60907cd20b9723327c17950d09aa2eb9fb2c9a99
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable
176 * offset and a portion done using reg_offset, which means that if you
177 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
178 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
179 * CSE can later notice that those loads are all the same and eliminate
180 * the redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * bld.dispatch_width() / 8 * REG_SIZE;
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::overwrites_reg(const fs_reg &reg) const
245 {
246 return reg.in_range(dst, DIV_ROUND_UP(size_written, REG_SIZE));
247 }
248
249 bool
250 fs_inst::is_send_from_grf() const
251 {
252 switch (opcode) {
253 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
254 case SHADER_OPCODE_SHADER_TIME_ADD:
255 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
256 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
257 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
258 case SHADER_OPCODE_UNTYPED_ATOMIC:
259 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
260 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
261 case SHADER_OPCODE_TYPED_ATOMIC:
262 case SHADER_OPCODE_TYPED_SURFACE_READ:
263 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
264 case SHADER_OPCODE_URB_WRITE_SIMD8:
265 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
268 case SHADER_OPCODE_URB_READ_SIMD8:
269 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
270 return true;
271 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
272 return src[1].file == VGRF;
273 case FS_OPCODE_FB_WRITE:
274 case FS_OPCODE_FB_READ:
275 return src[0].file == VGRF;
276 default:
277 if (is_tex())
278 return src[0].file == VGRF;
279
280 return false;
281 }
282 }
283
284 /**
285 * Returns true if this instruction's sources and destinations cannot
286 * safely be the same register.
287 *
288 * In most cases, a register can be written over safely by the same
289 * instruction that is its last use. For a single instruction, the
290 * sources are dereferenced before writing of the destination starts
291 * (naturally).
292 *
293 * However, there are a few cases where this can be problematic:
294 *
295 * - Virtual opcodes that translate to multiple instructions in the
296 * code generator: if src == dst and one instruction writes the
297 * destination before a later instruction reads the source, then
298 * src will have been clobbered.
299 *
300 * - SIMD16 compressed instructions with certain regioning (see below).
301 *
302 * The register allocator uses this information to set up conflicts between
303 * GRF sources and the destination.
304 */
305 bool
306 fs_inst::has_source_and_destination_hazard() const
307 {
308 switch (opcode) {
309 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
310 /* Multiple partial writes to the destination */
311 return true;
312 default:
313 /* The SIMD16 compressed instruction
314 *
315 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
316 *
317 * is actually decoded in hardware as:
318 *
319 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
320 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
321 *
322 * Which is safe. However, if we have uniform accesses
323 * happening, we get into trouble:
324 *
325 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
326 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
327 *
328 * Now our destination for the first instruction overwrote the
329 * second instruction's src0, and we get garbage for those 8
330 * pixels. There's a similar issue for the pre-gen6
331 * pixel_x/pixel_y, which are registers of 16-bit values and thus
332 * would get stomped by the first decode as well.
333 */
334 if (exec_size == 16) {
335 for (int i = 0; i < sources; i++) {
336 if (src[i].file == VGRF && (src[i].stride == 0 ||
337 src[i].type == BRW_REGISTER_TYPE_UW ||
338 src[i].type == BRW_REGISTER_TYPE_W ||
339 src[i].type == BRW_REGISTER_TYPE_UB ||
340 src[i].type == BRW_REGISTER_TYPE_B)) {
341 return true;
342 }
343 }
344 }
345 return false;
346 }
347 }
348
349 bool
350 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
351 {
352 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
353 return false;
354
355 fs_reg reg = this->src[0];
356 if (reg.file != VGRF || reg.offset / REG_SIZE != 0 || reg.stride == 0)
357 return false;
358
359 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
360 return false;
361
362 for (int i = 0; i < this->sources; i++) {
363 reg.type = this->src[i].type;
364 if (!this->src[i].equals(reg))
365 return false;
366
367 if (i < this->header_size) {
368 reg.offset += REG_SIZE;
369 } else {
370 reg = horiz_offset(reg, this->exec_size);
371 }
372 }
373
374 return true;
375 }
376
377 bool
378 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
379 {
380 if (devinfo->gen == 6 && is_math())
381 return false;
382
383 if (is_send_from_grf())
384 return false;
385
386 if (!backend_instruction::can_do_source_mods())
387 return false;
388
389 return true;
390 }
391
392 bool
393 fs_inst::can_change_types() const
394 {
395 return dst.type == src[0].type &&
396 !src[0].abs && !src[0].negate && !saturate &&
397 (opcode == BRW_OPCODE_MOV ||
398 (opcode == BRW_OPCODE_SEL &&
399 dst.type == src[1].type &&
400 predicate != BRW_PREDICATE_NONE &&
401 !src[1].abs && !src[1].negate));
402 }
403
404 bool
405 fs_inst::has_side_effects() const
406 {
407 return this->eot || backend_instruction::has_side_effects();
408 }
409
410 void
411 fs_reg::init()
412 {
413 memset(this, 0, sizeof(*this));
414 stride = 1;
415 }
416
417 /** Generic unset register constructor. */
418 fs_reg::fs_reg()
419 {
420 init();
421 this->file = BAD_FILE;
422 }
423
424 fs_reg::fs_reg(struct ::brw_reg reg) :
425 backend_reg(reg)
426 {
427 this->offset = 0;
428 this->stride = 1;
429 if (this->file == IMM &&
430 (this->type != BRW_REGISTER_TYPE_V &&
431 this->type != BRW_REGISTER_TYPE_UV &&
432 this->type != BRW_REGISTER_TYPE_VF)) {
433 this->stride = 0;
434 }
435 }
436
437 bool
438 fs_reg::equals(const fs_reg &r) const
439 {
440 return (this->backend_reg::equals(r) &&
441 stride == r.stride);
442 }
443
444 fs_reg &
445 fs_reg::set_smear(unsigned subreg)
446 {
447 assert(file != ARF && file != FIXED_GRF && file != IMM);
448 offset = ROUND_DOWN_TO(offset, REG_SIZE) + subreg * type_sz(type);
449 stride = 0;
450 return *this;
451 }
452
453 bool
454 fs_reg::is_contiguous() const
455 {
456 return stride == 1;
457 }
458
459 unsigned
460 fs_reg::component_size(unsigned width) const
461 {
462 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
463 hstride == 0 ? 0 :
464 1 << (hstride - 1));
465 return MAX2(width * stride, 1) * type_sz(type);
466 }
467
468 extern "C" int
469 type_size_scalar(const struct glsl_type *type)
470 {
471 unsigned int size, i;
472
473 switch (type->base_type) {
474 case GLSL_TYPE_UINT:
475 case GLSL_TYPE_INT:
476 case GLSL_TYPE_FLOAT:
477 case GLSL_TYPE_BOOL:
478 return type->components();
479 case GLSL_TYPE_DOUBLE:
480 return type->components() * 2;
481 case GLSL_TYPE_ARRAY:
482 return type_size_scalar(type->fields.array) * type->length;
483 case GLSL_TYPE_STRUCT:
484 size = 0;
485 for (i = 0; i < type->length; i++) {
486 size += type_size_scalar(type->fields.structure[i].type);
487 }
488 return size;
489 case GLSL_TYPE_SAMPLER:
490 /* Samplers take up no register space, since they're baked in at
491 * link time.
492 */
493 return 0;
494 case GLSL_TYPE_ATOMIC_UINT:
495 return 0;
496 case GLSL_TYPE_SUBROUTINE:
497 return 1;
498 case GLSL_TYPE_IMAGE:
499 return BRW_IMAGE_PARAM_SIZE;
500 case GLSL_TYPE_VOID:
501 case GLSL_TYPE_ERROR:
502 case GLSL_TYPE_INTERFACE:
503 case GLSL_TYPE_FUNCTION:
504 unreachable("not reached");
505 }
506
507 return 0;
508 }
509
510 /**
511 * Returns the number of scalar components needed to store type, assuming
512 * that vectors are padded out to vec4.
513 *
514 * This has the packing rules of type_size_vec4(), but counts components
515 * similar to type_size_scalar().
516 */
517 extern "C" int
518 type_size_vec4_times_4(const struct glsl_type *type)
519 {
520 return 4 * type_size_vec4(type);
521 }
522
523 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
524 * except for double-precision types, which are loaded as one dvec4.
525 */
526 extern "C" int
527 type_size_vs_input(const struct glsl_type *type)
528 {
529 if (type->is_double()) {
530 return type_size_dvec4(type);
531 } else {
532 return type_size_vec4(type);
533 }
534 }
535
536 /**
537 * Create a MOV to read the timestamp register.
538 *
539 * The caller is responsible for emitting the MOV. The return value is
540 * the destination of the MOV, with extra parameters set.
541 */
542 fs_reg
543 fs_visitor::get_timestamp(const fs_builder &bld)
544 {
545 assert(devinfo->gen >= 7);
546
547 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
548 BRW_ARF_TIMESTAMP,
549 0),
550 BRW_REGISTER_TYPE_UD));
551
552 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
553
554 /* We want to read the 3 fields we care about even if it's not enabled in
555 * the dispatch.
556 */
557 bld.group(4, 0).exec_all().MOV(dst, ts);
558
559 return dst;
560 }
561
562 void
563 fs_visitor::emit_shader_time_begin()
564 {
565 shader_start_time = get_timestamp(bld.annotate("shader time start"));
566
567 /* We want only the low 32 bits of the timestamp. Since it's running
568 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
569 * which is plenty of time for our purposes. It is identical across the
570 * EUs, but since it's tracking GPU core speed it will increment at a
571 * varying rate as render P-states change.
572 */
573 shader_start_time.set_smear(0);
574 }
575
576 void
577 fs_visitor::emit_shader_time_end()
578 {
579 /* Insert our code just before the final SEND with EOT. */
580 exec_node *end = this->instructions.get_tail();
581 assert(end && ((fs_inst *) end)->eot);
582 const fs_builder ibld = bld.annotate("shader time end")
583 .exec_all().at(NULL, end);
584
585 fs_reg shader_end_time = get_timestamp(ibld);
586
587 /* We only use the low 32 bits of the timestamp - see
588 * emit_shader_time_begin()).
589 *
590 * We could also check if render P-states have changed (or anything
591 * else that might disrupt timing) by setting smear to 2 and checking if
592 * that field is != 0.
593 */
594 shader_end_time.set_smear(0);
595
596 /* Check that there weren't any timestamp reset events (assuming these
597 * were the only two timestamp reads that happened).
598 */
599 fs_reg reset = shader_end_time;
600 reset.set_smear(2);
601 set_condmod(BRW_CONDITIONAL_Z,
602 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
603 ibld.IF(BRW_PREDICATE_NORMAL);
604
605 fs_reg start = shader_start_time;
606 start.negate = true;
607 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
608 diff.set_smear(0);
609
610 const fs_builder cbld = ibld.group(1, 0);
611 cbld.group(1, 0).ADD(diff, start, shader_end_time);
612
613 /* If there were no instructions between the two timestamp gets, the diff
614 * is 2 cycles. Remove that overhead, so I can forget about that when
615 * trying to determine the time taken for single instructions.
616 */
617 cbld.ADD(diff, diff, brw_imm_ud(-2u));
618 SHADER_TIME_ADD(cbld, 0, diff);
619 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
620 ibld.emit(BRW_OPCODE_ELSE);
621 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
622 ibld.emit(BRW_OPCODE_ENDIF);
623 }
624
625 void
626 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
627 int shader_time_subindex,
628 fs_reg value)
629 {
630 int index = shader_time_index * 3 + shader_time_subindex;
631 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
632
633 fs_reg payload;
634 if (dispatch_width == 8)
635 payload = vgrf(glsl_type::uvec2_type);
636 else
637 payload = vgrf(glsl_type::uint_type);
638
639 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
640 }
641
642 void
643 fs_visitor::vfail(const char *format, va_list va)
644 {
645 char *msg;
646
647 if (failed)
648 return;
649
650 failed = true;
651
652 msg = ralloc_vasprintf(mem_ctx, format, va);
653 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
654
655 this->fail_msg = msg;
656
657 if (debug_enabled) {
658 fprintf(stderr, "%s", msg);
659 }
660 }
661
662 void
663 fs_visitor::fail(const char *format, ...)
664 {
665 va_list va;
666
667 va_start(va, format);
668 vfail(format, va);
669 va_end(va);
670 }
671
672 /**
673 * Mark this program as impossible to compile with dispatch width greater
674 * than n.
675 *
676 * During the SIMD8 compile (which happens first), we can detect and flag
677 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
678 * SIMD16+ compile altogether.
679 *
680 * During a compile of dispatch width greater than n (if one happens anyway),
681 * this just calls fail().
682 */
683 void
684 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
685 {
686 if (dispatch_width > n) {
687 fail("%s", msg);
688 } else {
689 max_dispatch_width = n;
690 compiler->shader_perf_log(log_data,
691 "Shader dispatch width limited to SIMD%d: %s",
692 n, msg);
693 }
694 }
695
696 /**
697 * Returns true if the instruction has a flag that means it won't
698 * update an entire destination register.
699 *
700 * For example, dead code elimination and live variable analysis want to know
701 * when a write to a variable screens off any preceding values that were in
702 * it.
703 */
704 bool
705 fs_inst::is_partial_write() const
706 {
707 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
708 (this->exec_size * type_sz(this->dst.type)) < 32 ||
709 !this->dst.is_contiguous() ||
710 this->dst.offset % REG_SIZE != 0);
711 }
712
713 unsigned
714 fs_inst::components_read(unsigned i) const
715 {
716 /* Return zero if the source is not present. */
717 if (src[i].file == BAD_FILE)
718 return 0;
719
720 switch (opcode) {
721 case FS_OPCODE_LINTERP:
722 if (i == 0)
723 return 2;
724 else
725 return 1;
726
727 case FS_OPCODE_PIXEL_X:
728 case FS_OPCODE_PIXEL_Y:
729 assert(i == 0);
730 return 2;
731
732 case FS_OPCODE_FB_WRITE_LOGICAL:
733 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
734 /* First/second FB write color. */
735 if (i < 2)
736 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
737 else
738 return 1;
739
740 case SHADER_OPCODE_TEX_LOGICAL:
741 case SHADER_OPCODE_TXD_LOGICAL:
742 case SHADER_OPCODE_TXF_LOGICAL:
743 case SHADER_OPCODE_TXL_LOGICAL:
744 case SHADER_OPCODE_TXS_LOGICAL:
745 case FS_OPCODE_TXB_LOGICAL:
746 case SHADER_OPCODE_TXF_CMS_LOGICAL:
747 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
748 case SHADER_OPCODE_TXF_UMS_LOGICAL:
749 case SHADER_OPCODE_TXF_MCS_LOGICAL:
750 case SHADER_OPCODE_LOD_LOGICAL:
751 case SHADER_OPCODE_TG4_LOGICAL:
752 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
753 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
754 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
755 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
756 /* Texture coordinates. */
757 if (i == TEX_LOGICAL_SRC_COORDINATE)
758 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
759 /* Texture derivatives. */
760 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
761 opcode == SHADER_OPCODE_TXD_LOGICAL)
762 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
763 /* Texture offset. */
764 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
765 return 2;
766 /* MCS */
767 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
768 return 2;
769 else
770 return 1;
771
772 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
773 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
774 assert(src[3].file == IMM);
775 /* Surface coordinates. */
776 if (i == 0)
777 return src[3].ud;
778 /* Surface operation source (ignored for reads). */
779 else if (i == 1)
780 return 0;
781 else
782 return 1;
783
784 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
785 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
786 assert(src[3].file == IMM &&
787 src[4].file == IMM);
788 /* Surface coordinates. */
789 if (i == 0)
790 return src[3].ud;
791 /* Surface operation source. */
792 else if (i == 1)
793 return src[4].ud;
794 else
795 return 1;
796
797 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
798 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
799 assert(src[3].file == IMM &&
800 src[4].file == IMM);
801 const unsigned op = src[4].ud;
802 /* Surface coordinates. */
803 if (i == 0)
804 return src[3].ud;
805 /* Surface operation source. */
806 else if (i == 1 && op == BRW_AOP_CMPWR)
807 return 2;
808 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
809 op == BRW_AOP_PREDEC))
810 return 0;
811 else
812 return 1;
813 }
814
815 default:
816 return 1;
817 }
818 }
819
820 int
821 fs_inst::size_read(int arg) const
822 {
823 switch (opcode) {
824 case FS_OPCODE_FB_WRITE:
825 case FS_OPCODE_FB_READ:
826 case SHADER_OPCODE_URB_WRITE_SIMD8:
827 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
828 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
829 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
830 case SHADER_OPCODE_URB_READ_SIMD8:
831 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
832 case SHADER_OPCODE_UNTYPED_ATOMIC:
833 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
834 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
835 case SHADER_OPCODE_TYPED_ATOMIC:
836 case SHADER_OPCODE_TYPED_SURFACE_READ:
837 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
838 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
839 if (arg == 0)
840 return mlen * REG_SIZE;
841 break;
842
843 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
844 /* The payload is actually stored in src1 */
845 if (arg == 1)
846 return mlen * REG_SIZE;
847 break;
848
849 case FS_OPCODE_LINTERP:
850 if (arg == 1)
851 return 16;
852 break;
853
854 case SHADER_OPCODE_LOAD_PAYLOAD:
855 if (arg < this->header_size)
856 return REG_SIZE;
857 break;
858
859 case CS_OPCODE_CS_TERMINATE:
860 case SHADER_OPCODE_BARRIER:
861 return REG_SIZE;
862
863 case SHADER_OPCODE_MOV_INDIRECT:
864 if (arg == 0) {
865 assert(src[2].file == IMM);
866 unsigned region_length = src[2].ud;
867
868 if (src[0].file == UNIFORM) {
869 assert(region_length % 4 == 0);
870 return region_length;
871 } else if (src[0].file == FIXED_GRF) {
872 /* If the start of the region is not register aligned, then
873 * there's some portion of the register that's technically
874 * unread at the beginning.
875 *
876 * However, the register allocator works in terms of whole
877 * registers, and does not use subnr. It assumes that the
878 * read starts at the beginning of the register, and extends
879 * regs_read() whole registers beyond that.
880 *
881 * To compensate, we extend the region length to include this
882 * unread portion at the beginning.
883 */
884 if (src[0].subnr)
885 region_length += src[0].subnr;
886
887 return region_length;
888 } else {
889 assert(!"Invalid register file");
890 }
891 }
892 break;
893
894 default:
895 if (is_tex() && arg == 0 && src[0].file == VGRF)
896 return mlen * REG_SIZE;
897 break;
898 }
899
900 switch (src[arg].file) {
901 case UNIFORM:
902 case IMM:
903 return components_read(arg) * type_sz(src[arg].type);
904 case BAD_FILE:
905 case ARF:
906 case FIXED_GRF:
907 case VGRF:
908 case ATTR:
909 return components_read(arg) * src[arg].component_size(exec_size);
910 case MRF:
911 unreachable("MRF registers are not allowed as sources");
912 }
913 return 0;
914 }
915
916 namespace {
917 /* Return the subset of flag registers that an instruction could
918 * potentially read or write based on the execution controls and flag
919 * subregister number of the instruction.
920 */
921 unsigned
922 flag_mask(const fs_inst *inst)
923 {
924 const unsigned start = inst->flag_subreg * 16 + inst->group;
925 const unsigned end = start + inst->exec_size;
926 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
927 }
928 }
929
930 unsigned
931 fs_inst::flags_read(const gen_device_info *devinfo) const
932 {
933 /* XXX - This doesn't consider explicit uses of the flag register as source
934 * region.
935 */
936 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
937 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
938 /* The vertical predication modes combine corresponding bits from
939 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
940 */
941 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
942 return flag_mask(this) << shift | flag_mask(this);
943 } else if (predicate) {
944 return flag_mask(this);
945 } else {
946 return 0;
947 }
948 }
949
950 unsigned
951 fs_inst::flags_written() const
952 {
953 /* XXX - This doesn't consider explicit uses of the flag register as
954 * destination region.
955 */
956 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
957 opcode != BRW_OPCODE_IF &&
958 opcode != BRW_OPCODE_WHILE)) ||
959 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
960 return flag_mask(this);
961 } else {
962 return 0;
963 }
964 }
965
966 /**
967 * Returns how many MRFs an FS opcode will write over.
968 *
969 * Note that this is not the 0 or 1 implied writes in an actual gen
970 * instruction -- the FS opcodes often generate MOVs in addition.
971 */
972 int
973 fs_visitor::implied_mrf_writes(fs_inst *inst)
974 {
975 if (inst->mlen == 0)
976 return 0;
977
978 if (inst->base_mrf == -1)
979 return 0;
980
981 switch (inst->opcode) {
982 case SHADER_OPCODE_RCP:
983 case SHADER_OPCODE_RSQ:
984 case SHADER_OPCODE_SQRT:
985 case SHADER_OPCODE_EXP2:
986 case SHADER_OPCODE_LOG2:
987 case SHADER_OPCODE_SIN:
988 case SHADER_OPCODE_COS:
989 return 1 * dispatch_width / 8;
990 case SHADER_OPCODE_POW:
991 case SHADER_OPCODE_INT_QUOTIENT:
992 case SHADER_OPCODE_INT_REMAINDER:
993 return 2 * dispatch_width / 8;
994 case SHADER_OPCODE_TEX:
995 case FS_OPCODE_TXB:
996 case SHADER_OPCODE_TXD:
997 case SHADER_OPCODE_TXF:
998 case SHADER_OPCODE_TXF_CMS:
999 case SHADER_OPCODE_TXF_MCS:
1000 case SHADER_OPCODE_TG4:
1001 case SHADER_OPCODE_TG4_OFFSET:
1002 case SHADER_OPCODE_TXL:
1003 case SHADER_OPCODE_TXS:
1004 case SHADER_OPCODE_LOD:
1005 case SHADER_OPCODE_SAMPLEINFO:
1006 return 1;
1007 case FS_OPCODE_FB_WRITE:
1008 return 2;
1009 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1010 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1011 return 1;
1012 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1013 return inst->mlen;
1014 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1015 return inst->mlen;
1016 default:
1017 unreachable("not reached");
1018 }
1019 }
1020
1021 fs_reg
1022 fs_visitor::vgrf(const glsl_type *const type)
1023 {
1024 int reg_width = dispatch_width / 8;
1025 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1026 brw_type_for_base_type(type));
1027 }
1028
1029 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1030 {
1031 init();
1032 this->file = file;
1033 this->nr = nr;
1034 this->type = BRW_REGISTER_TYPE_F;
1035 this->stride = (file == UNIFORM ? 0 : 1);
1036 }
1037
1038 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1039 {
1040 init();
1041 this->file = file;
1042 this->nr = nr;
1043 this->type = type;
1044 this->stride = (file == UNIFORM ? 0 : 1);
1045 }
1046
1047 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1048 * This brings in those uniform definitions
1049 */
1050 void
1051 fs_visitor::import_uniforms(fs_visitor *v)
1052 {
1053 this->push_constant_loc = v->push_constant_loc;
1054 this->pull_constant_loc = v->pull_constant_loc;
1055 this->uniforms = v->uniforms;
1056 }
1057
1058 void
1059 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1060 {
1061 assert(stage == MESA_SHADER_FRAGMENT);
1062
1063 /* gl_FragCoord.x */
1064 bld.MOV(wpos, this->pixel_x);
1065 wpos = offset(wpos, bld, 1);
1066
1067 /* gl_FragCoord.y */
1068 bld.MOV(wpos, this->pixel_y);
1069 wpos = offset(wpos, bld, 1);
1070
1071 /* gl_FragCoord.z */
1072 if (devinfo->gen >= 6) {
1073 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1074 } else {
1075 bld.emit(FS_OPCODE_LINTERP, wpos,
1076 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1077 interp_reg(VARYING_SLOT_POS, 2));
1078 }
1079 wpos = offset(wpos, bld, 1);
1080
1081 /* gl_FragCoord.w: Already set up in emit_interpolation */
1082 bld.MOV(wpos, this->wpos_w);
1083 }
1084
1085 enum brw_barycentric_mode
1086 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1087 {
1088 /* Barycentric modes don't make sense for flat inputs. */
1089 assert(mode != INTERP_MODE_FLAT);
1090
1091 unsigned bary;
1092 switch (op) {
1093 case nir_intrinsic_load_barycentric_pixel:
1094 case nir_intrinsic_load_barycentric_at_offset:
1095 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1096 break;
1097 case nir_intrinsic_load_barycentric_centroid:
1098 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1099 break;
1100 case nir_intrinsic_load_barycentric_sample:
1101 case nir_intrinsic_load_barycentric_at_sample:
1102 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1103 break;
1104 default:
1105 unreachable("invalid intrinsic");
1106 }
1107
1108 if (mode == INTERP_MODE_NOPERSPECTIVE)
1109 bary += 3;
1110
1111 return (enum brw_barycentric_mode) bary;
1112 }
1113
1114 /**
1115 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1116 */
1117 static enum brw_barycentric_mode
1118 centroid_to_pixel(enum brw_barycentric_mode bary)
1119 {
1120 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1121 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1122 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1123 }
1124
1125 fs_reg *
1126 fs_visitor::emit_frontfacing_interpolation()
1127 {
1128 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1129
1130 if (devinfo->gen >= 6) {
1131 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1132 * a boolean result from this (~0/true or 0/false).
1133 *
1134 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1135 * this task in only one instruction:
1136 * - a negation source modifier will flip the bit; and
1137 * - a W -> D type conversion will sign extend the bit into the high
1138 * word of the destination.
1139 *
1140 * An ASR 15 fills the low word of the destination.
1141 */
1142 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1143 g0.negate = true;
1144
1145 bld.ASR(*reg, g0, brw_imm_d(15));
1146 } else {
1147 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1148 * a boolean result from this (1/true or 0/false).
1149 *
1150 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1151 * the negation source modifier to flip it. Unfortunately the SHR
1152 * instruction only operates on UD (or D with an abs source modifier)
1153 * sources without negation.
1154 *
1155 * Instead, use ASR (which will give ~0/true or 0/false).
1156 */
1157 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1158 g1_6.negate = true;
1159
1160 bld.ASR(*reg, g1_6, brw_imm_d(31));
1161 }
1162
1163 return reg;
1164 }
1165
1166 void
1167 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1168 {
1169 assert(stage == MESA_SHADER_FRAGMENT);
1170 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1171 assert(dst.type == BRW_REGISTER_TYPE_F);
1172
1173 if (wm_prog_data->persample_dispatch) {
1174 /* Convert int_sample_pos to floating point */
1175 bld.MOV(dst, int_sample_pos);
1176 /* Scale to the range [0, 1] */
1177 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1178 }
1179 else {
1180 /* From ARB_sample_shading specification:
1181 * "When rendering to a non-multisample buffer, or if multisample
1182 * rasterization is disabled, gl_SamplePosition will always be
1183 * (0.5, 0.5).
1184 */
1185 bld.MOV(dst, brw_imm_f(0.5f));
1186 }
1187 }
1188
1189 fs_reg *
1190 fs_visitor::emit_samplepos_setup()
1191 {
1192 assert(devinfo->gen >= 6);
1193
1194 const fs_builder abld = bld.annotate("compute sample position");
1195 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1196 fs_reg pos = *reg;
1197 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1198 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1199
1200 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1201 * mode will be enabled.
1202 *
1203 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1204 * R31.1:0 Position Offset X/Y for Slot[3:0]
1205 * R31.3:2 Position Offset X/Y for Slot[7:4]
1206 * .....
1207 *
1208 * The X, Y sample positions come in as bytes in thread payload. So, read
1209 * the positions using vstride=16, width=8, hstride=2.
1210 */
1211 struct brw_reg sample_pos_reg =
1212 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1213 BRW_REGISTER_TYPE_B), 16, 8, 2);
1214
1215 if (dispatch_width == 8) {
1216 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1217 } else {
1218 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1219 abld.half(1).MOV(half(int_sample_x, 1),
1220 fs_reg(suboffset(sample_pos_reg, 16)));
1221 }
1222 /* Compute gl_SamplePosition.x */
1223 compute_sample_position(pos, int_sample_x);
1224 pos = offset(pos, abld, 1);
1225 if (dispatch_width == 8) {
1226 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1227 } else {
1228 abld.half(0).MOV(half(int_sample_y, 0),
1229 fs_reg(suboffset(sample_pos_reg, 1)));
1230 abld.half(1).MOV(half(int_sample_y, 1),
1231 fs_reg(suboffset(sample_pos_reg, 17)));
1232 }
1233 /* Compute gl_SamplePosition.y */
1234 compute_sample_position(pos, int_sample_y);
1235 return reg;
1236 }
1237
1238 fs_reg *
1239 fs_visitor::emit_sampleid_setup()
1240 {
1241 assert(stage == MESA_SHADER_FRAGMENT);
1242 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1243 assert(devinfo->gen >= 6);
1244
1245 const fs_builder abld = bld.annotate("compute sample id");
1246 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1247
1248 if (!key->multisample_fbo) {
1249 /* As per GL_ARB_sample_shading specification:
1250 * "When rendering to a non-multisample buffer, or if multisample
1251 * rasterization is disabled, gl_SampleID will always be zero."
1252 */
1253 abld.MOV(*reg, brw_imm_d(0));
1254 } else if (devinfo->gen >= 8) {
1255 /* Sample ID comes in as 4-bit numbers in g1.0:
1256 *
1257 * 15:12 Slot 3 SampleID (only used in SIMD16)
1258 * 11:8 Slot 2 SampleID (only used in SIMD16)
1259 * 7:4 Slot 1 SampleID
1260 * 3:0 Slot 0 SampleID
1261 *
1262 * Each slot corresponds to four channels, so we want to replicate each
1263 * half-byte value to 4 channels in a row:
1264 *
1265 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1266 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1267 *
1268 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1269 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1270 *
1271 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1272 * channels to read the first byte (7:0), and the second group of 8
1273 * channels to read the second byte (15:8). Then, we shift right by
1274 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1275 * values into place. Finally, we AND with 0xf to keep the low nibble.
1276 *
1277 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1278 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1279 *
1280 * TODO: These payload bits exist on Gen7 too, but they appear to always
1281 * be zero, so this code fails to work. We should find out why.
1282 */
1283 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1284
1285 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1286 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1287 brw_imm_v(0x44440000));
1288 abld.AND(*reg, tmp, brw_imm_w(0xf));
1289 } else {
1290 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1291 t1.set_smear(0);
1292 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1293
1294 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1295 * 8x multisampling, subspan 0 will represent sample N (where N
1296 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1297 * 7. We can find the value of N by looking at R0.0 bits 7:6
1298 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1299 * (since samples are always delivered in pairs). That is, we
1300 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1301 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1302 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1303 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1304 * populating a temporary variable with the sequence (0, 1, 2, 3),
1305 * and then reading from it using vstride=1, width=4, hstride=0.
1306 * These computations hold good for 4x multisampling as well.
1307 *
1308 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1309 * the first four slots are sample 0 of subspan 0; the next four
1310 * are sample 1 of subspan 0; the third group is sample 0 of
1311 * subspan 1, and finally sample 1 of subspan 1.
1312 */
1313
1314 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1315 * accomodate 16x MSAA.
1316 */
1317 abld.exec_all().group(1, 0)
1318 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1319 brw_imm_ud(0xc0));
1320 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1321
1322 /* This works for both SIMD8 and SIMD16 */
1323 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1324
1325 /* This special instruction takes care of setting vstride=1,
1326 * width=4, hstride=0 of t2 during an ADD instruction.
1327 */
1328 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1329 }
1330
1331 return reg;
1332 }
1333
1334 fs_reg *
1335 fs_visitor::emit_samplemaskin_setup()
1336 {
1337 assert(stage == MESA_SHADER_FRAGMENT);
1338 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1339 assert(devinfo->gen >= 6);
1340
1341 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1342
1343 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1344 BRW_REGISTER_TYPE_D));
1345
1346 if (wm_prog_data->persample_dispatch) {
1347 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1348 * and a mask representing which sample is being processed by the
1349 * current shader invocation.
1350 *
1351 * From the OES_sample_variables specification:
1352 * "When per-sample shading is active due to the use of a fragment input
1353 * qualified by "sample" or due to the use of the gl_SampleID or
1354 * gl_SamplePosition variables, only the bit for the current sample is
1355 * set in gl_SampleMaskIn."
1356 */
1357 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1358
1359 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1360 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1361
1362 fs_reg one = vgrf(glsl_type::int_type);
1363 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1364 abld.MOV(one, brw_imm_d(1));
1365 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1366 abld.AND(*reg, enabled_mask, coverage_mask);
1367 } else {
1368 /* In per-pixel mode, the coverage mask is sufficient. */
1369 *reg = coverage_mask;
1370 }
1371 return reg;
1372 }
1373
1374 fs_reg
1375 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1376 {
1377 if (!src.abs && !src.negate)
1378 return src;
1379
1380 fs_reg temp = bld.vgrf(src.type);
1381 bld.MOV(temp, src);
1382
1383 return temp;
1384 }
1385
1386 void
1387 fs_visitor::emit_discard_jump()
1388 {
1389 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1390
1391 /* For performance, after a discard, jump to the end of the
1392 * shader if all relevant channels have been discarded.
1393 */
1394 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1395 discard_jump->flag_subreg = 1;
1396
1397 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1398 discard_jump->predicate_inverse = true;
1399 }
1400
1401 void
1402 fs_visitor::emit_gs_thread_end()
1403 {
1404 assert(stage == MESA_SHADER_GEOMETRY);
1405
1406 struct brw_gs_prog_data *gs_prog_data =
1407 (struct brw_gs_prog_data *) prog_data;
1408
1409 if (gs_compile->control_data_header_size_bits > 0) {
1410 emit_gs_control_data_bits(this->final_gs_vertex_count);
1411 }
1412
1413 const fs_builder abld = bld.annotate("thread end");
1414 fs_inst *inst;
1415
1416 if (gs_prog_data->static_vertex_count != -1) {
1417 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1418 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1419 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1420 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1421 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1422 prev->eot = true;
1423
1424 /* Delete now dead instructions. */
1425 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1426 if (dead == prev)
1427 break;
1428 dead->remove();
1429 }
1430 return;
1431 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1432 break;
1433 }
1434 }
1435 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1436 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1437 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1438 inst->mlen = 1;
1439 } else {
1440 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1441 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1442 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1443 sources[1] = this->final_gs_vertex_count;
1444 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1445 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1446 inst->mlen = 2;
1447 }
1448 inst->eot = true;
1449 inst->offset = 0;
1450 }
1451
1452 void
1453 fs_visitor::assign_curb_setup()
1454 {
1455 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1456
1457 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1458 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1459 for (unsigned int i = 0; i < inst->sources; i++) {
1460 if (inst->src[i].file == UNIFORM) {
1461 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1462 int constant_nr;
1463 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1464 constant_nr = push_constant_loc[uniform_nr];
1465 } else {
1466 /* Section 5.11 of the OpenGL 4.1 spec says:
1467 * "Out-of-bounds reads return undefined values, which include
1468 * values from other variables of the active program or zero."
1469 * Just return the first push constant.
1470 */
1471 constant_nr = 0;
1472 }
1473
1474 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1475 constant_nr / 8,
1476 constant_nr % 8);
1477 brw_reg.abs = inst->src[i].abs;
1478 brw_reg.negate = inst->src[i].negate;
1479
1480 assert(inst->src[i].stride == 0);
1481 inst->src[i] = byte_offset(
1482 retype(brw_reg, inst->src[i].type),
1483 inst->src[i].offset % 4);
1484 }
1485 }
1486 }
1487
1488 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1489 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1490 }
1491
1492 void
1493 fs_visitor::calculate_urb_setup()
1494 {
1495 assert(stage == MESA_SHADER_FRAGMENT);
1496 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1497 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1498
1499 memset(prog_data->urb_setup, -1,
1500 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1501
1502 int urb_next = 0;
1503 /* Figure out where each of the incoming setup attributes lands. */
1504 if (devinfo->gen >= 6) {
1505 if (_mesa_bitcount_64(nir->info.inputs_read &
1506 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1507 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1508 * first 16 varying inputs, so we can put them wherever we want.
1509 * Just put them in order.
1510 *
1511 * This is useful because it means that (a) inputs not used by the
1512 * fragment shader won't take up valuable register space, and (b) we
1513 * won't have to recompile the fragment shader if it gets paired with
1514 * a different vertex (or geometry) shader.
1515 */
1516 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1517 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1518 BITFIELD64_BIT(i)) {
1519 prog_data->urb_setup[i] = urb_next++;
1520 }
1521 }
1522 } else {
1523 bool include_vue_header =
1524 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1525
1526 /* We have enough input varyings that the SF/SBE pipeline stage can't
1527 * arbitrarily rearrange them to suit our whim; we have to put them
1528 * in an order that matches the output of the previous pipeline stage
1529 * (geometry or vertex shader).
1530 */
1531 struct brw_vue_map prev_stage_vue_map;
1532 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1533 key->input_slots_valid,
1534 nir->info.separate_shader);
1535 int first_slot =
1536 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1537
1538 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1539 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1540 slot++) {
1541 int varying = prev_stage_vue_map.slot_to_varying[slot];
1542 if (varying != BRW_VARYING_SLOT_PAD &&
1543 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1544 BITFIELD64_BIT(varying))) {
1545 prog_data->urb_setup[varying] = slot - first_slot;
1546 }
1547 }
1548 urb_next = prev_stage_vue_map.num_slots - first_slot;
1549 }
1550 } else {
1551 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1552 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1553 /* Point size is packed into the header, not as a general attribute */
1554 if (i == VARYING_SLOT_PSIZ)
1555 continue;
1556
1557 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1558 /* The back color slot is skipped when the front color is
1559 * also written to. In addition, some slots can be
1560 * written in the vertex shader and not read in the
1561 * fragment shader. So the register number must always be
1562 * incremented, mapped or not.
1563 */
1564 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1565 prog_data->urb_setup[i] = urb_next;
1566 urb_next++;
1567 }
1568 }
1569
1570 /*
1571 * It's a FS only attribute, and we did interpolation for this attribute
1572 * in SF thread. So, count it here, too.
1573 *
1574 * See compile_sf_prog() for more info.
1575 */
1576 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1577 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1578 }
1579
1580 prog_data->num_varying_inputs = urb_next;
1581 }
1582
1583 void
1584 fs_visitor::assign_urb_setup()
1585 {
1586 assert(stage == MESA_SHADER_FRAGMENT);
1587 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1588
1589 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1590
1591 /* Offset all the urb_setup[] index by the actual position of the
1592 * setup regs, now that the location of the constants has been chosen.
1593 */
1594 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1595 if (inst->opcode == FS_OPCODE_LINTERP) {
1596 assert(inst->src[1].file == FIXED_GRF);
1597 inst->src[1].nr += urb_start;
1598 }
1599
1600 if (inst->opcode == FS_OPCODE_CINTERP) {
1601 assert(inst->src[0].file == FIXED_GRF);
1602 inst->src[0].nr += urb_start;
1603 }
1604 }
1605
1606 /* Each attribute is 4 setup channels, each of which is half a reg. */
1607 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1608 }
1609
1610 void
1611 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1612 {
1613 for (int i = 0; i < inst->sources; i++) {
1614 if (inst->src[i].file == ATTR) {
1615 int grf = payload.num_regs +
1616 prog_data->curb_read_length +
1617 inst->src[i].nr +
1618 inst->src[i].offset / REG_SIZE;
1619
1620 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1621 *
1622 * VertStride must be used to cross GRF register boundaries. This
1623 * rule implies that elements within a 'Width' cannot cross GRF
1624 * boundaries.
1625 *
1626 * So, for registers that are large enough, we have to split the exec
1627 * size in two and trust the compression state to sort it out.
1628 */
1629 unsigned total_size = inst->exec_size *
1630 inst->src[i].stride *
1631 type_sz(inst->src[i].type);
1632
1633 assert(total_size <= 2 * REG_SIZE);
1634 const unsigned exec_size =
1635 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1636
1637 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1638 struct brw_reg reg =
1639 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1640 inst->src[i].offset % REG_SIZE),
1641 exec_size * inst->src[i].stride,
1642 width, inst->src[i].stride);
1643 reg.abs = inst->src[i].abs;
1644 reg.negate = inst->src[i].negate;
1645
1646 inst->src[i] = reg;
1647 }
1648 }
1649 }
1650
1651 void
1652 fs_visitor::assign_vs_urb_setup()
1653 {
1654 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1655
1656 assert(stage == MESA_SHADER_VERTEX);
1657
1658 /* Each attribute is 4 regs. */
1659 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1660
1661 assert(vs_prog_data->base.urb_read_length <= 15);
1662
1663 /* Rewrite all ATTR file references to the hw grf that they land in. */
1664 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1665 convert_attr_sources_to_hw_regs(inst);
1666 }
1667 }
1668
1669 void
1670 fs_visitor::assign_tcs_single_patch_urb_setup()
1671 {
1672 assert(stage == MESA_SHADER_TESS_CTRL);
1673
1674 /* Rewrite all ATTR file references to HW_REGs. */
1675 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1676 convert_attr_sources_to_hw_regs(inst);
1677 }
1678 }
1679
1680 void
1681 fs_visitor::assign_tes_urb_setup()
1682 {
1683 assert(stage == MESA_SHADER_TESS_EVAL);
1684
1685 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1686
1687 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1688
1689 /* Rewrite all ATTR file references to HW_REGs. */
1690 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1691 convert_attr_sources_to_hw_regs(inst);
1692 }
1693 }
1694
1695 void
1696 fs_visitor::assign_gs_urb_setup()
1697 {
1698 assert(stage == MESA_SHADER_GEOMETRY);
1699
1700 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1701
1702 first_non_payload_grf +=
1703 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1704
1705 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1706 /* Rewrite all ATTR file references to GRFs. */
1707 convert_attr_sources_to_hw_regs(inst);
1708 }
1709 }
1710
1711
1712 /**
1713 * Split large virtual GRFs into separate components if we can.
1714 *
1715 * This is mostly duplicated with what brw_fs_vector_splitting does,
1716 * but that's really conservative because it's afraid of doing
1717 * splitting that doesn't result in real progress after the rest of
1718 * the optimization phases, which would cause infinite looping in
1719 * optimization. We can do it once here, safely. This also has the
1720 * opportunity to split interpolated values, or maybe even uniforms,
1721 * which we don't have at the IR level.
1722 *
1723 * We want to split, because virtual GRFs are what we register
1724 * allocate and spill (due to contiguousness requirements for some
1725 * instructions), and they're what we naturally generate in the
1726 * codegen process, but most virtual GRFs don't actually need to be
1727 * contiguous sets of GRFs. If we split, we'll end up with reduced
1728 * live intervals and better dead code elimination and coalescing.
1729 */
1730 void
1731 fs_visitor::split_virtual_grfs()
1732 {
1733 int num_vars = this->alloc.count;
1734
1735 /* Count the total number of registers */
1736 int reg_count = 0;
1737 int vgrf_to_reg[num_vars];
1738 for (int i = 0; i < num_vars; i++) {
1739 vgrf_to_reg[i] = reg_count;
1740 reg_count += alloc.sizes[i];
1741 }
1742
1743 /* An array of "split points". For each register slot, this indicates
1744 * if this slot can be separated from the previous slot. Every time an
1745 * instruction uses multiple elements of a register (as a source or
1746 * destination), we mark the used slots as inseparable. Then we go
1747 * through and split the registers into the smallest pieces we can.
1748 */
1749 bool split_points[reg_count];
1750 memset(split_points, 0, sizeof(split_points));
1751
1752 /* Mark all used registers as fully splittable */
1753 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1754 if (inst->dst.file == VGRF) {
1755 int reg = vgrf_to_reg[inst->dst.nr];
1756 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1757 split_points[reg + j] = true;
1758 }
1759
1760 for (int i = 0; i < inst->sources; i++) {
1761 if (inst->src[i].file == VGRF) {
1762 int reg = vgrf_to_reg[inst->src[i].nr];
1763 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1764 split_points[reg + j] = true;
1765 }
1766 }
1767 }
1768
1769 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1770 if (inst->dst.file == VGRF) {
1771 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1772 for (unsigned j = 1; j < regs_written(inst); j++)
1773 split_points[reg + j] = false;
1774 }
1775 for (int i = 0; i < inst->sources; i++) {
1776 if (inst->src[i].file == VGRF) {
1777 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1778 for (unsigned j = 1; j < regs_read(inst, i); j++)
1779 split_points[reg + j] = false;
1780 }
1781 }
1782 }
1783
1784 int new_virtual_grf[reg_count];
1785 int new_reg_offset[reg_count];
1786
1787 int reg = 0;
1788 for (int i = 0; i < num_vars; i++) {
1789 /* The first one should always be 0 as a quick sanity check. */
1790 assert(split_points[reg] == false);
1791
1792 /* j = 0 case */
1793 new_reg_offset[reg] = 0;
1794 reg++;
1795 int offset = 1;
1796
1797 /* j > 0 case */
1798 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1799 /* If this is a split point, reset the offset to 0 and allocate a
1800 * new virtual GRF for the previous offset many registers
1801 */
1802 if (split_points[reg]) {
1803 assert(offset <= MAX_VGRF_SIZE);
1804 int grf = alloc.allocate(offset);
1805 for (int k = reg - offset; k < reg; k++)
1806 new_virtual_grf[k] = grf;
1807 offset = 0;
1808 }
1809 new_reg_offset[reg] = offset;
1810 offset++;
1811 reg++;
1812 }
1813
1814 /* The last one gets the original register number */
1815 assert(offset <= MAX_VGRF_SIZE);
1816 alloc.sizes[i] = offset;
1817 for (int k = reg - offset; k < reg; k++)
1818 new_virtual_grf[k] = i;
1819 }
1820 assert(reg == reg_count);
1821
1822 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1823 if (inst->dst.file == VGRF) {
1824 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1825 inst->dst.nr = new_virtual_grf[reg];
1826 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1827 inst->dst.offset % REG_SIZE;
1828 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1829 }
1830 for (int i = 0; i < inst->sources; i++) {
1831 if (inst->src[i].file == VGRF) {
1832 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1833 inst->src[i].nr = new_virtual_grf[reg];
1834 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1835 inst->src[i].offset % REG_SIZE;
1836 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1837 }
1838 }
1839 }
1840 invalidate_live_intervals();
1841 }
1842
1843 /**
1844 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1845 *
1846 * During code generation, we create tons of temporary variables, many of
1847 * which get immediately killed and are never used again. Yet, in later
1848 * optimization and analysis passes, such as compute_live_intervals, we need
1849 * to loop over all the virtual GRFs. Compacting them can save a lot of
1850 * overhead.
1851 */
1852 bool
1853 fs_visitor::compact_virtual_grfs()
1854 {
1855 bool progress = false;
1856 int remap_table[this->alloc.count];
1857 memset(remap_table, -1, sizeof(remap_table));
1858
1859 /* Mark which virtual GRFs are used. */
1860 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1861 if (inst->dst.file == VGRF)
1862 remap_table[inst->dst.nr] = 0;
1863
1864 for (int i = 0; i < inst->sources; i++) {
1865 if (inst->src[i].file == VGRF)
1866 remap_table[inst->src[i].nr] = 0;
1867 }
1868 }
1869
1870 /* Compact the GRF arrays. */
1871 int new_index = 0;
1872 for (unsigned i = 0; i < this->alloc.count; i++) {
1873 if (remap_table[i] == -1) {
1874 /* We just found an unused register. This means that we are
1875 * actually going to compact something.
1876 */
1877 progress = true;
1878 } else {
1879 remap_table[i] = new_index;
1880 alloc.sizes[new_index] = alloc.sizes[i];
1881 invalidate_live_intervals();
1882 ++new_index;
1883 }
1884 }
1885
1886 this->alloc.count = new_index;
1887
1888 /* Patch all the instructions to use the newly renumbered registers */
1889 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1890 if (inst->dst.file == VGRF)
1891 inst->dst.nr = remap_table[inst->dst.nr];
1892
1893 for (int i = 0; i < inst->sources; i++) {
1894 if (inst->src[i].file == VGRF)
1895 inst->src[i].nr = remap_table[inst->src[i].nr];
1896 }
1897 }
1898
1899 /* Patch all the references to delta_xy, since they're used in register
1900 * allocation. If they're unused, switch them to BAD_FILE so we don't
1901 * think some random VGRF is delta_xy.
1902 */
1903 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1904 if (delta_xy[i].file == VGRF) {
1905 if (remap_table[delta_xy[i].nr] != -1) {
1906 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1907 } else {
1908 delta_xy[i].file = BAD_FILE;
1909 }
1910 }
1911 }
1912
1913 return progress;
1914 }
1915
1916 static void
1917 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1918 int *push_constant_loc, int *pull_constant_loc,
1919 unsigned *num_push_constants,
1920 unsigned *num_pull_constants,
1921 const unsigned max_push_components,
1922 const unsigned max_chunk_size,
1923 struct brw_stage_prog_data *stage_prog_data)
1924 {
1925 /* This is the first live uniform in the chunk */
1926 if (*chunk_start < 0)
1927 *chunk_start = uniform;
1928
1929 /* If this element does not need to be contiguous with the next, we
1930 * split at this point and everything between chunk_start and u forms a
1931 * single chunk.
1932 */
1933 if (!contiguous) {
1934 unsigned chunk_size = uniform - *chunk_start + 1;
1935
1936 /* Decide whether we should push or pull this parameter. In the
1937 * Vulkan driver, push constants are explicitly exposed via the API
1938 * so we push everything. In GL, we only push small arrays.
1939 */
1940 if (stage_prog_data->pull_param == NULL ||
1941 (*num_push_constants + chunk_size <= max_push_components &&
1942 chunk_size <= max_chunk_size)) {
1943 assert(*num_push_constants + chunk_size <= max_push_components);
1944 for (unsigned j = *chunk_start; j <= uniform; j++)
1945 push_constant_loc[j] = (*num_push_constants)++;
1946 } else {
1947 for (unsigned j = *chunk_start; j <= uniform; j++)
1948 pull_constant_loc[j] = (*num_pull_constants)++;
1949 }
1950
1951 *chunk_start = -1;
1952 }
1953 }
1954
1955 /**
1956 * Assign UNIFORM file registers to either push constants or pull constants.
1957 *
1958 * We allow a fragment shader to have more than the specified minimum
1959 * maximum number of fragment shader uniform components (64). If
1960 * there are too many of these, they'd fill up all of register space.
1961 * So, this will push some of them out to the pull constant buffer and
1962 * update the program to load them.
1963 */
1964 void
1965 fs_visitor::assign_constant_locations()
1966 {
1967 /* Only the first compile gets to decide on locations. */
1968 if (dispatch_width != min_dispatch_width)
1969 return;
1970
1971 bool is_live[uniforms];
1972 memset(is_live, 0, sizeof(is_live));
1973 bool is_live_64bit[uniforms];
1974 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1975
1976 /* For each uniform slot, a value of true indicates that the given slot and
1977 * the next slot must remain contiguous. This is used to keep us from
1978 * splitting arrays apart.
1979 */
1980 bool contiguous[uniforms];
1981 memset(contiguous, 0, sizeof(contiguous));
1982
1983 int thread_local_id_index =
1984 (stage == MESA_SHADER_COMPUTE) ?
1985 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index : -1;
1986
1987 /* First, we walk through the instructions and do two things:
1988 *
1989 * 1) Figure out which uniforms are live.
1990 *
1991 * 2) Mark any indirectly used ranges of registers as contiguous.
1992 *
1993 * Note that we don't move constant-indexed accesses to arrays. No
1994 * testing has been done of the performance impact of this choice.
1995 */
1996 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1997 for (int i = 0 ; i < inst->sources; i++) {
1998 if (inst->src[i].file != UNIFORM)
1999 continue;
2000
2001 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
2002
2003 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2004 assert(inst->src[2].ud % 4 == 0);
2005 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
2006 assert(last < uniforms);
2007
2008 for (unsigned j = constant_nr; j < last; j++) {
2009 is_live[j] = true;
2010 contiguous[j] = true;
2011 if (type_sz(inst->src[i].type) == 8) {
2012 is_live_64bit[j] = true;
2013 }
2014 }
2015 is_live[last] = true;
2016 } else {
2017 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2018 int regs_read = inst->components_read(i) *
2019 type_sz(inst->src[i].type) / 4;
2020 for (int j = 0; j < regs_read; j++) {
2021 is_live[constant_nr + j] = true;
2022 if (type_sz(inst->src[i].type) == 8) {
2023 is_live_64bit[constant_nr + j] = true;
2024 }
2025 }
2026 }
2027 }
2028 }
2029 }
2030
2031 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2032 thread_local_id_index = -1;
2033
2034 /* Only allow 16 registers (128 uniform components) as push constants.
2035 *
2036 * Just demote the end of the list. We could probably do better
2037 * here, demoting things that are rarely used in the program first.
2038 *
2039 * If changing this value, note the limitation about total_regs in
2040 * brw_curbe.c.
2041 */
2042 unsigned int max_push_components = 16 * 8;
2043 if (thread_local_id_index >= 0)
2044 max_push_components--; /* Save a slot for the thread ID */
2045
2046 /* We push small arrays, but no bigger than 16 floats. This is big enough
2047 * for a vec4 but hopefully not large enough to push out other stuff. We
2048 * should probably use a better heuristic at some point.
2049 */
2050 const unsigned int max_chunk_size = 16;
2051
2052 unsigned int num_push_constants = 0;
2053 unsigned int num_pull_constants = 0;
2054
2055 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2056 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2057
2058 /* Default to -1 meaning no location */
2059 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2060 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2061
2062 int chunk_start = -1;
2063
2064 /* First push 64-bit uniforms to ensure they are properly aligned */
2065 for (unsigned u = 0; u < uniforms; u++) {
2066 if (!is_live[u] || !is_live_64bit[u])
2067 continue;
2068
2069 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2070 push_constant_loc, pull_constant_loc,
2071 &num_push_constants, &num_pull_constants,
2072 max_push_components, max_chunk_size,
2073 stage_prog_data);
2074
2075 }
2076
2077 /* Then push the rest of uniforms */
2078 for (unsigned u = 0; u < uniforms; u++) {
2079 if (!is_live[u] || is_live_64bit[u])
2080 continue;
2081
2082 /* Skip thread_local_id_index to put it in the last push register. */
2083 if (thread_local_id_index == (int)u)
2084 continue;
2085
2086 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2087 push_constant_loc, pull_constant_loc,
2088 &num_push_constants, &num_pull_constants,
2089 max_push_components, max_chunk_size,
2090 stage_prog_data);
2091 }
2092
2093 /* Add the CS local thread ID uniform at the end of the push constants */
2094 if (thread_local_id_index >= 0)
2095 push_constant_loc[thread_local_id_index] = num_push_constants++;
2096
2097 /* As the uniforms are going to be reordered, take the data from a temporary
2098 * copy of the original param[].
2099 */
2100 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2101 stage_prog_data->nr_params);
2102 memcpy(param, stage_prog_data->param,
2103 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2104 stage_prog_data->nr_params = num_push_constants;
2105 stage_prog_data->nr_pull_params = num_pull_constants;
2106
2107 /* Up until now, the param[] array has been indexed by reg + reg_offset
2108 * of UNIFORM registers. Move pull constants into pull_param[] and
2109 * condense param[] to only contain the uniforms we chose to push.
2110 *
2111 * NOTE: Because we are condensing the params[] array, we know that
2112 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2113 * having to make a copy.
2114 */
2115 int new_thread_local_id_index = -1;
2116 for (unsigned int i = 0; i < uniforms; i++) {
2117 const gl_constant_value *value = param[i];
2118
2119 if (pull_constant_loc[i] != -1) {
2120 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2121 } else if (push_constant_loc[i] != -1) {
2122 stage_prog_data->param[push_constant_loc[i]] = value;
2123 if (thread_local_id_index == (int)i)
2124 new_thread_local_id_index = push_constant_loc[i];
2125 }
2126 }
2127 ralloc_free(param);
2128
2129 if (stage == MESA_SHADER_COMPUTE)
2130 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index =
2131 new_thread_local_id_index;
2132 }
2133
2134 /**
2135 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2136 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2137 */
2138 void
2139 fs_visitor::lower_constant_loads()
2140 {
2141 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2142
2143 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2144 /* Set up the annotation tracking for new generated instructions. */
2145 const fs_builder ibld(this, block, inst);
2146
2147 for (int i = 0; i < inst->sources; i++) {
2148 if (inst->src[i].file != UNIFORM)
2149 continue;
2150
2151 /* We'll handle this case later */
2152 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2153 continue;
2154
2155 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2156 if (location >= uniforms)
2157 continue; /* Out of bounds access */
2158
2159 int pull_index = pull_constant_loc[location];
2160
2161 if (pull_index == -1)
2162 continue;
2163
2164 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2165 fs_reg dst;
2166
2167 if (type_sz(inst->src[i].type) <= 4)
2168 dst = vgrf(glsl_type::float_type);
2169 else
2170 dst = vgrf(glsl_type::double_type);
2171
2172 assert(inst->src[i].stride == 0);
2173
2174 const fs_builder ubld = ibld.exec_all().group(8, 0);
2175 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2176 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2177 dst, brw_imm_ud(index), offset);
2178
2179 /* Rewrite the instruction to use the temporary VGRF. */
2180 inst->src[i].file = VGRF;
2181 inst->src[i].nr = dst.nr;
2182 inst->src[i].offset %= 4;
2183 inst->src[i].set_smear((pull_index & 3) * 4 /
2184 type_sz(inst->src[i].type));
2185
2186 brw_mark_surface_used(prog_data, index);
2187 }
2188
2189 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2190 inst->src[0].file == UNIFORM) {
2191
2192 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2193 if (location >= uniforms)
2194 continue; /* Out of bounds access */
2195
2196 int pull_index = pull_constant_loc[location];
2197
2198 if (pull_index == -1)
2199 continue;
2200
2201 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2202 brw_imm_ud(index),
2203 inst->src[1],
2204 pull_index * 4);
2205 inst->remove(block);
2206
2207 brw_mark_surface_used(prog_data, index);
2208 }
2209 }
2210 invalidate_live_intervals();
2211 }
2212
2213 bool
2214 fs_visitor::opt_algebraic()
2215 {
2216 bool progress = false;
2217
2218 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2219 switch (inst->opcode) {
2220 case BRW_OPCODE_MOV:
2221 if (inst->src[0].file != IMM)
2222 break;
2223
2224 if (inst->saturate) {
2225 if (inst->dst.type != inst->src[0].type)
2226 assert(!"unimplemented: saturate mixed types");
2227
2228 if (brw_saturate_immediate(inst->dst.type,
2229 &inst->src[0].as_brw_reg())) {
2230 inst->saturate = false;
2231 progress = true;
2232 }
2233 }
2234 break;
2235
2236 case BRW_OPCODE_MUL:
2237 if (inst->src[1].file != IMM)
2238 continue;
2239
2240 /* a * 1.0 = a */
2241 if (inst->src[1].is_one()) {
2242 inst->opcode = BRW_OPCODE_MOV;
2243 inst->src[1] = reg_undef;
2244 progress = true;
2245 break;
2246 }
2247
2248 /* a * -1.0 = -a */
2249 if (inst->src[1].is_negative_one()) {
2250 inst->opcode = BRW_OPCODE_MOV;
2251 inst->src[0].negate = !inst->src[0].negate;
2252 inst->src[1] = reg_undef;
2253 progress = true;
2254 break;
2255 }
2256
2257 /* a * 0.0 = 0.0 */
2258 if (inst->src[1].is_zero()) {
2259 inst->opcode = BRW_OPCODE_MOV;
2260 inst->src[0] = inst->src[1];
2261 inst->src[1] = reg_undef;
2262 progress = true;
2263 break;
2264 }
2265
2266 if (inst->src[0].file == IMM) {
2267 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2268 inst->opcode = BRW_OPCODE_MOV;
2269 inst->src[0].f *= inst->src[1].f;
2270 inst->src[1] = reg_undef;
2271 progress = true;
2272 break;
2273 }
2274 break;
2275 case BRW_OPCODE_ADD:
2276 if (inst->src[1].file != IMM)
2277 continue;
2278
2279 /* a + 0.0 = a */
2280 if (inst->src[1].is_zero()) {
2281 inst->opcode = BRW_OPCODE_MOV;
2282 inst->src[1] = reg_undef;
2283 progress = true;
2284 break;
2285 }
2286
2287 if (inst->src[0].file == IMM) {
2288 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2289 inst->opcode = BRW_OPCODE_MOV;
2290 inst->src[0].f += inst->src[1].f;
2291 inst->src[1] = reg_undef;
2292 progress = true;
2293 break;
2294 }
2295 break;
2296 case BRW_OPCODE_OR:
2297 if (inst->src[0].equals(inst->src[1])) {
2298 inst->opcode = BRW_OPCODE_MOV;
2299 inst->src[1] = reg_undef;
2300 progress = true;
2301 break;
2302 }
2303 break;
2304 case BRW_OPCODE_LRP:
2305 if (inst->src[1].equals(inst->src[2])) {
2306 inst->opcode = BRW_OPCODE_MOV;
2307 inst->src[0] = inst->src[1];
2308 inst->src[1] = reg_undef;
2309 inst->src[2] = reg_undef;
2310 progress = true;
2311 break;
2312 }
2313 break;
2314 case BRW_OPCODE_CMP:
2315 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2316 inst->src[0].abs &&
2317 inst->src[0].negate &&
2318 inst->src[1].is_zero()) {
2319 inst->src[0].abs = false;
2320 inst->src[0].negate = false;
2321 inst->conditional_mod = BRW_CONDITIONAL_Z;
2322 progress = true;
2323 break;
2324 }
2325 break;
2326 case BRW_OPCODE_SEL:
2327 if (inst->src[0].equals(inst->src[1])) {
2328 inst->opcode = BRW_OPCODE_MOV;
2329 inst->src[1] = reg_undef;
2330 inst->predicate = BRW_PREDICATE_NONE;
2331 inst->predicate_inverse = false;
2332 progress = true;
2333 } else if (inst->saturate && inst->src[1].file == IMM) {
2334 switch (inst->conditional_mod) {
2335 case BRW_CONDITIONAL_LE:
2336 case BRW_CONDITIONAL_L:
2337 switch (inst->src[1].type) {
2338 case BRW_REGISTER_TYPE_F:
2339 if (inst->src[1].f >= 1.0f) {
2340 inst->opcode = BRW_OPCODE_MOV;
2341 inst->src[1] = reg_undef;
2342 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2343 progress = true;
2344 }
2345 break;
2346 default:
2347 break;
2348 }
2349 break;
2350 case BRW_CONDITIONAL_GE:
2351 case BRW_CONDITIONAL_G:
2352 switch (inst->src[1].type) {
2353 case BRW_REGISTER_TYPE_F:
2354 if (inst->src[1].f <= 0.0f) {
2355 inst->opcode = BRW_OPCODE_MOV;
2356 inst->src[1] = reg_undef;
2357 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2358 progress = true;
2359 }
2360 break;
2361 default:
2362 break;
2363 }
2364 default:
2365 break;
2366 }
2367 }
2368 break;
2369 case BRW_OPCODE_MAD:
2370 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2371 inst->opcode = BRW_OPCODE_MOV;
2372 inst->src[1] = reg_undef;
2373 inst->src[2] = reg_undef;
2374 progress = true;
2375 } else if (inst->src[0].is_zero()) {
2376 inst->opcode = BRW_OPCODE_MUL;
2377 inst->src[0] = inst->src[2];
2378 inst->src[2] = reg_undef;
2379 progress = true;
2380 } else if (inst->src[1].is_one()) {
2381 inst->opcode = BRW_OPCODE_ADD;
2382 inst->src[1] = inst->src[2];
2383 inst->src[2] = reg_undef;
2384 progress = true;
2385 } else if (inst->src[2].is_one()) {
2386 inst->opcode = BRW_OPCODE_ADD;
2387 inst->src[2] = reg_undef;
2388 progress = true;
2389 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2390 inst->opcode = BRW_OPCODE_ADD;
2391 inst->src[1].f *= inst->src[2].f;
2392 inst->src[2] = reg_undef;
2393 progress = true;
2394 }
2395 break;
2396 case SHADER_OPCODE_BROADCAST:
2397 if (is_uniform(inst->src[0])) {
2398 inst->opcode = BRW_OPCODE_MOV;
2399 inst->sources = 1;
2400 inst->force_writemask_all = true;
2401 progress = true;
2402 } else if (inst->src[1].file == IMM) {
2403 inst->opcode = BRW_OPCODE_MOV;
2404 inst->src[0] = component(inst->src[0],
2405 inst->src[1].ud);
2406 inst->sources = 1;
2407 inst->force_writemask_all = true;
2408 progress = true;
2409 }
2410 break;
2411
2412 default:
2413 break;
2414 }
2415
2416 /* Swap if src[0] is immediate. */
2417 if (progress && inst->is_commutative()) {
2418 if (inst->src[0].file == IMM) {
2419 fs_reg tmp = inst->src[1];
2420 inst->src[1] = inst->src[0];
2421 inst->src[0] = tmp;
2422 }
2423 }
2424 }
2425 return progress;
2426 }
2427
2428 /**
2429 * Optimize sample messages that have constant zero values for the trailing
2430 * texture coordinates. We can just reduce the message length for these
2431 * instructions instead of reserving a register for it. Trailing parameters
2432 * that aren't sent default to zero anyway. This will cause the dead code
2433 * eliminator to remove the MOV instruction that would otherwise be emitted to
2434 * set up the zero value.
2435 */
2436 bool
2437 fs_visitor::opt_zero_samples()
2438 {
2439 /* Gen4 infers the texturing opcode based on the message length so we can't
2440 * change it.
2441 */
2442 if (devinfo->gen < 5)
2443 return false;
2444
2445 bool progress = false;
2446
2447 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2448 if (!inst->is_tex())
2449 continue;
2450
2451 fs_inst *load_payload = (fs_inst *) inst->prev;
2452
2453 if (load_payload->is_head_sentinel() ||
2454 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2455 continue;
2456
2457 /* We don't want to remove the message header or the first parameter.
2458 * Removing the first parameter is not allowed, see the Haswell PRM
2459 * volume 7, page 149:
2460 *
2461 * "Parameter 0 is required except for the sampleinfo message, which
2462 * has no parameter 0"
2463 */
2464 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2465 load_payload->src[(inst->mlen - inst->header_size) /
2466 (inst->exec_size / 8) +
2467 inst->header_size - 1].is_zero()) {
2468 inst->mlen -= inst->exec_size / 8;
2469 progress = true;
2470 }
2471 }
2472
2473 if (progress)
2474 invalidate_live_intervals();
2475
2476 return progress;
2477 }
2478
2479 /**
2480 * Optimize sample messages which are followed by the final RT write.
2481 *
2482 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2483 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2484 * final texturing results copied to the framebuffer write payload and modify
2485 * them to write to the framebuffer directly.
2486 */
2487 bool
2488 fs_visitor::opt_sampler_eot()
2489 {
2490 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2491
2492 if (stage != MESA_SHADER_FRAGMENT)
2493 return false;
2494
2495 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2496 return false;
2497
2498 /* FINISHME: It should be possible to implement this optimization when there
2499 * are multiple drawbuffers.
2500 */
2501 if (key->nr_color_regions != 1)
2502 return false;
2503
2504 /* Requires emitting a bunch of saturating MOV instructions during logical
2505 * send lowering to clamp the color payload, which the sampler unit isn't
2506 * going to do for us.
2507 */
2508 if (key->clamp_fragment_color)
2509 return false;
2510
2511 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2512 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2513 fs_inst *fb_write = (fs_inst *)block->end();
2514 assert(fb_write->eot);
2515 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2516
2517 /* There wasn't one; nothing to do. */
2518 if (unlikely(fb_write->prev->is_head_sentinel()))
2519 return false;
2520
2521 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2522
2523 /* 3D Sampler » Messages » Message Format
2524 *
2525 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2526 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2527 */
2528 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2529 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2530 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2531 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2532 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2533 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2534 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2535 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2536 return false;
2537
2538 /* XXX - This shouldn't be necessary. */
2539 if (tex_inst->prev->is_head_sentinel())
2540 return false;
2541
2542 /* Check that the FB write sources are fully initialized by the single
2543 * texturing instruction.
2544 */
2545 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2546 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2547 if (!fb_write->src[i].equals(tex_inst->dst) ||
2548 fb_write->size_read(i) != tex_inst->size_written)
2549 return false;
2550 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2551 if (fb_write->src[i].file != BAD_FILE)
2552 return false;
2553 }
2554 }
2555
2556 assert(!tex_inst->eot); /* We can't get here twice */
2557 assert((tex_inst->offset & (0xff << 24)) == 0);
2558
2559 const fs_builder ibld(this, block, tex_inst);
2560
2561 tex_inst->offset |= fb_write->target << 24;
2562 tex_inst->eot = true;
2563 tex_inst->dst = ibld.null_reg_ud();
2564 tex_inst->size_written = 0;
2565 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2566
2567 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2568 * flag and submit a header together with the sampler message as required
2569 * by the hardware.
2570 */
2571 invalidate_live_intervals();
2572 return true;
2573 }
2574
2575 bool
2576 fs_visitor::opt_register_renaming()
2577 {
2578 bool progress = false;
2579 int depth = 0;
2580
2581 int remap[alloc.count];
2582 memset(remap, -1, sizeof(int) * alloc.count);
2583
2584 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2585 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2586 depth++;
2587 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2588 inst->opcode == BRW_OPCODE_WHILE) {
2589 depth--;
2590 }
2591
2592 /* Rewrite instruction sources. */
2593 for (int i = 0; i < inst->sources; i++) {
2594 if (inst->src[i].file == VGRF &&
2595 remap[inst->src[i].nr] != -1 &&
2596 remap[inst->src[i].nr] != inst->src[i].nr) {
2597 inst->src[i].nr = remap[inst->src[i].nr];
2598 progress = true;
2599 }
2600 }
2601
2602 const int dst = inst->dst.nr;
2603
2604 if (depth == 0 &&
2605 inst->dst.file == VGRF &&
2606 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2607 !inst->is_partial_write()) {
2608 if (remap[dst] == -1) {
2609 remap[dst] = dst;
2610 } else {
2611 remap[dst] = alloc.allocate(regs_written(inst));
2612 inst->dst.nr = remap[dst];
2613 progress = true;
2614 }
2615 } else if (inst->dst.file == VGRF &&
2616 remap[dst] != -1 &&
2617 remap[dst] != dst) {
2618 inst->dst.nr = remap[dst];
2619 progress = true;
2620 }
2621 }
2622
2623 if (progress) {
2624 invalidate_live_intervals();
2625
2626 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2627 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2628 delta_xy[i].nr = remap[delta_xy[i].nr];
2629 }
2630 }
2631 }
2632
2633 return progress;
2634 }
2635
2636 /**
2637 * Remove redundant or useless discard jumps.
2638 *
2639 * For example, we can eliminate jumps in the following sequence:
2640 *
2641 * discard-jump (redundant with the next jump)
2642 * discard-jump (useless; jumps to the next instruction)
2643 * placeholder-halt
2644 */
2645 bool
2646 fs_visitor::opt_redundant_discard_jumps()
2647 {
2648 bool progress = false;
2649
2650 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2651
2652 fs_inst *placeholder_halt = NULL;
2653 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2654 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2655 placeholder_halt = inst;
2656 break;
2657 }
2658 }
2659
2660 if (!placeholder_halt)
2661 return false;
2662
2663 /* Delete any HALTs immediately before the placeholder halt. */
2664 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2665 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2666 prev = (fs_inst *) placeholder_halt->prev) {
2667 prev->remove(last_bblock);
2668 progress = true;
2669 }
2670
2671 if (progress)
2672 invalidate_live_intervals();
2673
2674 return progress;
2675 }
2676
2677 /**
2678 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2679 * from \p r which overlaps the region starting at \p r and spanning \p n GRF
2680 * units.
2681 */
2682 static inline unsigned
2683 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned n)
2684 {
2685 const int rel_offset = (reg_offset(s) - reg_offset(r)) / REG_SIZE;
2686 assert(reg_space(r) == reg_space(s) &&
2687 rel_offset >= 0 && rel_offset < int(8 * sizeof(unsigned)));
2688 return ((1 << n) - 1) << rel_offset;
2689 }
2690
2691 bool
2692 fs_visitor::compute_to_mrf()
2693 {
2694 bool progress = false;
2695 int next_ip = 0;
2696
2697 /* No MRFs on Gen >= 7. */
2698 if (devinfo->gen >= 7)
2699 return false;
2700
2701 calculate_live_intervals();
2702
2703 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2704 int ip = next_ip;
2705 next_ip++;
2706
2707 if (inst->opcode != BRW_OPCODE_MOV ||
2708 inst->is_partial_write() ||
2709 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2710 inst->dst.type != inst->src[0].type ||
2711 inst->src[0].abs || inst->src[0].negate ||
2712 !inst->src[0].is_contiguous() ||
2713 inst->src[0].offset % REG_SIZE != 0)
2714 continue;
2715
2716 /* Can't compute-to-MRF this GRF if someone else was going to
2717 * read it later.
2718 */
2719 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2720 continue;
2721
2722 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2723 * things that computed the value of all GRFs of the source region. The
2724 * regs_left bitset keeps track of the registers we haven't yet found a
2725 * generating instruction for.
2726 */
2727 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2728
2729 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2730 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2731 inst->src[0], inst->size_read(0))) {
2732 /* Found the last thing to write our reg we want to turn
2733 * into a compute-to-MRF.
2734 */
2735
2736 /* If this one instruction didn't populate all the
2737 * channels, bail. We might be able to rewrite everything
2738 * that writes that reg, but it would require smarter
2739 * tracking.
2740 */
2741 if (scan_inst->is_partial_write())
2742 break;
2743
2744 /* Handling things not fully contained in the source of the copy
2745 * would need us to understand coalescing out more than one MOV at
2746 * a time.
2747 */
2748 if (scan_inst->dst.offset / REG_SIZE < inst->src[0].offset / REG_SIZE ||
2749 scan_inst->dst.offset / REG_SIZE + DIV_ROUND_UP(scan_inst->size_written, REG_SIZE) >
2750 inst->src[0].offset / REG_SIZE + DIV_ROUND_UP(inst->size_read(0), REG_SIZE))
2751 break;
2752
2753 /* SEND instructions can't have MRF as a destination. */
2754 if (scan_inst->mlen)
2755 break;
2756
2757 if (devinfo->gen == 6) {
2758 /* gen6 math instructions must have the destination be
2759 * GRF, so no compute-to-MRF for them.
2760 */
2761 if (scan_inst->is_math()) {
2762 break;
2763 }
2764 }
2765
2766 /* Clear the bits for any registers this instruction overwrites. */
2767 regs_left &= ~mask_relative_to(
2768 inst->src[0], scan_inst->dst, DIV_ROUND_UP(scan_inst->size_written,
2769 REG_SIZE));
2770 if (!regs_left)
2771 break;
2772 }
2773
2774 /* We don't handle control flow here. Most computation of
2775 * values that end up in MRFs are shortly before the MRF
2776 * write anyway.
2777 */
2778 if (block->start() == scan_inst)
2779 break;
2780
2781 /* You can't read from an MRF, so if someone else reads our
2782 * MRF's source GRF that we wanted to rewrite, that stops us.
2783 */
2784 bool interfered = false;
2785 for (int i = 0; i < scan_inst->sources; i++) {
2786 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2787 inst->src[0], inst->size_read(0))) {
2788 interfered = true;
2789 }
2790 }
2791 if (interfered)
2792 break;
2793
2794 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2795 inst->dst, inst->size_written)) {
2796 /* If somebody else writes our MRF here, we can't
2797 * compute-to-MRF before that.
2798 */
2799 break;
2800 }
2801
2802 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2803 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2804 inst->dst, inst->size_written)) {
2805 /* Found a SEND instruction, which means that there are
2806 * live values in MRFs from base_mrf to base_mrf +
2807 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2808 * above it.
2809 */
2810 break;
2811 }
2812 }
2813
2814 if (regs_left)
2815 continue;
2816
2817 /* Found all generating instructions of our MRF's source value, so it
2818 * should be safe to rewrite them to point to the MRF directly.
2819 */
2820 regs_left = (1 << regs_read(inst, 0)) - 1;
2821
2822 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2823 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2824 inst->src[0], inst->size_read(0))) {
2825 /* Clear the bits for any registers this instruction overwrites. */
2826 regs_left &= ~mask_relative_to(
2827 inst->src[0], scan_inst->dst, DIV_ROUND_UP(scan_inst->size_written,
2828 REG_SIZE));
2829
2830 const unsigned rel_offset = (reg_offset(scan_inst->dst) -
2831 reg_offset(inst->src[0])) / REG_SIZE;
2832
2833 if (inst->dst.nr & BRW_MRF_COMPR4) {
2834 /* Apply the same address transformation done by the hardware
2835 * for COMPR4 MRF writes.
2836 */
2837 assert(rel_offset < 2);
2838 scan_inst->dst.nr = inst->dst.nr + rel_offset * 4;
2839
2840 /* Clear the COMPR4 bit if the generating instruction is not
2841 * compressed.
2842 */
2843 if (scan_inst->size_written < 2 * REG_SIZE)
2844 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2845
2846 } else {
2847 /* Calculate the MRF number the result of this instruction is
2848 * ultimately written to.
2849 */
2850 scan_inst->dst.nr = inst->dst.nr + rel_offset;
2851 }
2852
2853 scan_inst->dst.file = MRF;
2854 scan_inst->dst.offset %= REG_SIZE;
2855 scan_inst->saturate |= inst->saturate;
2856 if (!regs_left)
2857 break;
2858 }
2859 }
2860
2861 assert(!regs_left);
2862 inst->remove(block);
2863 progress = true;
2864 }
2865
2866 if (progress)
2867 invalidate_live_intervals();
2868
2869 return progress;
2870 }
2871
2872 /**
2873 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2874 * flow. We could probably do better here with some form of divergence
2875 * analysis.
2876 */
2877 bool
2878 fs_visitor::eliminate_find_live_channel()
2879 {
2880 bool progress = false;
2881 unsigned depth = 0;
2882
2883 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2884 switch (inst->opcode) {
2885 case BRW_OPCODE_IF:
2886 case BRW_OPCODE_DO:
2887 depth++;
2888 break;
2889
2890 case BRW_OPCODE_ENDIF:
2891 case BRW_OPCODE_WHILE:
2892 depth--;
2893 break;
2894
2895 case FS_OPCODE_DISCARD_JUMP:
2896 /* This can potentially make control flow non-uniform until the end
2897 * of the program.
2898 */
2899 return progress;
2900
2901 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2902 if (depth == 0) {
2903 inst->opcode = BRW_OPCODE_MOV;
2904 inst->src[0] = brw_imm_ud(0u);
2905 inst->sources = 1;
2906 inst->force_writemask_all = true;
2907 progress = true;
2908 }
2909 break;
2910
2911 default:
2912 break;
2913 }
2914 }
2915
2916 return progress;
2917 }
2918
2919 /**
2920 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2921 * instructions to FS_OPCODE_REP_FB_WRITE.
2922 */
2923 void
2924 fs_visitor::emit_repclear_shader()
2925 {
2926 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2927 int base_mrf = 0;
2928 int color_mrf = base_mrf + 2;
2929 fs_inst *mov;
2930
2931 if (uniforms > 0) {
2932 mov = bld.exec_all().group(4, 0)
2933 .MOV(brw_message_reg(color_mrf),
2934 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2935 } else {
2936 struct brw_reg reg =
2937 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2938 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2939 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2940
2941 mov = bld.exec_all().group(4, 0)
2942 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2943 }
2944
2945 fs_inst *write;
2946 if (key->nr_color_regions == 1) {
2947 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2948 write->saturate = key->clamp_fragment_color;
2949 write->base_mrf = color_mrf;
2950 write->target = 0;
2951 write->header_size = 0;
2952 write->mlen = 1;
2953 } else {
2954 assume(key->nr_color_regions > 0);
2955 for (int i = 0; i < key->nr_color_regions; ++i) {
2956 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2957 write->saturate = key->clamp_fragment_color;
2958 write->base_mrf = base_mrf;
2959 write->target = i;
2960 write->header_size = 2;
2961 write->mlen = 3;
2962 }
2963 }
2964 write->eot = true;
2965
2966 calculate_cfg();
2967
2968 assign_constant_locations();
2969 assign_curb_setup();
2970
2971 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2972 if (uniforms > 0) {
2973 assert(mov->src[0].file == FIXED_GRF);
2974 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2975 }
2976 }
2977
2978 /**
2979 * Walks through basic blocks, looking for repeated MRF writes and
2980 * removing the later ones.
2981 */
2982 bool
2983 fs_visitor::remove_duplicate_mrf_writes()
2984 {
2985 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2986 bool progress = false;
2987
2988 /* Need to update the MRF tracking for compressed instructions. */
2989 if (dispatch_width >= 16)
2990 return false;
2991
2992 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2993
2994 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2995 if (inst->is_control_flow()) {
2996 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2997 }
2998
2999 if (inst->opcode == BRW_OPCODE_MOV &&
3000 inst->dst.file == MRF) {
3001 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3002 if (prev_inst && inst->equals(prev_inst)) {
3003 inst->remove(block);
3004 progress = true;
3005 continue;
3006 }
3007 }
3008
3009 /* Clear out the last-write records for MRFs that were overwritten. */
3010 if (inst->dst.file == MRF) {
3011 last_mrf_move[inst->dst.nr] = NULL;
3012 }
3013
3014 if (inst->mlen > 0 && inst->base_mrf != -1) {
3015 /* Found a SEND instruction, which will include two or fewer
3016 * implied MRF writes. We could do better here.
3017 */
3018 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3019 last_mrf_move[inst->base_mrf + i] = NULL;
3020 }
3021 }
3022
3023 /* Clear out any MRF move records whose sources got overwritten. */
3024 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3025 if (last_mrf_move[i] &&
3026 regions_overlap(inst->dst, inst->size_written,
3027 last_mrf_move[i]->src[0],
3028 last_mrf_move[i]->size_read(0))) {
3029 last_mrf_move[i] = NULL;
3030 }
3031 }
3032
3033 if (inst->opcode == BRW_OPCODE_MOV &&
3034 inst->dst.file == MRF &&
3035 inst->src[0].file != ARF &&
3036 !inst->is_partial_write()) {
3037 last_mrf_move[inst->dst.nr] = inst;
3038 }
3039 }
3040
3041 if (progress)
3042 invalidate_live_intervals();
3043
3044 return progress;
3045 }
3046
3047 static void
3048 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3049 {
3050 /* Clear the flag for registers that actually got read (as expected). */
3051 for (int i = 0; i < inst->sources; i++) {
3052 int grf;
3053 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3054 grf = inst->src[i].nr;
3055 } else {
3056 continue;
3057 }
3058
3059 if (grf >= first_grf &&
3060 grf < first_grf + grf_len) {
3061 deps[grf - first_grf] = false;
3062 if (inst->exec_size == 16)
3063 deps[grf - first_grf + 1] = false;
3064 }
3065 }
3066 }
3067
3068 /**
3069 * Implements this workaround for the original 965:
3070 *
3071 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3072 * check for post destination dependencies on this instruction, software
3073 * must ensure that there is no destination hazard for the case of ‘write
3074 * followed by a posted write’ shown in the following example.
3075 *
3076 * 1. mov r3 0
3077 * 2. send r3.xy <rest of send instruction>
3078 * 3. mov r2 r3
3079 *
3080 * Due to no post-destination dependency check on the ‘send’, the above
3081 * code sequence could have two instructions (1 and 2) in flight at the
3082 * same time that both consider ‘r3’ as the target of their final writes.
3083 */
3084 void
3085 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3086 fs_inst *inst)
3087 {
3088 int write_len = regs_written(inst);
3089 int first_write_grf = inst->dst.nr;
3090 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3091 assert(write_len < (int)sizeof(needs_dep) - 1);
3092
3093 memset(needs_dep, false, sizeof(needs_dep));
3094 memset(needs_dep, true, write_len);
3095
3096 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3097
3098 /* Walk backwards looking for writes to registers we're writing which
3099 * aren't read since being written. If we hit the start of the program,
3100 * we assume that there are no outstanding dependencies on entry to the
3101 * program.
3102 */
3103 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3104 /* If we hit control flow, assume that there *are* outstanding
3105 * dependencies, and force their cleanup before our instruction.
3106 */
3107 if (block->start() == scan_inst && block->num != 0) {
3108 for (int i = 0; i < write_len; i++) {
3109 if (needs_dep[i])
3110 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3111 first_write_grf + i);
3112 }
3113 return;
3114 }
3115
3116 /* We insert our reads as late as possible on the assumption that any
3117 * instruction but a MOV that might have left us an outstanding
3118 * dependency has more latency than a MOV.
3119 */
3120 if (scan_inst->dst.file == VGRF) {
3121 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3122 int reg = scan_inst->dst.nr + i;
3123
3124 if (reg >= first_write_grf &&
3125 reg < first_write_grf + write_len &&
3126 needs_dep[reg - first_write_grf]) {
3127 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3128 needs_dep[reg - first_write_grf] = false;
3129 if (scan_inst->exec_size == 16)
3130 needs_dep[reg - first_write_grf + 1] = false;
3131 }
3132 }
3133 }
3134
3135 /* Clear the flag for registers that actually got read (as expected). */
3136 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3137
3138 /* Continue the loop only if we haven't resolved all the dependencies */
3139 int i;
3140 for (i = 0; i < write_len; i++) {
3141 if (needs_dep[i])
3142 break;
3143 }
3144 if (i == write_len)
3145 return;
3146 }
3147 }
3148
3149 /**
3150 * Implements this workaround for the original 965:
3151 *
3152 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3153 * used as a destination register until after it has been sourced by an
3154 * instruction with a different destination register.
3155 */
3156 void
3157 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3158 {
3159 int write_len = regs_written(inst);
3160 int first_write_grf = inst->dst.nr;
3161 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3162 assert(write_len < (int)sizeof(needs_dep) - 1);
3163
3164 memset(needs_dep, false, sizeof(needs_dep));
3165 memset(needs_dep, true, write_len);
3166 /* Walk forwards looking for writes to registers we're writing which aren't
3167 * read before being written.
3168 */
3169 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3170 /* If we hit control flow, force resolve all remaining dependencies. */
3171 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3172 for (int i = 0; i < write_len; i++) {
3173 if (needs_dep[i])
3174 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3175 first_write_grf + i);
3176 }
3177 return;
3178 }
3179
3180 /* Clear the flag for registers that actually got read (as expected). */
3181 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3182
3183 /* We insert our reads as late as possible since they're reading the
3184 * result of a SEND, which has massive latency.
3185 */
3186 if (scan_inst->dst.file == VGRF &&
3187 scan_inst->dst.nr >= first_write_grf &&
3188 scan_inst->dst.nr < first_write_grf + write_len &&
3189 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3190 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3191 scan_inst->dst.nr);
3192 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3193 }
3194
3195 /* Continue the loop only if we haven't resolved all the dependencies */
3196 int i;
3197 for (i = 0; i < write_len; i++) {
3198 if (needs_dep[i])
3199 break;
3200 }
3201 if (i == write_len)
3202 return;
3203 }
3204 }
3205
3206 void
3207 fs_visitor::insert_gen4_send_dependency_workarounds()
3208 {
3209 if (devinfo->gen != 4 || devinfo->is_g4x)
3210 return;
3211
3212 bool progress = false;
3213
3214 /* Note that we're done with register allocation, so GRF fs_regs always
3215 * have a .reg_offset of 0.
3216 */
3217
3218 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3219 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3220 insert_gen4_pre_send_dependency_workarounds(block, inst);
3221 insert_gen4_post_send_dependency_workarounds(block, inst);
3222 progress = true;
3223 }
3224 }
3225
3226 if (progress)
3227 invalidate_live_intervals();
3228 }
3229
3230 /**
3231 * Turns the generic expression-style uniform pull constant load instruction
3232 * into a hardware-specific series of instructions for loading a pull
3233 * constant.
3234 *
3235 * The expression style allows the CSE pass before this to optimize out
3236 * repeated loads from the same offset, and gives the pre-register-allocation
3237 * scheduling full flexibility, while the conversion to native instructions
3238 * allows the post-register-allocation scheduler the best information
3239 * possible.
3240 *
3241 * Note that execution masking for setting up pull constant loads is special:
3242 * the channels that need to be written are unrelated to the current execution
3243 * mask, since a later instruction will use one of the result channels as a
3244 * source operand for all 8 or 16 of its channels.
3245 */
3246 void
3247 fs_visitor::lower_uniform_pull_constant_loads()
3248 {
3249 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3250 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3251 continue;
3252
3253 if (devinfo->gen >= 7) {
3254 /* The offset arg is a vec4-aligned immediate byte offset. */
3255 fs_reg const_offset_reg = inst->src[1];
3256 assert(const_offset_reg.file == IMM &&
3257 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3258 assert(const_offset_reg.ud % 16 == 0);
3259
3260 fs_reg payload, offset;
3261 if (devinfo->gen >= 9) {
3262 /* We have to use a message header on Skylake to get SIMD4x2
3263 * mode. Reserve space for the register.
3264 */
3265 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3266 offset.offset += REG_SIZE;
3267 inst->mlen = 2;
3268 } else {
3269 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3270 inst->mlen = 1;
3271 }
3272
3273 /* This is actually going to be a MOV, but since only the first dword
3274 * is accessed, we have a special opcode to do just that one. Note
3275 * that this needs to be an operation that will be considered a def
3276 * by live variable analysis, or register allocation will explode.
3277 */
3278 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3279 8, offset, const_offset_reg);
3280 setup->force_writemask_all = true;
3281
3282 setup->ir = inst->ir;
3283 setup->annotation = inst->annotation;
3284 inst->insert_before(block, setup);
3285
3286 /* Similarly, this will only populate the first 4 channels of the
3287 * result register (since we only use smear values from 0-3), but we
3288 * don't tell the optimizer.
3289 */
3290 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3291 inst->src[1] = payload;
3292
3293 invalidate_live_intervals();
3294 } else {
3295 /* Before register allocation, we didn't tell the scheduler about the
3296 * MRF we use. We know it's safe to use this MRF because nothing
3297 * else does except for register spill/unspill, which generates and
3298 * uses its MRF within a single IR instruction.
3299 */
3300 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3301 inst->mlen = 1;
3302 }
3303 }
3304 }
3305
3306 bool
3307 fs_visitor::lower_load_payload()
3308 {
3309 bool progress = false;
3310
3311 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3312 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3313 continue;
3314
3315 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3316 assert(inst->saturate == false);
3317 fs_reg dst = inst->dst;
3318
3319 /* Get rid of COMPR4. We'll add it back in if we need it */
3320 if (dst.file == MRF)
3321 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3322
3323 const fs_builder ibld(this, block, inst);
3324 const fs_builder hbld = ibld.exec_all().group(8, 0);
3325
3326 for (uint8_t i = 0; i < inst->header_size; i++) {
3327 if (inst->src[i].file != BAD_FILE) {
3328 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3329 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3330 hbld.MOV(mov_dst, mov_src);
3331 }
3332 dst = offset(dst, hbld, 1);
3333 }
3334
3335 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3336 inst->exec_size > 8) {
3337 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3338 * a straightforward copy. Instead, the result of the
3339 * LOAD_PAYLOAD is treated as interleaved and the first four
3340 * non-header sources are unpacked as:
3341 *
3342 * m + 0: r0
3343 * m + 1: g0
3344 * m + 2: b0
3345 * m + 3: a0
3346 * m + 4: r1
3347 * m + 5: g1
3348 * m + 6: b1
3349 * m + 7: a1
3350 *
3351 * This is used for gen <= 5 fb writes.
3352 */
3353 assert(inst->exec_size == 16);
3354 assert(inst->header_size + 4 <= inst->sources);
3355 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3356 if (inst->src[i].file != BAD_FILE) {
3357 if (devinfo->has_compr4) {
3358 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3359 compr4_dst.nr |= BRW_MRF_COMPR4;
3360 ibld.MOV(compr4_dst, inst->src[i]);
3361 } else {
3362 /* Platform doesn't have COMPR4. We have to fake it */
3363 fs_reg mov_dst = retype(dst, inst->src[i].type);
3364 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3365 mov_dst.nr += 4;
3366 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3367 }
3368 }
3369
3370 dst.nr++;
3371 }
3372
3373 /* The loop above only ever incremented us through the first set
3374 * of 4 registers. However, thanks to the magic of COMPR4, we
3375 * actually wrote to the first 8 registers, so we need to take
3376 * that into account now.
3377 */
3378 dst.nr += 4;
3379
3380 /* The COMPR4 code took care of the first 4 sources. We'll let
3381 * the regular path handle any remaining sources. Yes, we are
3382 * modifying the instruction but we're about to delete it so
3383 * this really doesn't hurt anything.
3384 */
3385 inst->header_size += 4;
3386 }
3387
3388 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3389 if (inst->src[i].file != BAD_FILE)
3390 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3391 dst = offset(dst, ibld, 1);
3392 }
3393
3394 inst->remove(block);
3395 progress = true;
3396 }
3397
3398 if (progress)
3399 invalidate_live_intervals();
3400
3401 return progress;
3402 }
3403
3404 bool
3405 fs_visitor::lower_integer_multiplication()
3406 {
3407 bool progress = false;
3408
3409 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3410 const fs_builder ibld(this, block, inst);
3411
3412 if (inst->opcode == BRW_OPCODE_MUL) {
3413 if (inst->dst.is_accumulator() ||
3414 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3415 inst->dst.type != BRW_REGISTER_TYPE_UD))
3416 continue;
3417
3418 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3419 * operation directly, but CHV/BXT cannot.
3420 */
3421 if (devinfo->gen >= 8 &&
3422 !devinfo->is_cherryview && !devinfo->is_broxton)
3423 continue;
3424
3425 if (inst->src[1].file == IMM &&
3426 inst->src[1].ud < (1 << 16)) {
3427 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3428 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3429 * src1 are used.
3430 *
3431 * If multiplying by an immediate value that fits in 16-bits, do a
3432 * single MUL instruction with that value in the proper location.
3433 */
3434 if (devinfo->gen < 7) {
3435 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3436 inst->dst.type);
3437 ibld.MOV(imm, inst->src[1]);
3438 ibld.MUL(inst->dst, imm, inst->src[0]);
3439 } else {
3440 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3441 ibld.MUL(inst->dst, inst->src[0],
3442 ud ? brw_imm_uw(inst->src[1].ud)
3443 : brw_imm_w(inst->src[1].d));
3444 }
3445 } else {
3446 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3447 * do 32-bit integer multiplication in one instruction, but instead
3448 * must do a sequence (which actually calculates a 64-bit result):
3449 *
3450 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3451 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3452 * mov(8) g2<1>D acc0<8,8,1>D
3453 *
3454 * But on Gen > 6, the ability to use second accumulator register
3455 * (acc1) for non-float data types was removed, preventing a simple
3456 * implementation in SIMD16. A 16-channel result can be calculated by
3457 * executing the three instructions twice in SIMD8, once with quarter
3458 * control of 1Q for the first eight channels and again with 2Q for
3459 * the second eight channels.
3460 *
3461 * Which accumulator register is implicitly accessed (by AccWrEnable
3462 * for instance) is determined by the quarter control. Unfortunately
3463 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3464 * implicit accumulator access by an instruction with 2Q will access
3465 * acc1 regardless of whether the data type is usable in acc1.
3466 *
3467 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3468 * integer data types.
3469 *
3470 * Since we only want the low 32-bits of the result, we can do two
3471 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3472 * adjust the high result and add them (like the mach is doing):
3473 *
3474 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3475 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3476 * shl(8) g9<1>D g8<8,8,1>D 16D
3477 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3478 *
3479 * We avoid the shl instruction by realizing that we only want to add
3480 * the low 16-bits of the "high" result to the high 16-bits of the
3481 * "low" result and using proper regioning on the add:
3482 *
3483 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3484 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3485 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3486 *
3487 * Since it does not use the (single) accumulator register, we can
3488 * schedule multi-component multiplications much better.
3489 */
3490
3491 fs_reg orig_dst = inst->dst;
3492 if (orig_dst.is_null() || orig_dst.file == MRF) {
3493 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3494 inst->dst.type);
3495 }
3496 fs_reg low = inst->dst;
3497 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3498 inst->dst.type);
3499
3500 if (devinfo->gen >= 7) {
3501 fs_reg src1_0_w = inst->src[1];
3502 fs_reg src1_1_w = inst->src[1];
3503
3504 if (inst->src[1].file == IMM) {
3505 src1_0_w.ud &= 0xffff;
3506 src1_1_w.ud >>= 16;
3507 } else {
3508 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3509 if (src1_0_w.stride != 0) {
3510 assert(src1_0_w.stride == 1);
3511 src1_0_w.stride = 2;
3512 }
3513
3514 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3515 if (src1_1_w.stride != 0) {
3516 assert(src1_1_w.stride == 1);
3517 src1_1_w.stride = 2;
3518 }
3519 src1_1_w.offset += type_sz(BRW_REGISTER_TYPE_UW);
3520 }
3521 ibld.MUL(low, inst->src[0], src1_0_w);
3522 ibld.MUL(high, inst->src[0], src1_1_w);
3523 } else {
3524 fs_reg src0_0_w = inst->src[0];
3525 fs_reg src0_1_w = inst->src[0];
3526
3527 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3528 if (src0_0_w.stride != 0) {
3529 assert(src0_0_w.stride == 1);
3530 src0_0_w.stride = 2;
3531 }
3532
3533 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3534 if (src0_1_w.stride != 0) {
3535 assert(src0_1_w.stride == 1);
3536 src0_1_w.stride = 2;
3537 }
3538 src0_1_w.offset += type_sz(BRW_REGISTER_TYPE_UW);
3539
3540 ibld.MUL(low, src0_0_w, inst->src[1]);
3541 ibld.MUL(high, src0_1_w, inst->src[1]);
3542 }
3543
3544 fs_reg dst = inst->dst;
3545 dst.type = BRW_REGISTER_TYPE_UW;
3546 dst.offset = ROUND_DOWN_TO(dst.offset, REG_SIZE) + 2;
3547 dst.stride = 2;
3548
3549 high.type = BRW_REGISTER_TYPE_UW;
3550 high.stride = 2;
3551
3552 low.type = BRW_REGISTER_TYPE_UW;
3553 low.offset = ROUND_DOWN_TO(low.offset, REG_SIZE) + 2;
3554 low.stride = 2;
3555
3556 ibld.ADD(dst, low, high);
3557
3558 if (inst->conditional_mod || orig_dst.file == MRF) {
3559 set_condmod(inst->conditional_mod,
3560 ibld.MOV(orig_dst, inst->dst));
3561 }
3562 }
3563
3564 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3565 /* Should have been lowered to 8-wide. */
3566 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3567 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3568 inst->dst.type);
3569 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3570 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3571
3572 if (devinfo->gen >= 8) {
3573 /* Until Gen8, integer multiplies read 32-bits from one source,
3574 * and 16-bits from the other, and relying on the MACH instruction
3575 * to generate the high bits of the result.
3576 *
3577 * On Gen8, the multiply instruction does a full 32x32-bit
3578 * multiply, but in order to do a 64-bit multiply we can simulate
3579 * the previous behavior and then use a MACH instruction.
3580 *
3581 * FINISHME: Don't use source modifiers on src1.
3582 */
3583 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3584 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3585 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3586 mul->src[1].stride *= 2;
3587
3588 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3589 inst->group > 0) {
3590 /* Among other things the quarter control bits influence which
3591 * accumulator register is used by the hardware for instructions
3592 * that access the accumulator implicitly (e.g. MACH). A
3593 * second-half instruction would normally map to acc1, which
3594 * doesn't exist on Gen7 and up (the hardware does emulate it for
3595 * floating-point instructions *only* by taking advantage of the
3596 * extra precision of acc0 not normally used for floating point
3597 * arithmetic).
3598 *
3599 * HSW and up are careful enough not to try to access an
3600 * accumulator register that doesn't exist, but on earlier Gen7
3601 * hardware we need to make sure that the quarter control bits are
3602 * zero to avoid non-deterministic behaviour and emit an extra MOV
3603 * to get the result masked correctly according to the current
3604 * channel enables.
3605 */
3606 mach->group = 0;
3607 mach->force_writemask_all = true;
3608 mach->dst = ibld.vgrf(inst->dst.type);
3609 ibld.MOV(inst->dst, mach->dst);
3610 }
3611 } else {
3612 continue;
3613 }
3614
3615 inst->remove(block);
3616 progress = true;
3617 }
3618
3619 if (progress)
3620 invalidate_live_intervals();
3621
3622 return progress;
3623 }
3624
3625 bool
3626 fs_visitor::lower_minmax()
3627 {
3628 assert(devinfo->gen < 6);
3629
3630 bool progress = false;
3631
3632 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3633 const fs_builder ibld(this, block, inst);
3634
3635 if (inst->opcode == BRW_OPCODE_SEL &&
3636 inst->predicate == BRW_PREDICATE_NONE) {
3637 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3638 * the original SEL.L/GE instruction
3639 */
3640 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3641 inst->conditional_mod);
3642 inst->predicate = BRW_PREDICATE_NORMAL;
3643 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3644
3645 progress = true;
3646 }
3647 }
3648
3649 if (progress)
3650 invalidate_live_intervals();
3651
3652 return progress;
3653 }
3654
3655 static void
3656 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3657 fs_reg *dst, fs_reg color, unsigned components)
3658 {
3659 if (key->clamp_fragment_color) {
3660 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3661 assert(color.type == BRW_REGISTER_TYPE_F);
3662
3663 for (unsigned i = 0; i < components; i++)
3664 set_saturate(true,
3665 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3666
3667 color = tmp;
3668 }
3669
3670 for (unsigned i = 0; i < components; i++)
3671 dst[i] = offset(color, bld, i);
3672 }
3673
3674 static void
3675 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3676 const brw_wm_prog_data *prog_data,
3677 const brw_wm_prog_key *key,
3678 const fs_visitor::thread_payload &payload)
3679 {
3680 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3681 const gen_device_info *devinfo = bld.shader->devinfo;
3682 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3683 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3684 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3685 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3686 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3687 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3688 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3689 const unsigned components =
3690 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3691
3692 /* We can potentially have a message length of up to 15, so we have to set
3693 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3694 */
3695 fs_reg sources[15];
3696 int header_size = 2, payload_header_size;
3697 unsigned length = 0;
3698
3699 /* From the Sandy Bridge PRM, volume 4, page 198:
3700 *
3701 * "Dispatched Pixel Enables. One bit per pixel indicating
3702 * which pixels were originally enabled when the thread was
3703 * dispatched. This field is only required for the end-of-
3704 * thread message and on all dual-source messages."
3705 */
3706 if (devinfo->gen >= 6 &&
3707 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3708 color1.file == BAD_FILE &&
3709 key->nr_color_regions == 1) {
3710 header_size = 0;
3711 }
3712
3713 if (header_size != 0) {
3714 assert(header_size == 2);
3715 /* Allocate 2 registers for a header */
3716 length += 2;
3717 }
3718
3719 if (payload.aa_dest_stencil_reg) {
3720 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3721 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3722 .MOV(sources[length],
3723 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3724 length++;
3725 }
3726
3727 if (sample_mask.file != BAD_FILE) {
3728 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3729 BRW_REGISTER_TYPE_UD);
3730
3731 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3732 * relevant. Since it's unsigned single words one vgrf is always
3733 * 16-wide, but only the lower or higher 8 channels will be used by the
3734 * hardware when doing a SIMD8 write depending on whether we have
3735 * selected the subspans for the first or second half respectively.
3736 */
3737 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3738 sample_mask.type = BRW_REGISTER_TYPE_UW;
3739 sample_mask.stride *= 2;
3740
3741 bld.exec_all().annotate("FB write oMask")
3742 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3743 inst->group),
3744 sample_mask);
3745 length++;
3746 }
3747
3748 payload_header_size = length;
3749
3750 if (src0_alpha.file != BAD_FILE) {
3751 /* FIXME: This is being passed at the wrong location in the payload and
3752 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3753 * It's supposed to be immediately before oMask but there seems to be no
3754 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3755 * requires header sources to form a contiguous segment at the beginning
3756 * of the message and src0_alpha has per-channel semantics.
3757 */
3758 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3759 length++;
3760 }
3761
3762 setup_color_payload(bld, key, &sources[length], color0, components);
3763 length += 4;
3764
3765 if (color1.file != BAD_FILE) {
3766 setup_color_payload(bld, key, &sources[length], color1, components);
3767 length += 4;
3768 }
3769
3770 if (src_depth.file != BAD_FILE) {
3771 sources[length] = src_depth;
3772 length++;
3773 }
3774
3775 if (dst_depth.file != BAD_FILE) {
3776 sources[length] = dst_depth;
3777 length++;
3778 }
3779
3780 if (src_stencil.file != BAD_FILE) {
3781 assert(devinfo->gen >= 9);
3782 assert(bld.dispatch_width() != 16);
3783
3784 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3785 * available on gen9+. As such it's impossible to have both enabled at the
3786 * same time and therefore length cannot overrun the array.
3787 */
3788 assert(length < 15);
3789
3790 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3791 bld.exec_all().annotate("FB write OS")
3792 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3793 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3794 length++;
3795 }
3796
3797 fs_inst *load;
3798 if (devinfo->gen >= 7) {
3799 /* Send from the GRF */
3800 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3801 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3802 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3803 load->dst = payload;
3804
3805 inst->src[0] = payload;
3806 inst->resize_sources(1);
3807 } else {
3808 /* Send from the MRF */
3809 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3810 sources, length, payload_header_size);
3811
3812 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3813 * will do this for us if we just give it a COMPR4 destination.
3814 */
3815 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3816 load->dst.nr |= BRW_MRF_COMPR4;
3817
3818 inst->resize_sources(0);
3819 inst->base_mrf = 1;
3820 }
3821
3822 inst->opcode = FS_OPCODE_FB_WRITE;
3823 inst->mlen = regs_written(load);
3824 inst->header_size = header_size;
3825 }
3826
3827 static void
3828 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3829 {
3830 const fs_builder &ubld = bld.exec_all();
3831 const unsigned length = 2;
3832 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3833
3834 ubld.group(16, 0)
3835 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3836
3837 inst->resize_sources(1);
3838 inst->src[0] = header;
3839 inst->opcode = FS_OPCODE_FB_READ;
3840 inst->mlen = length;
3841 inst->header_size = length;
3842 }
3843
3844 static void
3845 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3846 const fs_reg &coordinate,
3847 const fs_reg &shadow_c,
3848 const fs_reg &lod, const fs_reg &lod2,
3849 const fs_reg &surface,
3850 const fs_reg &sampler,
3851 unsigned coord_components,
3852 unsigned grad_components)
3853 {
3854 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3855 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3856 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3857 fs_reg msg_end = msg_begin;
3858
3859 /* g0 header. */
3860 msg_end = offset(msg_end, bld.group(8, 0), 1);
3861
3862 for (unsigned i = 0; i < coord_components; i++)
3863 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3864 offset(coordinate, bld, i));
3865
3866 msg_end = offset(msg_end, bld, coord_components);
3867
3868 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3869 * require all three components to be present and zero if they are unused.
3870 */
3871 if (coord_components > 0 &&
3872 (has_lod || shadow_c.file != BAD_FILE ||
3873 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3874 for (unsigned i = coord_components; i < 3; i++)
3875 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3876
3877 msg_end = offset(msg_end, bld, 3 - coord_components);
3878 }
3879
3880 if (op == SHADER_OPCODE_TXD) {
3881 /* TXD unsupported in SIMD16 mode. */
3882 assert(bld.dispatch_width() == 8);
3883
3884 /* the slots for u and v are always present, but r is optional */
3885 if (coord_components < 2)
3886 msg_end = offset(msg_end, bld, 2 - coord_components);
3887
3888 /* P = u, v, r
3889 * dPdx = dudx, dvdx, drdx
3890 * dPdy = dudy, dvdy, drdy
3891 *
3892 * 1-arg: Does not exist.
3893 *
3894 * 2-arg: dudx dvdx dudy dvdy
3895 * dPdx.x dPdx.y dPdy.x dPdy.y
3896 * m4 m5 m6 m7
3897 *
3898 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3899 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3900 * m5 m6 m7 m8 m9 m10
3901 */
3902 for (unsigned i = 0; i < grad_components; i++)
3903 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3904
3905 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3906
3907 for (unsigned i = 0; i < grad_components; i++)
3908 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3909
3910 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3911 }
3912
3913 if (has_lod) {
3914 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3915 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3916 */
3917 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3918 bld.dispatch_width() == 16);
3919
3920 const brw_reg_type type =
3921 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3922 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3923 bld.MOV(retype(msg_end, type), lod);
3924 msg_end = offset(msg_end, bld, 1);
3925 }
3926
3927 if (shadow_c.file != BAD_FILE) {
3928 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3929 /* There's no plain shadow compare message, so we use shadow
3930 * compare with a bias of 0.0.
3931 */
3932 bld.MOV(msg_end, brw_imm_f(0.0f));
3933 msg_end = offset(msg_end, bld, 1);
3934 }
3935
3936 bld.MOV(msg_end, shadow_c);
3937 msg_end = offset(msg_end, bld, 1);
3938 }
3939
3940 inst->opcode = op;
3941 inst->src[0] = reg_undef;
3942 inst->src[1] = surface;
3943 inst->src[2] = sampler;
3944 inst->resize_sources(3);
3945 inst->base_mrf = msg_begin.nr;
3946 inst->mlen = msg_end.nr - msg_begin.nr;
3947 inst->header_size = 1;
3948 }
3949
3950 static void
3951 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3952 const fs_reg &coordinate,
3953 const fs_reg &shadow_c,
3954 const fs_reg &lod, const fs_reg &lod2,
3955 const fs_reg &sample_index,
3956 const fs_reg &surface,
3957 const fs_reg &sampler,
3958 const fs_reg &offset_value,
3959 unsigned coord_components,
3960 unsigned grad_components)
3961 {
3962 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3963 fs_reg msg_coords = message;
3964 unsigned header_size = 0;
3965
3966 if (offset_value.file != BAD_FILE) {
3967 /* The offsets set up by the visitor are in the m1 header, so we can't
3968 * go headerless.
3969 */
3970 header_size = 1;
3971 message.nr--;
3972 }
3973
3974 for (unsigned i = 0; i < coord_components; i++)
3975 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3976 offset(coordinate, bld, i));
3977
3978 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3979 fs_reg msg_lod = offset(msg_coords, bld, 4);
3980
3981 if (shadow_c.file != BAD_FILE) {
3982 fs_reg msg_shadow = msg_lod;
3983 bld.MOV(msg_shadow, shadow_c);
3984 msg_lod = offset(msg_shadow, bld, 1);
3985 msg_end = msg_lod;
3986 }
3987
3988 switch (op) {
3989 case SHADER_OPCODE_TXL:
3990 case FS_OPCODE_TXB:
3991 bld.MOV(msg_lod, lod);
3992 msg_end = offset(msg_lod, bld, 1);
3993 break;
3994 case SHADER_OPCODE_TXD:
3995 /**
3996 * P = u, v, r
3997 * dPdx = dudx, dvdx, drdx
3998 * dPdy = dudy, dvdy, drdy
3999 *
4000 * Load up these values:
4001 * - dudx dudy dvdx dvdy drdx drdy
4002 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4003 */
4004 msg_end = msg_lod;
4005 for (unsigned i = 0; i < grad_components; i++) {
4006 bld.MOV(msg_end, offset(lod, bld, i));
4007 msg_end = offset(msg_end, bld, 1);
4008
4009 bld.MOV(msg_end, offset(lod2, bld, i));
4010 msg_end = offset(msg_end, bld, 1);
4011 }
4012 break;
4013 case SHADER_OPCODE_TXS:
4014 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4015 bld.MOV(msg_lod, lod);
4016 msg_end = offset(msg_lod, bld, 1);
4017 break;
4018 case SHADER_OPCODE_TXF:
4019 msg_lod = offset(msg_coords, bld, 3);
4020 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4021 msg_end = offset(msg_lod, bld, 1);
4022 break;
4023 case SHADER_OPCODE_TXF_CMS:
4024 msg_lod = offset(msg_coords, bld, 3);
4025 /* lod */
4026 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4027 /* sample index */
4028 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4029 msg_end = offset(msg_lod, bld, 2);
4030 break;
4031 default:
4032 break;
4033 }
4034
4035 inst->opcode = op;
4036 inst->src[0] = reg_undef;
4037 inst->src[1] = surface;
4038 inst->src[2] = sampler;
4039 inst->resize_sources(3);
4040 inst->base_mrf = message.nr;
4041 inst->mlen = msg_end.nr - message.nr;
4042 inst->header_size = header_size;
4043
4044 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4045 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4046 }
4047
4048 static bool
4049 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4050 {
4051 if (devinfo->gen < 8 && !devinfo->is_haswell)
4052 return false;
4053
4054 return sampler.file != IMM || sampler.ud >= 16;
4055 }
4056
4057 static void
4058 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4059 const fs_reg &coordinate,
4060 const fs_reg &shadow_c,
4061 fs_reg lod, const fs_reg &lod2,
4062 const fs_reg &sample_index,
4063 const fs_reg &mcs,
4064 const fs_reg &surface,
4065 const fs_reg &sampler,
4066 const fs_reg &offset_value,
4067 unsigned coord_components,
4068 unsigned grad_components)
4069 {
4070 const gen_device_info *devinfo = bld.shader->devinfo;
4071 unsigned reg_width = bld.dispatch_width() / 8;
4072 unsigned header_size = 0, length = 0;
4073 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4074 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4075 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4076
4077 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4078 offset_value.file != BAD_FILE || inst->eot ||
4079 op == SHADER_OPCODE_SAMPLEINFO ||
4080 is_high_sampler(devinfo, sampler)) {
4081 /* For general texture offsets (no txf workaround), we need a header to
4082 * put them in. Note that we're only reserving space for it in the
4083 * message payload as it will be initialized implicitly by the
4084 * generator.
4085 *
4086 * TG4 needs to place its channel select in the header, for interaction
4087 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4088 * larger sampler numbers we need to offset the Sampler State Pointer in
4089 * the header.
4090 */
4091 header_size = 1;
4092 sources[0] = fs_reg();
4093 length++;
4094
4095 /* If we're requesting fewer than four channels worth of response,
4096 * and we have an explicit header, we need to set up the sampler
4097 * writemask. It's reversed from normal: 1 means "don't write".
4098 */
4099 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4100 assert(regs_written(inst) % reg_width == 0);
4101 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4102 inst->offset |= mask << 12;
4103 }
4104 }
4105
4106 if (shadow_c.file != BAD_FILE) {
4107 bld.MOV(sources[length], shadow_c);
4108 length++;
4109 }
4110
4111 bool coordinate_done = false;
4112
4113 /* Set up the LOD info */
4114 switch (op) {
4115 case FS_OPCODE_TXB:
4116 case SHADER_OPCODE_TXL:
4117 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4118 op = SHADER_OPCODE_TXL_LZ;
4119 break;
4120 }
4121 bld.MOV(sources[length], lod);
4122 length++;
4123 break;
4124 case SHADER_OPCODE_TXD:
4125 /* TXD should have been lowered in SIMD16 mode. */
4126 assert(bld.dispatch_width() == 8);
4127
4128 /* Load dPdx and the coordinate together:
4129 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4130 */
4131 for (unsigned i = 0; i < coord_components; i++) {
4132 bld.MOV(sources[length++], offset(coordinate, bld, i));
4133
4134 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4135 * only derivatives for (u, v, r).
4136 */
4137 if (i < grad_components) {
4138 bld.MOV(sources[length++], offset(lod, bld, i));
4139 bld.MOV(sources[length++], offset(lod2, bld, i));
4140 }
4141 }
4142
4143 coordinate_done = true;
4144 break;
4145 case SHADER_OPCODE_TXS:
4146 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4147 length++;
4148 break;
4149 case SHADER_OPCODE_TXF:
4150 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4151 * On Gen9 they are u, v, lod, r
4152 */
4153 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4154
4155 if (devinfo->gen >= 9) {
4156 if (coord_components >= 2) {
4157 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4158 offset(coordinate, bld, 1));
4159 } else {
4160 sources[length] = brw_imm_d(0);
4161 }
4162 length++;
4163 }
4164
4165 if (devinfo->gen >= 9 && lod.is_zero()) {
4166 op = SHADER_OPCODE_TXF_LZ;
4167 } else {
4168 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4169 length++;
4170 }
4171
4172 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4173 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4174 offset(coordinate, bld, i));
4175
4176 coordinate_done = true;
4177 break;
4178
4179 case SHADER_OPCODE_TXF_CMS:
4180 case SHADER_OPCODE_TXF_CMS_W:
4181 case SHADER_OPCODE_TXF_UMS:
4182 case SHADER_OPCODE_TXF_MCS:
4183 if (op == SHADER_OPCODE_TXF_UMS ||
4184 op == SHADER_OPCODE_TXF_CMS ||
4185 op == SHADER_OPCODE_TXF_CMS_W) {
4186 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4187 length++;
4188 }
4189
4190 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4191 /* Data from the multisample control surface. */
4192 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4193 length++;
4194
4195 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4196 * the MCS data.
4197 */
4198 if (op == SHADER_OPCODE_TXF_CMS_W) {
4199 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4200 mcs.file == IMM ?
4201 mcs :
4202 offset(mcs, bld, 1));
4203 length++;
4204 }
4205 }
4206
4207 /* There is no offsetting for this message; just copy in the integer
4208 * texture coordinates.
4209 */
4210 for (unsigned i = 0; i < coord_components; i++)
4211 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4212 offset(coordinate, bld, i));
4213
4214 coordinate_done = true;
4215 break;
4216 case SHADER_OPCODE_TG4_OFFSET:
4217 /* More crazy intermixing */
4218 for (unsigned i = 0; i < 2; i++) /* u, v */
4219 bld.MOV(sources[length++], offset(coordinate, bld, i));
4220
4221 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4222 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4223 offset(offset_value, bld, i));
4224
4225 if (coord_components == 3) /* r if present */
4226 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4227
4228 coordinate_done = true;
4229 break;
4230 default:
4231 break;
4232 }
4233
4234 /* Set up the coordinate (except for cases where it was done above) */
4235 if (!coordinate_done) {
4236 for (unsigned i = 0; i < coord_components; i++)
4237 bld.MOV(sources[length++], offset(coordinate, bld, i));
4238 }
4239
4240 int mlen;
4241 if (reg_width == 2)
4242 mlen = length * reg_width - header_size;
4243 else
4244 mlen = length * reg_width;
4245
4246 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4247 BRW_REGISTER_TYPE_F);
4248 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4249
4250 /* Generate the SEND. */
4251 inst->opcode = op;
4252 inst->src[0] = src_payload;
4253 inst->src[1] = surface;
4254 inst->src[2] = sampler;
4255 inst->resize_sources(3);
4256 inst->mlen = mlen;
4257 inst->header_size = header_size;
4258
4259 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4260 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4261 }
4262
4263 static void
4264 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4265 {
4266 const gen_device_info *devinfo = bld.shader->devinfo;
4267 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4268 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4269 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4270 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4271 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4272 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4273 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4274 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4275 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4276 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4277 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4278 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4279 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4280
4281 if (devinfo->gen >= 7) {
4282 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4283 shadow_c, lod, lod2, sample_index,
4284 mcs, surface, sampler, offset_value,
4285 coord_components, grad_components);
4286 } else if (devinfo->gen >= 5) {
4287 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4288 shadow_c, lod, lod2, sample_index,
4289 surface, sampler, offset_value,
4290 coord_components, grad_components);
4291 } else {
4292 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4293 shadow_c, lod, lod2,
4294 surface, sampler,
4295 coord_components, grad_components);
4296 }
4297 }
4298
4299 /**
4300 * Initialize the header present in some typed and untyped surface
4301 * messages.
4302 */
4303 static fs_reg
4304 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4305 {
4306 fs_builder ubld = bld.exec_all().group(8, 0);
4307 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4308 ubld.MOV(dst, brw_imm_d(0));
4309 ubld.MOV(component(dst, 7), sample_mask);
4310 return dst;
4311 }
4312
4313 static void
4314 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4315 const fs_reg &sample_mask)
4316 {
4317 /* Get the logical send arguments. */
4318 const fs_reg &addr = inst->src[0];
4319 const fs_reg &src = inst->src[1];
4320 const fs_reg &surface = inst->src[2];
4321 const UNUSED fs_reg &dims = inst->src[3];
4322 const fs_reg &arg = inst->src[4];
4323
4324 /* Calculate the total number of components of the payload. */
4325 const unsigned addr_sz = inst->components_read(0);
4326 const unsigned src_sz = inst->components_read(1);
4327 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4328 const unsigned sz = header_sz + addr_sz + src_sz;
4329
4330 /* Allocate space for the payload. */
4331 fs_reg *const components = new fs_reg[sz];
4332 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4333 unsigned n = 0;
4334
4335 /* Construct the payload. */
4336 if (header_sz)
4337 components[n++] = emit_surface_header(bld, sample_mask);
4338
4339 for (unsigned i = 0; i < addr_sz; i++)
4340 components[n++] = offset(addr, bld, i);
4341
4342 for (unsigned i = 0; i < src_sz; i++)
4343 components[n++] = offset(src, bld, i);
4344
4345 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4346
4347 /* Update the original instruction. */
4348 inst->opcode = op;
4349 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4350 inst->header_size = header_sz;
4351
4352 inst->src[0] = payload;
4353 inst->src[1] = surface;
4354 inst->src[2] = arg;
4355 inst->resize_sources(3);
4356
4357 delete[] components;
4358 }
4359
4360 static void
4361 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4362 {
4363 const gen_device_info *devinfo = bld.shader->devinfo;
4364
4365 if (devinfo->gen >= 7) {
4366 /* We are switching the instruction from an ALU-like instruction to a
4367 * send-from-grf instruction. Since sends can't handle strides or
4368 * source modifiers, we have to make a copy of the offset source.
4369 */
4370 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4371 bld.MOV(tmp, inst->src[1]);
4372 inst->src[1] = tmp;
4373
4374 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4375
4376 } else {
4377 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4378 BRW_REGISTER_TYPE_UD);
4379
4380 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4381
4382 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4383 inst->resize_sources(1);
4384 inst->base_mrf = payload.nr;
4385 inst->header_size = 1;
4386 inst->mlen = 1 + inst->exec_size / 8;
4387 }
4388 }
4389
4390 static void
4391 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4392 {
4393 assert(bld.shader->devinfo->gen < 6);
4394
4395 inst->base_mrf = 2;
4396 inst->mlen = inst->sources * inst->exec_size / 8;
4397
4398 if (inst->sources > 1) {
4399 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4400 * "Message Payload":
4401 *
4402 * "Operand0[7]. For the INT DIV functions, this operand is the
4403 * denominator."
4404 * ...
4405 * "Operand1[7]. For the INT DIV functions, this operand is the
4406 * numerator."
4407 */
4408 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4409 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4410 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4411
4412 inst->resize_sources(1);
4413 inst->src[0] = src0;
4414
4415 assert(inst->exec_size == 8);
4416 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4417 }
4418 }
4419
4420 bool
4421 fs_visitor::lower_logical_sends()
4422 {
4423 bool progress = false;
4424
4425 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4426 const fs_builder ibld(this, block, inst);
4427
4428 switch (inst->opcode) {
4429 case FS_OPCODE_FB_WRITE_LOGICAL:
4430 assert(stage == MESA_SHADER_FRAGMENT);
4431 lower_fb_write_logical_send(ibld, inst,
4432 (const brw_wm_prog_data *)prog_data,
4433 (const brw_wm_prog_key *)key,
4434 payload);
4435 break;
4436
4437 case FS_OPCODE_FB_READ_LOGICAL:
4438 lower_fb_read_logical_send(ibld, inst);
4439 break;
4440
4441 case SHADER_OPCODE_TEX_LOGICAL:
4442 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4443 break;
4444
4445 case SHADER_OPCODE_TXD_LOGICAL:
4446 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4447 break;
4448
4449 case SHADER_OPCODE_TXF_LOGICAL:
4450 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4451 break;
4452
4453 case SHADER_OPCODE_TXL_LOGICAL:
4454 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4455 break;
4456
4457 case SHADER_OPCODE_TXS_LOGICAL:
4458 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4459 break;
4460
4461 case FS_OPCODE_TXB_LOGICAL:
4462 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4463 break;
4464
4465 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4466 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4467 break;
4468
4469 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4470 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4471 break;
4472
4473 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4474 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4475 break;
4476
4477 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4478 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4479 break;
4480
4481 case SHADER_OPCODE_LOD_LOGICAL:
4482 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4483 break;
4484
4485 case SHADER_OPCODE_TG4_LOGICAL:
4486 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4487 break;
4488
4489 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4490 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4491 break;
4492
4493 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4494 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4495 break;
4496
4497 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4498 lower_surface_logical_send(ibld, inst,
4499 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4500 fs_reg());
4501 break;
4502
4503 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4504 lower_surface_logical_send(ibld, inst,
4505 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4506 ibld.sample_mask_reg());
4507 break;
4508
4509 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4510 lower_surface_logical_send(ibld, inst,
4511 SHADER_OPCODE_UNTYPED_ATOMIC,
4512 ibld.sample_mask_reg());
4513 break;
4514
4515 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4516 lower_surface_logical_send(ibld, inst,
4517 SHADER_OPCODE_TYPED_SURFACE_READ,
4518 brw_imm_d(0xffff));
4519 break;
4520
4521 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4522 lower_surface_logical_send(ibld, inst,
4523 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4524 ibld.sample_mask_reg());
4525 break;
4526
4527 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4528 lower_surface_logical_send(ibld, inst,
4529 SHADER_OPCODE_TYPED_ATOMIC,
4530 ibld.sample_mask_reg());
4531 break;
4532
4533 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4534 lower_varying_pull_constant_logical_send(ibld, inst);
4535 break;
4536
4537 case SHADER_OPCODE_RCP:
4538 case SHADER_OPCODE_RSQ:
4539 case SHADER_OPCODE_SQRT:
4540 case SHADER_OPCODE_EXP2:
4541 case SHADER_OPCODE_LOG2:
4542 case SHADER_OPCODE_SIN:
4543 case SHADER_OPCODE_COS:
4544 case SHADER_OPCODE_POW:
4545 case SHADER_OPCODE_INT_QUOTIENT:
4546 case SHADER_OPCODE_INT_REMAINDER:
4547 /* The math opcodes are overloaded for the send-like and
4548 * expression-like instructions which seems kind of icky. Gen6+ has
4549 * a native (but rather quirky) MATH instruction so we don't need to
4550 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4551 * logical instructions (which we can easily recognize because they
4552 * have mlen = 0) into send-like virtual instructions.
4553 */
4554 if (devinfo->gen < 6 && inst->mlen == 0) {
4555 lower_math_logical_send(ibld, inst);
4556 break;
4557
4558 } else {
4559 continue;
4560 }
4561
4562 default:
4563 continue;
4564 }
4565
4566 progress = true;
4567 }
4568
4569 if (progress)
4570 invalidate_live_intervals();
4571
4572 return progress;
4573 }
4574
4575 /**
4576 * Get the closest allowed SIMD width for instruction \p inst accounting for
4577 * some common regioning and execution control restrictions that apply to FPU
4578 * instructions. These restrictions don't necessarily have any relevance to
4579 * instructions not executed by the FPU pipeline like extended math, control
4580 * flow or send message instructions.
4581 *
4582 * For virtual opcodes it's really up to the instruction -- In some cases
4583 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4584 * instructions) it may simplify virtual instruction lowering if we can
4585 * enforce FPU-like regioning restrictions already on the virtual instruction,
4586 * in other cases (e.g. virtual send-like instructions) this may be
4587 * excessively restrictive.
4588 */
4589 static unsigned
4590 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4591 const fs_inst *inst)
4592 {
4593 /* Maximum execution size representable in the instruction controls. */
4594 unsigned max_width = MIN2(32, inst->exec_size);
4595
4596 /* According to the PRMs:
4597 * "A. In Direct Addressing mode, a source cannot span more than 2
4598 * adjacent GRF registers.
4599 * B. A destination cannot span more than 2 adjacent GRF registers."
4600 *
4601 * Look for the source or destination with the largest register region
4602 * which is the one that is going to limit the overall execution size of
4603 * the instruction due to this rule.
4604 */
4605 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4606
4607 for (unsigned i = 0; i < inst->sources; i++)
4608 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4609
4610 /* Calculate the maximum execution size of the instruction based on the
4611 * factor by which it goes over the hardware limit of 2 GRFs.
4612 */
4613 if (reg_count > 2)
4614 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4615
4616 /* According to the IVB PRMs:
4617 * "When destination spans two registers, the source MUST span two
4618 * registers. The exception to the above rule:
4619 *
4620 * - When source is scalar, the source registers are not incremented.
4621 * - When source is packed integer Word and destination is packed
4622 * integer DWord, the source register is not incremented but the
4623 * source sub register is incremented."
4624 *
4625 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4626 * restrictions. The code below intentionally doesn't check whether the
4627 * destination type is integer because empirically the hardware doesn't
4628 * seem to care what the actual type is as long as it's dword-aligned.
4629 */
4630 if (devinfo->gen < 8) {
4631 for (unsigned i = 0; i < inst->sources; i++) {
4632 if (DIV_ROUND_UP(inst->size_written, REG_SIZE) == 2 &&
4633 inst->size_read(i) != 0 && DIV_ROUND_UP(inst->size_read(i), REG_SIZE) != 2 &&
4634 !is_uniform(inst->src[i]) &&
4635 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4636 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4637 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4638 max_width = MIN2(max_width, inst->exec_size / reg_count);
4639 }
4640 }
4641 }
4642
4643 /* From the IVB PRMs:
4644 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4645 * are applied for both halves of the SIMD32 instruction. If different
4646 * execution mask channels are required, split the instruction into two
4647 * SIMD16 instructions."
4648 *
4649 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4650 * 32-wide control flow support in hardware and will behave similarly.
4651 */
4652 if (devinfo->gen < 8 && !inst->force_writemask_all)
4653 max_width = MIN2(max_width, 16);
4654
4655 /* From the IVB PRMs (applies to HSW too):
4656 * "Instructions with condition modifiers must not use SIMD32."
4657 *
4658 * From the BDW PRMs (applies to later hardware too):
4659 * "Ternary instruction with condition modifiers must not use SIMD32."
4660 */
4661 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4662 max_width = MIN2(max_width, 16);
4663
4664 /* From the IVB PRMs (applies to other devices that don't have the
4665 * gen_device_info::supports_simd16_3src flag set):
4666 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4667 * SIMD8 is not allowed for DF operations."
4668 */
4669 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4670 max_width = MIN2(max_width, inst->exec_size / reg_count);
4671
4672 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4673 * the 8-bit quarter of the execution mask signals specified in the
4674 * instruction control fields) for the second compressed half of any
4675 * single-precision instruction (for double-precision instructions
4676 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4677 * the EU will apply the wrong execution controls for the second
4678 * sequential GRF write if the number of channels per GRF is not exactly
4679 * eight in single-precision mode (or four in double-float mode).
4680 *
4681 * In this situation we calculate the maximum size of the split
4682 * instructions so they only ever write to a single register.
4683 */
4684 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4685 !inst->force_writemask_all) {
4686 const unsigned channels_per_grf = inst->exec_size /
4687 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4688 unsigned exec_type_size = 0;
4689 for (int i = 0; i < inst->sources; i++) {
4690 if (inst->src[i].file != BAD_FILE)
4691 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4692 }
4693 assert(exec_type_size);
4694
4695 /* The hardware shifts exactly 8 channels per compressed half of the
4696 * instruction in single-precision mode and exactly 4 in double-precision.
4697 */
4698 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4699 max_width = MIN2(max_width, channels_per_grf);
4700 }
4701
4702 /* Only power-of-two execution sizes are representable in the instruction
4703 * control fields.
4704 */
4705 return 1 << _mesa_logbase2(max_width);
4706 }
4707
4708 /**
4709 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4710 * various payload size restrictions that apply to sampler message
4711 * instructions.
4712 *
4713 * This is only intended to provide a maximum theoretical bound for the
4714 * execution size of the message based on the number of argument components
4715 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4716 * variant of the message can be used, though some messages may have
4717 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4718 * the message length to determine the exact SIMD width and argument count,
4719 * which makes a number of sampler message combinations impossible to
4720 * represent).
4721 */
4722 static unsigned
4723 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4724 const fs_inst *inst)
4725 {
4726 /* Calculate the number of coordinate components that have to be present
4727 * assuming that additional arguments follow the texel coordinates in the
4728 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4729 * need to pad to four or three components depending on the message,
4730 * pre-ILK we need to pad to at most three components.
4731 */
4732 const unsigned req_coord_components =
4733 (devinfo->gen >= 7 ||
4734 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4735 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4736 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4737 3;
4738
4739 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4740 * variant of the TXL or TXF message.
4741 */
4742 const bool implicit_lod = devinfo->gen >= 9 &&
4743 (inst->opcode == SHADER_OPCODE_TXL ||
4744 inst->opcode == SHADER_OPCODE_TXF) &&
4745 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4746
4747 /* Calculate the total number of argument components that need to be passed
4748 * to the sampler unit.
4749 */
4750 const unsigned num_payload_components =
4751 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4752 req_coord_components) +
4753 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4754 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4755 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4756 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4757 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4758 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4759 inst->components_read(TEX_LOGICAL_SRC_MCS);
4760
4761 /* SIMD16 messages with more than five arguments exceed the maximum message
4762 * size supported by the sampler, regardless of whether a header is
4763 * provided or not.
4764 */
4765 return MIN2(inst->exec_size,
4766 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4767 }
4768
4769 /**
4770 * Get the closest native SIMD width supported by the hardware for instruction
4771 * \p inst. The instruction will be left untouched by
4772 * fs_visitor::lower_simd_width() if the returned value is equal to the
4773 * original execution size.
4774 */
4775 static unsigned
4776 get_lowered_simd_width(const struct gen_device_info *devinfo,
4777 const fs_inst *inst)
4778 {
4779 switch (inst->opcode) {
4780 case BRW_OPCODE_MOV:
4781 case BRW_OPCODE_SEL:
4782 case BRW_OPCODE_NOT:
4783 case BRW_OPCODE_AND:
4784 case BRW_OPCODE_OR:
4785 case BRW_OPCODE_XOR:
4786 case BRW_OPCODE_SHR:
4787 case BRW_OPCODE_SHL:
4788 case BRW_OPCODE_ASR:
4789 case BRW_OPCODE_CMPN:
4790 case BRW_OPCODE_CSEL:
4791 case BRW_OPCODE_F32TO16:
4792 case BRW_OPCODE_F16TO32:
4793 case BRW_OPCODE_BFREV:
4794 case BRW_OPCODE_BFE:
4795 case BRW_OPCODE_ADD:
4796 case BRW_OPCODE_MUL:
4797 case BRW_OPCODE_AVG:
4798 case BRW_OPCODE_FRC:
4799 case BRW_OPCODE_RNDU:
4800 case BRW_OPCODE_RNDD:
4801 case BRW_OPCODE_RNDE:
4802 case BRW_OPCODE_RNDZ:
4803 case BRW_OPCODE_LZD:
4804 case BRW_OPCODE_FBH:
4805 case BRW_OPCODE_FBL:
4806 case BRW_OPCODE_CBIT:
4807 case BRW_OPCODE_SAD2:
4808 case BRW_OPCODE_MAD:
4809 case BRW_OPCODE_LRP:
4810 case FS_OPCODE_PACK:
4811 return get_fpu_lowered_simd_width(devinfo, inst);
4812
4813 case BRW_OPCODE_CMP: {
4814 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4815 * when the destination is a GRF the dependency-clear bit on the flag
4816 * register is cleared early.
4817 *
4818 * Suggested workarounds are to disable coissuing CMP instructions
4819 * or to split CMP(16) instructions into two CMP(8) instructions.
4820 *
4821 * We choose to split into CMP(8) instructions since disabling
4822 * coissuing would affect CMP instructions not otherwise affected by
4823 * the errata.
4824 */
4825 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4826 !inst->dst.is_null() ? 8 : ~0);
4827 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4828 }
4829 case BRW_OPCODE_BFI1:
4830 case BRW_OPCODE_BFI2:
4831 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4832 * should
4833 * "Force BFI instructions to be executed always in SIMD8."
4834 */
4835 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4836 get_fpu_lowered_simd_width(devinfo, inst));
4837
4838 case BRW_OPCODE_IF:
4839 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4840 return inst->exec_size;
4841
4842 case SHADER_OPCODE_RCP:
4843 case SHADER_OPCODE_RSQ:
4844 case SHADER_OPCODE_SQRT:
4845 case SHADER_OPCODE_EXP2:
4846 case SHADER_OPCODE_LOG2:
4847 case SHADER_OPCODE_SIN:
4848 case SHADER_OPCODE_COS:
4849 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4850 * Gen6.
4851 */
4852 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4853 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4854 MIN2(8, inst->exec_size));
4855
4856 case SHADER_OPCODE_POW:
4857 /* SIMD16 is only allowed on Gen7+. */
4858 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4859 MIN2(8, inst->exec_size));
4860
4861 case SHADER_OPCODE_INT_QUOTIENT:
4862 case SHADER_OPCODE_INT_REMAINDER:
4863 /* Integer division is limited to SIMD8 on all generations. */
4864 return MIN2(8, inst->exec_size);
4865
4866 case FS_OPCODE_LINTERP:
4867 case FS_OPCODE_GET_BUFFER_SIZE:
4868 case FS_OPCODE_DDX_COARSE:
4869 case FS_OPCODE_DDX_FINE:
4870 case FS_OPCODE_DDY_COARSE:
4871 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4872 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4873 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4874 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4875 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4876 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4877 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4878 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4879 return MIN2(16, inst->exec_size);
4880
4881 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4882 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4883 * message used to implement varying pull constant loads, so expand it
4884 * to SIMD16. An alternative with longer message payload length but
4885 * shorter return payload would be to use the SIMD8 sampler message that
4886 * takes (header, u, v, r) as parameters instead of (header, u).
4887 */
4888 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4889
4890 case FS_OPCODE_DDY_FINE:
4891 /* The implementation of this virtual opcode may require emitting
4892 * compressed Align16 instructions, which are severely limited on some
4893 * generations.
4894 *
4895 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4896 * Region Restrictions):
4897 *
4898 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4899 * and SIMD8 is not allowed for DF operations."
4900 *
4901 * In this context, "DW operations" means "operations acting on 32-bit
4902 * values", so it includes operations on floats.
4903 *
4904 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4905 * (Instruction Compression -> Rules and Restrictions):
4906 *
4907 * "A compressed instruction must be in Align1 access mode. Align16
4908 * mode instructions cannot be compressed."
4909 *
4910 * Similar text exists in the g45 PRM.
4911 *
4912 * Empirically, compressed align16 instructions using odd register
4913 * numbers don't appear to work on Sandybridge either.
4914 */
4915 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4916 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4917 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4918
4919 case SHADER_OPCODE_MULH:
4920 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4921 * is 8-wide on Gen7+.
4922 */
4923 return (devinfo->gen >= 7 ? 8 :
4924 get_fpu_lowered_simd_width(devinfo, inst));
4925
4926 case FS_OPCODE_FB_WRITE_LOGICAL:
4927 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4928 * here.
4929 */
4930 assert(devinfo->gen != 6 ||
4931 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4932 inst->exec_size == 8);
4933 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4934 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4935 8 : MIN2(16, inst->exec_size));
4936
4937 case FS_OPCODE_FB_READ_LOGICAL:
4938 return MIN2(16, inst->exec_size);
4939
4940 case SHADER_OPCODE_TEX_LOGICAL:
4941 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4942 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4943 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4944 case SHADER_OPCODE_LOD_LOGICAL:
4945 case SHADER_OPCODE_TG4_LOGICAL:
4946 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4947 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4948 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4949 return get_sampler_lowered_simd_width(devinfo, inst);
4950
4951 case SHADER_OPCODE_TXD_LOGICAL:
4952 /* TXD is unsupported in SIMD16 mode. */
4953 return 8;
4954
4955 case SHADER_OPCODE_TXL_LOGICAL:
4956 case FS_OPCODE_TXB_LOGICAL:
4957 /* Only one execution size is representable pre-ILK depending on whether
4958 * the shadow reference argument is present.
4959 */
4960 if (devinfo->gen == 4)
4961 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4962 else
4963 return get_sampler_lowered_simd_width(devinfo, inst);
4964
4965 case SHADER_OPCODE_TXF_LOGICAL:
4966 case SHADER_OPCODE_TXS_LOGICAL:
4967 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4968 * messages. Use SIMD16 instead.
4969 */
4970 if (devinfo->gen == 4)
4971 return 16;
4972 else
4973 return get_sampler_lowered_simd_width(devinfo, inst);
4974
4975 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4976 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4977 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4978 return 8;
4979
4980 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4981 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4982 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4983 return MIN2(16, inst->exec_size);
4984
4985 case SHADER_OPCODE_URB_READ_SIMD8:
4986 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4987 case SHADER_OPCODE_URB_WRITE_SIMD8:
4988 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4989 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4990 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4991 return MIN2(8, inst->exec_size);
4992
4993 case SHADER_OPCODE_MOV_INDIRECT:
4994 /* Prior to Broadwell, we only have 8 address subregisters */
4995 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4996 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4997 inst->exec_size);
4998
4999 case SHADER_OPCODE_LOAD_PAYLOAD: {
5000 const unsigned reg_count =
5001 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5002
5003 if (reg_count > 2) {
5004 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5005 * can be easily lowered (which excludes headers and heterogeneous
5006 * types).
5007 */
5008 assert(!inst->header_size);
5009 for (unsigned i = 0; i < inst->sources; i++)
5010 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5011 inst->src[i].file == BAD_FILE);
5012
5013 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5014 } else {
5015 return inst->exec_size;
5016 }
5017 }
5018 default:
5019 return inst->exec_size;
5020 }
5021 }
5022
5023 /**
5024 * Return true if splitting out the group of channels of instruction \p inst
5025 * given by lbld.group() requires allocating a temporary for the i-th source
5026 * of the lowered instruction.
5027 */
5028 static inline bool
5029 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5030 {
5031 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5032 (inst->components_read(i) == 1 &&
5033 lbld.dispatch_width() <= inst->exec_size));
5034 }
5035
5036 /**
5037 * Extract the data that would be consumed by the channel group given by
5038 * lbld.group() from the i-th source region of instruction \p inst and return
5039 * it as result in packed form. If any copy instructions are required they
5040 * will be emitted before the given \p inst in \p block.
5041 */
5042 static fs_reg
5043 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
5044 unsigned i)
5045 {
5046 /* Specified channel group from the source region. */
5047 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
5048
5049 if (needs_src_copy(lbld, inst, i)) {
5050 /* Builder of the right width to perform the copy avoiding uninitialized
5051 * data if the lowered execution size is greater than the original
5052 * execution size of the instruction.
5053 */
5054 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5055 inst->exec_size), 0);
5056 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5057
5058 for (unsigned k = 0; k < inst->components_read(i); ++k)
5059 cbld.at(block, inst)
5060 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5061
5062 return tmp;
5063
5064 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5065 /* The source is invariant for all dispatch_width-wide groups of the
5066 * original region.
5067 */
5068 return inst->src[i];
5069
5070 } else {
5071 /* We can just point the lowered instruction at the right channel group
5072 * from the original region.
5073 */
5074 return src;
5075 }
5076 }
5077
5078 /**
5079 * Return true if splitting out the group of channels of instruction \p inst
5080 * given by lbld.group() requires allocating a temporary for the destination
5081 * of the lowered instruction and copying the data back to the original
5082 * destination region.
5083 */
5084 static inline bool
5085 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5086 {
5087 /* If the instruction writes more than one component we'll have to shuffle
5088 * the results of multiple lowered instructions in order to make sure that
5089 * they end up arranged correctly in the original destination region.
5090 */
5091 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5092 return true;
5093
5094 /* If the lowered execution size is larger than the original the result of
5095 * the instruction won't fit in the original destination, so we'll have to
5096 * allocate a temporary in any case.
5097 */
5098 if (lbld.dispatch_width() > inst->exec_size)
5099 return true;
5100
5101 for (unsigned i = 0; i < inst->sources; i++) {
5102 /* If we already made a copy of the source for other reasons there won't
5103 * be any overlap with the destination.
5104 */
5105 if (needs_src_copy(lbld, inst, i))
5106 continue;
5107
5108 /* In order to keep the logic simple we emit a copy whenever the
5109 * destination region doesn't exactly match an overlapping source, which
5110 * may point at the source and destination not being aligned group by
5111 * group which could cause one of the lowered instructions to overwrite
5112 * the data read from the same source by other lowered instructions.
5113 */
5114 if (regions_overlap(inst->dst, inst->size_written,
5115 inst->src[i], inst->size_read(i)) &&
5116 !inst->dst.equals(inst->src[i]))
5117 return true;
5118 }
5119
5120 return false;
5121 }
5122
5123 /**
5124 * Insert data from a packed temporary into the channel group given by
5125 * lbld.group() of the destination region of instruction \p inst and return
5126 * the temporary as result. If any copy instructions are required they will
5127 * be emitted around the given \p inst in \p block.
5128 */
5129 static fs_reg
5130 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5131 {
5132 /* Builder of the right width to perform the copy avoiding uninitialized
5133 * data if the lowered execution size is greater than the original
5134 * execution size of the instruction.
5135 */
5136 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5137 inst->exec_size), 0);
5138
5139 /* Specified channel group from the destination region. */
5140 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5141 const unsigned dst_size = inst->size_written /
5142 inst->dst.component_size(inst->exec_size);
5143
5144 if (needs_dst_copy(lbld, inst)) {
5145 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5146
5147 if (inst->predicate) {
5148 /* Handle predication by copying the original contents of
5149 * the destination into the temporary before emitting the
5150 * lowered instruction.
5151 */
5152 for (unsigned k = 0; k < dst_size; ++k)
5153 cbld.at(block, inst)
5154 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5155 }
5156
5157 for (unsigned k = 0; k < dst_size; ++k)
5158 cbld.at(block, inst->next)
5159 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5160
5161 return tmp;
5162
5163 } else {
5164 /* No need to allocate a temporary for the lowered instruction, just
5165 * take the right group of channels from the original region.
5166 */
5167 return dst;
5168 }
5169 }
5170
5171 bool
5172 fs_visitor::lower_simd_width()
5173 {
5174 bool progress = false;
5175
5176 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5177 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5178
5179 if (lower_width != inst->exec_size) {
5180 /* Builder matching the original instruction. We may also need to
5181 * emit an instruction of width larger than the original, set the
5182 * execution size of the builder to the highest of both for now so
5183 * we're sure that both cases can be handled.
5184 */
5185 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5186 const fs_builder ibld = bld.at(block, inst)
5187 .exec_all(inst->force_writemask_all)
5188 .group(max_width, inst->group / max_width);
5189
5190 /* Split the copies in chunks of the execution width of either the
5191 * original or the lowered instruction, whichever is lower.
5192 */
5193 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5194 const unsigned dst_size = inst->size_written /
5195 inst->dst.component_size(inst->exec_size);
5196
5197 assert(!inst->writes_accumulator && !inst->mlen);
5198
5199 for (unsigned i = 0; i < n; i++) {
5200 /* Emit a copy of the original instruction with the lowered width.
5201 * If the EOT flag was set throw it away except for the last
5202 * instruction to avoid killing the thread prematurely.
5203 */
5204 fs_inst split_inst = *inst;
5205 split_inst.exec_size = lower_width;
5206 split_inst.eot = inst->eot && i == n - 1;
5207
5208 /* Select the correct channel enables for the i-th group, then
5209 * transform the sources and destination and emit the lowered
5210 * instruction.
5211 */
5212 const fs_builder lbld = ibld.group(lower_width, i);
5213
5214 for (unsigned j = 0; j < inst->sources; j++)
5215 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5216
5217 split_inst.dst = emit_zip(lbld, block, inst);
5218 split_inst.size_written =
5219 split_inst.dst.component_size(lower_width) * dst_size;
5220
5221 lbld.emit(split_inst);
5222 }
5223
5224 inst->remove(block);
5225 progress = true;
5226 }
5227 }
5228
5229 if (progress)
5230 invalidate_live_intervals();
5231
5232 return progress;
5233 }
5234
5235 void
5236 fs_visitor::dump_instructions()
5237 {
5238 dump_instructions(NULL);
5239 }
5240
5241 void
5242 fs_visitor::dump_instructions(const char *name)
5243 {
5244 FILE *file = stderr;
5245 if (name && geteuid() != 0) {
5246 file = fopen(name, "w");
5247 if (!file)
5248 file = stderr;
5249 }
5250
5251 if (cfg) {
5252 calculate_register_pressure();
5253 int ip = 0, max_pressure = 0;
5254 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5255 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5256 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5257 dump_instruction(inst, file);
5258 ip++;
5259 }
5260 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5261 } else {
5262 int ip = 0;
5263 foreach_in_list(backend_instruction, inst, &instructions) {
5264 fprintf(file, "%4d: ", ip++);
5265 dump_instruction(inst, file);
5266 }
5267 }
5268
5269 if (file != stderr) {
5270 fclose(file);
5271 }
5272 }
5273
5274 void
5275 fs_visitor::dump_instruction(backend_instruction *be_inst)
5276 {
5277 dump_instruction(be_inst, stderr);
5278 }
5279
5280 void
5281 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5282 {
5283 fs_inst *inst = (fs_inst *)be_inst;
5284
5285 if (inst->predicate) {
5286 fprintf(file, "(%cf0.%d) ",
5287 inst->predicate_inverse ? '-' : '+',
5288 inst->flag_subreg);
5289 }
5290
5291 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5292 if (inst->saturate)
5293 fprintf(file, ".sat");
5294 if (inst->conditional_mod) {
5295 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5296 if (!inst->predicate &&
5297 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5298 inst->opcode != BRW_OPCODE_IF &&
5299 inst->opcode != BRW_OPCODE_WHILE))) {
5300 fprintf(file, ".f0.%d", inst->flag_subreg);
5301 }
5302 }
5303 fprintf(file, "(%d) ", inst->exec_size);
5304
5305 if (inst->mlen) {
5306 fprintf(file, "(mlen: %d) ", inst->mlen);
5307 }
5308
5309 if (inst->eot) {
5310 fprintf(file, "(EOT) ");
5311 }
5312
5313 switch (inst->dst.file) {
5314 case VGRF:
5315 fprintf(file, "vgrf%d", inst->dst.nr);
5316 if (alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written ||
5317 inst->dst.offset % REG_SIZE)
5318 fprintf(file, "+%d.%d",
5319 inst->dst.offset / REG_SIZE, inst->dst.offset % REG_SIZE);
5320 break;
5321 case FIXED_GRF:
5322 fprintf(file, "g%d", inst->dst.nr);
5323 break;
5324 case MRF:
5325 fprintf(file, "m%d", inst->dst.nr);
5326 break;
5327 case BAD_FILE:
5328 fprintf(file, "(null)");
5329 break;
5330 case UNIFORM:
5331 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.offset / 4);
5332 break;
5333 case ATTR:
5334 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.offset / REG_SIZE);
5335 break;
5336 case ARF:
5337 switch (inst->dst.nr) {
5338 case BRW_ARF_NULL:
5339 fprintf(file, "null");
5340 break;
5341 case BRW_ARF_ADDRESS:
5342 fprintf(file, "a0.%d", inst->dst.subnr);
5343 break;
5344 case BRW_ARF_ACCUMULATOR:
5345 fprintf(file, "acc%d", inst->dst.subnr);
5346 break;
5347 case BRW_ARF_FLAG:
5348 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5349 break;
5350 default:
5351 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5352 break;
5353 }
5354 if (inst->dst.subnr)
5355 fprintf(file, "+%d", inst->dst.subnr);
5356 break;
5357 case IMM:
5358 unreachable("not reached");
5359 }
5360 if (inst->dst.stride != 1)
5361 fprintf(file, "<%u>", inst->dst.stride);
5362 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5363
5364 for (int i = 0; i < inst->sources; i++) {
5365 if (inst->src[i].negate)
5366 fprintf(file, "-");
5367 if (inst->src[i].abs)
5368 fprintf(file, "|");
5369 switch (inst->src[i].file) {
5370 case VGRF:
5371 fprintf(file, "vgrf%d", inst->src[i].nr);
5372 if (alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i) ||
5373 inst->src[i].offset % REG_SIZE != 0)
5374 fprintf(file, "+%d.%d", inst->src[i].offset / REG_SIZE,
5375 inst->src[i].offset % REG_SIZE);
5376 break;
5377 case FIXED_GRF:
5378 fprintf(file, "g%d", inst->src[i].nr);
5379 break;
5380 case MRF:
5381 fprintf(file, "***m%d***", inst->src[i].nr);
5382 break;
5383 case ATTR:
5384 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].offset / REG_SIZE);
5385 break;
5386 case UNIFORM:
5387 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].offset / 4);
5388 if (inst->src[i].offset % 4 != 0) {
5389 fprintf(file, "+%d.%d", inst->src[i].offset / 4,
5390 inst->src[i].offset % 4);
5391 }
5392 break;
5393 case BAD_FILE:
5394 fprintf(file, "(null)");
5395 break;
5396 case IMM:
5397 switch (inst->src[i].type) {
5398 case BRW_REGISTER_TYPE_F:
5399 fprintf(file, "%-gf", inst->src[i].f);
5400 break;
5401 case BRW_REGISTER_TYPE_DF:
5402 fprintf(file, "%fdf", inst->src[i].df);
5403 break;
5404 case BRW_REGISTER_TYPE_W:
5405 case BRW_REGISTER_TYPE_D:
5406 fprintf(file, "%dd", inst->src[i].d);
5407 break;
5408 case BRW_REGISTER_TYPE_UW:
5409 case BRW_REGISTER_TYPE_UD:
5410 fprintf(file, "%uu", inst->src[i].ud);
5411 break;
5412 case BRW_REGISTER_TYPE_VF:
5413 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5414 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5415 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5416 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5417 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5418 break;
5419 default:
5420 fprintf(file, "???");
5421 break;
5422 }
5423 break;
5424 case ARF:
5425 switch (inst->src[i].nr) {
5426 case BRW_ARF_NULL:
5427 fprintf(file, "null");
5428 break;
5429 case BRW_ARF_ADDRESS:
5430 fprintf(file, "a0.%d", inst->src[i].subnr);
5431 break;
5432 case BRW_ARF_ACCUMULATOR:
5433 fprintf(file, "acc%d", inst->src[i].subnr);
5434 break;
5435 case BRW_ARF_FLAG:
5436 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5437 break;
5438 default:
5439 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5440 break;
5441 }
5442 if (inst->src[i].subnr)
5443 fprintf(file, "+%d", inst->src[i].subnr);
5444 break;
5445 }
5446 if (inst->src[i].abs)
5447 fprintf(file, "|");
5448
5449 if (inst->src[i].file != IMM) {
5450 unsigned stride;
5451 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5452 unsigned hstride = inst->src[i].hstride;
5453 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5454 } else {
5455 stride = inst->src[i].stride;
5456 }
5457 if (stride != 1)
5458 fprintf(file, "<%u>", stride);
5459
5460 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5461 }
5462
5463 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5464 fprintf(file, ", ");
5465 }
5466
5467 fprintf(file, " ");
5468
5469 if (inst->force_writemask_all)
5470 fprintf(file, "NoMask ");
5471
5472 if (inst->exec_size != dispatch_width)
5473 fprintf(file, "group%d ", inst->group);
5474
5475 fprintf(file, "\n");
5476 }
5477
5478 /**
5479 * Possibly returns an instruction that set up @param reg.
5480 *
5481 * Sometimes we want to take the result of some expression/variable
5482 * dereference tree and rewrite the instruction generating the result
5483 * of the tree. When processing the tree, we know that the
5484 * instructions generated are all writing temporaries that are dead
5485 * outside of this tree. So, if we have some instructions that write
5486 * a temporary, we're free to point that temp write somewhere else.
5487 *
5488 * Note that this doesn't guarantee that the instruction generated
5489 * only reg -- it might be the size=4 destination of a texture instruction.
5490 */
5491 fs_inst *
5492 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5493 fs_inst *end,
5494 const fs_reg &reg)
5495 {
5496 if (end == start ||
5497 end->is_partial_write() ||
5498 !reg.equals(end->dst)) {
5499 return NULL;
5500 } else {
5501 return end;
5502 }
5503 }
5504
5505 void
5506 fs_visitor::setup_fs_payload_gen6()
5507 {
5508 assert(stage == MESA_SHADER_FRAGMENT);
5509 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
5510
5511 unsigned barycentric_interp_modes =
5512 (stage == MESA_SHADER_FRAGMENT) ?
5513 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
5514
5515 assert(devinfo->gen >= 6);
5516
5517 /* R0-1: masks, pixel X/Y coordinates. */
5518 payload.num_regs = 2;
5519 /* R2: only for 32-pixel dispatch.*/
5520
5521 /* R3-26: barycentric interpolation coordinates. These appear in the
5522 * same order that they appear in the brw_barycentric_mode
5523 * enum. Each set of coordinates occupies 2 registers if dispatch width
5524 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5525 * appear if they were enabled using the "Barycentric Interpolation
5526 * Mode" bits in WM_STATE.
5527 */
5528 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5529 if (barycentric_interp_modes & (1 << i)) {
5530 payload.barycentric_coord_reg[i] = payload.num_regs;
5531 payload.num_regs += 2;
5532 if (dispatch_width == 16) {
5533 payload.num_regs += 2;
5534 }
5535 }
5536 }
5537
5538 /* R27: interpolated depth if uses source depth */
5539 prog_data->uses_src_depth =
5540 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5541 if (prog_data->uses_src_depth) {
5542 payload.source_depth_reg = payload.num_regs;
5543 payload.num_regs++;
5544 if (dispatch_width == 16) {
5545 /* R28: interpolated depth if not SIMD8. */
5546 payload.num_regs++;
5547 }
5548 }
5549
5550 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5551 prog_data->uses_src_w =
5552 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5553 if (prog_data->uses_src_w) {
5554 payload.source_w_reg = payload.num_regs;
5555 payload.num_regs++;
5556 if (dispatch_width == 16) {
5557 /* R30: interpolated W if not SIMD8. */
5558 payload.num_regs++;
5559 }
5560 }
5561
5562 /* R31: MSAA position offsets. */
5563 if (prog_data->persample_dispatch &&
5564 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5565 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5566 *
5567 * "MSDISPMODE_PERSAMPLE is required in order to select
5568 * POSOFFSET_SAMPLE"
5569 *
5570 * So we can only really get sample positions if we are doing real
5571 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5572 * persample dispatch, we hard-code it to 0.5.
5573 */
5574 prog_data->uses_pos_offset = true;
5575 payload.sample_pos_reg = payload.num_regs;
5576 payload.num_regs++;
5577 }
5578
5579 /* R32: MSAA input coverage mask */
5580 prog_data->uses_sample_mask =
5581 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5582 if (prog_data->uses_sample_mask) {
5583 assert(devinfo->gen >= 7);
5584 payload.sample_mask_in_reg = payload.num_regs;
5585 payload.num_regs++;
5586 if (dispatch_width == 16) {
5587 /* R33: input coverage mask if not SIMD8. */
5588 payload.num_regs++;
5589 }
5590 }
5591
5592 /* R34-: bary for 32-pixel. */
5593 /* R58-59: interp W for 32-pixel. */
5594
5595 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5596 source_depth_to_render_target = true;
5597 }
5598 }
5599
5600 void
5601 fs_visitor::setup_vs_payload()
5602 {
5603 /* R0: thread header, R1: urb handles */
5604 payload.num_regs = 2;
5605 }
5606
5607 void
5608 fs_visitor::setup_gs_payload()
5609 {
5610 assert(stage == MESA_SHADER_GEOMETRY);
5611
5612 struct brw_gs_prog_data *gs_prog_data =
5613 (struct brw_gs_prog_data *) prog_data;
5614 struct brw_vue_prog_data *vue_prog_data =
5615 (struct brw_vue_prog_data *) prog_data;
5616
5617 /* R0: thread header, R1: output URB handles */
5618 payload.num_regs = 2;
5619
5620 if (gs_prog_data->include_primitive_id) {
5621 /* R2: Primitive ID 0..7 */
5622 payload.num_regs++;
5623 }
5624
5625 /* Use a maximum of 24 registers for push-model inputs. */
5626 const unsigned max_push_components = 24;
5627
5628 /* If pushing our inputs would take too many registers, reduce the URB read
5629 * length (which is in HWords, or 8 registers), and resort to pulling.
5630 *
5631 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5632 * have to multiply by VerticesIn to obtain the total storage requirement.
5633 */
5634 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5635 max_push_components || gs_prog_data->invocations > 1) {
5636 gs_prog_data->base.include_vue_handles = true;
5637
5638 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5639 payload.num_regs += nir->info.gs.vertices_in;
5640
5641 vue_prog_data->urb_read_length =
5642 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5643 }
5644 }
5645
5646 void
5647 fs_visitor::setup_cs_payload()
5648 {
5649 assert(devinfo->gen >= 7);
5650 payload.num_regs = 1;
5651 }
5652
5653 void
5654 fs_visitor::calculate_register_pressure()
5655 {
5656 invalidate_live_intervals();
5657 calculate_live_intervals();
5658
5659 unsigned num_instructions = 0;
5660 foreach_block(block, cfg)
5661 num_instructions += block->instructions.length();
5662
5663 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5664
5665 for (unsigned reg = 0; reg < alloc.count; reg++) {
5666 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5667 regs_live_at_ip[ip] += alloc.sizes[reg];
5668 }
5669 }
5670
5671 /**
5672 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5673 *
5674 * The needs_unlit_centroid_workaround ends up producing one of these per
5675 * channel of centroid input, so it's good to clean them up.
5676 *
5677 * An assumption here is that nothing ever modifies the dispatched pixels
5678 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5679 * dictates that anyway.
5680 */
5681 bool
5682 fs_visitor::opt_drop_redundant_mov_to_flags()
5683 {
5684 bool flag_mov_found[2] = {false};
5685 bool progress = false;
5686
5687 /* Instructions removed by this pass can only be added if this were true */
5688 if (!devinfo->needs_unlit_centroid_workaround)
5689 return false;
5690
5691 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5692 if (inst->is_control_flow()) {
5693 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5694 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5695 if (!flag_mov_found[inst->flag_subreg]) {
5696 flag_mov_found[inst->flag_subreg] = true;
5697 } else {
5698 inst->remove(block);
5699 progress = true;
5700 }
5701 } else if (inst->flags_written()) {
5702 flag_mov_found[inst->flag_subreg] = false;
5703 }
5704 }
5705
5706 return progress;
5707 }
5708
5709 void
5710 fs_visitor::optimize()
5711 {
5712 /* Start by validating the shader we currently have. */
5713 validate();
5714
5715 /* bld is the common builder object pointing at the end of the program we
5716 * used to translate it into i965 IR. For the optimization and lowering
5717 * passes coming next, any code added after the end of the program without
5718 * having explicitly called fs_builder::at() clearly points at a mistake.
5719 * Ideally optimization passes wouldn't be part of the visitor so they
5720 * wouldn't have access to bld at all, but they do, so just in case some
5721 * pass forgets to ask for a location explicitly set it to NULL here to
5722 * make it trip. The dispatch width is initialized to a bogus value to
5723 * make sure that optimizations set the execution controls explicitly to
5724 * match the code they are manipulating instead of relying on the defaults.
5725 */
5726 bld = fs_builder(this, 64);
5727
5728 assign_constant_locations();
5729 lower_constant_loads();
5730
5731 validate();
5732
5733 split_virtual_grfs();
5734 validate();
5735
5736 #define OPT(pass, args...) ({ \
5737 pass_num++; \
5738 bool this_progress = pass(args); \
5739 \
5740 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5741 char filename[64]; \
5742 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5743 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5744 \
5745 backend_shader::dump_instructions(filename); \
5746 } \
5747 \
5748 validate(); \
5749 \
5750 progress = progress || this_progress; \
5751 this_progress; \
5752 })
5753
5754 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5755 char filename[64];
5756 snprintf(filename, 64, "%s%d-%s-00-00-start",
5757 stage_abbrev, dispatch_width, nir->info.name);
5758
5759 backend_shader::dump_instructions(filename);
5760 }
5761
5762 bool progress = false;
5763 int iteration = 0;
5764 int pass_num = 0;
5765
5766 OPT(opt_drop_redundant_mov_to_flags);
5767
5768 do {
5769 progress = false;
5770 pass_num = 0;
5771 iteration++;
5772
5773 OPT(remove_duplicate_mrf_writes);
5774
5775 OPT(opt_algebraic);
5776 OPT(opt_cse);
5777 OPT(opt_copy_propagate);
5778 OPT(opt_predicated_break, this);
5779 OPT(opt_cmod_propagation);
5780 OPT(dead_code_eliminate);
5781 OPT(opt_peephole_sel);
5782 OPT(dead_control_flow_eliminate, this);
5783 OPT(opt_register_renaming);
5784 OPT(opt_saturate_propagation);
5785 OPT(register_coalesce);
5786 OPT(compute_to_mrf);
5787 OPT(eliminate_find_live_channel);
5788
5789 OPT(compact_virtual_grfs);
5790 } while (progress);
5791
5792 progress = false;
5793 pass_num = 0;
5794
5795 if (OPT(lower_pack)) {
5796 OPT(register_coalesce);
5797 OPT(dead_code_eliminate);
5798 }
5799
5800 if (OPT(lower_d2x)) {
5801 OPT(opt_copy_propagate);
5802 OPT(dead_code_eliminate);
5803 }
5804
5805 OPT(lower_simd_width);
5806
5807 /* After SIMD lowering just in case we had to unroll the EOT send. */
5808 OPT(opt_sampler_eot);
5809
5810 OPT(lower_logical_sends);
5811
5812 if (progress) {
5813 OPT(opt_copy_propagate);
5814 /* Only run after logical send lowering because it's easier to implement
5815 * in terms of physical sends.
5816 */
5817 if (OPT(opt_zero_samples))
5818 OPT(opt_copy_propagate);
5819 /* Run after logical send lowering to give it a chance to CSE the
5820 * LOAD_PAYLOAD instructions created to construct the payloads of
5821 * e.g. texturing messages in cases where it wasn't possible to CSE the
5822 * whole logical instruction.
5823 */
5824 OPT(opt_cse);
5825 OPT(register_coalesce);
5826 OPT(compute_to_mrf);
5827 OPT(dead_code_eliminate);
5828 OPT(remove_duplicate_mrf_writes);
5829 OPT(opt_peephole_sel);
5830 }
5831
5832 OPT(opt_redundant_discard_jumps);
5833
5834 if (OPT(lower_load_payload)) {
5835 split_virtual_grfs();
5836 OPT(register_coalesce);
5837 OPT(compute_to_mrf);
5838 OPT(dead_code_eliminate);
5839 }
5840
5841 OPT(opt_combine_constants);
5842 OPT(lower_integer_multiplication);
5843
5844 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5845 OPT(opt_cmod_propagation);
5846 OPT(opt_cse);
5847 OPT(opt_copy_propagate);
5848 OPT(dead_code_eliminate);
5849 }
5850
5851 lower_uniform_pull_constant_loads();
5852
5853 validate();
5854 }
5855
5856 /**
5857 * Three source instruction must have a GRF/MRF destination register.
5858 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5859 */
5860 void
5861 fs_visitor::fixup_3src_null_dest()
5862 {
5863 bool progress = false;
5864
5865 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5866 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5867 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5868 inst->dst.type);
5869 progress = true;
5870 }
5871 }
5872
5873 if (progress)
5874 invalidate_live_intervals();
5875 }
5876
5877 void
5878 fs_visitor::allocate_registers(bool allow_spilling)
5879 {
5880 bool allocated_without_spills;
5881
5882 static const enum instruction_scheduler_mode pre_modes[] = {
5883 SCHEDULE_PRE,
5884 SCHEDULE_PRE_NON_LIFO,
5885 SCHEDULE_PRE_LIFO,
5886 };
5887
5888 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5889
5890 /* Try each scheduling heuristic to see if it can successfully register
5891 * allocate without spilling. They should be ordered by decreasing
5892 * performance but increasing likelihood of allocating.
5893 */
5894 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5895 schedule_instructions(pre_modes[i]);
5896
5897 if (0) {
5898 assign_regs_trivial();
5899 allocated_without_spills = true;
5900 } else {
5901 allocated_without_spills = assign_regs(false, spill_all);
5902 }
5903 if (allocated_without_spills)
5904 break;
5905 }
5906
5907 if (!allocated_without_spills) {
5908 if (!allow_spilling)
5909 fail("Failure to register allocate and spilling is not allowed.");
5910
5911 /* We assume that any spilling is worse than just dropping back to
5912 * SIMD8. There's probably actually some intermediate point where
5913 * SIMD16 with a couple of spills is still better.
5914 */
5915 if (dispatch_width > min_dispatch_width) {
5916 fail("Failure to register allocate. Reduce number of "
5917 "live scalar values to avoid this.");
5918 } else {
5919 compiler->shader_perf_log(log_data,
5920 "%s shader triggered register spilling. "
5921 "Try reducing the number of live scalar "
5922 "values to improve performance.\n",
5923 stage_name);
5924 }
5925
5926 /* Since we're out of heuristics, just go spill registers until we
5927 * get an allocation.
5928 */
5929 while (!assign_regs(true, spill_all)) {
5930 if (failed)
5931 break;
5932 }
5933 }
5934
5935 /* This must come after all optimization and register allocation, since
5936 * it inserts dead code that happens to have side effects, and it does
5937 * so based on the actual physical registers in use.
5938 */
5939 insert_gen4_send_dependency_workarounds();
5940
5941 if (failed)
5942 return;
5943
5944 schedule_instructions(SCHEDULE_POST);
5945
5946 if (last_scratch > 0) {
5947 unsigned max_scratch_size = 2 * 1024 * 1024;
5948
5949 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5950
5951 if (stage == MESA_SHADER_COMPUTE) {
5952 if (devinfo->is_haswell) {
5953 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5954 * field documentation, Haswell supports a minimum of 2kB of
5955 * scratch space for compute shaders, unlike every other stage
5956 * and platform.
5957 */
5958 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5959 } else if (devinfo->gen <= 7) {
5960 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5961 * field documentation, platforms prior to Haswell measure scratch
5962 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5963 */
5964 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5965 max_scratch_size = 12 * 1024;
5966 }
5967 }
5968
5969 /* We currently only support up to 2MB of scratch space. If we
5970 * need to support more eventually, the documentation suggests
5971 * that we could allocate a larger buffer, and partition it out
5972 * ourselves. We'd just have to undo the hardware's address
5973 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5974 * and then add FFTID * (Larger Per Thread Scratch Space).
5975 *
5976 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5977 * Thread Group Tracking > Local Memory/Scratch Space.
5978 */
5979 assert(prog_data->total_scratch < max_scratch_size);
5980 }
5981 }
5982
5983 bool
5984 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5985 {
5986 assert(stage == MESA_SHADER_VERTEX);
5987
5988 setup_vs_payload();
5989
5990 if (shader_time_index >= 0)
5991 emit_shader_time_begin();
5992
5993 emit_nir_code();
5994
5995 if (failed)
5996 return false;
5997
5998 compute_clip_distance(clip_planes);
5999
6000 emit_urb_writes();
6001
6002 if (shader_time_index >= 0)
6003 emit_shader_time_end();
6004
6005 calculate_cfg();
6006
6007 optimize();
6008
6009 assign_curb_setup();
6010 assign_vs_urb_setup();
6011
6012 fixup_3src_null_dest();
6013 allocate_registers(true);
6014
6015 return !failed;
6016 }
6017
6018 bool
6019 fs_visitor::run_tcs_single_patch()
6020 {
6021 assert(stage == MESA_SHADER_TESS_CTRL);
6022
6023 struct brw_tcs_prog_data *tcs_prog_data =
6024 (struct brw_tcs_prog_data *) prog_data;
6025
6026 /* r1-r4 contain the ICP handles. */
6027 payload.num_regs = 5;
6028
6029 if (shader_time_index >= 0)
6030 emit_shader_time_begin();
6031
6032 /* Initialize gl_InvocationID */
6033 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6034 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6035 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6036 bld.MOV(channels_ud, channels_uw);
6037
6038 if (tcs_prog_data->instances == 1) {
6039 invocation_id = channels_ud;
6040 } else {
6041 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6042
6043 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
6044 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6045 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6046 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6047 brw_imm_ud(INTEL_MASK(23, 17)));
6048 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
6049
6050 bld.ADD(invocation_id, instance_times_8, channels_ud);
6051 }
6052
6053 /* Fix the disptach mask */
6054 if (nir->info.tcs.vertices_out % 8) {
6055 bld.CMP(bld.null_reg_ud(), invocation_id,
6056 brw_imm_ud(nir->info.tcs.vertices_out), BRW_CONDITIONAL_L);
6057 bld.IF(BRW_PREDICATE_NORMAL);
6058 }
6059
6060 emit_nir_code();
6061
6062 if (nir->info.tcs.vertices_out % 8) {
6063 bld.emit(BRW_OPCODE_ENDIF);
6064 }
6065
6066 /* Emit EOT write; set TR DS Cache bit */
6067 fs_reg srcs[3] = {
6068 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6069 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6070 fs_reg(brw_imm_ud(0)),
6071 };
6072 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6073 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6074
6075 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6076 bld.null_reg_ud(), payload);
6077 inst->mlen = 3;
6078 inst->eot = true;
6079
6080 if (shader_time_index >= 0)
6081 emit_shader_time_end();
6082
6083 if (failed)
6084 return false;
6085
6086 calculate_cfg();
6087
6088 optimize();
6089
6090 assign_curb_setup();
6091 assign_tcs_single_patch_urb_setup();
6092
6093 fixup_3src_null_dest();
6094 allocate_registers(true);
6095
6096 return !failed;
6097 }
6098
6099 bool
6100 fs_visitor::run_tes()
6101 {
6102 assert(stage == MESA_SHADER_TESS_EVAL);
6103
6104 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6105 payload.num_regs = 5;
6106
6107 if (shader_time_index >= 0)
6108 emit_shader_time_begin();
6109
6110 emit_nir_code();
6111
6112 if (failed)
6113 return false;
6114
6115 emit_urb_writes();
6116
6117 if (shader_time_index >= 0)
6118 emit_shader_time_end();
6119
6120 calculate_cfg();
6121
6122 optimize();
6123
6124 assign_curb_setup();
6125 assign_tes_urb_setup();
6126
6127 fixup_3src_null_dest();
6128 allocate_registers(true);
6129
6130 return !failed;
6131 }
6132
6133 bool
6134 fs_visitor::run_gs()
6135 {
6136 assert(stage == MESA_SHADER_GEOMETRY);
6137
6138 setup_gs_payload();
6139
6140 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6141
6142 if (gs_compile->control_data_header_size_bits > 0) {
6143 /* Create a VGRF to store accumulated control data bits. */
6144 this->control_data_bits = vgrf(glsl_type::uint_type);
6145
6146 /* If we're outputting more than 32 control data bits, then EmitVertex()
6147 * will set control_data_bits to 0 after emitting the first vertex.
6148 * Otherwise, we need to initialize it to 0 here.
6149 */
6150 if (gs_compile->control_data_header_size_bits <= 32) {
6151 const fs_builder abld = bld.annotate("initialize control data bits");
6152 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6153 }
6154 }
6155
6156 if (shader_time_index >= 0)
6157 emit_shader_time_begin();
6158
6159 emit_nir_code();
6160
6161 emit_gs_thread_end();
6162
6163 if (shader_time_index >= 0)
6164 emit_shader_time_end();
6165
6166 if (failed)
6167 return false;
6168
6169 calculate_cfg();
6170
6171 optimize();
6172
6173 assign_curb_setup();
6174 assign_gs_urb_setup();
6175
6176 fixup_3src_null_dest();
6177 allocate_registers(true);
6178
6179 return !failed;
6180 }
6181
6182 bool
6183 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6184 {
6185 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
6186 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6187
6188 assert(stage == MESA_SHADER_FRAGMENT);
6189
6190 if (devinfo->gen >= 6)
6191 setup_fs_payload_gen6();
6192 else
6193 setup_fs_payload_gen4();
6194
6195 if (0) {
6196 emit_dummy_fs();
6197 } else if (do_rep_send) {
6198 assert(dispatch_width == 16);
6199 emit_repclear_shader();
6200 } else {
6201 if (shader_time_index >= 0)
6202 emit_shader_time_begin();
6203
6204 calculate_urb_setup();
6205 if (nir->info.inputs_read > 0 ||
6206 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6207 if (devinfo->gen < 6)
6208 emit_interpolation_setup_gen4();
6209 else
6210 emit_interpolation_setup_gen6();
6211 }
6212
6213 /* We handle discards by keeping track of the still-live pixels in f0.1.
6214 * Initialize it with the dispatched pixels.
6215 */
6216 if (wm_prog_data->uses_kill) {
6217 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6218 discard_init->flag_subreg = 1;
6219 }
6220
6221 /* Generate FS IR for main(). (the visitor only descends into
6222 * functions called "main").
6223 */
6224 emit_nir_code();
6225
6226 if (failed)
6227 return false;
6228
6229 if (wm_prog_data->uses_kill)
6230 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6231
6232 if (wm_key->alpha_test_func)
6233 emit_alpha_test();
6234
6235 emit_fb_writes();
6236
6237 if (shader_time_index >= 0)
6238 emit_shader_time_end();
6239
6240 calculate_cfg();
6241
6242 optimize();
6243
6244 assign_curb_setup();
6245 assign_urb_setup();
6246
6247 fixup_3src_null_dest();
6248 allocate_registers(allow_spilling);
6249
6250 if (failed)
6251 return false;
6252 }
6253
6254 return !failed;
6255 }
6256
6257 bool
6258 fs_visitor::run_cs()
6259 {
6260 assert(stage == MESA_SHADER_COMPUTE);
6261
6262 setup_cs_payload();
6263
6264 if (shader_time_index >= 0)
6265 emit_shader_time_begin();
6266
6267 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6268 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6269 const fs_builder abld = bld.exec_all().group(1, 0);
6270 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
6271 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6272 }
6273
6274 emit_nir_code();
6275
6276 if (failed)
6277 return false;
6278
6279 emit_cs_terminate();
6280
6281 if (shader_time_index >= 0)
6282 emit_shader_time_end();
6283
6284 calculate_cfg();
6285
6286 optimize();
6287
6288 assign_curb_setup();
6289
6290 fixup_3src_null_dest();
6291 allocate_registers(true);
6292
6293 if (failed)
6294 return false;
6295
6296 return !failed;
6297 }
6298
6299 /**
6300 * Return a bitfield where bit n is set if barycentric interpolation mode n
6301 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6302 *
6303 * We examine the load_barycentric intrinsics rather than looking at input
6304 * variables so that we catch interpolateAtCentroid() messages too, which
6305 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6306 */
6307 static unsigned
6308 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6309 const nir_shader *shader)
6310 {
6311 unsigned barycentric_interp_modes = 0;
6312
6313 nir_foreach_function(f, shader) {
6314 if (!f->impl)
6315 continue;
6316
6317 nir_foreach_block(block, f->impl) {
6318 nir_foreach_instr(instr, block) {
6319 if (instr->type != nir_instr_type_intrinsic)
6320 continue;
6321
6322 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6323 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6324 continue;
6325
6326 /* Ignore WPOS; it doesn't require interpolation. */
6327 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6328 continue;
6329
6330 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6331 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6332 nir_intrinsic_interp_mode(intrin);
6333 nir_intrinsic_op bary_op = intrin->intrinsic;
6334 enum brw_barycentric_mode bary =
6335 brw_barycentric_mode(interp, bary_op);
6336
6337 barycentric_interp_modes |= 1 << bary;
6338
6339 if (devinfo->needs_unlit_centroid_workaround &&
6340 bary_op == nir_intrinsic_load_barycentric_centroid)
6341 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6342 }
6343 }
6344 }
6345
6346 return barycentric_interp_modes;
6347 }
6348
6349 static void
6350 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6351 const nir_shader *shader)
6352 {
6353 prog_data->flat_inputs = 0;
6354
6355 nir_foreach_variable(var, &shader->inputs) {
6356 int input_index = prog_data->urb_setup[var->data.location];
6357
6358 if (input_index < 0)
6359 continue;
6360
6361 /* flat shading */
6362 if (var->data.interpolation == INTERP_MODE_FLAT)
6363 prog_data->flat_inputs |= (1 << input_index);
6364 }
6365 }
6366
6367 static uint8_t
6368 computed_depth_mode(const nir_shader *shader)
6369 {
6370 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6371 switch (shader->info.fs.depth_layout) {
6372 case FRAG_DEPTH_LAYOUT_NONE:
6373 case FRAG_DEPTH_LAYOUT_ANY:
6374 return BRW_PSCDEPTH_ON;
6375 case FRAG_DEPTH_LAYOUT_GREATER:
6376 return BRW_PSCDEPTH_ON_GE;
6377 case FRAG_DEPTH_LAYOUT_LESS:
6378 return BRW_PSCDEPTH_ON_LE;
6379 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6380 return BRW_PSCDEPTH_OFF;
6381 }
6382 }
6383 return BRW_PSCDEPTH_OFF;
6384 }
6385
6386 /**
6387 * Move load_interpolated_input with simple (payload-based) barycentric modes
6388 * to the top of the program so we don't emit multiple PLNs for the same input.
6389 *
6390 * This works around CSE not being able to handle non-dominating cases
6391 * such as:
6392 *
6393 * if (...) {
6394 * interpolate input
6395 * } else {
6396 * interpolate the same exact input
6397 * }
6398 *
6399 * This should be replaced by global value numbering someday.
6400 */
6401 void
6402 move_interpolation_to_top(nir_shader *nir)
6403 {
6404 nir_foreach_function(f, nir) {
6405 if (!f->impl)
6406 continue;
6407
6408 nir_block *top = nir_start_block(f->impl);
6409 exec_node *cursor_node = NULL;
6410
6411 nir_foreach_block(block, f->impl) {
6412 if (block == top)
6413 continue;
6414
6415 nir_foreach_instr_safe(instr, block) {
6416 if (instr->type != nir_instr_type_intrinsic)
6417 continue;
6418
6419 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6420 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6421 continue;
6422 nir_intrinsic_instr *bary_intrinsic =
6423 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6424 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6425
6426 /* Leave interpolateAtSample/Offset() where they are. */
6427 if (op == nir_intrinsic_load_barycentric_at_sample ||
6428 op == nir_intrinsic_load_barycentric_at_offset)
6429 continue;
6430
6431 nir_instr *move[3] = {
6432 &bary_intrinsic->instr,
6433 intrin->src[1].ssa->parent_instr,
6434 instr
6435 };
6436
6437 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6438 if (move[i]->block != top) {
6439 move[i]->block = top;
6440 exec_node_remove(&move[i]->node);
6441 if (cursor_node) {
6442 exec_node_insert_after(cursor_node, &move[i]->node);
6443 } else {
6444 exec_list_push_head(&top->instr_list, &move[i]->node);
6445 }
6446 cursor_node = &move[i]->node;
6447 }
6448 }
6449 }
6450 }
6451 nir_metadata_preserve(f->impl, (nir_metadata)
6452 ((unsigned) nir_metadata_block_index |
6453 (unsigned) nir_metadata_dominance));
6454 }
6455 }
6456
6457 /**
6458 * Apply default interpolation settings to FS inputs which don't specify any.
6459 */
6460 static void
6461 brw_nir_set_default_interpolation(const struct gen_device_info *devinfo,
6462 struct nir_shader *nir,
6463 bool api_flat_shade,
6464 bool per_sample_interpolation)
6465 {
6466 assert(nir->stage == MESA_SHADER_FRAGMENT);
6467
6468 nir_foreach_variable(var, &nir->inputs) {
6469 /* Apply default interpolation mode.
6470 *
6471 * Everything defaults to smooth except for the legacy GL color
6472 * built-in variables, which might be flat depending on API state.
6473 */
6474 if (var->data.interpolation == INTERP_MODE_NONE) {
6475 const bool flat = api_flat_shade &&
6476 (var->data.location == VARYING_SLOT_COL0 ||
6477 var->data.location == VARYING_SLOT_COL1);
6478
6479 var->data.interpolation = flat ? INTERP_MODE_FLAT
6480 : INTERP_MODE_SMOOTH;
6481 }
6482
6483 /* Apply 'sample' if necessary for API state. */
6484 if (per_sample_interpolation &&
6485 var->data.interpolation != INTERP_MODE_FLAT) {
6486 var->data.centroid = false;
6487 var->data.sample = true;
6488 }
6489
6490 /* On Ironlake and below, there is only one interpolation mode.
6491 * Centroid interpolation doesn't mean anything on this hardware --
6492 * there is no multisampling.
6493 */
6494 if (devinfo->gen < 6) {
6495 var->data.centroid = false;
6496 var->data.sample = false;
6497 }
6498 }
6499 }
6500
6501 /**
6502 * Demote per-sample barycentric intrinsics to centroid.
6503 *
6504 * Useful when rendering to a non-multisampled buffer.
6505 */
6506 static void
6507 demote_sample_qualifiers(nir_shader *nir)
6508 {
6509 nir_foreach_function(f, nir) {
6510 if (!f->impl)
6511 continue;
6512
6513 nir_builder b;
6514 nir_builder_init(&b, f->impl);
6515
6516 nir_foreach_block(block, f->impl) {
6517 nir_foreach_instr_safe(instr, block) {
6518 if (instr->type != nir_instr_type_intrinsic)
6519 continue;
6520
6521 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6522 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6523 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6524 continue;
6525
6526 b.cursor = nir_before_instr(instr);
6527 nir_ssa_def *centroid =
6528 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6529 nir_intrinsic_interp_mode(intrin));
6530 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6531 nir_src_for_ssa(centroid));
6532 nir_instr_remove(instr);
6533 }
6534 }
6535
6536 nir_metadata_preserve(f->impl, (nir_metadata)
6537 ((unsigned) nir_metadata_block_index |
6538 (unsigned) nir_metadata_dominance));
6539 }
6540 }
6541
6542 const unsigned *
6543 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6544 void *mem_ctx,
6545 const struct brw_wm_prog_key *key,
6546 struct brw_wm_prog_data *prog_data,
6547 const nir_shader *src_shader,
6548 struct gl_program *prog,
6549 int shader_time_index8, int shader_time_index16,
6550 bool allow_spilling,
6551 bool use_rep_send,
6552 unsigned *final_assembly_size,
6553 char **error_str)
6554 {
6555 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6556 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6557 true);
6558 brw_nir_set_default_interpolation(compiler->devinfo, shader,
6559 key->flat_shade, key->persample_interp);
6560 brw_nir_lower_fs_inputs(shader);
6561 brw_nir_lower_fs_outputs(shader);
6562 if (!key->multisample_fbo)
6563 NIR_PASS_V(shader, demote_sample_qualifiers);
6564 NIR_PASS_V(shader, move_interpolation_to_top);
6565 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6566
6567 /* key->alpha_test_func means simulating alpha testing via discards,
6568 * so the shader definitely kills pixels.
6569 */
6570 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
6571 prog_data->uses_omask = key->multisample_fbo &&
6572 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6573 prog_data->computed_depth_mode = computed_depth_mode(shader);
6574 prog_data->computed_stencil =
6575 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6576
6577 prog_data->persample_dispatch =
6578 key->multisample_fbo &&
6579 (key->persample_interp ||
6580 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6581 SYSTEM_BIT_SAMPLE_POS)) ||
6582 shader->info.fs.uses_sample_qualifier ||
6583 shader->info.outputs_read);
6584
6585 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6586
6587 prog_data->barycentric_interp_modes =
6588 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6589
6590 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6591 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6592 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6593
6594 fs_visitor v8(compiler, log_data, mem_ctx, key,
6595 &prog_data->base, prog, shader, 8,
6596 shader_time_index8);
6597 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6598 if (error_str)
6599 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6600
6601 return NULL;
6602 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6603 simd8_cfg = v8.cfg;
6604 simd8_grf_start = v8.payload.num_regs;
6605 simd8_grf_used = v8.grf_used;
6606 }
6607
6608 if (v8.max_dispatch_width >= 16 &&
6609 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6610 /* Try a SIMD16 compile */
6611 fs_visitor v16(compiler, log_data, mem_ctx, key,
6612 &prog_data->base, prog, shader, 16,
6613 shader_time_index16);
6614 v16.import_uniforms(&v8);
6615 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6616 compiler->shader_perf_log(log_data,
6617 "SIMD16 shader failed to compile: %s",
6618 v16.fail_msg);
6619 } else {
6620 simd16_cfg = v16.cfg;
6621 simd16_grf_start = v16.payload.num_regs;
6622 simd16_grf_used = v16.grf_used;
6623 }
6624 }
6625
6626 /* When the caller requests a repclear shader, they want SIMD16-only */
6627 if (use_rep_send)
6628 simd8_cfg = NULL;
6629
6630 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6631 * at the top to select the shader. We've never implemented that.
6632 * Instead, we just give them exactly one shader and we pick the widest one
6633 * available.
6634 */
6635 if (compiler->devinfo->gen < 5 && simd16_cfg)
6636 simd8_cfg = NULL;
6637
6638 if (prog_data->persample_dispatch) {
6639 /* Starting with SandyBridge (where we first get MSAA), the different
6640 * pixel dispatch combinations are grouped into classifications A
6641 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6642 * generations, the only configurations supporting persample dispatch
6643 * are are this in which only one dispatch width is enabled.
6644 *
6645 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6646 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6647 */
6648 if (compiler->devinfo->gen == 6 &&
6649 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6650 simd16_cfg = NULL;
6651 } else if (simd16_cfg) {
6652 simd8_cfg = NULL;
6653 }
6654 }
6655
6656 /* We have to compute the flat inputs after the visitor is finished running
6657 * because it relies on prog_data->urb_setup which is computed in
6658 * fs_visitor::calculate_urb_setup().
6659 */
6660 brw_compute_flat_inputs(prog_data, shader);
6661
6662 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6663 v8.promoted_constants, v8.runtime_check_aads_emit,
6664 MESA_SHADER_FRAGMENT);
6665
6666 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6667 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6668 shader->info.label ? shader->info.label :
6669 "unnamed",
6670 shader->info.name));
6671 }
6672
6673 if (simd8_cfg) {
6674 prog_data->dispatch_8 = true;
6675 g.generate_code(simd8_cfg, 8);
6676 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6677 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6678
6679 if (simd16_cfg) {
6680 prog_data->dispatch_16 = true;
6681 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6682 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6683 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6684 }
6685 } else if (simd16_cfg) {
6686 prog_data->dispatch_16 = true;
6687 g.generate_code(simd16_cfg, 16);
6688 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6689 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6690 }
6691
6692 return g.get_assembly(final_assembly_size);
6693 }
6694
6695 fs_reg *
6696 fs_visitor::emit_cs_work_group_id_setup()
6697 {
6698 assert(stage == MESA_SHADER_COMPUTE);
6699
6700 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6701
6702 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6703 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6704 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6705
6706 bld.MOV(*reg, r0_1);
6707 bld.MOV(offset(*reg, bld, 1), r0_6);
6708 bld.MOV(offset(*reg, bld, 2), r0_7);
6709
6710 return reg;
6711 }
6712
6713 static void
6714 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6715 {
6716 block->dwords = dwords;
6717 block->regs = DIV_ROUND_UP(dwords, 8);
6718 block->size = block->regs * 32;
6719 }
6720
6721 static void
6722 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6723 struct brw_cs_prog_data *cs_prog_data)
6724 {
6725 const struct brw_stage_prog_data *prog_data =
6726 (struct brw_stage_prog_data*) cs_prog_data;
6727 bool fill_thread_id =
6728 cs_prog_data->thread_local_id_index >= 0 &&
6729 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6730 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6731
6732 /* The thread ID should be stored in the last param dword */
6733 assert(prog_data->nr_params > 0 || !fill_thread_id);
6734 assert(!fill_thread_id ||
6735 cs_prog_data->thread_local_id_index ==
6736 (int)prog_data->nr_params - 1);
6737
6738 unsigned cross_thread_dwords, per_thread_dwords;
6739 if (!cross_thread_supported) {
6740 cross_thread_dwords = 0u;
6741 per_thread_dwords = prog_data->nr_params;
6742 } else if (fill_thread_id) {
6743 /* Fill all but the last register with cross-thread payload */
6744 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6745 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6746 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6747 } else {
6748 /* Fill all data using cross-thread payload */
6749 cross_thread_dwords = prog_data->nr_params;
6750 per_thread_dwords = 0u;
6751 }
6752
6753 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6754 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6755
6756 unsigned total_dwords =
6757 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6758 cs_prog_data->push.cross_thread.size) / 4;
6759 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6760
6761 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6762 cs_prog_data->push.per_thread.size == 0);
6763 assert(cs_prog_data->push.cross_thread.dwords +
6764 cs_prog_data->push.per_thread.dwords ==
6765 prog_data->nr_params);
6766 }
6767
6768 static void
6769 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6770 {
6771 cs_prog_data->simd_size = size;
6772 unsigned group_size = cs_prog_data->local_size[0] *
6773 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6774 cs_prog_data->threads = (group_size + size - 1) / size;
6775 }
6776
6777 const unsigned *
6778 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6779 void *mem_ctx,
6780 const struct brw_cs_prog_key *key,
6781 struct brw_cs_prog_data *prog_data,
6782 const nir_shader *src_shader,
6783 int shader_time_index,
6784 unsigned *final_assembly_size,
6785 char **error_str)
6786 {
6787 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6788 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6789 true);
6790 brw_nir_lower_cs_shared(shader);
6791 prog_data->base.total_shared += shader->num_shared;
6792
6793 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6794 * the thread_local_id_index.
6795 */
6796 assert(prog_data->thread_local_id_index >= 0);
6797 shader->num_uniforms =
6798 MAX2(shader->num_uniforms,
6799 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6800
6801 brw_nir_lower_intrinsics(shader, &prog_data->base);
6802 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6803
6804 prog_data->local_size[0] = shader->info.cs.local_size[0];
6805 prog_data->local_size[1] = shader->info.cs.local_size[1];
6806 prog_data->local_size[2] = shader->info.cs.local_size[2];
6807 unsigned local_workgroup_size =
6808 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6809 shader->info.cs.local_size[2];
6810
6811 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6812 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6813
6814 cfg_t *cfg = NULL;
6815 const char *fail_msg = NULL;
6816
6817 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6818 */
6819 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6820 NULL, /* Never used in core profile */
6821 shader, 8, shader_time_index);
6822 if (simd_required <= 8) {
6823 if (!v8.run_cs()) {
6824 fail_msg = v8.fail_msg;
6825 } else {
6826 cfg = v8.cfg;
6827 cs_set_simd_size(prog_data, 8);
6828 cs_fill_push_const_info(compiler->devinfo, prog_data);
6829 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6830 }
6831 }
6832
6833 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6834 NULL, /* Never used in core profile */
6835 shader, 16, shader_time_index);
6836 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6837 !fail_msg && v8.max_dispatch_width >= 16 &&
6838 simd_required <= 16) {
6839 /* Try a SIMD16 compile */
6840 if (simd_required <= 8)
6841 v16.import_uniforms(&v8);
6842 if (!v16.run_cs()) {
6843 compiler->shader_perf_log(log_data,
6844 "SIMD16 shader failed to compile: %s",
6845 v16.fail_msg);
6846 if (!cfg) {
6847 fail_msg =
6848 "Couldn't generate SIMD16 program and not "
6849 "enough threads for SIMD8";
6850 }
6851 } else {
6852 cfg = v16.cfg;
6853 cs_set_simd_size(prog_data, 16);
6854 cs_fill_push_const_info(compiler->devinfo, prog_data);
6855 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6856 }
6857 }
6858
6859 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6860 NULL, /* Never used in core profile */
6861 shader, 32, shader_time_index);
6862 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6863 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6864 /* Try a SIMD32 compile */
6865 if (simd_required <= 8)
6866 v32.import_uniforms(&v8);
6867 else if (simd_required <= 16)
6868 v32.import_uniforms(&v16);
6869
6870 if (!v32.run_cs()) {
6871 compiler->shader_perf_log(log_data,
6872 "SIMD32 shader failed to compile: %s",
6873 v16.fail_msg);
6874 if (!cfg) {
6875 fail_msg =
6876 "Couldn't generate SIMD32 program and not "
6877 "enough threads for SIMD16";
6878 }
6879 } else {
6880 cfg = v32.cfg;
6881 cs_set_simd_size(prog_data, 32);
6882 cs_fill_push_const_info(compiler->devinfo, prog_data);
6883 }
6884 }
6885
6886 if (unlikely(cfg == NULL)) {
6887 assert(fail_msg);
6888 if (error_str)
6889 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6890
6891 return NULL;
6892 }
6893
6894 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6895 v8.promoted_constants, v8.runtime_check_aads_emit,
6896 MESA_SHADER_COMPUTE);
6897 if (INTEL_DEBUG & DEBUG_CS) {
6898 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6899 shader->info.label ? shader->info.label :
6900 "unnamed",
6901 shader->info.name);
6902 g.enable_debug(name);
6903 }
6904
6905 g.generate_code(cfg, prog_data->simd_size);
6906
6907 return g.get_assembly(final_assembly_size);
6908 }