud;
788 else
789 return 1;
790
791 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
792 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
793 assert(src[3].file == IMM &&
794 src[4].file == IMM);
795 const unsigned op = src[4].ud;
796 /* Surface coordinates. */
797 if (i == 0)
798 return src[3].ud;
799 /* Surface operation source. */
800 else if (i == 1 && op == BRW_AOP_CMPWR)
801 return 2;
802 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
803 op == BRW_AOP_PREDEC))
804 return 0;
805 else
806 return 1;
807 }
808
809 default:
810 return 1;
811 }
812 }
813
814 unsigned
815 fs_inst::size_read(int arg) const
816 {
817 switch (opcode) {
818 case FS_OPCODE_FB_WRITE:
819 case FS_OPCODE_FB_READ:
820 case SHADER_OPCODE_URB_WRITE_SIMD8:
821 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
822 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
823 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
824 case SHADER_OPCODE_URB_READ_SIMD8:
825 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
826 case SHADER_OPCODE_UNTYPED_ATOMIC:
827 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
828 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
829 case SHADER_OPCODE_TYPED_ATOMIC:
830 case SHADER_OPCODE_TYPED_SURFACE_READ:
831 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
832 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
833 if (arg == 0)
834 return mlen * REG_SIZE;
835 break;
836
837 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
838 /* The payload is actually stored in src1 */
839 if (arg == 1)
840 return mlen * REG_SIZE;
841 break;
842
843 case FS_OPCODE_LINTERP:
844 if (arg == 1)
845 return 16;
846 break;
847
848 case SHADER_OPCODE_LOAD_PAYLOAD:
849 if (arg < this->header_size)
850 return REG_SIZE;
851 break;
852
853 case CS_OPCODE_CS_TERMINATE:
854 case SHADER_OPCODE_BARRIER:
855 return REG_SIZE;
856
857 case SHADER_OPCODE_MOV_INDIRECT:
858 if (arg == 0) {
859 assert(src[2].file == IMM);
860 return src[2].ud;
861 }
862 break;
863
864 default:
865 if (is_tex() && arg == 0 && src[0].file == VGRF)
866 return mlen * REG_SIZE;
867 break;
868 }
869
870 switch (src[arg].file) {
871 case UNIFORM:
872 case IMM:
873 return components_read(arg) * type_sz(src[arg].type);
874 case BAD_FILE:
875 case ARF:
876 case FIXED_GRF:
877 case VGRF:
878 case ATTR:
879 return components_read(arg) * src[arg].component_size(exec_size);
880 case MRF:
881 unreachable("MRF registers are not allowed as sources");
882 }
883 return 0;
884 }
885
886 namespace {
887 /* Return the subset of flag registers that an instruction could
888 * potentially read or write based on the execution controls and flag
889 * subregister number of the instruction.
890 */
891 unsigned
892 flag_mask(const fs_inst *inst)
893 {
894 const unsigned start = inst->flag_subreg * 16 + inst->group;
895 const unsigned end = start + inst->exec_size;
896 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
897 }
898 }
899
900 unsigned
901 fs_inst::flags_read(const gen_device_info *devinfo) const
902 {
903 /* XXX - This doesn't consider explicit uses of the flag register as source
904 * region.
905 */
906 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
907 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
908 /* The vertical predication modes combine corresponding bits from
909 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
910 */
911 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
912 return flag_mask(this) << shift | flag_mask(this);
913 } else if (predicate) {
914 return flag_mask(this);
915 } else {
916 return 0;
917 }
918 }
919
920 unsigned
921 fs_inst::flags_written() const
922 {
923 /* XXX - This doesn't consider explicit uses of the flag register as
924 * destination region.
925 */
926 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
927 opcode != BRW_OPCODE_IF &&
928 opcode != BRW_OPCODE_WHILE)) ||
929 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
930 return flag_mask(this);
931 } else {
932 return 0;
933 }
934 }
935
936 /**
937 * Returns how many MRFs an FS opcode will write over.
938 *
939 * Note that this is not the 0 or 1 implied writes in an actual gen
940 * instruction -- the FS opcodes often generate MOVs in addition.
941 */
942 int
943 fs_visitor::implied_mrf_writes(fs_inst *inst)
944 {
945 if (inst->mlen == 0)
946 return 0;
947
948 if (inst->base_mrf == -1)
949 return 0;
950
951 switch (inst->opcode) {
952 case SHADER_OPCODE_RCP:
953 case SHADER_OPCODE_RSQ:
954 case SHADER_OPCODE_SQRT:
955 case SHADER_OPCODE_EXP2:
956 case SHADER_OPCODE_LOG2:
957 case SHADER_OPCODE_SIN:
958 case SHADER_OPCODE_COS:
959 return 1 * dispatch_width / 8;
960 case SHADER_OPCODE_POW:
961 case SHADER_OPCODE_INT_QUOTIENT:
962 case SHADER_OPCODE_INT_REMAINDER:
963 return 2 * dispatch_width / 8;
964 case SHADER_OPCODE_TEX:
965 case FS_OPCODE_TXB:
966 case SHADER_OPCODE_TXD:
967 case SHADER_OPCODE_TXF:
968 case SHADER_OPCODE_TXF_CMS:
969 case SHADER_OPCODE_TXF_MCS:
970 case SHADER_OPCODE_TG4:
971 case SHADER_OPCODE_TG4_OFFSET:
972 case SHADER_OPCODE_TXL:
973 case SHADER_OPCODE_TXS:
974 case SHADER_OPCODE_LOD:
975 case SHADER_OPCODE_SAMPLEINFO:
976 return 1;
977 case FS_OPCODE_FB_WRITE:
978 return 2;
979 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
980 case SHADER_OPCODE_GEN4_SCRATCH_READ:
981 return 1;
982 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
983 return inst->mlen;
984 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
985 return inst->mlen;
986 default:
987 unreachable("not reached");
988 }
989 }
990
991 fs_reg
992 fs_visitor::vgrf(const glsl_type *const type)
993 {
994 int reg_width = dispatch_width / 8;
995 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
996 brw_type_for_base_type(type));
997 }
998
999 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1000 {
1001 init();
1002 this->file = file;
1003 this->nr = nr;
1004 this->type = BRW_REGISTER_TYPE_F;
1005 this->stride = (file == UNIFORM ? 0 : 1);
1006 }
1007
1008 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1009 {
1010 init();
1011 this->file = file;
1012 this->nr = nr;
1013 this->type = type;
1014 this->stride = (file == UNIFORM ? 0 : 1);
1015 }
1016
1017 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1018 * This brings in those uniform definitions
1019 */
1020 void
1021 fs_visitor::import_uniforms(fs_visitor *v)
1022 {
1023 this->push_constant_loc = v->push_constant_loc;
1024 this->pull_constant_loc = v->pull_constant_loc;
1025 this->uniforms = v->uniforms;
1026 }
1027
1028 void
1029 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1030 {
1031 assert(stage == MESA_SHADER_FRAGMENT);
1032
1033 /* gl_FragCoord.x */
1034 bld.MOV(wpos, this->pixel_x);
1035 wpos = offset(wpos, bld, 1);
1036
1037 /* gl_FragCoord.y */
1038 bld.MOV(wpos, this->pixel_y);
1039 wpos = offset(wpos, bld, 1);
1040
1041 /* gl_FragCoord.z */
1042 if (devinfo->gen >= 6) {
1043 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1044 } else {
1045 bld.emit(FS_OPCODE_LINTERP, wpos,
1046 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1047 interp_reg(VARYING_SLOT_POS, 2));
1048 }
1049 wpos = offset(wpos, bld, 1);
1050
1051 /* gl_FragCoord.w: Already set up in emit_interpolation */
1052 bld.MOV(wpos, this->wpos_w);
1053 }
1054
1055 enum brw_barycentric_mode
1056 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1057 {
1058 /* Barycentric modes don't make sense for flat inputs. */
1059 assert(mode != INTERP_MODE_FLAT);
1060
1061 unsigned bary;
1062 switch (op) {
1063 case nir_intrinsic_load_barycentric_pixel:
1064 case nir_intrinsic_load_barycentric_at_offset:
1065 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1066 break;
1067 case nir_intrinsic_load_barycentric_centroid:
1068 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1069 break;
1070 case nir_intrinsic_load_barycentric_sample:
1071 case nir_intrinsic_load_barycentric_at_sample:
1072 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1073 break;
1074 default:
1075 unreachable("invalid intrinsic");
1076 }
1077
1078 if (mode == INTERP_MODE_NOPERSPECTIVE)
1079 bary += 3;
1080
1081 return (enum brw_barycentric_mode) bary;
1082 }
1083
1084 /**
1085 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1086 */
1087 static enum brw_barycentric_mode
1088 centroid_to_pixel(enum brw_barycentric_mode bary)
1089 {
1090 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1091 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1092 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1093 }
1094
1095 fs_reg *
1096 fs_visitor::emit_frontfacing_interpolation()
1097 {
1098 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1099
1100 if (devinfo->gen >= 6) {
1101 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1102 * a boolean result from this (~0/true or 0/false).
1103 *
1104 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1105 * this task in only one instruction:
1106 * - a negation source modifier will flip the bit; and
1107 * - a W -> D type conversion will sign extend the bit into the high
1108 * word of the destination.
1109 *
1110 * An ASR 15 fills the low word of the destination.
1111 */
1112 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1113 g0.negate = true;
1114
1115 bld.ASR(*reg, g0, brw_imm_d(15));
1116 } else {
1117 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1118 * a boolean result from this (1/true or 0/false).
1119 *
1120 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1121 * the negation source modifier to flip it. Unfortunately the SHR
1122 * instruction only operates on UD (or D with an abs source modifier)
1123 * sources without negation.
1124 *
1125 * Instead, use ASR (which will give ~0/true or 0/false).
1126 */
1127 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1128 g1_6.negate = true;
1129
1130 bld.ASR(*reg, g1_6, brw_imm_d(31));
1131 }
1132
1133 return reg;
1134 }
1135
1136 void
1137 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1138 {
1139 assert(stage == MESA_SHADER_FRAGMENT);
1140 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1141 assert(dst.type == BRW_REGISTER_TYPE_F);
1142
1143 if (wm_prog_data->persample_dispatch) {
1144 /* Convert int_sample_pos to floating point */
1145 bld.MOV(dst, int_sample_pos);
1146 /* Scale to the range [0, 1] */
1147 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1148 }
1149 else {
1150 /* From ARB_sample_shading specification:
1151 * "When rendering to a non-multisample buffer, or if multisample
1152 * rasterization is disabled, gl_SamplePosition will always be
1153 * (0.5, 0.5).
1154 */
1155 bld.MOV(dst, brw_imm_f(0.5f));
1156 }
1157 }
1158
1159 fs_reg *
1160 fs_visitor::emit_samplepos_setup()
1161 {
1162 assert(devinfo->gen >= 6);
1163
1164 const fs_builder abld = bld.annotate("compute sample position");
1165 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1166 fs_reg pos = *reg;
1167 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1168 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1169
1170 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1171 * mode will be enabled.
1172 *
1173 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1174 * R31.1:0 Position Offset X/Y for Slot[3:0]
1175 * R31.3:2 Position Offset X/Y for Slot[7:4]
1176 * .....
1177 *
1178 * The X, Y sample positions come in as bytes in thread payload. So, read
1179 * the positions using vstride=16, width=8, hstride=2.
1180 */
1181 struct brw_reg sample_pos_reg =
1182 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1183 BRW_REGISTER_TYPE_B), 16, 8, 2);
1184
1185 if (dispatch_width == 8) {
1186 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1187 } else {
1188 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1189 abld.half(1).MOV(half(int_sample_x, 1),
1190 fs_reg(suboffset(sample_pos_reg, 16)));
1191 }
1192 /* Compute gl_SamplePosition.x */
1193 compute_sample_position(pos, int_sample_x);
1194 pos = offset(pos, abld, 1);
1195 if (dispatch_width == 8) {
1196 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1197 } else {
1198 abld.half(0).MOV(half(int_sample_y, 0),
1199 fs_reg(suboffset(sample_pos_reg, 1)));
1200 abld.half(1).MOV(half(int_sample_y, 1),
1201 fs_reg(suboffset(sample_pos_reg, 17)));
1202 }
1203 /* Compute gl_SamplePosition.y */
1204 compute_sample_position(pos, int_sample_y);
1205 return reg;
1206 }
1207
1208 fs_reg *
1209 fs_visitor::emit_sampleid_setup()
1210 {
1211 assert(stage == MESA_SHADER_FRAGMENT);
1212 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1213 assert(devinfo->gen >= 6);
1214
1215 const fs_builder abld = bld.annotate("compute sample id");
1216 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1217
1218 if (!key->multisample_fbo) {
1219 /* As per GL_ARB_sample_shading specification:
1220 * "When rendering to a non-multisample buffer, or if multisample
1221 * rasterization is disabled, gl_SampleID will always be zero."
1222 */
1223 abld.MOV(*reg, brw_imm_d(0));
1224 } else if (devinfo->gen >= 8) {
1225 /* Sample ID comes in as 4-bit numbers in g1.0:
1226 *
1227 * 15:12 Slot 3 SampleID (only used in SIMD16)
1228 * 11:8 Slot 2 SampleID (only used in SIMD16)
1229 * 7:4 Slot 1 SampleID
1230 * 3:0 Slot 0 SampleID
1231 *
1232 * Each slot corresponds to four channels, so we want to replicate each
1233 * half-byte value to 4 channels in a row:
1234 *
1235 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1236 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1237 *
1238 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1239 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1240 *
1241 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1242 * channels to read the first byte (7:0), and the second group of 8
1243 * channels to read the second byte (15:8). Then, we shift right by
1244 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1245 * values into place. Finally, we AND with 0xf to keep the low nibble.
1246 *
1247 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1248 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1249 *
1250 * TODO: These payload bits exist on Gen7 too, but they appear to always
1251 * be zero, so this code fails to work. We should find out why.
1252 */
1253 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1254
1255 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1256 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1257 brw_imm_v(0x44440000));
1258 abld.AND(*reg, tmp, brw_imm_w(0xf));
1259 } else {
1260 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1261 t1.set_smear(0);
1262 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1263
1264 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1265 * 8x multisampling, subspan 0 will represent sample N (where N
1266 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1267 * 7. We can find the value of N by looking at R0.0 bits 7:6
1268 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1269 * (since samples are always delivered in pairs). That is, we
1270 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1271 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1272 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1273 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1274 * populating a temporary variable with the sequence (0, 1, 2, 3),
1275 * and then reading from it using vstride=1, width=4, hstride=0.
1276 * These computations hold good for 4x multisampling as well.
1277 *
1278 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1279 * the first four slots are sample 0 of subspan 0; the next four
1280 * are sample 1 of subspan 0; the third group is sample 0 of
1281 * subspan 1, and finally sample 1 of subspan 1.
1282 */
1283
1284 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1285 * accomodate 16x MSAA.
1286 */
1287 abld.exec_all().group(1, 0)
1288 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1289 brw_imm_ud(0xc0));
1290 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1291
1292 /* This works for both SIMD8 and SIMD16 */
1293 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1294
1295 /* This special instruction takes care of setting vstride=1,
1296 * width=4, hstride=0 of t2 during an ADD instruction.
1297 */
1298 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1299 }
1300
1301 return reg;
1302 }
1303
1304 fs_reg *
1305 fs_visitor::emit_samplemaskin_setup()
1306 {
1307 assert(stage == MESA_SHADER_FRAGMENT);
1308 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1309 assert(devinfo->gen >= 6);
1310
1311 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1312
1313 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1314 BRW_REGISTER_TYPE_D));
1315
1316 if (wm_prog_data->persample_dispatch) {
1317 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1318 * and a mask representing which sample is being processed by the
1319 * current shader invocation.
1320 *
1321 * From the OES_sample_variables specification:
1322 * "When per-sample shading is active due to the use of a fragment input
1323 * qualified by "sample" or due to the use of the gl_SampleID or
1324 * gl_SamplePosition variables, only the bit for the current sample is
1325 * set in gl_SampleMaskIn."
1326 */
1327 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1328
1329 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1330 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1331
1332 fs_reg one = vgrf(glsl_type::int_type);
1333 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1334 abld.MOV(one, brw_imm_d(1));
1335 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1336 abld.AND(*reg, enabled_mask, coverage_mask);
1337 } else {
1338 /* In per-pixel mode, the coverage mask is sufficient. */
1339 *reg = coverage_mask;
1340 }
1341 return reg;
1342 }
1343
1344 fs_reg
1345 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1346 {
1347 if (!src.abs && !src.negate)
1348 return src;
1349
1350 fs_reg temp = bld.vgrf(src.type);
1351 bld.MOV(temp, src);
1352
1353 return temp;
1354 }
1355
1356 void
1357 fs_visitor::emit_discard_jump()
1358 {
1359 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1360
1361 /* For performance, after a discard, jump to the end of the
1362 * shader if all relevant channels have been discarded.
1363 */
1364 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1365 discard_jump->flag_subreg = 1;
1366
1367 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1368 discard_jump->predicate_inverse = true;
1369 }
1370
1371 void
1372 fs_visitor::emit_gs_thread_end()
1373 {
1374 assert(stage == MESA_SHADER_GEOMETRY);
1375
1376 struct brw_gs_prog_data *gs_prog_data =
1377 (struct brw_gs_prog_data *) prog_data;
1378
1379 if (gs_compile->control_data_header_size_bits > 0) {
1380 emit_gs_control_data_bits(this->final_gs_vertex_count);
1381 }
1382
1383 const fs_builder abld = bld.annotate("thread end");
1384 fs_inst *inst;
1385
1386 if (gs_prog_data->static_vertex_count != -1) {
1387 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1388 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1389 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1390 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1391 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1392 prev->eot = true;
1393
1394 /* Delete now dead instructions. */
1395 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1396 if (dead == prev)
1397 break;
1398 dead->remove();
1399 }
1400 return;
1401 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1402 break;
1403 }
1404 }
1405 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1406 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1407 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1408 inst->mlen = 1;
1409 } else {
1410 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1411 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1412 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1413 sources[1] = this->final_gs_vertex_count;
1414 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1415 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1416 inst->mlen = 2;
1417 }
1418 inst->eot = true;
1419 inst->offset = 0;
1420 }
1421
1422 void
1423 fs_visitor::assign_curb_setup()
1424 {
1425 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1426
1427 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1428 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1429 for (unsigned int i = 0; i < inst->sources; i++) {
1430 if (inst->src[i].file == UNIFORM) {
1431 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1432 int constant_nr;
1433 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1434 constant_nr = push_constant_loc[uniform_nr];
1435 } else {
1436 /* Section 5.11 of the OpenGL 4.1 spec says:
1437 * "Out-of-bounds reads return undefined values, which include
1438 * values from other variables of the active program or zero."
1439 * Just return the first push constant.
1440 */
1441 constant_nr = 0;
1442 }
1443
1444 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1445 constant_nr / 8,
1446 constant_nr % 8);
1447 brw_reg.abs = inst->src[i].abs;
1448 brw_reg.negate = inst->src[i].negate;
1449
1450 assert(inst->src[i].stride == 0);
1451 inst->src[i] = byte_offset(
1452 retype(brw_reg, inst->src[i].type),
1453 inst->src[i].offset % 4);
1454 }
1455 }
1456 }
1457
1458 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1459 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1460 }
1461
1462 void
1463 fs_visitor::calculate_urb_setup()
1464 {
1465 assert(stage == MESA_SHADER_FRAGMENT);
1466 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1467 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1468
1469 memset(prog_data->urb_setup, -1,
1470 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1471
1472 int urb_next = 0;
1473 /* Figure out where each of the incoming setup attributes lands. */
1474 if (devinfo->gen >= 6) {
1475 if (_mesa_bitcount_64(nir->info.inputs_read &
1476 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1477 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1478 * first 16 varying inputs, so we can put them wherever we want.
1479 * Just put them in order.
1480 *
1481 * This is useful because it means that (a) inputs not used by the
1482 * fragment shader won't take up valuable register space, and (b) we
1483 * won't have to recompile the fragment shader if it gets paired with
1484 * a different vertex (or geometry) shader.
1485 */
1486 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1487 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1488 BITFIELD64_BIT(i)) {
1489 prog_data->urb_setup[i] = urb_next++;
1490 }
1491 }
1492 } else {
1493 bool include_vue_header =
1494 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1495
1496 /* We have enough input varyings that the SF/SBE pipeline stage can't
1497 * arbitrarily rearrange them to suit our whim; we have to put them
1498 * in an order that matches the output of the previous pipeline stage
1499 * (geometry or vertex shader).
1500 */
1501 struct brw_vue_map prev_stage_vue_map;
1502 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1503 key->input_slots_valid,
1504 nir->info.separate_shader);
1505 int first_slot =
1506 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1507
1508 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1509 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1510 slot++) {
1511 int varying = prev_stage_vue_map.slot_to_varying[slot];
1512 if (varying != BRW_VARYING_SLOT_PAD &&
1513 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1514 BITFIELD64_BIT(varying))) {
1515 prog_data->urb_setup[varying] = slot - first_slot;
1516 }
1517 }
1518 urb_next = prev_stage_vue_map.num_slots - first_slot;
1519 }
1520 } else {
1521 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1522 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1523 /* Point size is packed into the header, not as a general attribute */
1524 if (i == VARYING_SLOT_PSIZ)
1525 continue;
1526
1527 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1528 /* The back color slot is skipped when the front color is
1529 * also written to. In addition, some slots can be
1530 * written in the vertex shader and not read in the
1531 * fragment shader. So the register number must always be
1532 * incremented, mapped or not.
1533 */
1534 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1535 prog_data->urb_setup[i] = urb_next;
1536 urb_next++;
1537 }
1538 }
1539
1540 /*
1541 * It's a FS only attribute, and we did interpolation for this attribute
1542 * in SF thread. So, count it here, too.
1543 *
1544 * See compile_sf_prog() for more info.
1545 */
1546 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1547 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1548 }
1549
1550 prog_data->num_varying_inputs = urb_next;
1551 }
1552
1553 void
1554 fs_visitor::assign_urb_setup()
1555 {
1556 assert(stage == MESA_SHADER_FRAGMENT);
1557 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1558
1559 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1560
1561 /* Offset all the urb_setup[] index by the actual position of the
1562 * setup regs, now that the location of the constants has been chosen.
1563 */
1564 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1565 if (inst->opcode == FS_OPCODE_LINTERP) {
1566 assert(inst->src[1].file == FIXED_GRF);
1567 inst->src[1].nr += urb_start;
1568 }
1569
1570 if (inst->opcode == FS_OPCODE_CINTERP) {
1571 assert(inst->src[0].file == FIXED_GRF);
1572 inst->src[0].nr += urb_start;
1573 }
1574 }
1575
1576 /* Each attribute is 4 setup channels, each of which is half a reg. */
1577 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1578 }
1579
1580 void
1581 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1582 {
1583 for (int i = 0; i < inst->sources; i++) {
1584 if (inst->src[i].file == ATTR) {
1585 int grf = payload.num_regs +
1586 prog_data->curb_read_length +
1587 inst->src[i].nr +
1588 inst->src[i].offset / REG_SIZE;
1589
1590 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1591 *
1592 * VertStride must be used to cross GRF register boundaries. This
1593 * rule implies that elements within a 'Width' cannot cross GRF
1594 * boundaries.
1595 *
1596 * So, for registers that are large enough, we have to split the exec
1597 * size in two and trust the compression state to sort it out.
1598 */
1599 unsigned total_size = inst->exec_size *
1600 inst->src[i].stride *
1601 type_sz(inst->src[i].type);
1602
1603 assert(total_size <= 2 * REG_SIZE);
1604 const unsigned exec_size =
1605 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1606
1607 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1608 struct brw_reg reg =
1609 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1610 inst->src[i].offset % REG_SIZE),
1611 exec_size * inst->src[i].stride,
1612 width, inst->src[i].stride);
1613 reg.abs = inst->src[i].abs;
1614 reg.negate = inst->src[i].negate;
1615
1616 inst->src[i] = reg;
1617 }
1618 }
1619 }
1620
1621 void
1622 fs_visitor::assign_vs_urb_setup()
1623 {
1624 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1625
1626 assert(stage == MESA_SHADER_VERTEX);
1627
1628 /* Each attribute is 4 regs. */
1629 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1630
1631 assert(vs_prog_data->base.urb_read_length <= 15);
1632
1633 /* Rewrite all ATTR file references to the hw grf that they land in. */
1634 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1635 convert_attr_sources_to_hw_regs(inst);
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_tcs_single_patch_urb_setup()
1641 {
1642 assert(stage == MESA_SHADER_TESS_CTRL);
1643
1644 /* Rewrite all ATTR file references to HW_REGs. */
1645 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1646 convert_attr_sources_to_hw_regs(inst);
1647 }
1648 }
1649
1650 void
1651 fs_visitor::assign_tes_urb_setup()
1652 {
1653 assert(stage == MESA_SHADER_TESS_EVAL);
1654
1655 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1656
1657 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1658
1659 /* Rewrite all ATTR file references to HW_REGs. */
1660 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1661 convert_attr_sources_to_hw_regs(inst);
1662 }
1663 }
1664
1665 void
1666 fs_visitor::assign_gs_urb_setup()
1667 {
1668 assert(stage == MESA_SHADER_GEOMETRY);
1669
1670 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1671
1672 first_non_payload_grf +=
1673 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1674
1675 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1676 /* Rewrite all ATTR file references to GRFs. */
1677 convert_attr_sources_to_hw_regs(inst);
1678 }
1679 }
1680
1681
1682 /**
1683 * Split large virtual GRFs into separate components if we can.
1684 *
1685 * This is mostly duplicated with what brw_fs_vector_splitting does,
1686 * but that's really conservative because it's afraid of doing
1687 * splitting that doesn't result in real progress after the rest of
1688 * the optimization phases, which would cause infinite looping in
1689 * optimization. We can do it once here, safely. This also has the
1690 * opportunity to split interpolated values, or maybe even uniforms,
1691 * which we don't have at the IR level.
1692 *
1693 * We want to split, because virtual GRFs are what we register
1694 * allocate and spill (due to contiguousness requirements for some
1695 * instructions), and they're what we naturally generate in the
1696 * codegen process, but most virtual GRFs don't actually need to be
1697 * contiguous sets of GRFs. If we split, we'll end up with reduced
1698 * live intervals and better dead code elimination and coalescing.
1699 */
1700 void
1701 fs_visitor::split_virtual_grfs()
1702 {
1703 int num_vars = this->alloc.count;
1704
1705 /* Count the total number of registers */
1706 int reg_count = 0;
1707 int vgrf_to_reg[num_vars];
1708 for (int i = 0; i < num_vars; i++) {
1709 vgrf_to_reg[i] = reg_count;
1710 reg_count += alloc.sizes[i];
1711 }
1712
1713 /* An array of "split points". For each register slot, this indicates
1714 * if this slot can be separated from the previous slot. Every time an
1715 * instruction uses multiple elements of a register (as a source or
1716 * destination), we mark the used slots as inseparable. Then we go
1717 * through and split the registers into the smallest pieces we can.
1718 */
1719 bool split_points[reg_count];
1720 memset(split_points, 0, sizeof(split_points));
1721
1722 /* Mark all used registers as fully splittable */
1723 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1724 if (inst->dst.file == VGRF) {
1725 int reg = vgrf_to_reg[inst->dst.nr];
1726 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1727 split_points[reg + j] = true;
1728 }
1729
1730 for (int i = 0; i < inst->sources; i++) {
1731 if (inst->src[i].file == VGRF) {
1732 int reg = vgrf_to_reg[inst->src[i].nr];
1733 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1734 split_points[reg + j] = true;
1735 }
1736 }
1737 }
1738
1739 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1740 if (inst->dst.file == VGRF) {
1741 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1742 for (unsigned j = 1; j < regs_written(inst); j++)
1743 split_points[reg + j] = false;
1744 }
1745 for (int i = 0; i < inst->sources; i++) {
1746 if (inst->src[i].file == VGRF) {
1747 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1748 for (unsigned j = 1; j < regs_read(inst, i); j++)
1749 split_points[reg + j] = false;
1750 }
1751 }
1752 }
1753
1754 int new_virtual_grf[reg_count];
1755 int new_reg_offset[reg_count];
1756
1757 int reg = 0;
1758 for (int i = 0; i < num_vars; i++) {
1759 /* The first one should always be 0 as a quick sanity check. */
1760 assert(split_points[reg] == false);
1761
1762 /* j = 0 case */
1763 new_reg_offset[reg] = 0;
1764 reg++;
1765 int offset = 1;
1766
1767 /* j > 0 case */
1768 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1769 /* If this is a split point, reset the offset to 0 and allocate a
1770 * new virtual GRF for the previous offset many registers
1771 */
1772 if (split_points[reg]) {
1773 assert(offset <= MAX_VGRF_SIZE);
1774 int grf = alloc.allocate(offset);
1775 for (int k = reg - offset; k < reg; k++)
1776 new_virtual_grf[k] = grf;
1777 offset = 0;
1778 }
1779 new_reg_offset[reg] = offset;
1780 offset++;
1781 reg++;
1782 }
1783
1784 /* The last one gets the original register number */
1785 assert(offset <= MAX_VGRF_SIZE);
1786 alloc.sizes[i] = offset;
1787 for (int k = reg - offset; k < reg; k++)
1788 new_virtual_grf[k] = i;
1789 }
1790 assert(reg == reg_count);
1791
1792 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1793 if (inst->dst.file == VGRF) {
1794 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1795 inst->dst.nr = new_virtual_grf[reg];
1796 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1797 inst->dst.offset % REG_SIZE;
1798 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1799 }
1800 for (int i = 0; i < inst->sources; i++) {
1801 if (inst->src[i].file == VGRF) {
1802 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1803 inst->src[i].nr = new_virtual_grf[reg];
1804 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1805 inst->src[i].offset % REG_SIZE;
1806 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1807 }
1808 }
1809 }
1810 invalidate_live_intervals();
1811 }
1812
1813 /**
1814 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1815 *
1816 * During code generation, we create tons of temporary variables, many of
1817 * which get immediately killed and are never used again. Yet, in later
1818 * optimization and analysis passes, such as compute_live_intervals, we need
1819 * to loop over all the virtual GRFs. Compacting them can save a lot of
1820 * overhead.
1821 */
1822 bool
1823 fs_visitor::compact_virtual_grfs()
1824 {
1825 bool progress = false;
1826 int remap_table[this->alloc.count];
1827 memset(remap_table, -1, sizeof(remap_table));
1828
1829 /* Mark which virtual GRFs are used. */
1830 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1831 if (inst->dst.file == VGRF)
1832 remap_table[inst->dst.nr] = 0;
1833
1834 for (int i = 0; i < inst->sources; i++) {
1835 if (inst->src[i].file == VGRF)
1836 remap_table[inst->src[i].nr] = 0;
1837 }
1838 }
1839
1840 /* Compact the GRF arrays. */
1841 int new_index = 0;
1842 for (unsigned i = 0; i < this->alloc.count; i++) {
1843 if (remap_table[i] == -1) {
1844 /* We just found an unused register. This means that we are
1845 * actually going to compact something.
1846 */
1847 progress = true;
1848 } else {
1849 remap_table[i] = new_index;
1850 alloc.sizes[new_index] = alloc.sizes[i];
1851 invalidate_live_intervals();
1852 ++new_index;
1853 }
1854 }
1855
1856 this->alloc.count = new_index;
1857
1858 /* Patch all the instructions to use the newly renumbered registers */
1859 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1860 if (inst->dst.file == VGRF)
1861 inst->dst.nr = remap_table[inst->dst.nr];
1862
1863 for (int i = 0; i < inst->sources; i++) {
1864 if (inst->src[i].file == VGRF)
1865 inst->src[i].nr = remap_table[inst->src[i].nr];
1866 }
1867 }
1868
1869 /* Patch all the references to delta_xy, since they're used in register
1870 * allocation. If they're unused, switch them to BAD_FILE so we don't
1871 * think some random VGRF is delta_xy.
1872 */
1873 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1874 if (delta_xy[i].file == VGRF) {
1875 if (remap_table[delta_xy[i].nr] != -1) {
1876 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1877 } else {
1878 delta_xy[i].file = BAD_FILE;
1879 }
1880 }
1881 }
1882
1883 return progress;
1884 }
1885
1886 static void
1887 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1888 int *push_constant_loc, int *pull_constant_loc,
1889 unsigned *num_push_constants,
1890 unsigned *num_pull_constants,
1891 const unsigned max_push_components,
1892 const unsigned max_chunk_size,
1893 struct brw_stage_prog_data *stage_prog_data)
1894 {
1895 /* This is the first live uniform in the chunk */
1896 if (*chunk_start < 0)
1897 *chunk_start = uniform;
1898
1899 /* If this element does not need to be contiguous with the next, we
1900 * split at this point and everything between chunk_start and u forms a
1901 * single chunk.
1902 */
1903 if (!contiguous) {
1904 unsigned chunk_size = uniform - *chunk_start + 1;
1905
1906 /* Decide whether we should push or pull this parameter. In the
1907 * Vulkan driver, push constants are explicitly exposed via the API
1908 * so we push everything. In GL, we only push small arrays.
1909 */
1910 if (stage_prog_data->pull_param == NULL ||
1911 (*num_push_constants + chunk_size <= max_push_components &&
1912 chunk_size <= max_chunk_size)) {
1913 assert(*num_push_constants + chunk_size <= max_push_components);
1914 for (unsigned j = *chunk_start; j <= uniform; j++)
1915 push_constant_loc[j] = (*num_push_constants)++;
1916 } else {
1917 for (unsigned j = *chunk_start; j <= uniform; j++)
1918 pull_constant_loc[j] = (*num_pull_constants)++;
1919 }
1920
1921 *chunk_start = -1;
1922 }
1923 }
1924
1925 /**
1926 * Assign UNIFORM file registers to either push constants or pull constants.
1927 *
1928 * We allow a fragment shader to have more than the specified minimum
1929 * maximum number of fragment shader uniform components (64). If
1930 * there are too many of these, they'd fill up all of register space.
1931 * So, this will push some of them out to the pull constant buffer and
1932 * update the program to load them.
1933 */
1934 void
1935 fs_visitor::assign_constant_locations()
1936 {
1937 /* Only the first compile gets to decide on locations. */
1938 if (dispatch_width != min_dispatch_width)
1939 return;
1940
1941 bool is_live[uniforms];
1942 memset(is_live, 0, sizeof(is_live));
1943 bool is_live_64bit[uniforms];
1944 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1945
1946 /* For each uniform slot, a value of true indicates that the given slot and
1947 * the next slot must remain contiguous. This is used to keep us from
1948 * splitting arrays apart.
1949 */
1950 bool contiguous[uniforms];
1951 memset(contiguous, 0, sizeof(contiguous));
1952
1953 int thread_local_id_index =
1954 (stage == MESA_SHADER_COMPUTE) ?
1955 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index : -1;
1956
1957 /* First, we walk through the instructions and do two things:
1958 *
1959 * 1) Figure out which uniforms are live.
1960 *
1961 * 2) Mark any indirectly used ranges of registers as contiguous.
1962 *
1963 * Note that we don't move constant-indexed accesses to arrays. No
1964 * testing has been done of the performance impact of this choice.
1965 */
1966 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1967 for (int i = 0 ; i < inst->sources; i++) {
1968 if (inst->src[i].file != UNIFORM)
1969 continue;
1970
1971 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1972
1973 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1974 assert(inst->src[2].ud % 4 == 0);
1975 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1976 assert(last < uniforms);
1977
1978 for (unsigned j = constant_nr; j < last; j++) {
1979 is_live[j] = true;
1980 contiguous[j] = true;
1981 if (type_sz(inst->src[i].type) == 8) {
1982 is_live_64bit[j] = true;
1983 }
1984 }
1985 is_live[last] = true;
1986 } else {
1987 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1988 int regs_read = inst->components_read(i) *
1989 type_sz(inst->src[i].type) / 4;
1990 for (int j = 0; j < regs_read; j++) {
1991 is_live[constant_nr + j] = true;
1992 if (type_sz(inst->src[i].type) == 8) {
1993 is_live_64bit[constant_nr + j] = true;
1994 }
1995 }
1996 }
1997 }
1998 }
1999 }
2000
2001 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2002 thread_local_id_index = -1;
2003
2004 /* Only allow 16 registers (128 uniform components) as push constants.
2005 *
2006 * Just demote the end of the list. We could probably do better
2007 * here, demoting things that are rarely used in the program first.
2008 *
2009 * If changing this value, note the limitation about total_regs in
2010 * brw_curbe.c.
2011 */
2012 unsigned int max_push_components = 16 * 8;
2013 if (thread_local_id_index >= 0)
2014 max_push_components--; /* Save a slot for the thread ID */
2015
2016 /* We push small arrays, but no bigger than 16 floats. This is big enough
2017 * for a vec4 but hopefully not large enough to push out other stuff. We
2018 * should probably use a better heuristic at some point.
2019 */
2020 const unsigned int max_chunk_size = 16;
2021
2022 unsigned int num_push_constants = 0;
2023 unsigned int num_pull_constants = 0;
2024
2025 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2026 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2027
2028 /* Default to -1 meaning no location */
2029 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2030 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2031
2032 int chunk_start = -1;
2033
2034 /* First push 64-bit uniforms to ensure they are properly aligned */
2035 for (unsigned u = 0; u < uniforms; u++) {
2036 if (!is_live[u] || !is_live_64bit[u])
2037 continue;
2038
2039 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2040 push_constant_loc, pull_constant_loc,
2041 &num_push_constants, &num_pull_constants,
2042 max_push_components, max_chunk_size,
2043 stage_prog_data);
2044
2045 }
2046
2047 /* Then push the rest of uniforms */
2048 for (unsigned u = 0; u < uniforms; u++) {
2049 if (!is_live[u] || is_live_64bit[u])
2050 continue;
2051
2052 /* Skip thread_local_id_index to put it in the last push register. */
2053 if (thread_local_id_index == (int)u)
2054 continue;
2055
2056 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2057 push_constant_loc, pull_constant_loc,
2058 &num_push_constants, &num_pull_constants,
2059 max_push_components, max_chunk_size,
2060 stage_prog_data);
2061 }
2062
2063 /* Add the CS local thread ID uniform at the end of the push constants */
2064 if (thread_local_id_index >= 0)
2065 push_constant_loc[thread_local_id_index] = num_push_constants++;
2066
2067 /* As the uniforms are going to be reordered, take the data from a temporary
2068 * copy of the original param[].
2069 */
2070 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2071 stage_prog_data->nr_params);
2072 memcpy(param, stage_prog_data->param,
2073 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2074 stage_prog_data->nr_params = num_push_constants;
2075 stage_prog_data->nr_pull_params = num_pull_constants;
2076
2077 /* Up until now, the param[] array has been indexed by reg + reg_offset
2078 * of UNIFORM registers. Move pull constants into pull_param[] and
2079 * condense param[] to only contain the uniforms we chose to push.
2080 *
2081 * NOTE: Because we are condensing the params[] array, we know that
2082 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2083 * having to make a copy.
2084 */
2085 int new_thread_local_id_index = -1;
2086 for (unsigned int i = 0; i < uniforms; i++) {
2087 const gl_constant_value *value = param[i];
2088
2089 if (pull_constant_loc[i] != -1) {
2090 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2091 } else if (push_constant_loc[i] != -1) {
2092 stage_prog_data->param[push_constant_loc[i]] = value;
2093 if (thread_local_id_index == (int)i)
2094 new_thread_local_id_index = push_constant_loc[i];
2095 }
2096 }
2097 ralloc_free(param);
2098
2099 if (stage == MESA_SHADER_COMPUTE)
2100 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index =
2101 new_thread_local_id_index;
2102 }
2103
2104 /**
2105 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2106 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2107 */
2108 void
2109 fs_visitor::lower_constant_loads()
2110 {
2111 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2112
2113 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2114 /* Set up the annotation tracking for new generated instructions. */
2115 const fs_builder ibld(this, block, inst);
2116
2117 for (int i = 0; i < inst->sources; i++) {
2118 if (inst->src[i].file != UNIFORM)
2119 continue;
2120
2121 /* We'll handle this case later */
2122 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2123 continue;
2124
2125 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2126 if (location >= uniforms)
2127 continue; /* Out of bounds access */
2128
2129 int pull_index = pull_constant_loc[location];
2130
2131 if (pull_index == -1)
2132 continue;
2133
2134 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2135 fs_reg dst;
2136
2137 if (type_sz(inst->src[i].type) <= 4)
2138 dst = vgrf(glsl_type::float_type);
2139 else
2140 dst = vgrf(glsl_type::double_type);
2141
2142 assert(inst->src[i].stride == 0);
2143
2144 const fs_builder ubld = ibld.exec_all().group(8, 0);
2145 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2146 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2147 dst, brw_imm_ud(index), offset);
2148
2149 /* Rewrite the instruction to use the temporary VGRF. */
2150 inst->src[i].file = VGRF;
2151 inst->src[i].nr = dst.nr;
2152 inst->src[i].offset %= 4;
2153 inst->src[i].set_smear((pull_index & 3) * 4 /
2154 type_sz(inst->src[i].type));
2155
2156 brw_mark_surface_used(prog_data, index);
2157 }
2158
2159 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2160 inst->src[0].file == UNIFORM) {
2161
2162 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2163 if (location >= uniforms)
2164 continue; /* Out of bounds access */
2165
2166 int pull_index = pull_constant_loc[location];
2167
2168 if (pull_index == -1)
2169 continue;
2170
2171 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2172 brw_imm_ud(index),
2173 inst->src[1],
2174 pull_index * 4);
2175 inst->remove(block);
2176
2177 brw_mark_surface_used(prog_data, index);
2178 }
2179 }
2180 invalidate_live_intervals();
2181 }
2182
2183 bool
2184 fs_visitor::opt_algebraic()
2185 {
2186 bool progress = false;
2187
2188 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2189 switch (inst->opcode) {
2190 case BRW_OPCODE_MOV:
2191 if (inst->src[0].file != IMM)
2192 break;
2193
2194 if (inst->saturate) {
2195 if (inst->dst.type != inst->src[0].type)
2196 assert(!"unimplemented: saturate mixed types");
2197
2198 if (brw_saturate_immediate(inst->dst.type,
2199 &inst->src[0].as_brw_reg())) {
2200 inst->saturate = false;
2201 progress = true;
2202 }
2203 }
2204 break;
2205
2206 case BRW_OPCODE_MUL:
2207 if (inst->src[1].file != IMM)
2208 continue;
2209
2210 /* a * 1.0 = a */
2211 if (inst->src[1].is_one()) {
2212 inst->opcode = BRW_OPCODE_MOV;
2213 inst->src[1] = reg_undef;
2214 progress = true;
2215 break;
2216 }
2217
2218 /* a * -1.0 = -a */
2219 if (inst->src[1].is_negative_one()) {
2220 inst->opcode = BRW_OPCODE_MOV;
2221 inst->src[0].negate = !inst->src[0].negate;
2222 inst->src[1] = reg_undef;
2223 progress = true;
2224 break;
2225 }
2226
2227 /* a * 0.0 = 0.0 */
2228 if (inst->src[1].is_zero()) {
2229 inst->opcode = BRW_OPCODE_MOV;
2230 inst->src[0] = inst->src[1];
2231 inst->src[1] = reg_undef;
2232 progress = true;
2233 break;
2234 }
2235
2236 if (inst->src[0].file == IMM) {
2237 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2238 inst->opcode = BRW_OPCODE_MOV;
2239 inst->src[0].f *= inst->src[1].f;
2240 inst->src[1] = reg_undef;
2241 progress = true;
2242 break;
2243 }
2244 break;
2245 case BRW_OPCODE_ADD:
2246 if (inst->src[1].file != IMM)
2247 continue;
2248
2249 /* a + 0.0 = a */
2250 if (inst->src[1].is_zero()) {
2251 inst->opcode = BRW_OPCODE_MOV;
2252 inst->src[1] = reg_undef;
2253 progress = true;
2254 break;
2255 }
2256
2257 if (inst->src[0].file == IMM) {
2258 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2259 inst->opcode = BRW_OPCODE_MOV;
2260 inst->src[0].f += inst->src[1].f;
2261 inst->src[1] = reg_undef;
2262 progress = true;
2263 break;
2264 }
2265 break;
2266 case BRW_OPCODE_OR:
2267 if (inst->src[0].equals(inst->src[1])) {
2268 inst->opcode = BRW_OPCODE_MOV;
2269 inst->src[1] = reg_undef;
2270 progress = true;
2271 break;
2272 }
2273 break;
2274 case BRW_OPCODE_LRP:
2275 if (inst->src[1].equals(inst->src[2])) {
2276 inst->opcode = BRW_OPCODE_MOV;
2277 inst->src[0] = inst->src[1];
2278 inst->src[1] = reg_undef;
2279 inst->src[2] = reg_undef;
2280 progress = true;
2281 break;
2282 }
2283 break;
2284 case BRW_OPCODE_CMP:
2285 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2286 inst->src[0].abs &&
2287 inst->src[0].negate &&
2288 inst->src[1].is_zero()) {
2289 inst->src[0].abs = false;
2290 inst->src[0].negate = false;
2291 inst->conditional_mod = BRW_CONDITIONAL_Z;
2292 progress = true;
2293 break;
2294 }
2295 break;
2296 case BRW_OPCODE_SEL:
2297 if (inst->src[0].equals(inst->src[1])) {
2298 inst->opcode = BRW_OPCODE_MOV;
2299 inst->src[1] = reg_undef;
2300 inst->predicate = BRW_PREDICATE_NONE;
2301 inst->predicate_inverse = false;
2302 progress = true;
2303 } else if (inst->saturate && inst->src[1].file == IMM) {
2304 switch (inst->conditional_mod) {
2305 case BRW_CONDITIONAL_LE:
2306 case BRW_CONDITIONAL_L:
2307 switch (inst->src[1].type) {
2308 case BRW_REGISTER_TYPE_F:
2309 if (inst->src[1].f >= 1.0f) {
2310 inst->opcode = BRW_OPCODE_MOV;
2311 inst->src[1] = reg_undef;
2312 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2313 progress = true;
2314 }
2315 break;
2316 default:
2317 break;
2318 }
2319 break;
2320 case BRW_CONDITIONAL_GE:
2321 case BRW_CONDITIONAL_G:
2322 switch (inst->src[1].type) {
2323 case BRW_REGISTER_TYPE_F:
2324 if (inst->src[1].f <= 0.0f) {
2325 inst->opcode = BRW_OPCODE_MOV;
2326 inst->src[1] = reg_undef;
2327 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2328 progress = true;
2329 }
2330 break;
2331 default:
2332 break;
2333 }
2334 default:
2335 break;
2336 }
2337 }
2338 break;
2339 case BRW_OPCODE_MAD:
2340 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2341 inst->opcode = BRW_OPCODE_MOV;
2342 inst->src[1] = reg_undef;
2343 inst->src[2] = reg_undef;
2344 progress = true;
2345 } else if (inst->src[0].is_zero()) {
2346 inst->opcode = BRW_OPCODE_MUL;
2347 inst->src[0] = inst->src[2];
2348 inst->src[2] = reg_undef;
2349 progress = true;
2350 } else if (inst->src[1].is_one()) {
2351 inst->opcode = BRW_OPCODE_ADD;
2352 inst->src[1] = inst->src[2];
2353 inst->src[2] = reg_undef;
2354 progress = true;
2355 } else if (inst->src[2].is_one()) {
2356 inst->opcode = BRW_OPCODE_ADD;
2357 inst->src[2] = reg_undef;
2358 progress = true;
2359 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2360 inst->opcode = BRW_OPCODE_ADD;
2361 inst->src[1].f *= inst->src[2].f;
2362 inst->src[2] = reg_undef;
2363 progress = true;
2364 }
2365 break;
2366 case SHADER_OPCODE_BROADCAST:
2367 if (is_uniform(inst->src[0])) {
2368 inst->opcode = BRW_OPCODE_MOV;
2369 inst->sources = 1;
2370 inst->force_writemask_all = true;
2371 progress = true;
2372 } else if (inst->src[1].file == IMM) {
2373 inst->opcode = BRW_OPCODE_MOV;
2374 inst->src[0] = component(inst->src[0],
2375 inst->src[1].ud);
2376 inst->sources = 1;
2377 inst->force_writemask_all = true;
2378 progress = true;
2379 }
2380 break;
2381
2382 default:
2383 break;
2384 }
2385
2386 /* Swap if src[0] is immediate. */
2387 if (progress && inst->is_commutative()) {
2388 if (inst->src[0].file == IMM) {
2389 fs_reg tmp = inst->src[1];
2390 inst->src[1] = inst->src[0];
2391 inst->src[0] = tmp;
2392 }
2393 }
2394 }
2395 return progress;
2396 }
2397
2398 /**
2399 * Optimize sample messages that have constant zero values for the trailing
2400 * texture coordinates. We can just reduce the message length for these
2401 * instructions instead of reserving a register for it. Trailing parameters
2402 * that aren't sent default to zero anyway. This will cause the dead code
2403 * eliminator to remove the MOV instruction that would otherwise be emitted to
2404 * set up the zero value.
2405 */
2406 bool
2407 fs_visitor::opt_zero_samples()
2408 {
2409 /* Gen4 infers the texturing opcode based on the message length so we can't
2410 * change it.
2411 */
2412 if (devinfo->gen < 5)
2413 return false;
2414
2415 bool progress = false;
2416
2417 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2418 if (!inst->is_tex())
2419 continue;
2420
2421 fs_inst *load_payload = (fs_inst *) inst->prev;
2422
2423 if (load_payload->is_head_sentinel() ||
2424 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2425 continue;
2426
2427 /* We don't want to remove the message header or the first parameter.
2428 * Removing the first parameter is not allowed, see the Haswell PRM
2429 * volume 7, page 149:
2430 *
2431 * "Parameter 0 is required except for the sampleinfo message, which
2432 * has no parameter 0"
2433 */
2434 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2435 load_payload->src[(inst->mlen - inst->header_size) /
2436 (inst->exec_size / 8) +
2437 inst->header_size - 1].is_zero()) {
2438 inst->mlen -= inst->exec_size / 8;
2439 progress = true;
2440 }
2441 }
2442
2443 if (progress)
2444 invalidate_live_intervals();
2445
2446 return progress;
2447 }
2448
2449 /**
2450 * Optimize sample messages which are followed by the final RT write.
2451 *
2452 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2453 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2454 * final texturing results copied to the framebuffer write payload and modify
2455 * them to write to the framebuffer directly.
2456 */
2457 bool
2458 fs_visitor::opt_sampler_eot()
2459 {
2460 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2461
2462 if (stage != MESA_SHADER_FRAGMENT)
2463 return false;
2464
2465 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2466 return false;
2467
2468 /* FINISHME: It should be possible to implement this optimization when there
2469 * are multiple drawbuffers.
2470 */
2471 if (key->nr_color_regions != 1)
2472 return false;
2473
2474 /* Requires emitting a bunch of saturating MOV instructions during logical
2475 * send lowering to clamp the color payload, which the sampler unit isn't
2476 * going to do for us.
2477 */
2478 if (key->clamp_fragment_color)
2479 return false;
2480
2481 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2482 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2483 fs_inst *fb_write = (fs_inst *)block->end();
2484 assert(fb_write->eot);
2485 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2486
2487 /* There wasn't one; nothing to do. */
2488 if (unlikely(fb_write->prev->is_head_sentinel()))
2489 return false;
2490
2491 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2492
2493 /* 3D Sampler » Messages » Message Format
2494 *
2495 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2496 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2497 */
2498 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2499 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2500 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2501 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2502 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2503 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2504 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2505 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2506 return false;
2507
2508 /* XXX - This shouldn't be necessary. */
2509 if (tex_inst->prev->is_head_sentinel())
2510 return false;
2511
2512 /* Check that the FB write sources are fully initialized by the single
2513 * texturing instruction.
2514 */
2515 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2516 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2517 if (!fb_write->src[i].equals(tex_inst->dst) ||
2518 fb_write->size_read(i) != tex_inst->size_written)
2519 return false;
2520 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2521 if (fb_write->src[i].file != BAD_FILE)
2522 return false;
2523 }
2524 }
2525
2526 assert(!tex_inst->eot); /* We can't get here twice */
2527 assert((tex_inst->offset & (0xff << 24)) == 0);
2528
2529 const fs_builder ibld(this, block, tex_inst);
2530
2531 tex_inst->offset |= fb_write->target << 24;
2532 tex_inst->eot = true;
2533 tex_inst->dst = ibld.null_reg_ud();
2534 tex_inst->size_written = 0;
2535 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2536
2537 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2538 * flag and submit a header together with the sampler message as required
2539 * by the hardware.
2540 */
2541 invalidate_live_intervals();
2542 return true;
2543 }
2544
2545 bool
2546 fs_visitor::opt_register_renaming()
2547 {
2548 bool progress = false;
2549 int depth = 0;
2550
2551 int remap[alloc.count];
2552 memset(remap, -1, sizeof(int) * alloc.count);
2553
2554 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2555 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2556 depth++;
2557 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2558 inst->opcode == BRW_OPCODE_WHILE) {
2559 depth--;
2560 }
2561
2562 /* Rewrite instruction sources. */
2563 for (int i = 0; i < inst->sources; i++) {
2564 if (inst->src[i].file == VGRF &&
2565 remap[inst->src[i].nr] != -1 &&
2566 remap[inst->src[i].nr] != inst->src[i].nr) {
2567 inst->src[i].nr = remap[inst->src[i].nr];
2568 progress = true;
2569 }
2570 }
2571
2572 const int dst = inst->dst.nr;
2573
2574 if (depth == 0 &&
2575 inst->dst.file == VGRF &&
2576 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2577 !inst->is_partial_write()) {
2578 if (remap[dst] == -1) {
2579 remap[dst] = dst;
2580 } else {
2581 remap[dst] = alloc.allocate(regs_written(inst));
2582 inst->dst.nr = remap[dst];
2583 progress = true;
2584 }
2585 } else if (inst->dst.file == VGRF &&
2586 remap[dst] != -1 &&
2587 remap[dst] != dst) {
2588 inst->dst.nr = remap[dst];
2589 progress = true;
2590 }
2591 }
2592
2593 if (progress) {
2594 invalidate_live_intervals();
2595
2596 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2597 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2598 delta_xy[i].nr = remap[delta_xy[i].nr];
2599 }
2600 }
2601 }
2602
2603 return progress;
2604 }
2605
2606 /**
2607 * Remove redundant or useless discard jumps.
2608 *
2609 * For example, we can eliminate jumps in the following sequence:
2610 *
2611 * discard-jump (redundant with the next jump)
2612 * discard-jump (useless; jumps to the next instruction)
2613 * placeholder-halt
2614 */
2615 bool
2616 fs_visitor::opt_redundant_discard_jumps()
2617 {
2618 bool progress = false;
2619
2620 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2621
2622 fs_inst *placeholder_halt = NULL;
2623 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2624 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2625 placeholder_halt = inst;
2626 break;
2627 }
2628 }
2629
2630 if (!placeholder_halt)
2631 return false;
2632
2633 /* Delete any HALTs immediately before the placeholder halt. */
2634 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2635 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2636 prev = (fs_inst *) placeholder_halt->prev) {
2637 prev->remove(last_bblock);
2638 progress = true;
2639 }
2640
2641 if (progress)
2642 invalidate_live_intervals();
2643
2644 return progress;
2645 }
2646
2647 /**
2648 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2649 * from \p r.offset which overlaps the region starting at \p s.offset and
2650 * spanning \p ds bytes.
2651 */
2652 static inline unsigned
2653 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2654 {
2655 const int rel_offset = reg_offset(s) - reg_offset(r);
2656 const int shift = rel_offset / REG_SIZE;
2657 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2658 assert(reg_space(r) == reg_space(s) &&
2659 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2660 return ((1 << n) - 1) << shift;
2661 }
2662
2663 bool
2664 fs_visitor::compute_to_mrf()
2665 {
2666 bool progress = false;
2667 int next_ip = 0;
2668
2669 /* No MRFs on Gen >= 7. */
2670 if (devinfo->gen >= 7)
2671 return false;
2672
2673 calculate_live_intervals();
2674
2675 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2676 int ip = next_ip;
2677 next_ip++;
2678
2679 if (inst->opcode != BRW_OPCODE_MOV ||
2680 inst->is_partial_write() ||
2681 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2682 inst->dst.type != inst->src[0].type ||
2683 inst->src[0].abs || inst->src[0].negate ||
2684 !inst->src[0].is_contiguous() ||
2685 inst->src[0].offset % REG_SIZE != 0)
2686 continue;
2687
2688 /* Can't compute-to-MRF this GRF if someone else was going to
2689 * read it later.
2690 */
2691 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2692 continue;
2693
2694 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2695 * things that computed the value of all GRFs of the source region. The
2696 * regs_left bitset keeps track of the registers we haven't yet found a
2697 * generating instruction for.
2698 */
2699 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2700
2701 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2702 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2703 inst->src[0], inst->size_read(0))) {
2704 /* Found the last thing to write our reg we want to turn
2705 * into a compute-to-MRF.
2706 */
2707
2708 /* If this one instruction didn't populate all the
2709 * channels, bail. We might be able to rewrite everything
2710 * that writes that reg, but it would require smarter
2711 * tracking.
2712 */
2713 if (scan_inst->is_partial_write())
2714 break;
2715
2716 /* Handling things not fully contained in the source of the copy
2717 * would need us to understand coalescing out more than one MOV at
2718 * a time.
2719 */
2720 if (scan_inst->dst.offset / REG_SIZE < inst->src[0].offset / REG_SIZE ||
2721 scan_inst->dst.offset / REG_SIZE + DIV_ROUND_UP(scan_inst->size_written, REG_SIZE) >
2722 inst->src[0].offset / REG_SIZE + DIV_ROUND_UP(inst->size_read(0), REG_SIZE))
2723 break;
2724
2725 /* SEND instructions can't have MRF as a destination. */
2726 if (scan_inst->mlen)
2727 break;
2728
2729 if (devinfo->gen == 6) {
2730 /* gen6 math instructions must have the destination be
2731 * GRF, so no compute-to-MRF for them.
2732 */
2733 if (scan_inst->is_math()) {
2734 break;
2735 }
2736 }
2737
2738 /* Clear the bits for any registers this instruction overwrites. */
2739 regs_left &= ~mask_relative_to(
2740 inst->src[0], scan_inst->dst, scan_inst->size_written);
2741 if (!regs_left)
2742 break;
2743 }
2744
2745 /* We don't handle control flow here. Most computation of
2746 * values that end up in MRFs are shortly before the MRF
2747 * write anyway.
2748 */
2749 if (block->start() == scan_inst)
2750 break;
2751
2752 /* You can't read from an MRF, so if someone else reads our
2753 * MRF's source GRF that we wanted to rewrite, that stops us.
2754 */
2755 bool interfered = false;
2756 for (int i = 0; i < scan_inst->sources; i++) {
2757 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2758 inst->src[0], inst->size_read(0))) {
2759 interfered = true;
2760 }
2761 }
2762 if (interfered)
2763 break;
2764
2765 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2766 inst->dst, inst->size_written)) {
2767 /* If somebody else writes our MRF here, we can't
2768 * compute-to-MRF before that.
2769 */
2770 break;
2771 }
2772
2773 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2774 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2775 inst->dst, inst->size_written)) {
2776 /* Found a SEND instruction, which means that there are
2777 * live values in MRFs from base_mrf to base_mrf +
2778 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2779 * above it.
2780 */
2781 break;
2782 }
2783 }
2784
2785 if (regs_left)
2786 continue;
2787
2788 /* Found all generating instructions of our MRF's source value, so it
2789 * should be safe to rewrite them to point to the MRF directly.
2790 */
2791 regs_left = (1 << regs_read(inst, 0)) - 1;
2792
2793 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2794 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2795 inst->src[0], inst->size_read(0))) {
2796 /* Clear the bits for any registers this instruction overwrites. */
2797 regs_left &= ~mask_relative_to(
2798 inst->src[0], scan_inst->dst, scan_inst->size_written);
2799
2800 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2801 reg_offset(inst->src[0]);
2802
2803 if (inst->dst.nr & BRW_MRF_COMPR4) {
2804 /* Apply the same address transformation done by the hardware
2805 * for COMPR4 MRF writes.
2806 */
2807 assert(rel_offset < 2 * REG_SIZE);
2808 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2809
2810 /* Clear the COMPR4 bit if the generating instruction is not
2811 * compressed.
2812 */
2813 if (scan_inst->size_written < 2 * REG_SIZE)
2814 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2815
2816 } else {
2817 /* Calculate the MRF number the result of this instruction is
2818 * ultimately written to.
2819 */
2820 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2821 }
2822
2823 scan_inst->dst.file = MRF;
2824 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2825 scan_inst->saturate |= inst->saturate;
2826 if (!regs_left)
2827 break;
2828 }
2829 }
2830
2831 assert(!regs_left);
2832 inst->remove(block);
2833 progress = true;
2834 }
2835
2836 if (progress)
2837 invalidate_live_intervals();
2838
2839 return progress;
2840 }
2841
2842 /**
2843 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2844 * flow. We could probably do better here with some form of divergence
2845 * analysis.
2846 */
2847 bool
2848 fs_visitor::eliminate_find_live_channel()
2849 {
2850 bool progress = false;
2851 unsigned depth = 0;
2852
2853 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2854 switch (inst->opcode) {
2855 case BRW_OPCODE_IF:
2856 case BRW_OPCODE_DO:
2857 depth++;
2858 break;
2859
2860 case BRW_OPCODE_ENDIF:
2861 case BRW_OPCODE_WHILE:
2862 depth--;
2863 break;
2864
2865 case FS_OPCODE_DISCARD_JUMP:
2866 /* This can potentially make control flow non-uniform until the end
2867 * of the program.
2868 */
2869 return progress;
2870
2871 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2872 if (depth == 0) {
2873 inst->opcode = BRW_OPCODE_MOV;
2874 inst->src[0] = brw_imm_ud(0u);
2875 inst->sources = 1;
2876 inst->force_writemask_all = true;
2877 progress = true;
2878 }
2879 break;
2880
2881 default:
2882 break;
2883 }
2884 }
2885
2886 return progress;
2887 }
2888
2889 /**
2890 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2891 * instructions to FS_OPCODE_REP_FB_WRITE.
2892 */
2893 void
2894 fs_visitor::emit_repclear_shader()
2895 {
2896 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2897 int base_mrf = 0;
2898 int color_mrf = base_mrf + 2;
2899 fs_inst *mov;
2900
2901 if (uniforms > 0) {
2902 mov = bld.exec_all().group(4, 0)
2903 .MOV(brw_message_reg(color_mrf),
2904 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2905 } else {
2906 struct brw_reg reg =
2907 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2908 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2909 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2910
2911 mov = bld.exec_all().group(4, 0)
2912 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2913 }
2914
2915 fs_inst *write;
2916 if (key->nr_color_regions == 1) {
2917 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2918 write->saturate = key->clamp_fragment_color;
2919 write->base_mrf = color_mrf;
2920 write->target = 0;
2921 write->header_size = 0;
2922 write->mlen = 1;
2923 } else {
2924 assume(key->nr_color_regions > 0);
2925 for (int i = 0; i < key->nr_color_regions; ++i) {
2926 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2927 write->saturate = key->clamp_fragment_color;
2928 write->base_mrf = base_mrf;
2929 write->target = i;
2930 write->header_size = 2;
2931 write->mlen = 3;
2932 }
2933 }
2934 write->eot = true;
2935
2936 calculate_cfg();
2937
2938 assign_constant_locations();
2939 assign_curb_setup();
2940
2941 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2942 if (uniforms > 0) {
2943 assert(mov->src[0].file == FIXED_GRF);
2944 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2945 }
2946 }
2947
2948 /**
2949 * Walks through basic blocks, looking for repeated MRF writes and
2950 * removing the later ones.
2951 */
2952 bool
2953 fs_visitor::remove_duplicate_mrf_writes()
2954 {
2955 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2956 bool progress = false;
2957
2958 /* Need to update the MRF tracking for compressed instructions. */
2959 if (dispatch_width >= 16)
2960 return false;
2961
2962 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2963
2964 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2965 if (inst->is_control_flow()) {
2966 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2967 }
2968
2969 if (inst->opcode == BRW_OPCODE_MOV &&
2970 inst->dst.file == MRF) {
2971 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2972 if (prev_inst && inst->equals(prev_inst)) {
2973 inst->remove(block);
2974 progress = true;
2975 continue;
2976 }
2977 }
2978
2979 /* Clear out the last-write records for MRFs that were overwritten. */
2980 if (inst->dst.file == MRF) {
2981 last_mrf_move[inst->dst.nr] = NULL;
2982 }
2983
2984 if (inst->mlen > 0 && inst->base_mrf != -1) {
2985 /* Found a SEND instruction, which will include two or fewer
2986 * implied MRF writes. We could do better here.
2987 */
2988 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2989 last_mrf_move[inst->base_mrf + i] = NULL;
2990 }
2991 }
2992
2993 /* Clear out any MRF move records whose sources got overwritten. */
2994 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2995 if (last_mrf_move[i] &&
2996 regions_overlap(inst->dst, inst->size_written,
2997 last_mrf_move[i]->src[0],
2998 last_mrf_move[i]->size_read(0))) {
2999 last_mrf_move[i] = NULL;
3000 }
3001 }
3002
3003 if (inst->opcode == BRW_OPCODE_MOV &&
3004 inst->dst.file == MRF &&
3005 inst->src[0].file != ARF &&
3006 !inst->is_partial_write()) {
3007 last_mrf_move[inst->dst.nr] = inst;
3008 }
3009 }
3010
3011 if (progress)
3012 invalidate_live_intervals();
3013
3014 return progress;
3015 }
3016
3017 static void
3018 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3019 {
3020 /* Clear the flag for registers that actually got read (as expected). */
3021 for (int i = 0; i < inst->sources; i++) {
3022 int grf;
3023 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3024 grf = inst->src[i].nr;
3025 } else {
3026 continue;
3027 }
3028
3029 if (grf >= first_grf &&
3030 grf < first_grf + grf_len) {
3031 deps[grf - first_grf] = false;
3032 if (inst->exec_size == 16)
3033 deps[grf - first_grf + 1] = false;
3034 }
3035 }
3036 }
3037
3038 /**
3039 * Implements this workaround for the original 965:
3040 *
3041 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3042 * check for post destination dependencies on this instruction, software
3043 * must ensure that there is no destination hazard for the case of ‘write
3044 * followed by a posted write’ shown in the following example.
3045 *
3046 * 1. mov r3 0
3047 * 2. send r3.xy <rest of send instruction>
3048 * 3. mov r2 r3
3049 *
3050 * Due to no post-destination dependency check on the ‘send’, the above
3051 * code sequence could have two instructions (1 and 2) in flight at the
3052 * same time that both consider ‘r3’ as the target of their final writes.
3053 */
3054 void
3055 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3056 fs_inst *inst)
3057 {
3058 int write_len = regs_written(inst);
3059 int first_write_grf = inst->dst.nr;
3060 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3061 assert(write_len < (int)sizeof(needs_dep) - 1);
3062
3063 memset(needs_dep, false, sizeof(needs_dep));
3064 memset(needs_dep, true, write_len);
3065
3066 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3067
3068 /* Walk backwards looking for writes to registers we're writing which
3069 * aren't read since being written. If we hit the start of the program,
3070 * we assume that there are no outstanding dependencies on entry to the
3071 * program.
3072 */
3073 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3074 /* If we hit control flow, assume that there *are* outstanding
3075 * dependencies, and force their cleanup before our instruction.
3076 */
3077 if (block->start() == scan_inst && block->num != 0) {
3078 for (int i = 0; i < write_len; i++) {
3079 if (needs_dep[i])
3080 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3081 first_write_grf + i);
3082 }
3083 return;
3084 }
3085
3086 /* We insert our reads as late as possible on the assumption that any
3087 * instruction but a MOV that might have left us an outstanding
3088 * dependency has more latency than a MOV.
3089 */
3090 if (scan_inst->dst.file == VGRF) {
3091 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3092 int reg = scan_inst->dst.nr + i;
3093
3094 if (reg >= first_write_grf &&
3095 reg < first_write_grf + write_len &&
3096 needs_dep[reg - first_write_grf]) {
3097 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3098 needs_dep[reg - first_write_grf] = false;
3099 if (scan_inst->exec_size == 16)
3100 needs_dep[reg - first_write_grf + 1] = false;
3101 }
3102 }
3103 }
3104
3105 /* Clear the flag for registers that actually got read (as expected). */
3106 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3107
3108 /* Continue the loop only if we haven't resolved all the dependencies */
3109 int i;
3110 for (i = 0; i < write_len; i++) {
3111 if (needs_dep[i])
3112 break;
3113 }
3114 if (i == write_len)
3115 return;
3116 }
3117 }
3118
3119 /**
3120 * Implements this workaround for the original 965:
3121 *
3122 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3123 * used as a destination register until after it has been sourced by an
3124 * instruction with a different destination register.
3125 */
3126 void
3127 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3128 {
3129 int write_len = regs_written(inst);
3130 int first_write_grf = inst->dst.nr;
3131 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3132 assert(write_len < (int)sizeof(needs_dep) - 1);
3133
3134 memset(needs_dep, false, sizeof(needs_dep));
3135 memset(needs_dep, true, write_len);
3136 /* Walk forwards looking for writes to registers we're writing which aren't
3137 * read before being written.
3138 */
3139 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3140 /* If we hit control flow, force resolve all remaining dependencies. */
3141 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3142 for (int i = 0; i < write_len; i++) {
3143 if (needs_dep[i])
3144 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3145 first_write_grf + i);
3146 }
3147 return;
3148 }
3149
3150 /* Clear the flag for registers that actually got read (as expected). */
3151 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3152
3153 /* We insert our reads as late as possible since they're reading the
3154 * result of a SEND, which has massive latency.
3155 */
3156 if (scan_inst->dst.file == VGRF &&
3157 scan_inst->dst.nr >= first_write_grf &&
3158 scan_inst->dst.nr < first_write_grf + write_len &&
3159 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3160 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3161 scan_inst->dst.nr);
3162 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3163 }
3164
3165 /* Continue the loop only if we haven't resolved all the dependencies */
3166 int i;
3167 for (i = 0; i < write_len; i++) {
3168 if (needs_dep[i])
3169 break;
3170 }
3171 if (i == write_len)
3172 return;
3173 }
3174 }
3175
3176 void
3177 fs_visitor::insert_gen4_send_dependency_workarounds()
3178 {
3179 if (devinfo->gen != 4 || devinfo->is_g4x)
3180 return;
3181
3182 bool progress = false;
3183
3184 /* Note that we're done with register allocation, so GRF fs_regs always
3185 * have a .reg_offset of 0.
3186 */
3187
3188 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3189 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3190 insert_gen4_pre_send_dependency_workarounds(block, inst);
3191 insert_gen4_post_send_dependency_workarounds(block, inst);
3192 progress = true;
3193 }
3194 }
3195
3196 if (progress)
3197 invalidate_live_intervals();
3198 }
3199
3200 /**
3201 * Turns the generic expression-style uniform pull constant load instruction
3202 * into a hardware-specific series of instructions for loading a pull
3203 * constant.
3204 *
3205 * The expression style allows the CSE pass before this to optimize out
3206 * repeated loads from the same offset, and gives the pre-register-allocation
3207 * scheduling full flexibility, while the conversion to native instructions
3208 * allows the post-register-allocation scheduler the best information
3209 * possible.
3210 *
3211 * Note that execution masking for setting up pull constant loads is special:
3212 * the channels that need to be written are unrelated to the current execution
3213 * mask, since a later instruction will use one of the result channels as a
3214 * source operand for all 8 or 16 of its channels.
3215 */
3216 void
3217 fs_visitor::lower_uniform_pull_constant_loads()
3218 {
3219 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3220 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3221 continue;
3222
3223 if (devinfo->gen >= 7) {
3224 /* The offset arg is a vec4-aligned immediate byte offset. */
3225 fs_reg const_offset_reg = inst->src[1];
3226 assert(const_offset_reg.file == IMM &&
3227 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3228 assert(const_offset_reg.ud % 16 == 0);
3229
3230 fs_reg payload, offset;
3231 if (devinfo->gen >= 9) {
3232 /* We have to use a message header on Skylake to get SIMD4x2
3233 * mode. Reserve space for the register.
3234 */
3235 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3236 offset.offset += REG_SIZE;
3237 inst->mlen = 2;
3238 } else {
3239 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3240 inst->mlen = 1;
3241 }
3242
3243 /* This is actually going to be a MOV, but since only the first dword
3244 * is accessed, we have a special opcode to do just that one. Note
3245 * that this needs to be an operation that will be considered a def
3246 * by live variable analysis, or register allocation will explode.
3247 */
3248 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3249 8, offset, const_offset_reg);
3250 setup->force_writemask_all = true;
3251
3252 setup->ir = inst->ir;
3253 setup->annotation = inst->annotation;
3254 inst->insert_before(block, setup);
3255
3256 /* Similarly, this will only populate the first 4 channels of the
3257 * result register (since we only use smear values from 0-3), but we
3258 * don't tell the optimizer.
3259 */
3260 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3261 inst->src[1] = payload;
3262
3263 invalidate_live_intervals();
3264 } else {
3265 /* Before register allocation, we didn't tell the scheduler about the
3266 * MRF we use. We know it's safe to use this MRF because nothing
3267 * else does except for register spill/unspill, which generates and
3268 * uses its MRF within a single IR instruction.
3269 */
3270 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3271 inst->mlen = 1;
3272 }
3273 }
3274 }
3275
3276 bool
3277 fs_visitor::lower_load_payload()
3278 {
3279 bool progress = false;
3280
3281 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3282 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3283 continue;
3284
3285 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3286 assert(inst->saturate == false);
3287 fs_reg dst = inst->dst;
3288
3289 /* Get rid of COMPR4. We'll add it back in if we need it */
3290 if (dst.file == MRF)
3291 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3292
3293 const fs_builder ibld(this, block, inst);
3294 const fs_builder hbld = ibld.exec_all().group(8, 0);
3295
3296 for (uint8_t i = 0; i < inst->header_size; i++) {
3297 if (inst->src[i].file != BAD_FILE) {
3298 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3299 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3300 hbld.MOV(mov_dst, mov_src);
3301 }
3302 dst = offset(dst, hbld, 1);
3303 }
3304
3305 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3306 inst->exec_size > 8) {
3307 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3308 * a straightforward copy. Instead, the result of the
3309 * LOAD_PAYLOAD is treated as interleaved and the first four
3310 * non-header sources are unpacked as:
3311 *
3312 * m + 0: r0
3313 * m + 1: g0
3314 * m + 2: b0
3315 * m + 3: a0
3316 * m + 4: r1
3317 * m + 5: g1
3318 * m + 6: b1
3319 * m + 7: a1
3320 *
3321 * This is used for gen <= 5 fb writes.
3322 */
3323 assert(inst->exec_size == 16);
3324 assert(inst->header_size + 4 <= inst->sources);
3325 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3326 if (inst->src[i].file != BAD_FILE) {
3327 if (devinfo->has_compr4) {
3328 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3329 compr4_dst.nr |= BRW_MRF_COMPR4;
3330 ibld.MOV(compr4_dst, inst->src[i]);
3331 } else {
3332 /* Platform doesn't have COMPR4. We have to fake it */
3333 fs_reg mov_dst = retype(dst, inst->src[i].type);
3334 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3335 mov_dst.nr += 4;
3336 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3337 }
3338 }
3339
3340 dst.nr++;
3341 }
3342
3343 /* The loop above only ever incremented us through the first set
3344 * of 4 registers. However, thanks to the magic of COMPR4, we
3345 * actually wrote to the first 8 registers, so we need to take
3346 * that into account now.
3347 */
3348 dst.nr += 4;
3349
3350 /* The COMPR4 code took care of the first 4 sources. We'll let
3351 * the regular path handle any remaining sources. Yes, we are
3352 * modifying the instruction but we're about to delete it so
3353 * this really doesn't hurt anything.
3354 */
3355 inst->header_size += 4;
3356 }
3357
3358 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3359 if (inst->src[i].file != BAD_FILE)
3360 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3361 dst = offset(dst, ibld, 1);
3362 }
3363
3364 inst->remove(block);
3365 progress = true;
3366 }
3367
3368 if (progress)
3369 invalidate_live_intervals();
3370
3371 return progress;
3372 }
3373
3374 bool
3375 fs_visitor::lower_integer_multiplication()
3376 {
3377 bool progress = false;
3378
3379 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3380 const fs_builder ibld(this, block, inst);
3381
3382 if (inst->opcode == BRW_OPCODE_MUL) {
3383 if (inst->dst.is_accumulator() ||
3384 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3385 inst->dst.type != BRW_REGISTER_TYPE_UD))
3386 continue;
3387
3388 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3389 * operation directly, but CHV/BXT cannot.
3390 */
3391 if (devinfo->gen >= 8 &&
3392 !devinfo->is_cherryview && !devinfo->is_broxton)
3393 continue;
3394
3395 if (inst->src[1].file == IMM &&
3396 inst->src[1].ud < (1 << 16)) {
3397 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3398 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3399 * src1 are used.
3400 *
3401 * If multiplying by an immediate value that fits in 16-bits, do a
3402 * single MUL instruction with that value in the proper location.
3403 */
3404 if (devinfo->gen < 7) {
3405 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3406 inst->dst.type);
3407 ibld.MOV(imm, inst->src[1]);
3408 ibld.MUL(inst->dst, imm, inst->src[0]);
3409 } else {
3410 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3411 ibld.MUL(inst->dst, inst->src[0],
3412 ud ? brw_imm_uw(inst->src[1].ud)
3413 : brw_imm_w(inst->src[1].d));
3414 }
3415 } else {
3416 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3417 * do 32-bit integer multiplication in one instruction, but instead
3418 * must do a sequence (which actually calculates a 64-bit result):
3419 *
3420 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3421 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3422 * mov(8) g2<1>D acc0<8,8,1>D
3423 *
3424 * But on Gen > 6, the ability to use second accumulator register
3425 * (acc1) for non-float data types was removed, preventing a simple
3426 * implementation in SIMD16. A 16-channel result can be calculated by
3427 * executing the three instructions twice in SIMD8, once with quarter
3428 * control of 1Q for the first eight channels and again with 2Q for
3429 * the second eight channels.
3430 *
3431 * Which accumulator register is implicitly accessed (by AccWrEnable
3432 * for instance) is determined by the quarter control. Unfortunately
3433 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3434 * implicit accumulator access by an instruction with 2Q will access
3435 * acc1 regardless of whether the data type is usable in acc1.
3436 *
3437 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3438 * integer data types.
3439 *
3440 * Since we only want the low 32-bits of the result, we can do two
3441 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3442 * adjust the high result and add them (like the mach is doing):
3443 *
3444 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3445 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3446 * shl(8) g9<1>D g8<8,8,1>D 16D
3447 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3448 *
3449 * We avoid the shl instruction by realizing that we only want to add
3450 * the low 16-bits of the "high" result to the high 16-bits of the
3451 * "low" result and using proper regioning on the add:
3452 *
3453 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3454 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3455 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3456 *
3457 * Since it does not use the (single) accumulator register, we can
3458 * schedule multi-component multiplications much better.
3459 */
3460
3461 fs_reg orig_dst = inst->dst;
3462 if (orig_dst.is_null() || orig_dst.file == MRF) {
3463 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3464 inst->dst.type);
3465 }
3466 fs_reg low = inst->dst;
3467 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3468 inst->dst.type);
3469
3470 if (devinfo->gen >= 7) {
3471 fs_reg src1_0_w = inst->src[1];
3472 fs_reg src1_1_w = inst->src[1];
3473
3474 if (inst->src[1].file == IMM) {
3475 src1_0_w.ud &= 0xffff;
3476 src1_1_w.ud >>= 16;
3477 } else {
3478 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3479 if (src1_0_w.stride != 0) {
3480 assert(src1_0_w.stride == 1);
3481 src1_0_w.stride = 2;
3482 }
3483
3484 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3485 if (src1_1_w.stride != 0) {
3486 assert(src1_1_w.stride == 1);
3487 src1_1_w.stride = 2;
3488 }
3489 src1_1_w.offset += type_sz(BRW_REGISTER_TYPE_UW);
3490 }
3491 ibld.MUL(low, inst->src[0], src1_0_w);
3492 ibld.MUL(high, inst->src[0], src1_1_w);
3493 } else {
3494 fs_reg src0_0_w = inst->src[0];
3495 fs_reg src0_1_w = inst->src[0];
3496
3497 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3498 if (src0_0_w.stride != 0) {
3499 assert(src0_0_w.stride == 1);
3500 src0_0_w.stride = 2;
3501 }
3502
3503 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3504 if (src0_1_w.stride != 0) {
3505 assert(src0_1_w.stride == 1);
3506 src0_1_w.stride = 2;
3507 }
3508 src0_1_w.offset += type_sz(BRW_REGISTER_TYPE_UW);
3509
3510 ibld.MUL(low, src0_0_w, inst->src[1]);
3511 ibld.MUL(high, src0_1_w, inst->src[1]);
3512 }
3513
3514 fs_reg dst = inst->dst;
3515 dst.type = BRW_REGISTER_TYPE_UW;
3516 dst.offset = ROUND_DOWN_TO(dst.offset, REG_SIZE) + 2;
3517 dst.stride = 2;
3518
3519 high.type = BRW_REGISTER_TYPE_UW;
3520 high.stride = 2;
3521
3522 low.type = BRW_REGISTER_TYPE_UW;
3523 low.offset = ROUND_DOWN_TO(low.offset, REG_SIZE) + 2;
3524 low.stride = 2;
3525
3526 ibld.ADD(dst, low, high);
3527
3528 if (inst->conditional_mod || orig_dst.file == MRF) {
3529 set_condmod(inst->conditional_mod,
3530 ibld.MOV(orig_dst, inst->dst));
3531 }
3532 }
3533
3534 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3535 /* Should have been lowered to 8-wide. */
3536 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3537 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3538 inst->dst.type);
3539 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3540 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3541
3542 if (devinfo->gen >= 8) {
3543 /* Until Gen8, integer multiplies read 32-bits from one source,
3544 * and 16-bits from the other, and relying on the MACH instruction
3545 * to generate the high bits of the result.
3546 *
3547 * On Gen8, the multiply instruction does a full 32x32-bit
3548 * multiply, but in order to do a 64-bit multiply we can simulate
3549 * the previous behavior and then use a MACH instruction.
3550 *
3551 * FINISHME: Don't use source modifiers on src1.
3552 */
3553 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3554 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3555 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3556 mul->src[1].stride *= 2;
3557
3558 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3559 inst->group > 0) {
3560 /* Among other things the quarter control bits influence which
3561 * accumulator register is used by the hardware for instructions
3562 * that access the accumulator implicitly (e.g. MACH). A
3563 * second-half instruction would normally map to acc1, which
3564 * doesn't exist on Gen7 and up (the hardware does emulate it for
3565 * floating-point instructions *only* by taking advantage of the
3566 * extra precision of acc0 not normally used for floating point
3567 * arithmetic).
3568 *
3569 * HSW and up are careful enough not to try to access an
3570 * accumulator register that doesn't exist, but on earlier Gen7
3571 * hardware we need to make sure that the quarter control bits are
3572 * zero to avoid non-deterministic behaviour and emit an extra MOV
3573 * to get the result masked correctly according to the current
3574 * channel enables.
3575 */
3576 mach->group = 0;
3577 mach->force_writemask_all = true;
3578 mach->dst = ibld.vgrf(inst->dst.type);
3579 ibld.MOV(inst->dst, mach->dst);
3580 }
3581 } else {
3582 continue;
3583 }
3584
3585 inst->remove(block);
3586 progress = true;
3587 }
3588
3589 if (progress)
3590 invalidate_live_intervals();
3591
3592 return progress;
3593 }
3594
3595 bool
3596 fs_visitor::lower_minmax()
3597 {
3598 assert(devinfo->gen < 6);
3599
3600 bool progress = false;
3601
3602 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3603 const fs_builder ibld(this, block, inst);
3604
3605 if (inst->opcode == BRW_OPCODE_SEL &&
3606 inst->predicate == BRW_PREDICATE_NONE) {
3607 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3608 * the original SEL.L/GE instruction
3609 */
3610 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3611 inst->conditional_mod);
3612 inst->predicate = BRW_PREDICATE_NORMAL;
3613 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3614
3615 progress = true;
3616 }
3617 }
3618
3619 if (progress)
3620 invalidate_live_intervals();
3621
3622 return progress;
3623 }
3624
3625 static void
3626 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3627 fs_reg *dst, fs_reg color, unsigned components)
3628 {
3629 if (key->clamp_fragment_color) {
3630 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3631 assert(color.type == BRW_REGISTER_TYPE_F);
3632
3633 for (unsigned i = 0; i < components; i++)
3634 set_saturate(true,
3635 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3636
3637 color = tmp;
3638 }
3639
3640 for (unsigned i = 0; i < components; i++)
3641 dst[i] = offset(color, bld, i);
3642 }
3643
3644 static void
3645 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3646 const brw_wm_prog_data *prog_data,
3647 const brw_wm_prog_key *key,
3648 const fs_visitor::thread_payload &payload)
3649 {
3650 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3651 const gen_device_info *devinfo = bld.shader->devinfo;
3652 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3653 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3654 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3655 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3656 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3657 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3658 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3659 const unsigned components =
3660 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3661
3662 /* We can potentially have a message length of up to 15, so we have to set
3663 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3664 */
3665 fs_reg sources[15];
3666 int header_size = 2, payload_header_size;
3667 unsigned length = 0;
3668
3669 /* From the Sandy Bridge PRM, volume 4, page 198:
3670 *
3671 * "Dispatched Pixel Enables. One bit per pixel indicating
3672 * which pixels were originally enabled when the thread was
3673 * dispatched. This field is only required for the end-of-
3674 * thread message and on all dual-source messages."
3675 */
3676 if (devinfo->gen >= 6 &&
3677 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3678 color1.file == BAD_FILE &&
3679 key->nr_color_regions == 1) {
3680 header_size = 0;
3681 }
3682
3683 if (header_size != 0) {
3684 assert(header_size == 2);
3685 /* Allocate 2 registers for a header */
3686 length += 2;
3687 }
3688
3689 if (payload.aa_dest_stencil_reg) {
3690 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3691 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3692 .MOV(sources[length],
3693 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3694 length++;
3695 }
3696
3697 if (sample_mask.file != BAD_FILE) {
3698 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3699 BRW_REGISTER_TYPE_UD);
3700
3701 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3702 * relevant. Since it's unsigned single words one vgrf is always
3703 * 16-wide, but only the lower or higher 8 channels will be used by the
3704 * hardware when doing a SIMD8 write depending on whether we have
3705 * selected the subspans for the first or second half respectively.
3706 */
3707 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3708 sample_mask.type = BRW_REGISTER_TYPE_UW;
3709 sample_mask.stride *= 2;
3710
3711 bld.exec_all().annotate("FB write oMask")
3712 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3713 inst->group),
3714 sample_mask);
3715 length++;
3716 }
3717
3718 payload_header_size = length;
3719
3720 if (src0_alpha.file != BAD_FILE) {
3721 /* FIXME: This is being passed at the wrong location in the payload and
3722 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3723 * It's supposed to be immediately before oMask but there seems to be no
3724 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3725 * requires header sources to form a contiguous segment at the beginning
3726 * of the message and src0_alpha has per-channel semantics.
3727 */
3728 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3729 length++;
3730 }
3731
3732 setup_color_payload(bld, key, &sources[length], color0, components);
3733 length += 4;
3734
3735 if (color1.file != BAD_FILE) {
3736 setup_color_payload(bld, key, &sources[length], color1, components);
3737 length += 4;
3738 }
3739
3740 if (src_depth.file != BAD_FILE) {
3741 sources[length] = src_depth;
3742 length++;
3743 }
3744
3745 if (dst_depth.file != BAD_FILE) {
3746 sources[length] = dst_depth;
3747 length++;
3748 }
3749
3750 if (src_stencil.file != BAD_FILE) {
3751 assert(devinfo->gen >= 9);
3752 assert(bld.dispatch_width() != 16);
3753
3754 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3755 * available on gen9+. As such it's impossible to have both enabled at the
3756 * same time and therefore length cannot overrun the array.
3757 */
3758 assert(length < 15);
3759
3760 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3761 bld.exec_all().annotate("FB write OS")
3762 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3763 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3764 length++;
3765 }
3766
3767 fs_inst *load;
3768 if (devinfo->gen >= 7) {
3769 /* Send from the GRF */
3770 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3771 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3772 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3773 load->dst = payload;
3774
3775 inst->src[0] = payload;
3776 inst->resize_sources(1);
3777 } else {
3778 /* Send from the MRF */
3779 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3780 sources, length, payload_header_size);
3781
3782 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3783 * will do this for us if we just give it a COMPR4 destination.
3784 */
3785 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3786 load->dst.nr |= BRW_MRF_COMPR4;
3787
3788 inst->resize_sources(0);
3789 inst->base_mrf = 1;
3790 }
3791
3792 inst->opcode = FS_OPCODE_FB_WRITE;
3793 inst->mlen = regs_written(load);
3794 inst->header_size = header_size;
3795 }
3796
3797 static void
3798 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3799 {
3800 const fs_builder &ubld = bld.exec_all();
3801 const unsigned length = 2;
3802 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3803
3804 ubld.group(16, 0)
3805 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3806
3807 inst->resize_sources(1);
3808 inst->src[0] = header;
3809 inst->opcode = FS_OPCODE_FB_READ;
3810 inst->mlen = length;
3811 inst->header_size = length;
3812 }
3813
3814 static void
3815 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3816 const fs_reg &coordinate,
3817 const fs_reg &shadow_c,
3818 const fs_reg &lod, const fs_reg &lod2,
3819 const fs_reg &surface,
3820 const fs_reg &sampler,
3821 unsigned coord_components,
3822 unsigned grad_components)
3823 {
3824 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3825 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3826 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3827 fs_reg msg_end = msg_begin;
3828
3829 /* g0 header. */
3830 msg_end = offset(msg_end, bld.group(8, 0), 1);
3831
3832 for (unsigned i = 0; i < coord_components; i++)
3833 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3834 offset(coordinate, bld, i));
3835
3836 msg_end = offset(msg_end, bld, coord_components);
3837
3838 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3839 * require all three components to be present and zero if they are unused.
3840 */
3841 if (coord_components > 0 &&
3842 (has_lod || shadow_c.file != BAD_FILE ||
3843 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3844 for (unsigned i = coord_components; i < 3; i++)
3845 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3846
3847 msg_end = offset(msg_end, bld, 3 - coord_components);
3848 }
3849
3850 if (op == SHADER_OPCODE_TXD) {
3851 /* TXD unsupported in SIMD16 mode. */
3852 assert(bld.dispatch_width() == 8);
3853
3854 /* the slots for u and v are always present, but r is optional */
3855 if (coord_components < 2)
3856 msg_end = offset(msg_end, bld, 2 - coord_components);
3857
3858 /* P = u, v, r
3859 * dPdx = dudx, dvdx, drdx
3860 * dPdy = dudy, dvdy, drdy
3861 *
3862 * 1-arg: Does not exist.
3863 *
3864 * 2-arg: dudx dvdx dudy dvdy
3865 * dPdx.x dPdx.y dPdy.x dPdy.y
3866 * m4 m5 m6 m7
3867 *
3868 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3869 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3870 * m5 m6 m7 m8 m9 m10
3871 */
3872 for (unsigned i = 0; i < grad_components; i++)
3873 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3874
3875 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3876
3877 for (unsigned i = 0; i < grad_components; i++)
3878 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3879
3880 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3881 }
3882
3883 if (has_lod) {
3884 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3885 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3886 */
3887 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3888 bld.dispatch_width() == 16);
3889
3890 const brw_reg_type type =
3891 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3892 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3893 bld.MOV(retype(msg_end, type), lod);
3894 msg_end = offset(msg_end, bld, 1);
3895 }
3896
3897 if (shadow_c.file != BAD_FILE) {
3898 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3899 /* There's no plain shadow compare message, so we use shadow
3900 * compare with a bias of 0.0.
3901 */
3902 bld.MOV(msg_end, brw_imm_f(0.0f));
3903 msg_end = offset(msg_end, bld, 1);
3904 }
3905
3906 bld.MOV(msg_end, shadow_c);
3907 msg_end = offset(msg_end, bld, 1);
3908 }
3909
3910 inst->opcode = op;
3911 inst->src[0] = reg_undef;
3912 inst->src[1] = surface;
3913 inst->src[2] = sampler;
3914 inst->resize_sources(3);
3915 inst->base_mrf = msg_begin.nr;
3916 inst->mlen = msg_end.nr - msg_begin.nr;
3917 inst->header_size = 1;
3918 }
3919
3920 static void
3921 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3922 const fs_reg &coordinate,
3923 const fs_reg &shadow_c,
3924 const fs_reg &lod, const fs_reg &lod2,
3925 const fs_reg &sample_index,
3926 const fs_reg &surface,
3927 const fs_reg &sampler,
3928 const fs_reg &offset_value,
3929 unsigned coord_components,
3930 unsigned grad_components)
3931 {
3932 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3933 fs_reg msg_coords = message;
3934 unsigned header_size = 0;
3935
3936 if (offset_value.file != BAD_FILE) {
3937 /* The offsets set up by the visitor are in the m1 header, so we can't
3938 * go headerless.
3939 */
3940 header_size = 1;
3941 message.nr--;
3942 }
3943
3944 for (unsigned i = 0; i < coord_components; i++)
3945 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3946 offset(coordinate, bld, i));
3947
3948 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3949 fs_reg msg_lod = offset(msg_coords, bld, 4);
3950
3951 if (shadow_c.file != BAD_FILE) {
3952 fs_reg msg_shadow = msg_lod;
3953 bld.MOV(msg_shadow, shadow_c);
3954 msg_lod = offset(msg_shadow, bld, 1);
3955 msg_end = msg_lod;
3956 }
3957
3958 switch (op) {
3959 case SHADER_OPCODE_TXL:
3960 case FS_OPCODE_TXB:
3961 bld.MOV(msg_lod, lod);
3962 msg_end = offset(msg_lod, bld, 1);
3963 break;
3964 case SHADER_OPCODE_TXD:
3965 /**
3966 * P = u, v, r
3967 * dPdx = dudx, dvdx, drdx
3968 * dPdy = dudy, dvdy, drdy
3969 *
3970 * Load up these values:
3971 * - dudx dudy dvdx dvdy drdx drdy
3972 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3973 */
3974 msg_end = msg_lod;
3975 for (unsigned i = 0; i < grad_components; i++) {
3976 bld.MOV(msg_end, offset(lod, bld, i));
3977 msg_end = offset(msg_end, bld, 1);
3978
3979 bld.MOV(msg_end, offset(lod2, bld, i));
3980 msg_end = offset(msg_end, bld, 1);
3981 }
3982 break;
3983 case SHADER_OPCODE_TXS:
3984 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3985 bld.MOV(msg_lod, lod);
3986 msg_end = offset(msg_lod, bld, 1);
3987 break;
3988 case SHADER_OPCODE_TXF:
3989 msg_lod = offset(msg_coords, bld, 3);
3990 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3991 msg_end = offset(msg_lod, bld, 1);
3992 break;
3993 case SHADER_OPCODE_TXF_CMS:
3994 msg_lod = offset(msg_coords, bld, 3);
3995 /* lod */
3996 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3997 /* sample index */
3998 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3999 msg_end = offset(msg_lod, bld, 2);
4000 break;
4001 default:
4002 break;
4003 }
4004
4005 inst->opcode = op;
4006 inst->src[0] = reg_undef;
4007 inst->src[1] = surface;
4008 inst->src[2] = sampler;
4009 inst->resize_sources(3);
4010 inst->base_mrf = message.nr;
4011 inst->mlen = msg_end.nr - message.nr;
4012 inst->header_size = header_size;
4013
4014 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4015 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4016 }
4017
4018 static bool
4019 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4020 {
4021 if (devinfo->gen < 8 && !devinfo->is_haswell)
4022 return false;
4023
4024 return sampler.file != IMM || sampler.ud >= 16;
4025 }
4026
4027 static void
4028 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4029 const fs_reg &coordinate,
4030 const fs_reg &shadow_c,
4031 fs_reg lod, const fs_reg &lod2,
4032 const fs_reg &sample_index,
4033 const fs_reg &mcs,
4034 const fs_reg &surface,
4035 const fs_reg &sampler,
4036 const fs_reg &offset_value,
4037 unsigned coord_components,
4038 unsigned grad_components)
4039 {
4040 const gen_device_info *devinfo = bld.shader->devinfo;
4041 unsigned reg_width = bld.dispatch_width() / 8;
4042 unsigned header_size = 0, length = 0;
4043 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4044 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4045 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4046
4047 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4048 offset_value.file != BAD_FILE || inst->eot ||
4049 op == SHADER_OPCODE_SAMPLEINFO ||
4050 is_high_sampler(devinfo, sampler)) {
4051 /* For general texture offsets (no txf workaround), we need a header to
4052 * put them in. Note that we're only reserving space for it in the
4053 * message payload as it will be initialized implicitly by the
4054 * generator.
4055 *
4056 * TG4 needs to place its channel select in the header, for interaction
4057 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4058 * larger sampler numbers we need to offset the Sampler State Pointer in
4059 * the header.
4060 */
4061 header_size = 1;
4062 sources[0] = fs_reg();
4063 length++;
4064
4065 /* If we're requesting fewer than four channels worth of response,
4066 * and we have an explicit header, we need to set up the sampler
4067 * writemask. It's reversed from normal: 1 means "don't write".
4068 */
4069 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4070 assert(regs_written(inst) % reg_width == 0);
4071 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4072 inst->offset |= mask << 12;
4073 }
4074 }
4075
4076 if (shadow_c.file != BAD_FILE) {
4077 bld.MOV(sources[length], shadow_c);
4078 length++;
4079 }
4080
4081 bool coordinate_done = false;
4082
4083 /* Set up the LOD info */
4084 switch (op) {
4085 case FS_OPCODE_TXB:
4086 case SHADER_OPCODE_TXL:
4087 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4088 op = SHADER_OPCODE_TXL_LZ;
4089 break;
4090 }
4091 bld.MOV(sources[length], lod);
4092 length++;
4093 break;
4094 case SHADER_OPCODE_TXD:
4095 /* TXD should have been lowered in SIMD16 mode. */
4096 assert(bld.dispatch_width() == 8);
4097
4098 /* Load dPdx and the coordinate together:
4099 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4100 */
4101 for (unsigned i = 0; i < coord_components; i++) {
4102 bld.MOV(sources[length++], offset(coordinate, bld, i));
4103
4104 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4105 * only derivatives for (u, v, r).
4106 */
4107 if (i < grad_components) {
4108 bld.MOV(sources[length++], offset(lod, bld, i));
4109 bld.MOV(sources[length++], offset(lod2, bld, i));
4110 }
4111 }
4112
4113 coordinate_done = true;
4114 break;
4115 case SHADER_OPCODE_TXS:
4116 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4117 length++;
4118 break;
4119 case SHADER_OPCODE_TXF:
4120 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4121 * On Gen9 they are u, v, lod, r
4122 */
4123 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4124
4125 if (devinfo->gen >= 9) {
4126 if (coord_components >= 2) {
4127 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4128 offset(coordinate, bld, 1));
4129 } else {
4130 sources[length] = brw_imm_d(0);
4131 }
4132 length++;
4133 }
4134
4135 if (devinfo->gen >= 9 && lod.is_zero()) {
4136 op = SHADER_OPCODE_TXF_LZ;
4137 } else {
4138 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4139 length++;
4140 }
4141
4142 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4143 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4144 offset(coordinate, bld, i));
4145
4146 coordinate_done = true;
4147 break;
4148
4149 case SHADER_OPCODE_TXF_CMS:
4150 case SHADER_OPCODE_TXF_CMS_W:
4151 case SHADER_OPCODE_TXF_UMS:
4152 case SHADER_OPCODE_TXF_MCS:
4153 if (op == SHADER_OPCODE_TXF_UMS ||
4154 op == SHADER_OPCODE_TXF_CMS ||
4155 op == SHADER_OPCODE_TXF_CMS_W) {
4156 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4157 length++;
4158 }
4159
4160 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4161 /* Data from the multisample control surface. */
4162 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4163 length++;
4164
4165 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4166 * the MCS data.
4167 */
4168 if (op == SHADER_OPCODE_TXF_CMS_W) {
4169 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4170 mcs.file == IMM ?
4171 mcs :
4172 offset(mcs, bld, 1));
4173 length++;
4174 }
4175 }
4176
4177 /* There is no offsetting for this message; just copy in the integer
4178 * texture coordinates.
4179 */
4180 for (unsigned i = 0; i < coord_components; i++)
4181 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4182 offset(coordinate, bld, i));
4183
4184 coordinate_done = true;
4185 break;
4186 case SHADER_OPCODE_TG4_OFFSET:
4187 /* More crazy intermixing */
4188 for (unsigned i = 0; i < 2; i++) /* u, v */
4189 bld.MOV(sources[length++], offset(coordinate, bld, i));
4190
4191 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4192 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4193 offset(offset_value, bld, i));
4194
4195 if (coord_components == 3) /* r if present */
4196 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4197
4198 coordinate_done = true;
4199 break;
4200 default:
4201 break;
4202 }
4203
4204 /* Set up the coordinate (except for cases where it was done above) */
4205 if (!coordinate_done) {
4206 for (unsigned i = 0; i < coord_components; i++)
4207 bld.MOV(sources[length++], offset(coordinate, bld, i));
4208 }
4209
4210 int mlen;
4211 if (reg_width == 2)
4212 mlen = length * reg_width - header_size;
4213 else
4214 mlen = length * reg_width;
4215
4216 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4217 BRW_REGISTER_TYPE_F);
4218 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4219
4220 /* Generate the SEND. */
4221 inst->opcode = op;
4222 inst->src[0] = src_payload;
4223 inst->src[1] = surface;
4224 inst->src[2] = sampler;
4225 inst->resize_sources(3);
4226 inst->mlen = mlen;
4227 inst->header_size = header_size;
4228
4229 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4230 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4231 }
4232
4233 static void
4234 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4235 {
4236 const gen_device_info *devinfo = bld.shader->devinfo;
4237 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4238 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4239 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4240 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4241 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4242 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4243 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4244 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4245 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4246 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4247 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4248 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4249 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4250
4251 if (devinfo->gen >= 7) {
4252 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4253 shadow_c, lod, lod2, sample_index,
4254 mcs, surface, sampler, offset_value,
4255 coord_components, grad_components);
4256 } else if (devinfo->gen >= 5) {
4257 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4258 shadow_c, lod, lod2, sample_index,
4259 surface, sampler, offset_value,
4260 coord_components, grad_components);
4261 } else {
4262 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4263 shadow_c, lod, lod2,
4264 surface, sampler,
4265 coord_components, grad_components);
4266 }
4267 }
4268
4269 /**
4270 * Initialize the header present in some typed and untyped surface
4271 * messages.
4272 */
4273 static fs_reg
4274 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4275 {
4276 fs_builder ubld = bld.exec_all().group(8, 0);
4277 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4278 ubld.MOV(dst, brw_imm_d(0));
4279 ubld.MOV(component(dst, 7), sample_mask);
4280 return dst;
4281 }
4282
4283 static void
4284 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4285 const fs_reg &sample_mask)
4286 {
4287 /* Get the logical send arguments. */
4288 const fs_reg &addr = inst->src[0];
4289 const fs_reg &src = inst->src[1];
4290 const fs_reg &surface = inst->src[2];
4291 const UNUSED fs_reg &dims = inst->src[3];
4292 const fs_reg &arg = inst->src[4];
4293
4294 /* Calculate the total number of components of the payload. */
4295 const unsigned addr_sz = inst->components_read(0);
4296 const unsigned src_sz = inst->components_read(1);
4297 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4298 const unsigned sz = header_sz + addr_sz + src_sz;
4299
4300 /* Allocate space for the payload. */
4301 fs_reg *const components = new fs_reg[sz];
4302 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4303 unsigned n = 0;
4304
4305 /* Construct the payload. */
4306 if (header_sz)
4307 components[n++] = emit_surface_header(bld, sample_mask);
4308
4309 for (unsigned i = 0; i < addr_sz; i++)
4310 components[n++] = offset(addr, bld, i);
4311
4312 for (unsigned i = 0; i < src_sz; i++)
4313 components[n++] = offset(src, bld, i);
4314
4315 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4316
4317 /* Update the original instruction. */
4318 inst->opcode = op;
4319 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4320 inst->header_size = header_sz;
4321
4322 inst->src[0] = payload;
4323 inst->src[1] = surface;
4324 inst->src[2] = arg;
4325 inst->resize_sources(3);
4326
4327 delete[] components;
4328 }
4329
4330 static void
4331 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4332 {
4333 const gen_device_info *devinfo = bld.shader->devinfo;
4334
4335 if (devinfo->gen >= 7) {
4336 /* We are switching the instruction from an ALU-like instruction to a
4337 * send-from-grf instruction. Since sends can't handle strides or
4338 * source modifiers, we have to make a copy of the offset source.
4339 */
4340 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4341 bld.MOV(tmp, inst->src[1]);
4342 inst->src[1] = tmp;
4343
4344 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4345
4346 } else {
4347 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4348 BRW_REGISTER_TYPE_UD);
4349
4350 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4351
4352 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4353 inst->resize_sources(1);
4354 inst->base_mrf = payload.nr;
4355 inst->header_size = 1;
4356 inst->mlen = 1 + inst->exec_size / 8;
4357 }
4358 }
4359
4360 static void
4361 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4362 {
4363 assert(bld.shader->devinfo->gen < 6);
4364
4365 inst->base_mrf = 2;
4366 inst->mlen = inst->sources * inst->exec_size / 8;
4367
4368 if (inst->sources > 1) {
4369 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4370 * "Message Payload":
4371 *
4372 * "Operand0[7]. For the INT DIV functions, this operand is the
4373 * denominator."
4374 * ...
4375 * "Operand1[7]. For the INT DIV functions, this operand is the
4376 * numerator."
4377 */
4378 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4379 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4380 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4381
4382 inst->resize_sources(1);
4383 inst->src[0] = src0;
4384
4385 assert(inst->exec_size == 8);
4386 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4387 }
4388 }
4389
4390 bool
4391 fs_visitor::lower_logical_sends()
4392 {
4393 bool progress = false;
4394
4395 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4396 const fs_builder ibld(this, block, inst);
4397
4398 switch (inst->opcode) {
4399 case FS_OPCODE_FB_WRITE_LOGICAL:
4400 assert(stage == MESA_SHADER_FRAGMENT);
4401 lower_fb_write_logical_send(ibld, inst,
4402 (const brw_wm_prog_data *)prog_data,
4403 (const brw_wm_prog_key *)key,
4404 payload);
4405 break;
4406
4407 case FS_OPCODE_FB_READ_LOGICAL:
4408 lower_fb_read_logical_send(ibld, inst);
4409 break;
4410
4411 case SHADER_OPCODE_TEX_LOGICAL:
4412 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4413 break;
4414
4415 case SHADER_OPCODE_TXD_LOGICAL:
4416 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4417 break;
4418
4419 case SHADER_OPCODE_TXF_LOGICAL:
4420 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4421 break;
4422
4423 case SHADER_OPCODE_TXL_LOGICAL:
4424 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4425 break;
4426
4427 case SHADER_OPCODE_TXS_LOGICAL:
4428 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4429 break;
4430
4431 case FS_OPCODE_TXB_LOGICAL:
4432 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4433 break;
4434
4435 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4436 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4437 break;
4438
4439 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4440 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4441 break;
4442
4443 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4444 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4445 break;
4446
4447 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4448 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4449 break;
4450
4451 case SHADER_OPCODE_LOD_LOGICAL:
4452 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4453 break;
4454
4455 case SHADER_OPCODE_TG4_LOGICAL:
4456 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4457 break;
4458
4459 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4460 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4461 break;
4462
4463 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4464 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4465 break;
4466
4467 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4468 lower_surface_logical_send(ibld, inst,
4469 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4470 fs_reg());
4471 break;
4472
4473 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4474 lower_surface_logical_send(ibld, inst,
4475 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4476 ibld.sample_mask_reg());
4477 break;
4478
4479 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4480 lower_surface_logical_send(ibld, inst,
4481 SHADER_OPCODE_UNTYPED_ATOMIC,
4482 ibld.sample_mask_reg());
4483 break;
4484
4485 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4486 lower_surface_logical_send(ibld, inst,
4487 SHADER_OPCODE_TYPED_SURFACE_READ,
4488 brw_imm_d(0xffff));
4489 break;
4490
4491 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4492 lower_surface_logical_send(ibld, inst,
4493 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4494 ibld.sample_mask_reg());
4495 break;
4496
4497 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4498 lower_surface_logical_send(ibld, inst,
4499 SHADER_OPCODE_TYPED_ATOMIC,
4500 ibld.sample_mask_reg());
4501 break;
4502
4503 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4504 lower_varying_pull_constant_logical_send(ibld, inst);
4505 break;
4506
4507 case SHADER_OPCODE_RCP:
4508 case SHADER_OPCODE_RSQ:
4509 case SHADER_OPCODE_SQRT:
4510 case SHADER_OPCODE_EXP2:
4511 case SHADER_OPCODE_LOG2:
4512 case SHADER_OPCODE_SIN:
4513 case SHADER_OPCODE_COS:
4514 case SHADER_OPCODE_POW:
4515 case SHADER_OPCODE_INT_QUOTIENT:
4516 case SHADER_OPCODE_INT_REMAINDER:
4517 /* The math opcodes are overloaded for the send-like and
4518 * expression-like instructions which seems kind of icky. Gen6+ has
4519 * a native (but rather quirky) MATH instruction so we don't need to
4520 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4521 * logical instructions (which we can easily recognize because they
4522 * have mlen = 0) into send-like virtual instructions.
4523 */
4524 if (devinfo->gen < 6 && inst->mlen == 0) {
4525 lower_math_logical_send(ibld, inst);
4526 break;
4527
4528 } else {
4529 continue;
4530 }
4531
4532 default:
4533 continue;
4534 }
4535
4536 progress = true;
4537 }
4538
4539 if (progress)
4540 invalidate_live_intervals();
4541
4542 return progress;
4543 }
4544
4545 /**
4546 * Get the closest allowed SIMD width for instruction \p inst accounting for
4547 * some common regioning and execution control restrictions that apply to FPU
4548 * instructions. These restrictions don't necessarily have any relevance to
4549 * instructions not executed by the FPU pipeline like extended math, control
4550 * flow or send message instructions.
4551 *
4552 * For virtual opcodes it's really up to the instruction -- In some cases
4553 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4554 * instructions) it may simplify virtual instruction lowering if we can
4555 * enforce FPU-like regioning restrictions already on the virtual instruction,
4556 * in other cases (e.g. virtual send-like instructions) this may be
4557 * excessively restrictive.
4558 */
4559 static unsigned
4560 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4561 const fs_inst *inst)
4562 {
4563 /* Maximum execution size representable in the instruction controls. */
4564 unsigned max_width = MIN2(32, inst->exec_size);
4565
4566 /* According to the PRMs:
4567 * "A. In Direct Addressing mode, a source cannot span more than 2
4568 * adjacent GRF registers.
4569 * B. A destination cannot span more than 2 adjacent GRF registers."
4570 *
4571 * Look for the source or destination with the largest register region
4572 * which is the one that is going to limit the overall execution size of
4573 * the instruction due to this rule.
4574 */
4575 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4576
4577 for (unsigned i = 0; i < inst->sources; i++)
4578 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4579
4580 /* Calculate the maximum execution size of the instruction based on the
4581 * factor by which it goes over the hardware limit of 2 GRFs.
4582 */
4583 if (reg_count > 2)
4584 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4585
4586 /* According to the IVB PRMs:
4587 * "When destination spans two registers, the source MUST span two
4588 * registers. The exception to the above rule:
4589 *
4590 * - When source is scalar, the source registers are not incremented.
4591 * - When source is packed integer Word and destination is packed
4592 * integer DWord, the source register is not incremented but the
4593 * source sub register is incremented."
4594 *
4595 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4596 * restrictions. The code below intentionally doesn't check whether the
4597 * destination type is integer because empirically the hardware doesn't
4598 * seem to care what the actual type is as long as it's dword-aligned.
4599 */
4600 if (devinfo->gen < 8) {
4601 for (unsigned i = 0; i < inst->sources; i++) {
4602 if (DIV_ROUND_UP(inst->size_written, REG_SIZE) == 2 &&
4603 inst->size_read(i) != 0 && DIV_ROUND_UP(inst->size_read(i), REG_SIZE) != 2 &&
4604 !is_uniform(inst->src[i]) &&
4605 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4606 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4607 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4608 max_width = MIN2(max_width, inst->exec_size / reg_count);
4609 }
4610 }
4611 }
4612
4613 /* From the IVB PRMs:
4614 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4615 * are applied for both halves of the SIMD32 instruction. If different
4616 * execution mask channels are required, split the instruction into two
4617 * SIMD16 instructions."
4618 *
4619 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4620 * 32-wide control flow support in hardware and will behave similarly.
4621 */
4622 if (devinfo->gen < 8 && !inst->force_writemask_all)
4623 max_width = MIN2(max_width, 16);
4624
4625 /* From the IVB PRMs (applies to HSW too):
4626 * "Instructions with condition modifiers must not use SIMD32."
4627 *
4628 * From the BDW PRMs (applies to later hardware too):
4629 * "Ternary instruction with condition modifiers must not use SIMD32."
4630 */
4631 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4632 max_width = MIN2(max_width, 16);
4633
4634 /* From the IVB PRMs (applies to other devices that don't have the
4635 * gen_device_info::supports_simd16_3src flag set):
4636 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4637 * SIMD8 is not allowed for DF operations."
4638 */
4639 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4640 max_width = MIN2(max_width, inst->exec_size / reg_count);
4641
4642 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4643 * the 8-bit quarter of the execution mask signals specified in the
4644 * instruction control fields) for the second compressed half of any
4645 * single-precision instruction (for double-precision instructions
4646 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4647 * the EU will apply the wrong execution controls for the second
4648 * sequential GRF write if the number of channels per GRF is not exactly
4649 * eight in single-precision mode (or four in double-float mode).
4650 *
4651 * In this situation we calculate the maximum size of the split
4652 * instructions so they only ever write to a single register.
4653 */
4654 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4655 !inst->force_writemask_all) {
4656 const unsigned channels_per_grf = inst->exec_size /
4657 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4658 unsigned exec_type_size = 0;
4659 for (int i = 0; i < inst->sources; i++) {
4660 if (inst->src[i].file != BAD_FILE)
4661 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4662 }
4663 assert(exec_type_size);
4664
4665 /* The hardware shifts exactly 8 channels per compressed half of the
4666 * instruction in single-precision mode and exactly 4 in double-precision.
4667 */
4668 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4669 max_width = MIN2(max_width, channels_per_grf);
4670 }
4671
4672 /* Only power-of-two execution sizes are representable in the instruction
4673 * control fields.
4674 */
4675 return 1 << _mesa_logbase2(max_width);
4676 }
4677
4678 /**
4679 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4680 * various payload size restrictions that apply to sampler message
4681 * instructions.
4682 *
4683 * This is only intended to provide a maximum theoretical bound for the
4684 * execution size of the message based on the number of argument components
4685 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4686 * variant of the message can be used, though some messages may have
4687 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4688 * the message length to determine the exact SIMD width and argument count,
4689 * which makes a number of sampler message combinations impossible to
4690 * represent).
4691 */
4692 static unsigned
4693 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4694 const fs_inst *inst)
4695 {
4696 /* Calculate the number of coordinate components that have to be present
4697 * assuming that additional arguments follow the texel coordinates in the
4698 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4699 * need to pad to four or three components depending on the message,
4700 * pre-ILK we need to pad to at most three components.
4701 */
4702 const unsigned req_coord_components =
4703 (devinfo->gen >= 7 ||
4704 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4705 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4706 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4707 3;
4708
4709 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4710 * variant of the TXL or TXF message.
4711 */
4712 const bool implicit_lod = devinfo->gen >= 9 &&
4713 (inst->opcode == SHADER_OPCODE_TXL ||
4714 inst->opcode == SHADER_OPCODE_TXF) &&
4715 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4716
4717 /* Calculate the total number of argument components that need to be passed
4718 * to the sampler unit.
4719 */
4720 const unsigned num_payload_components =
4721 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4722 req_coord_components) +
4723 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4724 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4725 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4726 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4727 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4728 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4729 inst->components_read(TEX_LOGICAL_SRC_MCS);
4730
4731 /* SIMD16 messages with more than five arguments exceed the maximum message
4732 * size supported by the sampler, regardless of whether a header is
4733 * provided or not.
4734 */
4735 return MIN2(inst->exec_size,
4736 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4737 }
4738
4739 /**
4740 * Get the closest native SIMD width supported by the hardware for instruction
4741 * \p inst. The instruction will be left untouched by
4742 * fs_visitor::lower_simd_width() if the returned value is equal to the
4743 * original execution size.
4744 */
4745 static unsigned
4746 get_lowered_simd_width(const struct gen_device_info *devinfo,
4747 const fs_inst *inst)
4748 {
4749 switch (inst->opcode) {
4750 case BRW_OPCODE_MOV:
4751 case BRW_OPCODE_SEL:
4752 case BRW_OPCODE_NOT:
4753 case BRW_OPCODE_AND:
4754 case BRW_OPCODE_OR:
4755 case BRW_OPCODE_XOR:
4756 case BRW_OPCODE_SHR:
4757 case BRW_OPCODE_SHL:
4758 case BRW_OPCODE_ASR:
4759 case BRW_OPCODE_CMPN:
4760 case BRW_OPCODE_CSEL:
4761 case BRW_OPCODE_F32TO16:
4762 case BRW_OPCODE_F16TO32:
4763 case BRW_OPCODE_BFREV:
4764 case BRW_OPCODE_BFE:
4765 case BRW_OPCODE_ADD:
4766 case BRW_OPCODE_MUL:
4767 case BRW_OPCODE_AVG:
4768 case BRW_OPCODE_FRC:
4769 case BRW_OPCODE_RNDU:
4770 case BRW_OPCODE_RNDD:
4771 case BRW_OPCODE_RNDE:
4772 case BRW_OPCODE_RNDZ:
4773 case BRW_OPCODE_LZD:
4774 case BRW_OPCODE_FBH:
4775 case BRW_OPCODE_FBL:
4776 case BRW_OPCODE_CBIT:
4777 case BRW_OPCODE_SAD2:
4778 case BRW_OPCODE_MAD:
4779 case BRW_OPCODE_LRP:
4780 case FS_OPCODE_PACK:
4781 return get_fpu_lowered_simd_width(devinfo, inst);
4782
4783 case BRW_OPCODE_CMP: {
4784 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4785 * when the destination is a GRF the dependency-clear bit on the flag
4786 * register is cleared early.
4787 *
4788 * Suggested workarounds are to disable coissuing CMP instructions
4789 * or to split CMP(16) instructions into two CMP(8) instructions.
4790 *
4791 * We choose to split into CMP(8) instructions since disabling
4792 * coissuing would affect CMP instructions not otherwise affected by
4793 * the errata.
4794 */
4795 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4796 !inst->dst.is_null() ? 8 : ~0);
4797 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4798 }
4799 case BRW_OPCODE_BFI1:
4800 case BRW_OPCODE_BFI2:
4801 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4802 * should
4803 * "Force BFI instructions to be executed always in SIMD8."
4804 */
4805 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4806 get_fpu_lowered_simd_width(devinfo, inst));
4807
4808 case BRW_OPCODE_IF:
4809 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4810 return inst->exec_size;
4811
4812 case SHADER_OPCODE_RCP:
4813 case SHADER_OPCODE_RSQ:
4814 case SHADER_OPCODE_SQRT:
4815 case SHADER_OPCODE_EXP2:
4816 case SHADER_OPCODE_LOG2:
4817 case SHADER_OPCODE_SIN:
4818 case SHADER_OPCODE_COS:
4819 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4820 * Gen6.
4821 */
4822 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4823 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4824 MIN2(8, inst->exec_size));
4825
4826 case SHADER_OPCODE_POW:
4827 /* SIMD16 is only allowed on Gen7+. */
4828 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4829 MIN2(8, inst->exec_size));
4830
4831 case SHADER_OPCODE_INT_QUOTIENT:
4832 case SHADER_OPCODE_INT_REMAINDER:
4833 /* Integer division is limited to SIMD8 on all generations. */
4834 return MIN2(8, inst->exec_size);
4835
4836 case FS_OPCODE_LINTERP:
4837 case FS_OPCODE_GET_BUFFER_SIZE:
4838 case FS_OPCODE_DDX_COARSE:
4839 case FS_OPCODE_DDX_FINE:
4840 case FS_OPCODE_DDY_COARSE:
4841 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4842 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4843 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4844 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4845 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4846 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4847 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4848 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4849 return MIN2(16, inst->exec_size);
4850
4851 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4852 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4853 * message used to implement varying pull constant loads, so expand it
4854 * to SIMD16. An alternative with longer message payload length but
4855 * shorter return payload would be to use the SIMD8 sampler message that
4856 * takes (header, u, v, r) as parameters instead of (header, u).
4857 */
4858 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4859
4860 case FS_OPCODE_DDY_FINE:
4861 /* The implementation of this virtual opcode may require emitting
4862 * compressed Align16 instructions, which are severely limited on some
4863 * generations.
4864 *
4865 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4866 * Region Restrictions):
4867 *
4868 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4869 * and SIMD8 is not allowed for DF operations."
4870 *
4871 * In this context, "DW operations" means "operations acting on 32-bit
4872 * values", so it includes operations on floats.
4873 *
4874 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4875 * (Instruction Compression -> Rules and Restrictions):
4876 *
4877 * "A compressed instruction must be in Align1 access mode. Align16
4878 * mode instructions cannot be compressed."
4879 *
4880 * Similar text exists in the g45 PRM.
4881 *
4882 * Empirically, compressed align16 instructions using odd register
4883 * numbers don't appear to work on Sandybridge either.
4884 */
4885 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4886 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4887 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4888
4889 case SHADER_OPCODE_MULH:
4890 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4891 * is 8-wide on Gen7+.
4892 */
4893 return (devinfo->gen >= 7 ? 8 :
4894 get_fpu_lowered_simd_width(devinfo, inst));
4895
4896 case FS_OPCODE_FB_WRITE_LOGICAL:
4897 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4898 * here.
4899 */
4900 assert(devinfo->gen != 6 ||
4901 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4902 inst->exec_size == 8);
4903 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4904 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4905 8 : MIN2(16, inst->exec_size));
4906
4907 case FS_OPCODE_FB_READ_LOGICAL:
4908 return MIN2(16, inst->exec_size);
4909
4910 case SHADER_OPCODE_TEX_LOGICAL:
4911 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4912 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4913 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4914 case SHADER_OPCODE_LOD_LOGICAL:
4915 case SHADER_OPCODE_TG4_LOGICAL:
4916 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4917 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4918 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4919 return get_sampler_lowered_simd_width(devinfo, inst);
4920
4921 case SHADER_OPCODE_TXD_LOGICAL:
4922 /* TXD is unsupported in SIMD16 mode. */
4923 return 8;
4924
4925 case SHADER_OPCODE_TXL_LOGICAL:
4926 case FS_OPCODE_TXB_LOGICAL:
4927 /* Only one execution size is representable pre-ILK depending on whether
4928 * the shadow reference argument is present.
4929 */
4930 if (devinfo->gen == 4)
4931 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4932 else
4933 return get_sampler_lowered_simd_width(devinfo, inst);
4934
4935 case SHADER_OPCODE_TXF_LOGICAL:
4936 case SHADER_OPCODE_TXS_LOGICAL:
4937 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4938 * messages. Use SIMD16 instead.
4939 */
4940 if (devinfo->gen == 4)
4941 return 16;
4942 else
4943 return get_sampler_lowered_simd_width(devinfo, inst);
4944
4945 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4946 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4947 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4948 return 8;
4949
4950 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4951 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4952 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4953 return MIN2(16, inst->exec_size);
4954
4955 case SHADER_OPCODE_URB_READ_SIMD8:
4956 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4957 case SHADER_OPCODE_URB_WRITE_SIMD8:
4958 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4959 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4960 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4961 return MIN2(8, inst->exec_size);
4962
4963 case SHADER_OPCODE_MOV_INDIRECT:
4964 /* Prior to Broadwell, we only have 8 address subregisters */
4965 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4966 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4967 inst->exec_size);
4968
4969 case SHADER_OPCODE_LOAD_PAYLOAD: {
4970 const unsigned reg_count =
4971 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4972
4973 if (reg_count > 2) {
4974 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4975 * can be easily lowered (which excludes headers and heterogeneous
4976 * types).
4977 */
4978 assert(!inst->header_size);
4979 for (unsigned i = 0; i < inst->sources; i++)
4980 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4981 inst->src[i].file == BAD_FILE);
4982
4983 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4984 } else {
4985 return inst->exec_size;
4986 }
4987 }
4988 default:
4989 return inst->exec_size;
4990 }
4991 }
4992
4993 /**
4994 * Return true if splitting out the group of channels of instruction \p inst
4995 * given by lbld.group() requires allocating a temporary for the i-th source
4996 * of the lowered instruction.
4997 */
4998 static inline bool
4999 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5000 {
5001 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5002 (inst->components_read(i) == 1 &&
5003 lbld.dispatch_width() <= inst->exec_size));
5004 }
5005
5006 /**
5007 * Extract the data that would be consumed by the channel group given by
5008 * lbld.group() from the i-th source region of instruction \p inst and return
5009 * it as result in packed form. If any copy instructions are required they
5010 * will be emitted before the given \p inst in \p block.
5011 */
5012 static fs_reg
5013 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5014 unsigned i)
5015 {
5016 /* Specified channel group from the source region. */
5017 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5018
5019 if (needs_src_copy(lbld, inst, i)) {
5020 /* Builder of the right width to perform the copy avoiding uninitialized
5021 * data if the lowered execution size is greater than the original
5022 * execution size of the instruction.
5023 */
5024 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5025 inst->exec_size), 0);
5026 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5027
5028 for (unsigned k = 0; k < inst->components_read(i); ++k)
5029 cbld.at(block, inst)
5030 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5031
5032 return tmp;
5033
5034 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5035 /* The source is invariant for all dispatch_width-wide groups of the
5036 * original region.
5037 */
5038 return inst->src[i];
5039
5040 } else {
5041 /* We can just point the lowered instruction at the right channel group
5042 * from the original region.
5043 */
5044 return src;
5045 }
5046 }
5047
5048 /**
5049 * Return true if splitting out the group of channels of instruction \p inst
5050 * given by lbld.group() requires allocating a temporary for the destination
5051 * of the lowered instruction and copying the data back to the original
5052 * destination region.
5053 */
5054 static inline bool
5055 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5056 {
5057 /* If the instruction writes more than one component we'll have to shuffle
5058 * the results of multiple lowered instructions in order to make sure that
5059 * they end up arranged correctly in the original destination region.
5060 */
5061 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5062 return true;
5063
5064 /* If the lowered execution size is larger than the original the result of
5065 * the instruction won't fit in the original destination, so we'll have to
5066 * allocate a temporary in any case.
5067 */
5068 if (lbld.dispatch_width() > inst->exec_size)
5069 return true;
5070
5071 for (unsigned i = 0; i < inst->sources; i++) {
5072 /* If we already made a copy of the source for other reasons there won't
5073 * be any overlap with the destination.
5074 */
5075 if (needs_src_copy(lbld, inst, i))
5076 continue;
5077
5078 /* In order to keep the logic simple we emit a copy whenever the
5079 * destination region doesn't exactly match an overlapping source, which
5080 * may point at the source and destination not being aligned group by
5081 * group which could cause one of the lowered instructions to overwrite
5082 * the data read from the same source by other lowered instructions.
5083 */
5084 if (regions_overlap(inst->dst, inst->size_written,
5085 inst->src[i], inst->size_read(i)) &&
5086 !inst->dst.equals(inst->src[i]))
5087 return true;
5088 }
5089
5090 return false;
5091 }
5092
5093 /**
5094 * Insert data from a packed temporary into the channel group given by
5095 * lbld.group() of the destination region of instruction \p inst and return
5096 * the temporary as result. If any copy instructions are required they will
5097 * be emitted around the given \p inst in \p block.
5098 */
5099 static fs_reg
5100 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5101 {
5102 /* Builder of the right width to perform the copy avoiding uninitialized
5103 * data if the lowered execution size is greater than the original
5104 * execution size of the instruction.
5105 */
5106 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5107 inst->exec_size), 0);
5108
5109 /* Specified channel group from the destination region. */
5110 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5111 const unsigned dst_size = inst->size_written /
5112 inst->dst.component_size(inst->exec_size);
5113
5114 if (needs_dst_copy(lbld, inst)) {
5115 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5116
5117 if (inst->predicate) {
5118 /* Handle predication by copying the original contents of
5119 * the destination into the temporary before emitting the
5120 * lowered instruction.
5121 */
5122 for (unsigned k = 0; k < dst_size; ++k)
5123 cbld.at(block, inst)
5124 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5125 }
5126
5127 for (unsigned k = 0; k < dst_size; ++k)
5128 cbld.at(block, inst->next)
5129 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5130
5131 return tmp;
5132
5133 } else {
5134 /* No need to allocate a temporary for the lowered instruction, just
5135 * take the right group of channels from the original region.
5136 */
5137 return dst;
5138 }
5139 }
5140
5141 bool
5142 fs_visitor::lower_simd_width()
5143 {
5144 bool progress = false;
5145
5146 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5147 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5148
5149 if (lower_width != inst->exec_size) {
5150 /* Builder matching the original instruction. We may also need to
5151 * emit an instruction of width larger than the original, set the
5152 * execution size of the builder to the highest of both for now so
5153 * we're sure that both cases can be handled.
5154 */
5155 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5156 const fs_builder ibld = bld.at(block, inst)
5157 .exec_all(inst->force_writemask_all)
5158 .group(max_width, inst->group / max_width);
5159
5160 /* Split the copies in chunks of the execution width of either the
5161 * original or the lowered instruction, whichever is lower.
5162 */
5163 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5164 const unsigned dst_size = inst->size_written /
5165 inst->dst.component_size(inst->exec_size);
5166
5167 assert(!inst->writes_accumulator && !inst->mlen);
5168
5169 for (unsigned i = 0; i < n; i++) {
5170 /* Emit a copy of the original instruction with the lowered width.
5171 * If the EOT flag was set throw it away except for the last
5172 * instruction to avoid killing the thread prematurely.
5173 */
5174 fs_inst split_inst = *inst;
5175 split_inst.exec_size = lower_width;
5176 split_inst.eot = inst->eot && i == n - 1;
5177
5178 /* Select the correct channel enables for the i-th group, then
5179 * transform the sources and destination and emit the lowered
5180 * instruction.
5181 */
5182 const fs_builder lbld = ibld.group(lower_width, i);
5183
5184 for (unsigned j = 0; j < inst->sources; j++)
5185 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5186
5187 split_inst.dst = emit_zip(lbld, block, inst);
5188 split_inst.size_written =
5189 split_inst.dst.component_size(lower_width) * dst_size;
5190
5191 lbld.emit(split_inst);
5192 }
5193
5194 inst->remove(block);
5195 progress = true;
5196 }
5197 }
5198
5199 if (progress)
5200 invalidate_live_intervals();
5201
5202 return progress;
5203 }
5204
5205 void
5206 fs_visitor::dump_instructions()
5207 {
5208 dump_instructions(NULL);
5209 }
5210
5211 void
5212 fs_visitor::dump_instructions(const char *name)
5213 {
5214 FILE *file = stderr;
5215 if (name && geteuid() != 0) {
5216 file = fopen(name, "w");
5217 if (!file)
5218 file = stderr;
5219 }
5220
5221 if (cfg) {
5222 calculate_register_pressure();
5223 int ip = 0, max_pressure = 0;
5224 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5225 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5226 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5227 dump_instruction(inst, file);
5228 ip++;
5229 }
5230 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5231 } else {
5232 int ip = 0;
5233 foreach_in_list(backend_instruction, inst, &instructions) {
5234 fprintf(file, "%4d: ", ip++);
5235 dump_instruction(inst, file);
5236 }
5237 }
5238
5239 if (file != stderr) {
5240 fclose(file);
5241 }
5242 }
5243
5244 void
5245 fs_visitor::dump_instruction(backend_instruction *be_inst)
5246 {
5247 dump_instruction(be_inst, stderr);
5248 }
5249
5250 void
5251 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5252 {
5253 fs_inst *inst = (fs_inst *)be_inst;
5254
5255 if (inst->predicate) {
5256 fprintf(file, "(%cf0.%d) ",
5257 inst->predicate_inverse ? '-' : '+',
5258 inst->flag_subreg);
5259 }
5260
5261 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5262 if (inst->saturate)
5263 fprintf(file, ".sat");
5264 if (inst->conditional_mod) {
5265 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5266 if (!inst->predicate &&
5267 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5268 inst->opcode != BRW_OPCODE_IF &&
5269 inst->opcode != BRW_OPCODE_WHILE))) {
5270 fprintf(file, ".f0.%d", inst->flag_subreg);
5271 }
5272 }
5273 fprintf(file, "(%d) ", inst->exec_size);
5274
5275 if (inst->mlen) {
5276 fprintf(file, "(mlen: %d) ", inst->mlen);
5277 }
5278
5279 if (inst->eot) {
5280 fprintf(file, "(EOT) ");
5281 }
5282
5283 switch (inst->dst.file) {
5284 case VGRF:
5285 fprintf(file, "vgrf%d", inst->dst.nr);
5286 if (alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written ||
5287 inst->dst.offset % REG_SIZE)
5288 fprintf(file, "+%d.%d",
5289 inst->dst.offset / REG_SIZE, inst->dst.offset % REG_SIZE);
5290 break;
5291 case FIXED_GRF:
5292 fprintf(file, "g%d", inst->dst.nr);
5293 break;
5294 case MRF:
5295 fprintf(file, "m%d", inst->dst.nr);
5296 break;
5297 case BAD_FILE:
5298 fprintf(file, "(null)");
5299 break;
5300 case UNIFORM:
5301 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.offset / 4);
5302 break;
5303 case ATTR:
5304 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.offset / REG_SIZE);
5305 break;
5306 case ARF:
5307 switch (inst->dst.nr) {
5308 case BRW_ARF_NULL:
5309 fprintf(file, "null");
5310 break;
5311 case BRW_ARF_ADDRESS:
5312 fprintf(file, "a0.%d", inst->dst.subnr);
5313 break;
5314 case BRW_ARF_ACCUMULATOR:
5315 fprintf(file, "acc%d", inst->dst.subnr);
5316 break;
5317 case BRW_ARF_FLAG:
5318 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5319 break;
5320 default:
5321 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5322 break;
5323 }
5324 if (inst->dst.subnr)
5325 fprintf(file, "+%d", inst->dst.subnr);
5326 break;
5327 case IMM:
5328 unreachable("not reached");
5329 }
5330 if (inst->dst.stride != 1)
5331 fprintf(file, "<%u>", inst->dst.stride);
5332 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5333
5334 for (int i = 0; i < inst->sources; i++) {
5335 if (inst->src[i].negate)
5336 fprintf(file, "-");
5337 if (inst->src[i].abs)
5338 fprintf(file, "|");
5339 switch (inst->src[i].file) {
5340 case VGRF:
5341 fprintf(file, "vgrf%d", inst->src[i].nr);
5342 if (alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i) ||
5343 inst->src[i].offset % REG_SIZE != 0)
5344 fprintf(file, "+%d.%d", inst->src[i].offset / REG_SIZE,
5345 inst->src[i].offset % REG_SIZE);
5346 break;
5347 case FIXED_GRF:
5348 fprintf(file, "g%d", inst->src[i].nr);
5349 break;
5350 case MRF:
5351 fprintf(file, "***m%d***", inst->src[i].nr);
5352 break;
5353 case ATTR:
5354 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].offset / REG_SIZE);
5355 break;
5356 case UNIFORM:
5357 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].offset / 4);
5358 if (inst->src[i].offset % 4 != 0) {
5359 fprintf(file, "+%d.%d", inst->src[i].offset / 4,
5360 inst->src[i].offset % 4);
5361 }
5362 break;
5363 case BAD_FILE:
5364 fprintf(file, "(null)");
5365 break;
5366 case IMM:
5367 switch (inst->src[i].type) {
5368 case BRW_REGISTER_TYPE_F:
5369 fprintf(file, "%-gf", inst->src[i].f);
5370 break;
5371 case BRW_REGISTER_TYPE_DF:
5372 fprintf(file, "%fdf", inst->src[i].df);
5373 break;
5374 case BRW_REGISTER_TYPE_W:
5375 case BRW_REGISTER_TYPE_D:
5376 fprintf(file, "%dd", inst->src[i].d);
5377 break;
5378 case BRW_REGISTER_TYPE_UW:
5379 case BRW_REGISTER_TYPE_UD:
5380 fprintf(file, "%uu", inst->src[i].ud);
5381 break;
5382 case BRW_REGISTER_TYPE_VF:
5383 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5384 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5385 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5386 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5387 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5388 break;
5389 default:
5390 fprintf(file, "???");
5391 break;
5392 }
5393 break;
5394 case ARF:
5395 switch (inst->src[i].nr) {
5396 case BRW_ARF_NULL:
5397 fprintf(file, "null");
5398 break;
5399 case BRW_ARF_ADDRESS:
5400 fprintf(file, "a0.%d", inst->src[i].subnr);
5401 break;
5402 case BRW_ARF_ACCUMULATOR:
5403 fprintf(file, "acc%d", inst->src[i].subnr);
5404 break;
5405 case BRW_ARF_FLAG:
5406 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5407 break;
5408 default:
5409 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5410 break;
5411 }
5412 if (inst->src[i].subnr)
5413 fprintf(file, "+%d", inst->src[i].subnr);
5414 break;
5415 }
5416 if (inst->src[i].abs)
5417 fprintf(file, "|");
5418
5419 if (inst->src[i].file != IMM) {
5420 unsigned stride;
5421 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5422 unsigned hstride = inst->src[i].hstride;
5423 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5424 } else {
5425 stride = inst->src[i].stride;
5426 }
5427 if (stride != 1)
5428 fprintf(file, "<%u>", stride);
5429
5430 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5431 }
5432
5433 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5434 fprintf(file, ", ");
5435 }
5436
5437 fprintf(file, " ");
5438
5439 if (inst->force_writemask_all)
5440 fprintf(file, "NoMask ");
5441
5442 if (inst->exec_size != dispatch_width)
5443 fprintf(file, "group%d ", inst->group);
5444
5445 fprintf(file, "\n");
5446 }
5447
5448 /**
5449 * Possibly returns an instruction that set up @param reg.
5450 *
5451 * Sometimes we want to take the result of some expression/variable
5452 * dereference tree and rewrite the instruction generating the result
5453 * of the tree. When processing the tree, we know that the
5454 * instructions generated are all writing temporaries that are dead
5455 * outside of this tree. So, if we have some instructions that write
5456 * a temporary, we're free to point that temp write somewhere else.
5457 *
5458 * Note that this doesn't guarantee that the instruction generated
5459 * only reg -- it might be the size=4 destination of a texture instruction.
5460 */
5461 fs_inst *
5462 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5463 fs_inst *end,
5464 const fs_reg &reg)
5465 {
5466 if (end == start ||
5467 end->is_partial_write() ||
5468 !reg.equals(end->dst)) {
5469 return NULL;
5470 } else {
5471 return end;
5472 }
5473 }
5474
5475 void
5476 fs_visitor::setup_fs_payload_gen6()
5477 {
5478 assert(stage == MESA_SHADER_FRAGMENT);
5479 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
5480
5481 unsigned barycentric_interp_modes =
5482 (stage == MESA_SHADER_FRAGMENT) ?
5483 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
5484
5485 assert(devinfo->gen >= 6);
5486
5487 /* R0-1: masks, pixel X/Y coordinates. */
5488 payload.num_regs = 2;
5489 /* R2: only for 32-pixel dispatch.*/
5490
5491 /* R3-26: barycentric interpolation coordinates. These appear in the
5492 * same order that they appear in the brw_barycentric_mode
5493 * enum. Each set of coordinates occupies 2 registers if dispatch width
5494 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5495 * appear if they were enabled using the "Barycentric Interpolation
5496 * Mode" bits in WM_STATE.
5497 */
5498 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5499 if (barycentric_interp_modes & (1 << i)) {
5500 payload.barycentric_coord_reg[i] = payload.num_regs;
5501 payload.num_regs += 2;
5502 if (dispatch_width == 16) {
5503 payload.num_regs += 2;
5504 }
5505 }
5506 }
5507
5508 /* R27: interpolated depth if uses source depth */
5509 prog_data->uses_src_depth =
5510 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5511 if (prog_data->uses_src_depth) {
5512 payload.source_depth_reg = payload.num_regs;
5513 payload.num_regs++;
5514 if (dispatch_width == 16) {
5515 /* R28: interpolated depth if not SIMD8. */
5516 payload.num_regs++;
5517 }
5518 }
5519
5520 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5521 prog_data->uses_src_w =
5522 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5523 if (prog_data->uses_src_w) {
5524 payload.source_w_reg = payload.num_regs;
5525 payload.num_regs++;
5526 if (dispatch_width == 16) {
5527 /* R30: interpolated W if not SIMD8. */
5528 payload.num_regs++;
5529 }
5530 }
5531
5532 /* R31: MSAA position offsets. */
5533 if (prog_data->persample_dispatch &&
5534 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5535 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5536 *
5537 * "MSDISPMODE_PERSAMPLE is required in order to select
5538 * POSOFFSET_SAMPLE"
5539 *
5540 * So we can only really get sample positions if we are doing real
5541 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5542 * persample dispatch, we hard-code it to 0.5.
5543 */
5544 prog_data->uses_pos_offset = true;
5545 payload.sample_pos_reg = payload.num_regs;
5546 payload.num_regs++;
5547 }
5548
5549 /* R32: MSAA input coverage mask */
5550 prog_data->uses_sample_mask =
5551 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5552 if (prog_data->uses_sample_mask) {
5553 assert(devinfo->gen >= 7);
5554 payload.sample_mask_in_reg = payload.num_regs;
5555 payload.num_regs++;
5556 if (dispatch_width == 16) {
5557 /* R33: input coverage mask if not SIMD8. */
5558 payload.num_regs++;
5559 }
5560 }
5561
5562 /* R34-: bary for 32-pixel. */
5563 /* R58-59: interp W for 32-pixel. */
5564
5565 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5566 source_depth_to_render_target = true;
5567 }
5568 }
5569
5570 void
5571 fs_visitor::setup_vs_payload()
5572 {
5573 /* R0: thread header, R1: urb handles */
5574 payload.num_regs = 2;
5575 }
5576
5577 void
5578 fs_visitor::setup_gs_payload()
5579 {
5580 assert(stage == MESA_SHADER_GEOMETRY);
5581
5582 struct brw_gs_prog_data *gs_prog_data =
5583 (struct brw_gs_prog_data *) prog_data;
5584 struct brw_vue_prog_data *vue_prog_data =
5585 (struct brw_vue_prog_data *) prog_data;
5586
5587 /* R0: thread header, R1: output URB handles */
5588 payload.num_regs = 2;
5589
5590 if (gs_prog_data->include_primitive_id) {
5591 /* R2: Primitive ID 0..7 */
5592 payload.num_regs++;
5593 }
5594
5595 /* Use a maximum of 24 registers for push-model inputs. */
5596 const unsigned max_push_components = 24;
5597
5598 /* If pushing our inputs would take too many registers, reduce the URB read
5599 * length (which is in HWords, or 8 registers), and resort to pulling.
5600 *
5601 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5602 * have to multiply by VerticesIn to obtain the total storage requirement.
5603 */
5604 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5605 max_push_components || gs_prog_data->invocations > 1) {
5606 gs_prog_data->base.include_vue_handles = true;
5607
5608 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5609 payload.num_regs += nir->info.gs.vertices_in;
5610
5611 vue_prog_data->urb_read_length =
5612 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5613 }
5614 }
5615
5616 void
5617 fs_visitor::setup_cs_payload()
5618 {
5619 assert(devinfo->gen >= 7);
5620 payload.num_regs = 1;
5621 }
5622
5623 void
5624 fs_visitor::calculate_register_pressure()
5625 {
5626 invalidate_live_intervals();
5627 calculate_live_intervals();
5628
5629 unsigned num_instructions = 0;
5630 foreach_block(block, cfg)
5631 num_instructions += block->instructions.length();
5632
5633 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5634
5635 for (unsigned reg = 0; reg < alloc.count; reg++) {
5636 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5637 regs_live_at_ip[ip] += alloc.sizes[reg];
5638 }
5639 }
5640
5641 /**
5642 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5643 *
5644 * The needs_unlit_centroid_workaround ends up producing one of these per
5645 * channel of centroid input, so it's good to clean them up.
5646 *
5647 * An assumption here is that nothing ever modifies the dispatched pixels
5648 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5649 * dictates that anyway.
5650 */
5651 bool
5652 fs_visitor::opt_drop_redundant_mov_to_flags()
5653 {
5654 bool flag_mov_found[2] = {false};
5655 bool progress = false;
5656
5657 /* Instructions removed by this pass can only be added if this were true */
5658 if (!devinfo->needs_unlit_centroid_workaround)
5659 return false;
5660
5661 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5662 if (inst->is_control_flow()) {
5663 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5664 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5665 if (!flag_mov_found[inst->flag_subreg]) {
5666 flag_mov_found[inst->flag_subreg] = true;
5667 } else {
5668 inst->remove(block);
5669 progress = true;
5670 }
5671 } else if (inst->flags_written()) {
5672 flag_mov_found[inst->flag_subreg] = false;
5673 }
5674 }
5675
5676 return progress;
5677 }
5678
5679 void
5680 fs_visitor::optimize()
5681 {
5682 /* Start by validating the shader we currently have. */
5683 validate();
5684
5685 /* bld is the common builder object pointing at the end of the program we
5686 * used to translate it into i965 IR. For the optimization and lowering
5687 * passes coming next, any code added after the end of the program without
5688 * having explicitly called fs_builder::at() clearly points at a mistake.
5689 * Ideally optimization passes wouldn't be part of the visitor so they
5690 * wouldn't have access to bld at all, but they do, so just in case some
5691 * pass forgets to ask for a location explicitly set it to NULL here to
5692 * make it trip. The dispatch width is initialized to a bogus value to
5693 * make sure that optimizations set the execution controls explicitly to
5694 * match the code they are manipulating instead of relying on the defaults.
5695 */
5696 bld = fs_builder(this, 64);
5697
5698 assign_constant_locations();
5699 lower_constant_loads();
5700
5701 validate();
5702
5703 split_virtual_grfs();
5704 validate();
5705
5706 #define OPT(pass, args...) ({ \
5707 pass_num++; \
5708 bool this_progress = pass(args); \
5709 \
5710 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5711 char filename[64]; \
5712 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5713 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5714 \
5715 backend_shader::dump_instructions(filename); \
5716 } \
5717 \
5718 validate(); \
5719 \
5720 progress = progress || this_progress; \
5721 this_progress; \
5722 })
5723
5724 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5725 char filename[64];
5726 snprintf(filename, 64, "%s%d-%s-00-00-start",
5727 stage_abbrev, dispatch_width, nir->info.name);
5728
5729 backend_shader::dump_instructions(filename);
5730 }
5731
5732 bool progress = false;
5733 int iteration = 0;
5734 int pass_num = 0;
5735
5736 OPT(opt_drop_redundant_mov_to_flags);
5737
5738 do {
5739 progress = false;
5740 pass_num = 0;
5741 iteration++;
5742
5743 OPT(remove_duplicate_mrf_writes);
5744
5745 OPT(opt_algebraic);
5746 OPT(opt_cse);
5747 OPT(opt_copy_propagate);
5748 OPT(opt_predicated_break, this);
5749 OPT(opt_cmod_propagation);
5750 OPT(dead_code_eliminate);
5751 OPT(opt_peephole_sel);
5752 OPT(dead_control_flow_eliminate, this);
5753 OPT(opt_register_renaming);
5754 OPT(opt_saturate_propagation);
5755 OPT(register_coalesce);
5756 OPT(compute_to_mrf);
5757 OPT(eliminate_find_live_channel);
5758
5759 OPT(compact_virtual_grfs);
5760 } while (progress);
5761
5762 progress = false;
5763 pass_num = 0;
5764
5765 if (OPT(lower_pack)) {
5766 OPT(register_coalesce);
5767 OPT(dead_code_eliminate);
5768 }
5769
5770 if (OPT(lower_d2x)) {
5771 OPT(opt_copy_propagate);
5772 OPT(dead_code_eliminate);
5773 }
5774
5775 OPT(lower_simd_width);
5776
5777 /* After SIMD lowering just in case we had to unroll the EOT send. */
5778 OPT(opt_sampler_eot);
5779
5780 OPT(lower_logical_sends);
5781
5782 if (progress) {
5783 OPT(opt_copy_propagate);
5784 /* Only run after logical send lowering because it's easier to implement
5785 * in terms of physical sends.
5786 */
5787 if (OPT(opt_zero_samples))
5788 OPT(opt_copy_propagate);
5789 /* Run after logical send lowering to give it a chance to CSE the
5790 * LOAD_PAYLOAD instructions created to construct the payloads of
5791 * e.g. texturing messages in cases where it wasn't possible to CSE the
5792 * whole logical instruction.
5793 */
5794 OPT(opt_cse);
5795 OPT(register_coalesce);
5796 OPT(compute_to_mrf);
5797 OPT(dead_code_eliminate);
5798 OPT(remove_duplicate_mrf_writes);
5799 OPT(opt_peephole_sel);
5800 }
5801
5802 OPT(opt_redundant_discard_jumps);
5803
5804 if (OPT(lower_load_payload)) {
5805 split_virtual_grfs();
5806 OPT(register_coalesce);
5807 OPT(compute_to_mrf);
5808 OPT(dead_code_eliminate);
5809 }
5810
5811 OPT(opt_combine_constants);
5812 OPT(lower_integer_multiplication);
5813
5814 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5815 OPT(opt_cmod_propagation);
5816 OPT(opt_cse);
5817 OPT(opt_copy_propagate);
5818 OPT(dead_code_eliminate);
5819 }
5820
5821 lower_uniform_pull_constant_loads();
5822
5823 validate();
5824 }
5825
5826 /**
5827 * Three source instruction must have a GRF/MRF destination register.
5828 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5829 */
5830 void
5831 fs_visitor::fixup_3src_null_dest()
5832 {
5833 bool progress = false;
5834
5835 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5836 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5837 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5838 inst->dst.type);
5839 progress = true;
5840 }
5841 }
5842
5843 if (progress)
5844 invalidate_live_intervals();
5845 }
5846
5847 void
5848 fs_visitor::allocate_registers(bool allow_spilling)
5849 {
5850 bool allocated_without_spills;
5851
5852 static const enum instruction_scheduler_mode pre_modes[] = {
5853 SCHEDULE_PRE,
5854 SCHEDULE_PRE_NON_LIFO,
5855 SCHEDULE_PRE_LIFO,
5856 };
5857
5858 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5859
5860 /* Try each scheduling heuristic to see if it can successfully register
5861 * allocate without spilling. They should be ordered by decreasing
5862 * performance but increasing likelihood of allocating.
5863 */
5864 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5865 schedule_instructions(pre_modes[i]);
5866
5867 if (0) {
5868 assign_regs_trivial();
5869 allocated_without_spills = true;
5870 } else {
5871 allocated_without_spills = assign_regs(false, spill_all);
5872 }
5873 if (allocated_without_spills)
5874 break;
5875 }
5876
5877 if (!allocated_without_spills) {
5878 if (!allow_spilling)
5879 fail("Failure to register allocate and spilling is not allowed.");
5880
5881 /* We assume that any spilling is worse than just dropping back to
5882 * SIMD8. There's probably actually some intermediate point where
5883 * SIMD16 with a couple of spills is still better.
5884 */
5885 if (dispatch_width > min_dispatch_width) {
5886 fail("Failure to register allocate. Reduce number of "
5887 "live scalar values to avoid this.");
5888 } else {
5889 compiler->shader_perf_log(log_data,
5890 "%s shader triggered register spilling. "
5891 "Try reducing the number of live scalar "
5892 "values to improve performance.\n",
5893 stage_name);
5894 }
5895
5896 /* Since we're out of heuristics, just go spill registers until we
5897 * get an allocation.
5898 */
5899 while (!assign_regs(true, spill_all)) {
5900 if (failed)
5901 break;
5902 }
5903 }
5904
5905 /* This must come after all optimization and register allocation, since
5906 * it inserts dead code that happens to have side effects, and it does
5907 * so based on the actual physical registers in use.
5908 */
5909 insert_gen4_send_dependency_workarounds();
5910
5911 if (failed)
5912 return;
5913
5914 schedule_instructions(SCHEDULE_POST);
5915
5916 if (last_scratch > 0) {
5917 unsigned max_scratch_size = 2 * 1024 * 1024;
5918
5919 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5920
5921 if (stage == MESA_SHADER_COMPUTE) {
5922 if (devinfo->is_haswell) {
5923 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5924 * field documentation, Haswell supports a minimum of 2kB of
5925 * scratch space for compute shaders, unlike every other stage
5926 * and platform.
5927 */
5928 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5929 } else if (devinfo->gen <= 7) {
5930 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5931 * field documentation, platforms prior to Haswell measure scratch
5932 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5933 */
5934 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5935 max_scratch_size = 12 * 1024;
5936 }
5937 }
5938
5939 /* We currently only support up to 2MB of scratch space. If we
5940 * need to support more eventually, the documentation suggests
5941 * that we could allocate a larger buffer, and partition it out
5942 * ourselves. We'd just have to undo the hardware's address
5943 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5944 * and then add FFTID * (Larger Per Thread Scratch Space).
5945 *
5946 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5947 * Thread Group Tracking > Local Memory/Scratch Space.
5948 */
5949 assert(prog_data->total_scratch < max_scratch_size);
5950 }
5951 }
5952
5953 bool
5954 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5955 {
5956 assert(stage == MESA_SHADER_VERTEX);
5957
5958 setup_vs_payload();
5959
5960 if (shader_time_index >= 0)
5961 emit_shader_time_begin();
5962
5963 emit_nir_code();
5964
5965 if (failed)
5966 return false;
5967
5968 compute_clip_distance(clip_planes);
5969
5970 emit_urb_writes();
5971
5972 if (shader_time_index >= 0)
5973 emit_shader_time_end();
5974
5975 calculate_cfg();
5976
5977 optimize();
5978
5979 assign_curb_setup();
5980 assign_vs_urb_setup();
5981
5982 fixup_3src_null_dest();
5983 allocate_registers(true);
5984
5985 return !failed;
5986 }
5987
5988 bool
5989 fs_visitor::run_tcs_single_patch()
5990 {
5991 assert(stage == MESA_SHADER_TESS_CTRL);
5992
5993 struct brw_tcs_prog_data *tcs_prog_data =
5994 (struct brw_tcs_prog_data *) prog_data;
5995
5996 /* r1-r4 contain the ICP handles. */
5997 payload.num_regs = 5;
5998
5999 if (shader_time_index >= 0)
6000 emit_shader_time_begin();
6001
6002 /* Initialize gl_InvocationID */
6003 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6004 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6005 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6006 bld.MOV(channels_ud, channels_uw);
6007
6008 if (tcs_prog_data->instances == 1) {
6009 invocation_id = channels_ud;
6010 } else {
6011 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6012
6013 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6014 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6015 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6016 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6017 brw_imm_ud(INTEL_MASK(23, 17)));
6018 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6019
6020 bld.ADD(invocation_id, instance_times_8, channels_ud);
6021 }
6022
6023 /* Fix the disptach mask */
6024 if (nir->info.tcs.vertices_out % 8) {
6025 bld.CMP(bld.null_reg_ud(), invocation_id,
6026 brw_imm_ud(nir->info.tcs.vertices_out), BRW_CONDITIONAL_L);
6027 bld.IF(BRW_PREDICATE_NORMAL);
6028 }
6029
6030 emit_nir_code();
6031
6032 if (nir->info.tcs.vertices_out % 8) {
6033 bld.emit(BRW_OPCODE_ENDIF);
6034 }
6035
6036 /* Emit EOT write; set TR DS Cache bit */
6037 fs_reg srcs[3] = {
6038 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6039 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6040 fs_reg(brw_imm_ud(0)),
6041 };
6042 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6043 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6044
6045 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6046 bld.null_reg_ud(), payload);
6047 inst->mlen = 3;
6048 inst->eot = true;
6049
6050 if (shader_time_index >= 0)
6051 emit_shader_time_end();
6052
6053 if (failed)
6054 return false;
6055
6056 calculate_cfg();
6057
6058 optimize();
6059
6060 assign_curb_setup();
6061 assign_tcs_single_patch_urb_setup();
6062
6063 fixup_3src_null_dest();
6064 allocate_registers(true);
6065
6066 return !failed;
6067 }
6068
6069 bool
6070 fs_visitor::run_tes()
6071 {
6072 assert(stage == MESA_SHADER_TESS_EVAL);
6073
6074 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6075 payload.num_regs = 5;
6076
6077 if (shader_time_index >= 0)
6078 emit_shader_time_begin();
6079
6080 emit_nir_code();
6081
6082 if (failed)
6083 return false;
6084
6085 emit_urb_writes();
6086
6087 if (shader_time_index >= 0)
6088 emit_shader_time_end();
6089
6090 calculate_cfg();
6091
6092 optimize();
6093
6094 assign_curb_setup();
6095 assign_tes_urb_setup();
6096
6097 fixup_3src_null_dest();
6098 allocate_registers(true);
6099
6100 return !failed;
6101 }
6102
6103 bool
6104 fs_visitor::run_gs()
6105 {
6106 assert(stage == MESA_SHADER_GEOMETRY);
6107
6108 setup_gs_payload();
6109
6110 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6111
6112 if (gs_compile->control_data_header_size_bits > 0) {
6113 /* Create a VGRF to store accumulated control data bits. */
6114 this->control_data_bits = vgrf(glsl_type::uint_type);
6115
6116 /* If we're outputting more than 32 control data bits, then EmitVertex()
6117 * will set control_data_bits to 0 after emitting the first vertex.
6118 * Otherwise, we need to initialize it to 0 here.
6119 */
6120 if (gs_compile->control_data_header_size_bits <= 32) {
6121 const fs_builder abld = bld.annotate("initialize control data bits");
6122 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6123 }
6124 }
6125
6126 if (shader_time_index >= 0)
6127 emit_shader_time_begin();
6128
6129 emit_nir_code();
6130
6131 emit_gs_thread_end();
6132
6133 if (shader_time_index >= 0)
6134 emit_shader_time_end();
6135
6136 if (failed)
6137 return false;
6138
6139 calculate_cfg();
6140
6141 optimize();
6142
6143 assign_curb_setup();
6144 assign_gs_urb_setup();
6145
6146 fixup_3src_null_dest();
6147 allocate_registers(true);
6148
6149 return !failed;
6150 }
6151
6152 bool
6153 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6154 {
6155 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
6156 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6157
6158 assert(stage == MESA_SHADER_FRAGMENT);
6159
6160 if (devinfo->gen >= 6)
6161 setup_fs_payload_gen6();
6162 else
6163 setup_fs_payload_gen4();
6164
6165 if (0) {
6166 emit_dummy_fs();
6167 } else if (do_rep_send) {
6168 assert(dispatch_width == 16);
6169 emit_repclear_shader();
6170 } else {
6171 if (shader_time_index >= 0)
6172 emit_shader_time_begin();
6173
6174 calculate_urb_setup();
6175 if (nir->info.inputs_read > 0 ||
6176 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6177 if (devinfo->gen < 6)
6178 emit_interpolation_setup_gen4();
6179 else
6180 emit_interpolation_setup_gen6();
6181 }
6182
6183 /* We handle discards by keeping track of the still-live pixels in f0.1.
6184 * Initialize it with the dispatched pixels.
6185 */
6186 if (wm_prog_data->uses_kill) {
6187 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6188 discard_init->flag_subreg = 1;
6189 }
6190
6191 /* Generate FS IR for main(). (the visitor only descends into
6192 * functions called "main").
6193 */
6194 emit_nir_code();
6195
6196 if (failed)
6197 return false;
6198
6199 if (wm_prog_data->uses_kill)
6200 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6201
6202 if (wm_key->alpha_test_func)
6203 emit_alpha_test();
6204
6205 emit_fb_writes();
6206
6207 if (shader_time_index >= 0)
6208 emit_shader_time_end();
6209
6210 calculate_cfg();
6211
6212 optimize();
6213
6214 assign_curb_setup();
6215 assign_urb_setup();
6216
6217 fixup_3src_null_dest();
6218 allocate_registers(allow_spilling);
6219
6220 if (failed)
6221 return false;
6222 }
6223
6224 return !failed;
6225 }
6226
6227 bool
6228 fs_visitor::run_cs()
6229 {
6230 assert(stage == MESA_SHADER_COMPUTE);
6231
6232 setup_cs_payload();
6233
6234 if (shader_time_index >= 0)
6235 emit_shader_time_begin();
6236
6237 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6238 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6239 const fs_builder abld = bld.exec_all().group(1, 0);
6240 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
6241 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6242 }
6243
6244 emit_nir_code();
6245
6246 if (failed)
6247 return false;
6248
6249 emit_cs_terminate();
6250
6251 if (shader_time_index >= 0)
6252 emit_shader_time_end();
6253
6254 calculate_cfg();
6255
6256 optimize();
6257
6258 assign_curb_setup();
6259
6260 fixup_3src_null_dest();
6261 allocate_registers(true);
6262
6263 if (failed)
6264 return false;
6265
6266 return !failed;
6267 }
6268
6269 /**
6270 * Return a bitfield where bit n is set if barycentric interpolation mode n
6271 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6272 *
6273 * We examine the load_barycentric intrinsics rather than looking at input
6274 * variables so that we catch interpolateAtCentroid() messages too, which
6275 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6276 */
6277 static unsigned
6278 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6279 const nir_shader *shader)
6280 {
6281 unsigned barycentric_interp_modes = 0;
6282
6283 nir_foreach_function(f, shader) {
6284 if (!f->impl)
6285 continue;
6286
6287 nir_foreach_block(block, f->impl) {
6288 nir_foreach_instr(instr, block) {
6289 if (instr->type != nir_instr_type_intrinsic)
6290 continue;
6291
6292 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6293 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6294 continue;
6295
6296 /* Ignore WPOS; it doesn't require interpolation. */
6297 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6298 continue;
6299
6300 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6301 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6302 nir_intrinsic_interp_mode(intrin);
6303 nir_intrinsic_op bary_op = intrin->intrinsic;
6304 enum brw_barycentric_mode bary =
6305 brw_barycentric_mode(interp, bary_op);
6306
6307 barycentric_interp_modes |= 1 << bary;
6308
6309 if (devinfo->needs_unlit_centroid_workaround &&
6310 bary_op == nir_intrinsic_load_barycentric_centroid)
6311 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6312 }
6313 }
6314 }
6315
6316 return barycentric_interp_modes;
6317 }
6318
6319 static void
6320 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6321 const nir_shader *shader)
6322 {
6323 prog_data->flat_inputs = 0;
6324
6325 nir_foreach_variable(var, &shader->inputs) {
6326 int input_index = prog_data->urb_setup[var->data.location];
6327
6328 if (input_index < 0)
6329 continue;
6330
6331 /* flat shading */
6332 if (var->data.interpolation == INTERP_MODE_FLAT)
6333 prog_data->flat_inputs |= (1 << input_index);
6334 }
6335 }
6336
6337 static uint8_t
6338 computed_depth_mode(const nir_shader *shader)
6339 {
6340 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6341 switch (shader->info.fs.depth_layout) {
6342 case FRAG_DEPTH_LAYOUT_NONE:
6343 case FRAG_DEPTH_LAYOUT_ANY:
6344 return BRW_PSCDEPTH_ON;
6345 case FRAG_DEPTH_LAYOUT_GREATER:
6346 return BRW_PSCDEPTH_ON_GE;
6347 case FRAG_DEPTH_LAYOUT_LESS:
6348 return BRW_PSCDEPTH_ON_LE;
6349 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6350 return BRW_PSCDEPTH_OFF;
6351 }
6352 }
6353 return BRW_PSCDEPTH_OFF;
6354 }
6355
6356 /**
6357 * Move load_interpolated_input with simple (payload-based) barycentric modes
6358 * to the top of the program so we don't emit multiple PLNs for the same input.
6359 *
6360 * This works around CSE not being able to handle non-dominating cases
6361 * such as:
6362 *
6363 * if (...) {
6364 * interpolate input
6365 * } else {
6366 * interpolate the same exact input
6367 * }
6368 *
6369 * This should be replaced by global value numbering someday.
6370 */
6371 void
6372 move_interpolation_to_top(nir_shader *nir)
6373 {
6374 nir_foreach_function(f, nir) {
6375 if (!f->impl)
6376 continue;
6377
6378 nir_block *top = nir_start_block(f->impl);
6379 exec_node *cursor_node = NULL;
6380
6381 nir_foreach_block(block, f->impl) {
6382 if (block == top)
6383 continue;
6384
6385 nir_foreach_instr_safe(instr, block) {
6386 if (instr->type != nir_instr_type_intrinsic)
6387 continue;
6388
6389 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6390 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6391 continue;
6392 nir_intrinsic_instr *bary_intrinsic =
6393 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6394 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6395
6396 /* Leave interpolateAtSample/Offset() where they are. */
6397 if (op == nir_intrinsic_load_barycentric_at_sample ||
6398 op == nir_intrinsic_load_barycentric_at_offset)
6399 continue;
6400
6401 nir_instr *move[3] = {
6402 &bary_intrinsic->instr,
6403 intrin->src[1].ssa->parent_instr,
6404 instr
6405 };
6406
6407 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6408 if (move[i]->block != top) {
6409 move[i]->block = top;
6410 exec_node_remove(&move[i]->node);
6411 if (cursor_node) {
6412 exec_node_insert_after(cursor_node, &move[i]->node);
6413 } else {
6414 exec_list_push_head(&top->instr_list, &move[i]->node);
6415 }
6416 cursor_node = &move[i]->node;
6417 }
6418 }
6419 }
6420 }
6421 nir_metadata_preserve(f->impl, (nir_metadata)
6422 ((unsigned) nir_metadata_block_index |
6423 (unsigned) nir_metadata_dominance));
6424 }
6425 }
6426
6427 /**
6428 * Apply default interpolation settings to FS inputs which don't specify any.
6429 */
6430 static void
6431 brw_nir_set_default_interpolation(const struct gen_device_info *devinfo,
6432 struct nir_shader *nir,
6433 bool api_flat_shade,
6434 bool per_sample_interpolation)
6435 {
6436 assert(nir->stage == MESA_SHADER_FRAGMENT);
6437
6438 nir_foreach_variable(var, &nir->inputs) {
6439 /* Apply default interpolation mode.
6440 *
6441 * Everything defaults to smooth except for the legacy GL color
6442 * built-in variables, which might be flat depending on API state.
6443 */
6444 if (var->data.interpolation == INTERP_MODE_NONE) {
6445 const bool flat = api_flat_shade &&
6446 (var->data.location == VARYING_SLOT_COL0 ||
6447 var->data.location == VARYING_SLOT_COL1);
6448
6449 var->data.interpolation = flat ? INTERP_MODE_FLAT
6450 : INTERP_MODE_SMOOTH;
6451 }
6452
6453 /* Apply 'sample' if necessary for API state. */
6454 if (per_sample_interpolation &&
6455 var->data.interpolation != INTERP_MODE_FLAT) {
6456 var->data.centroid = false;
6457 var->data.sample = true;
6458 }
6459
6460 /* On Ironlake and below, there is only one interpolation mode.
6461 * Centroid interpolation doesn't mean anything on this hardware --
6462 * there is no multisampling.
6463 */
6464 if (devinfo->gen < 6) {
6465 var->data.centroid = false;
6466 var->data.sample = false;
6467 }
6468 }
6469 }
6470
6471 /**
6472 * Demote per-sample barycentric intrinsics to centroid.
6473 *
6474 * Useful when rendering to a non-multisampled buffer.
6475 */
6476 static void
6477 demote_sample_qualifiers(nir_shader *nir)
6478 {
6479 nir_foreach_function(f, nir) {
6480 if (!f->impl)
6481 continue;
6482
6483 nir_builder b;
6484 nir_builder_init(&b, f->impl);
6485
6486 nir_foreach_block(block, f->impl) {
6487 nir_foreach_instr_safe(instr, block) {
6488 if (instr->type != nir_instr_type_intrinsic)
6489 continue;
6490
6491 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6492 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6493 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6494 continue;
6495
6496 b.cursor = nir_before_instr(instr);
6497 nir_ssa_def *centroid =
6498 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6499 nir_intrinsic_interp_mode(intrin));
6500 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6501 nir_src_for_ssa(centroid));
6502 nir_instr_remove(instr);
6503 }
6504 }
6505
6506 nir_metadata_preserve(f->impl, (nir_metadata)
6507 ((unsigned) nir_metadata_block_index |
6508 (unsigned) nir_metadata_dominance));
6509 }
6510 }
6511
6512 const unsigned *
6513 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6514 void *mem_ctx,
6515 const struct brw_wm_prog_key *key,
6516 struct brw_wm_prog_data *prog_data,
6517 const nir_shader *src_shader,
6518 struct gl_program *prog,
6519 int shader_time_index8, int shader_time_index16,
6520 bool allow_spilling,
6521 bool use_rep_send,
6522 unsigned *final_assembly_size,
6523 char **error_str)
6524 {
6525 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6526 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6527 true);
6528 brw_nir_set_default_interpolation(compiler->devinfo, shader,
6529 key->flat_shade, key->persample_interp);
6530 brw_nir_lower_fs_inputs(shader);
6531 brw_nir_lower_fs_outputs(shader);
6532 if (!key->multisample_fbo)
6533 NIR_PASS_V(shader, demote_sample_qualifiers);
6534 NIR_PASS_V(shader, move_interpolation_to_top);
6535 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6536
6537 /* key->alpha_test_func means simulating alpha testing via discards,
6538 * so the shader definitely kills pixels.
6539 */
6540 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
6541 prog_data->uses_omask = key->multisample_fbo &&
6542 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6543 prog_data->computed_depth_mode = computed_depth_mode(shader);
6544 prog_data->computed_stencil =
6545 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6546
6547 prog_data->persample_dispatch =
6548 key->multisample_fbo &&
6549 (key->persample_interp ||
6550 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6551 SYSTEM_BIT_SAMPLE_POS)) ||
6552 shader->info.fs.uses_sample_qualifier ||
6553 shader->info.outputs_read);
6554
6555 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6556
6557 prog_data->barycentric_interp_modes =
6558 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6559
6560 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6561 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6562 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6563
6564 fs_visitor v8(compiler, log_data, mem_ctx, key,
6565 &prog_data->base, prog, shader, 8,
6566 shader_time_index8);
6567 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6568 if (error_str)
6569 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6570
6571 return NULL;
6572 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6573 simd8_cfg = v8.cfg;
6574 simd8_grf_start = v8.payload.num_regs;
6575 simd8_grf_used = v8.grf_used;
6576 }
6577
6578 if (v8.max_dispatch_width >= 16 &&
6579 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6580 /* Try a SIMD16 compile */
6581 fs_visitor v16(compiler, log_data, mem_ctx, key,
6582 &prog_data->base, prog, shader, 16,
6583 shader_time_index16);
6584 v16.import_uniforms(&v8);
6585 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6586 compiler->shader_perf_log(log_data,
6587 "SIMD16 shader failed to compile: %s",
6588 v16.fail_msg);
6589 } else {
6590 simd16_cfg = v16.cfg;
6591 simd16_grf_start = v16.payload.num_regs;
6592 simd16_grf_used = v16.grf_used;
6593 }
6594 }
6595
6596 /* When the caller requests a repclear shader, they want SIMD16-only */
6597 if (use_rep_send)
6598 simd8_cfg = NULL;
6599
6600 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6601 * at the top to select the shader. We've never implemented that.
6602 * Instead, we just give them exactly one shader and we pick the widest one
6603 * available.
6604 */
6605 if (compiler->devinfo->gen < 5 && simd16_cfg)
6606 simd8_cfg = NULL;
6607
6608 if (prog_data->persample_dispatch) {
6609 /* Starting with SandyBridge (where we first get MSAA), the different
6610 * pixel dispatch combinations are grouped into classifications A
6611 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6612 * generations, the only configurations supporting persample dispatch
6613 * are are this in which only one dispatch width is enabled.
6614 *
6615 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6616 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6617 */
6618 if (compiler->devinfo->gen == 6 &&
6619 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6620 simd16_cfg = NULL;
6621 } else if (simd16_cfg) {
6622 simd8_cfg = NULL;
6623 }
6624 }
6625
6626 /* We have to compute the flat inputs after the visitor is finished running
6627 * because it relies on prog_data->urb_setup which is computed in
6628 * fs_visitor::calculate_urb_setup().
6629 */
6630 brw_compute_flat_inputs(prog_data, shader);
6631
6632 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6633 v8.promoted_constants, v8.runtime_check_aads_emit,
6634 MESA_SHADER_FRAGMENT);
6635
6636 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6637 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6638 shader->info.label ? shader->info.label :
6639 "unnamed",
6640 shader->info.name));
6641 }
6642
6643 if (simd8_cfg) {
6644 prog_data->dispatch_8 = true;
6645 g.generate_code(simd8_cfg, 8);
6646 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6647 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6648
6649 if (simd16_cfg) {
6650 prog_data->dispatch_16 = true;
6651 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6652 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6653 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6654 }
6655 } else if (simd16_cfg) {
6656 prog_data->dispatch_16 = true;
6657 g.generate_code(simd16_cfg, 16);
6658 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6659 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6660 }
6661
6662 return g.get_assembly(final_assembly_size);
6663 }
6664
6665 fs_reg *
6666 fs_visitor::emit_cs_work_group_id_setup()
6667 {
6668 assert(stage == MESA_SHADER_COMPUTE);
6669
6670 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6671
6672 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6673 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6674 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6675
6676 bld.MOV(*reg, r0_1);
6677 bld.MOV(offset(*reg, bld, 1), r0_6);
6678 bld.MOV(offset(*reg, bld, 2), r0_7);
6679
6680 return reg;
6681 }
6682
6683 static void
6684 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6685 {
6686 block->dwords = dwords;
6687 block->regs = DIV_ROUND_UP(dwords, 8);
6688 block->size = block->regs * 32;
6689 }
6690
6691 static void
6692 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6693 struct brw_cs_prog_data *cs_prog_data)
6694 {
6695 const struct brw_stage_prog_data *prog_data =
6696 (struct brw_stage_prog_data*) cs_prog_data;
6697 bool fill_thread_id =
6698 cs_prog_data->thread_local_id_index >= 0 &&
6699 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6700 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6701
6702 /* The thread ID should be stored in the last param dword */
6703 assert(prog_data->nr_params > 0 || !fill_thread_id);
6704 assert(!fill_thread_id ||
6705 cs_prog_data->thread_local_id_index ==
6706 (int)prog_data->nr_params - 1);
6707
6708 unsigned cross_thread_dwords, per_thread_dwords;
6709 if (!cross_thread_supported) {
6710 cross_thread_dwords = 0u;
6711 per_thread_dwords = prog_data->nr_params;
6712 } else if (fill_thread_id) {
6713 /* Fill all but the last register with cross-thread payload */
6714 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6715 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6716 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6717 } else {
6718 /* Fill all data using cross-thread payload */
6719 cross_thread_dwords = prog_data->nr_params;
6720 per_thread_dwords = 0u;
6721 }
6722
6723 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6724 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6725
6726 unsigned total_dwords =
6727 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6728 cs_prog_data->push.cross_thread.size) / 4;
6729 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6730
6731 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6732 cs_prog_data->push.per_thread.size == 0);
6733 assert(cs_prog_data->push.cross_thread.dwords +
6734 cs_prog_data->push.per_thread.dwords ==
6735 prog_data->nr_params);
6736 }
6737
6738 static void
6739 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6740 {
6741 cs_prog_data->simd_size = size;
6742 unsigned group_size = cs_prog_data->local_size[0] *
6743 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6744 cs_prog_data->threads = (group_size + size - 1) / size;
6745 }
6746
6747 const unsigned *
6748 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6749 void *mem_ctx,
6750 const struct brw_cs_prog_key *key,
6751 struct brw_cs_prog_data *prog_data,
6752 const nir_shader *src_shader,
6753 int shader_time_index,
6754 unsigned *final_assembly_size,
6755 char **error_str)
6756 {
6757 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6758 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6759 true);
6760 brw_nir_lower_cs_shared(shader);
6761 prog_data->base.total_shared += shader->num_shared;
6762
6763 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6764 * the thread_local_id_index.
6765 */
6766 assert(prog_data->thread_local_id_index >= 0);
6767 shader->num_uniforms =
6768 MAX2(shader->num_uniforms,
6769 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6770
6771 brw_nir_lower_intrinsics(shader, &prog_data->base);
6772 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6773
6774 prog_data->local_size[0] = shader->info.cs.local_size[0];
6775 prog_data->local_size[1] = shader->info.cs.local_size[1];
6776 prog_data->local_size[2] = shader->info.cs.local_size[2];
6777 unsigned local_workgroup_size =
6778 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6779 shader->info.cs.local_size[2];
6780
6781 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6782 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6783
6784 cfg_t *cfg = NULL;
6785 const char *fail_msg = NULL;
6786
6787 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6788 */
6789 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6790 NULL, /* Never used in core profile */
6791 shader, 8, shader_time_index);
6792 if (simd_required <= 8) {
6793 if (!v8.run_cs()) {
6794 fail_msg = v8.fail_msg;
6795 } else {
6796 cfg = v8.cfg;
6797 cs_set_simd_size(prog_data, 8);
6798 cs_fill_push_const_info(compiler->devinfo, prog_data);
6799 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6800 }
6801 }
6802
6803 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6804 NULL, /* Never used in core profile */
6805 shader, 16, shader_time_index);
6806 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6807 !fail_msg && v8.max_dispatch_width >= 16 &&
6808 simd_required <= 16) {
6809 /* Try a SIMD16 compile */
6810 if (simd_required <= 8)
6811 v16.import_uniforms(&v8);
6812 if (!v16.run_cs()) {
6813 compiler->shader_perf_log(log_data,
6814 "SIMD16 shader failed to compile: %s",
6815 v16.fail_msg);
6816 if (!cfg) {
6817 fail_msg =
6818 "Couldn't generate SIMD16 program and not "
6819 "enough threads for SIMD8";
6820 }
6821 } else {
6822 cfg = v16.cfg;
6823 cs_set_simd_size(prog_data, 16);
6824 cs_fill_push_const_info(compiler->devinfo, prog_data);
6825 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6826 }
6827 }
6828
6829 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6830 NULL, /* Never used in core profile */
6831 shader, 32, shader_time_index);
6832 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6833 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6834 /* Try a SIMD32 compile */
6835 if (simd_required <= 8)
6836 v32.import_uniforms(&v8);
6837 else if (simd_required <= 16)
6838 v32.import_uniforms(&v16);
6839
6840 if (!v32.run_cs()) {
6841 compiler->shader_perf_log(log_data,
6842 "SIMD32 shader failed to compile: %s",
6843 v16.fail_msg);
6844 if (!cfg) {
6845 fail_msg =
6846 "Couldn't generate SIMD32 program and not "
6847 "enough threads for SIMD16";
6848 }
6849 } else {
6850 cfg = v32.cfg;
6851 cs_set_simd_size(prog_data, 32);
6852 cs_fill_push_const_info(compiler->devinfo, prog_data);
6853 }
6854 }
6855
6856 if (unlikely(cfg == NULL)) {
6857 assert(fail_msg);
6858 if (error_str)
6859 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6860
6861 return NULL;
6862 }
6863
6864 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6865 v8.promoted_constants, v8.runtime_check_aads_emit,
6866 MESA_SHADER_COMPUTE);
6867 if (INTEL_DEBUG & DEBUG_CS) {
6868 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6869 shader->info.label ? shader->info.label :
6870 "unnamed",
6871 shader->info.name);
6872 g.enable_debug(name);
6873 }
6874
6875 g.generate_code(cfg, prog_data->simd_size);
6876
6877 return g.get_assembly(final_assembly_size);
6878 }